1
|
Hanly JG, Legge A, Kamintsky L, Friedman A, Hashmi JA, Beyea SD, Fisk J, Omisade A, Calkin C, Bardouille T, Bowen C, Matheson K, Fritzler MJ. Role of autoantibodies and blood-brain barrier leakage in cognitive impairment in systemic lupus erythematosus. Lupus Sci Med 2022; 9:9/1/e000668. [PMID: 35705307 PMCID: PMC9204449 DOI: 10.1136/lupus-2022-000668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022]
Abstract
Objective Cognitive impairment is common in patients with SLE but the cause is unknown. The current cross-sectional study examined the association between select SLE-related autoantibodies, other serological biomarkers and extensive blood–brain barrier (BBB) leakage in patients with SLE with and without cognitive impairment. In addition, we determined whether the relationship between SLE autoantibodies, other biomarkers and cognitive impairment differed depending on the presence or absence of concurrent extensive BBB leakage. Methods Consecutive patients with SLE, recruited from a single academic medical centre, underwent formal neuropsychological testing for assessment of cognitive function. On the same day, BBB permeability was determined using dynamic contrast-enhanced MRI scanning. SLE autoantibodies and other serological biomarkers were measured. Regression modelling was used to determine the association between cognitive impairment, extensive BBB leakage and autoantibodies/biomarkers. Results There were 102 patients with SLE; 90% were female and 88% were Caucasian, with a mean±SD age of 48.9±13.8 years. The mean±SD SLE disease duration was 14.8±11.0 years. Impairment in one or more cognitive tests was present in 47 of 101 (47%) patients and included deficits in information processing speed (9%), attention span (21%), new learning (8%), delayed recall (15%) and executive abilities (21%). Extensive BBB leakage was present in 20 of 79 (25%) patients and was associated with cognitive impairment (15 of 20 (75%) vs 24 of 59 (41%); p=0.01) and shorter disease duration (median (IQR): 7 (8–24 years) vs 15 (2–16 years); p=0.02). No serological parameters were associated with extensive BBB leakage and there was no statistically significant association between cognitive impairment and circulating autoantibodies even after adjusting for BBB leakage. Conclusions Extensive BBB leakage alone was associated with cognitive impairment. These findings suggest that BBB leakage is an important contributor to cognitive impairment, regardless of circulating SLE-related autoantibodies.
Collapse
Affiliation(s)
- John G Hanly
- Division of Rheumatology, Department of Medicine and Pathology, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada .,Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alexandra Legge
- Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Division of Rheumatology, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alon Friedman
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Departments of Cognitive and Brain Sciences, Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Javeria A Hashmi
- Department of Anesthesia, Pain Management and Perioperative Medicine, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada.,Dalhousie University, Halifax, Nova Scotia, Canada
| | - Steven D Beyea
- Biomedical Translational Imaging Centre (BIOTIC), Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada.,Department of Diagnostic Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John Fisk
- Dalhousie University, Halifax, Nova Scotia, Canada.,Departments of Psychiatry, Psychology and Neuroscience and Medicine, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Antonina Omisade
- Acquired Brain Injury (Epilepsy Program), Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Cynthia Calkin
- Department of Psychiatry and Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tim Bardouille
- Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chris Bowen
- Biomedical Translational Imaging Centre (BIOTIC), Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada.,Department of Diagnostic Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kara Matheson
- Research Methods Unit, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Marvin J Fritzler
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Liu TW, Chen CM, Chang KH. Biomarker of Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23084148. [PMID: 35456966 PMCID: PMC9028544 DOI: 10.3390/ijms23084148] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson's disease (PD) is caused by abnormal accumulation of α-synuclein in dopaminergic neurons of the substantia nigra, which subsequently causes motor symptoms. Neuroinflammation plays a vital role in the pathogenesis of neurodegeneration in PD. This neuroinflammatory neurodegeneration involves the activation of microglia, upregulation of proinflammatory factors, and gut microbiota. In this review, we summarized the recent findings on detection of PD by using inflammatory biomarkers, such as interleukin (IL)-1β, IL-2, IL-6, IL-10, tumor necrosis factor (TNF)-α; regulated upon activation, normal T cell expressed and presumably secreted (RANTES) and high-sensitivity c-reactive protein (hsCRP); and radiotracers such as [11C]PK11195 and [18F]-FEPPA, as well as by monitoring disease progression and the treatment response. Many PD-causing mutations in SNCA, LRRK2, PRKN, PINK1, and DJ-1 are also associated with neuroinflammation. Several anti-inflammatory medications, including nonsteroidal anti-inflammatory drugs (NSAID), inhibitors of TNF-α and NLR family pyrin domain containing 3 (NLRP3), agonists of nuclear factor erythroid 2-related factor 2 (NRF2), peroxisome proliferator-activated receptor gamma (PPAR-γ), and steroids, have demonstrated neuroprotective effects in in vivo or in vitro PD models. Clinical trials applying objective biomarkers are required to investigate the therapeutic potential of anti-inflammatory medications for PD.
Collapse
Affiliation(s)
- Tsai-Wei Liu
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, Tauoyan 333, Taiwan; (T.-W.L.); (C.-M.C.)
| | - Chiung-Mei Chen
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, Tauoyan 333, Taiwan; (T.-W.L.); (C.-M.C.)
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kuo-Hsuan Chang
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, Tauoyan 333, Taiwan; (T.-W.L.); (C.-M.C.)
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8729); Fax: +886-3-3288849
| |
Collapse
|
3
|
Kocurova G, Ricny J, Ovsepian SV. Autoantibodies targeting neuronal proteins as biomarkers for neurodegenerative diseases. Theranostics 2022; 12:3045-3056. [PMID: 35547759 PMCID: PMC9065204 DOI: 10.7150/thno.72126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are associated with the accumulation of a range of misfolded proteins across the central nervous system and related autoimmune responses, including the generation of antibodies and the activation of immune cells. Both innate and adaptive immunity become mobilized, leading to cellular and humoral effects. The role of humoral immunity in disease onset and progression remains to be elucidated with rising evidence suggestive of positive (protection, repair) and negative (injury, toxicity) outcomes. In this study, we review advances in research of neuron-targeting autoantibodies in the most prevalent NDDs. We discuss their biological origin, molecular diversity and changes in the course of diseases, consider their relevance to the initiation and progression of pathology as well as diagnostic and prognostic significance. It is suggested that the emerging autoimmune aspects of NDDs not only could facilitate the early detection but also might help to elucidate previously unknown facets of pathobiology with relevance to the development of precision medicine.
Collapse
Affiliation(s)
- Gabriela Kocurova
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Jan Ricny
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Saak V. Ovsepian
- Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, United Kingdom
| |
Collapse
|
4
|
Auler N, Tonner H, Pfeiffer N, Grus FH. Antibody and Protein Profiles in Glaucoma: Screening of Biomarkers and Identification of Signaling Pathways. BIOLOGY 2021; 10:biology10121296. [PMID: 34943212 PMCID: PMC8698915 DOI: 10.3390/biology10121296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Glaucoma is a chronic eye disease that is one of the leading causes of blindness worldwide. Currently, the only therapeutic option is to lower intraocular pressure. The onset of the disease is often delayed because patients do not notice visual impairment until very late, which is why glaucoma is also known as “the silent thief of sight”. Therefore, early detection and definition of specific markers, the so-called biomarkers, are immensely important. For the methodical implementation, high-throughput methods and omic-based methods came more and more into focus. Thus, interesting targets for possible biomarkers were already suggested by clinical research and basic research, respectively. This review article aims to join the findings of the two disciplines by collecting overlaps as well as differences in various clinical studies and to shed light on promising candidates concerning findings from basic research, facilitating conclusions on possible therapy options. Abstract Glaucoma represents a group of chronic neurodegenerative diseases, constituting the second leading cause of blindness worldwide. To date, chronically elevated intraocular pressure has been identified as the main risk factor and the only treatable symptom. However, there is increasing evidence in the recent literature that IOP-independent molecular mechanisms also play an important role in the progression of the disease. In recent years, it has become increasingly clear that glaucoma has an autoimmune component. The main focus nowadays is elucidating glaucoma pathogenesis, finding early diagnostic options and new therapeutic approaches. This review article summarizes the impact of different antibodies and proteins associated with glaucoma that can be detected for example by microarray and mass spectrometric analyzes, which (i) provide information about expression profiles and associated molecular signaling pathways, (ii) can possibly be used as a diagnostic tool in future and, (iii) can identify possible targets for therapeutic approaches.
Collapse
|
5
|
Simani L, Sadeghi M, Ryan F, Dehghani M, Niknazar S. Elevated Blood-Based Brain Biomarker Levels in Patients with Epileptic Seizures: A Systematic Review and Meta-analysis. ACS Chem Neurosci 2020; 11:4048-4059. [PMID: 33147022 DOI: 10.1021/acschemneuro.0c00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recently, growing attention has been paid to the changes of brain biomarkers following the epilepsy. However, establishing specific epilepsy-related biomarkers has been impeded due to contradictory findings. This study systematically reviewed the evidence on brain biomarkers in epilepsy and determined reliable biomarkers in epileptic patients. A comprehensive systematic search of online databases was performed to find eligible studies up to August 2019. The quality of studies methodologically was assessed using the Newcastle-Ottawa Scale score. Among the several biomarkers, S100 calcium binding protein B (S100B) and neuron specific enolase (NSE) have been qualified for meta-analysis of the association between epilepsy and the brain biomarkers. Inverse-variance weights method was used to calculate pooled standardized mean difference (SMD) estimate with 95% CI, and random effects meta-analysis was conducted taking into account conceptual heterogeneity. Sensitivity analysis and publication bias assessment was performed using Stata. Of 29 studies that were qualified for further analysis, only 22 studies were eligible to quantify by meta-analysis. Significant increase of serum S100B levels (SMD = 0.80; 95% CI 0.18 to 1.42) but not NSE (SMD = 0.45; 95% CI -0.09 to 1.00) has been found in epileptic patients compared with healthy controls. Subgroup meta-analysis by age demonstrated that S100B could be found in pediatric (SMD = 1.15; 95% CI 0.03 to 2.27) not adult patients (SMD = 0.43; 95% CI -0.12 to 0.98). Findings of this meta-analysis indicate that serum level of S100B is significantly increased in epileptic patients, suggesting the elevation and release of the brain biomarkers from brain to blood following epileptic seizures.
Collapse
Affiliation(s)
- Leila Simani
- Skull base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Masoumeh Sadeghi
- Department of Epidemiology, Faculty of Health, Mashhad University of Medical Sciences, Mashhad 13131-99137, Iran
| | - Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, 1650 Cedar Ave., Montreal, Quebec H3A 1A1, Canada
| | - Mohsen Dehghani
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Somayeh Niknazar
- Hearing Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| |
Collapse
|
6
|
Belova OV, Arefieva TI, Moskvina SN. [Immunological aspects of Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:110-119. [PMID: 32307420 DOI: 10.17116/jnevro2020120021110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The review summarizes information on immunological disorders in Parkinson's disease (PD). The data on neuroinflammation associated with degeneration of the medial substantia nigra cells are presented. It is pointed out that innate and adaptive immunity cells are involved in the process of neuroinflammation. The authors analyze the cytokine level in the brain, cerebrospinal fluid and peripheral blood as well as the relationship between neuroinflammation and neuron dysfunction and provide information on immunological disorders in people with PD and animal models of PD. Specific features of PD models and data on blood-brain barrier damage and evidence of autoimmune inflammation in PD are presented. Identification of PD preclinical markers, including cytokines, HLA-DR and HLA-DQ antigens, autoantibodies, etc, is discussed. Pre-symptomatic diagnosis of PD, prevention and treatment at the pre-symptomatic stage could lead to interruption or slowdown the neurons death.
Collapse
Affiliation(s)
- O V Belova
- NRC 'Kurchatov Institute', Moscow, Russia
| | - T I Arefieva
- NRC 'Kurchatov Institute', Moscow, Russia; National Medical Research Center for Cardiology, Moscow, Russia
| | | |
Collapse
|
7
|
Arevalo-Martin A, Grassner L, Garcia-Ovejero D, Paniagua-Torija B, Barroso-Garcia G, Arandilla AG, Mach O, Turrero A, Vargas E, Alcobendas M, Rosell C, Alcaraz MA, Ceruelo S, Casado R, Talavera F, Palazón R, Sanchez-Blanco N, Maier D, Esclarin A, Molina-Holgado E. Elevated Autoantibodies in Subacute Human Spinal Cord Injury Are Naturally Occurring Antibodies. Front Immunol 2018; 9:2365. [PMID: 30364218 PMCID: PMC6193075 DOI: 10.3389/fimmu.2018.02365] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023] Open
Abstract
Spinal cord injury (SCI) results in long-term neurological and systemic consequences, including antibody-mediated autoimmunity, which has been related to impaired functional recovery. Here we show that autoantibodies that increase at the subacute phase of human SCI, 1 month after lesion, are already present in healthy subjects and directed against non-native proteins rarely present in the normal spinal cord. The increase of these autoantibodies is a fast phenomenon–their levels are already elevated before 5 days after lesion–characteristic of secondary immune responses, further supporting their origin as natural antibodies. By proteomics studies we have identified that the increased autoantibodies are directed against 16 different nervous system and systemic self-antigens related to changes known to occur after SCI, including alterations in neural cell cytoskeleton, metabolism and bone remodeling. Overall, in the context of previous studies, our results offer an explanation to why autoimmunity develops after SCI and identify novel targets involved in SCI pathology that warrant further investigation.
Collapse
Affiliation(s)
- Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Lukas Grassner
- Center for Spinal Cord Injuries, Trauma Center, Murnau, Germany.,Department of Neurosurgery, Trauma Center, Murnau, Germany.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | | | - Gemma Barroso-Garcia
- Proteomics Core Facility, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Alba G Arandilla
- Proteomics Core Facility, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Orpheus Mach
- Center for Spinal Cord Injuries, Trauma Center, Murnau, Germany
| | - Angela Turrero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Eduardo Vargas
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Monica Alcobendas
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Carmen Rosell
- Department of Occupational Health, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Maria A Alcaraz
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Silvia Ceruelo
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Rosa Casado
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Francisco Talavera
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Ramiro Palazón
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | | | - Doris Maier
- Center for Spinal Cord Injuries, Trauma Center, Murnau, Germany
| | - Ana Esclarin
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| |
Collapse
|
8
|
Abstract
Abstract
There are numerous biomarkers of central and peripheral nervous system damage described in human and veterinary medicine. Many of these are already used as tools in the diagnosis of human neurological disorders, and many are investigated in regard to their use in small and large animal veterinary medicine. The following review presents the current knowledge about the application of cell-type (glial fibrillary acidic protein, neurofilament subunit NF-H, myelin basic protein) and central nervous system specific proteins (S100B, neuron specific enolase, tau protein, alpha II spectrin, ubiquitin carboxy-terminal hydrolase L1, creatine kinase BB) present in the cerebrospinal fluid and/or serum of animals in the diagnosis of central or peripheral nervous system damage in veterinary medicine.
Collapse
Affiliation(s)
- Marta Płonek
- Department of Internal Diseases with Clinic for Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw
| | - Marcin Wrzosek
- Department of Internal Diseases with Clinic for Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw
| | - Józef Nicpoń
- Department of Internal Diseases with Clinic for Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw
- Centre for Experimental Diagnostics and Biomedical Innovations, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw
| |
Collapse
|
9
|
Gulati G, Iffland PH, Janigro D, Zhang B, Luggen ME. Anti-NR2 antibodies, blood-brain barrier, and cognitive dysfunction. Clin Rheumatol 2016; 35:2989-2997. [PMID: 27357716 DOI: 10.1007/s10067-016-3339-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 11/28/2022]
Abstract
Cognitive dysfunction (CD) is one of the most common neuropsychiatric manifestations of systemic lupus erythematosus (SLE). In animal models, antibodies to NR2 subunit of N-methyl D-aspartate receptor (anti-NR2) cause memory impairment, but only with blood-brain barrier (BBB) disruption or intrathecal administration. Several studies have failed to find association of aNR2 with CD, but none have assessed BBB integrity. S100B, an astrocyte-specific protein, has been used as biomarker of BBB disruption in traumatic brain injury and some neurodegenerative disorders. Antibodies to this immunologically privileged protein (anti-S100B) might indicate preceding BBB disruption. We hypothesized that aNR2 antibody is pathogenic in SLE patients only with BBB disruption. Demographic, clinical, and laboratory data was collected from patients with SLE. Total throughput score (TTS) of the Automated Neuropsychological Assessment Metrics (ANAM) was used as primary outcome measure. CD was defined as TTS < 1.5 SD below an age-, sex-, and race-matched RA population mean. Serum was analyzed by established ELISA techniques. Fifty-seven patients were evaluated and 12 had CD. Age, ethnicity, and family income were significantly different between the two groups (p < 0.05). In a multiple regression model adjusting for other variables, no significant effects of anti-NR2, S100B, or anti-S100B on TTS were found. Even at high levels of S100B and anti-S100B, no significant influence of anti-NR2 on TTS was found. The anti-NR2 was not associated with CD in SLE even in context of potential BBB disruption. This suggests that, if pathogenic, these antibodies may be produced intrathecally.
Collapse
Affiliation(s)
- Gaurav Gulati
- Division of Immunology, Allergy and Rheumatology, Medical Sciences Building (MSB), University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML 0563, Cincinnati, OH, 45267, USA.
| | - Philip H Iffland
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Damir Janigro
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Bin Zhang
- Department of Biostatistics & Epidemiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, 45229, USA
| | - Michael E Luggen
- Division of Immunology, Allergy and Rheumatology, Medical Sciences Building (MSB), University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML 0563, Cincinnati, OH, 45267, USA
| |
Collapse
|
10
|
Abstract
PRIMARY OBJECTIVE The aim of this literature review was to systematically describe the sequential metabolic changes that occur following concussive injury, as well as identify and characterize the major concepts associated with the neurochemical cascade. RESEARCH DESIGN Narrative literature review. CONCLUSIONS Concussive injury initiates a complex cascade of pathophysiological changes that include hyper-acute ionic flux, indiscriminant excitatory neurotransmitter release, acute hyperglycolysis and sub-acute metabolic depression. Additionally, these metabolic changes can subsequently lead to impaired neurotransmission, alternate fuel usage and modifications in synaptic plasticity and protein expression. The combination of these metabolic alterations has been proposed to cause the transient and prolonged neurological deficits that typically characterize concussion. Consequently, understanding the implications of the neurochemical cascade may lead to treatment and return-to-play guidelines that can minimize the chronic effects of concussive injury.
Collapse
|
11
|
Yang Z, Wang KKW. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci 2015; 38:364-74. [PMID: 25975510 PMCID: PMC4559283 DOI: 10.1016/j.tins.2015.04.003] [Citation(s) in RCA: 570] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 12/20/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) III protein uniquely found in astrocytes in the central nervous system (CNS), non-myelinating Schwann cells in the peripheral nervous system (PNS), and enteric glial cells. GFAP mRNA expression is regulated by several nuclear-receptor hormones, growth factors, and lipopolysaccharides (LPSs). GFAP is also subject to numerous post-translational modifications (PTMs), while GFAP mutations result in protein deposits known as Rosenthal fibers in Alexander disease. GFAP gene activation and protein induction appear to play a critical role in astroglial cell activation (astrogliosis) following CNS injuries and neurodegeneration. Emerging evidence also suggests that, following traumatic brain and spinal cord injuries and stroke, GFAP and its breakdown products are rapidly released into biofluids, making them strong candidate biomarkers for such neurological disorders.
Collapse
Affiliation(s)
- Zhihui Yang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Departments of Psychiatry and Neuroscience, McKnight Brain Institute, L4-100, University of Florida, 1149 South Newell Drive, Gainesville, FL 32611, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Departments of Psychiatry and Neuroscience, McKnight Brain Institute, L4-100, University of Florida, 1149 South Newell Drive, Gainesville, FL 32611, USA.
| |
Collapse
|
12
|
Bargerstock E, Puvenna V, Iffland P, Falcone T, Hossain M, Vetter S, Man S, Dickstein L, Marchi N, Ghosh C, Carvalho-Tavares J, Janigro D. Is peripheral immunity regulated by blood-brain barrier permeability changes? PLoS One 2014; 9:e101477. [PMID: 24988410 PMCID: PMC4079719 DOI: 10.1371/journal.pone.0101477] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 06/06/2014] [Indexed: 12/19/2022] Open
Abstract
S100B is a reporter of blood-brain barrier (BBB) integrity which appears in blood when the BBB is breached. Circulating S100B derives from either extracranial sources or release into circulation by normal fluctuations in BBB integrity or pathologic BBB disruption (BBBD). Elevated S100B matches the clinical presence of indices of BBBD (gadolinium enhancement or albumin coefficient). After repeated sub-concussive episodes, serum S100B triggers an antigen-driven production of anti-S100B autoantibodies. We tested the hypothesis that the presence of S100B in extracranial tissue is due to peripheral cellular uptake of serum S100B by antigen presenting cells, which may induce the production of auto antibodies against S100B. To test this hypothesis, we used animal models of seizures, enrolled patients undergoing repeated BBBD, and collected serum samples from epileptic patients. We employed a broad array of techniques, including immunohistochemistry, RNA analysis, tracer injection and serum analysis. mRNA for S100B was segregated to barrier organs (testis, kidney and brain) but S100B protein was detected in immunocompetent cells in spleen, thymus and lymph nodes, in resident immune cells (Langerhans, satellite cells in heart muscle, etc.) and BBB endothelium. Uptake of labeled S100B by rat spleen CD4+ or CD8+ and CD86+ dendritic cells was exacerbated by pilocarpine-induced status epilepticus which is accompanied by BBBD. Clinical seizures were preceded by a surge of serum S100B. In patients undergoing repeated therapeutic BBBD, an autoimmune response against S100B was measured. In addition to its role in the central nervous system and its diagnostic value as a BBBD reporter, S100B may integrate blood-brain barrier disruption to the control of systemic immunity by a mechanism involving the activation of immune cells. We propose a scenario where extravasated S100B may trigger a pathologic autoimmune reaction linking systemic and CNS immune responses.
Collapse
Affiliation(s)
- Erin Bargerstock
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Vikram Puvenna
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Philip Iffland
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Kent State University, Kent, Ohio, United States of America
| | - Tatiana Falcone
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Psychiatry, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Mohammad Hossain
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Stephen Vetter
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Shumei Man
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Leah Dickstein
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Nicola Marchi
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Juliana Carvalho-Tavares
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Damir Janigro
- Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Neurosurgery, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- Flocel, Inc. Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
13
|
Zhang Z, Zoltewicz JS, Mondello S, Newsom KJ, Yang Z, Yang B, Kobeissy F, Guingab J, Glushakova O, Robicsek S, Heaton S, Buki A, Hannay J, Gold MS, Rubenstein R, Lu XCM, Dave JR, Schmid K, Tortella F, Robertson CS, Wang KKW. Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One 2014; 9:e92698. [PMID: 24667434 PMCID: PMC3965455 DOI: 10.1371/journal.pone.0092698] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/24/2014] [Indexed: 01/15/2023] Open
Abstract
The role of systemic autoimmunity in human traumatic brain injury (TBI) and other forms of brain injuries is recognized but not well understood. In this study, a systematic investigation was performed to identify serum autoantibody responses to brain-specific proteins after TBI in humans. TBI autoantibodies showed predominant immunoreactivity against a cluster of bands from 38-50 kDa on human brain immunoblots, which were identified as GFAP and GFAP breakdown products. GFAP autoantibody levels increased by 7 days after injury, and were of the IgG subtype predominantly. Results from in vitro tests and rat TBI experiments also indicated that calpain was responsible for removing the amino and carboxyl termini of GFAP to yield a 38 kDa fragment. Additionally, TBI autoantibody staining co-localized with GFAP in injured rat brain and in primary rat astrocytes. These results suggest that GFAP breakdown products persist within degenerating astrocytes in the brain. Anti-GFAP autoantibody also can enter living astroglia cells in culture and its presence appears to compromise glial cell health. TBI patients showed an average 3.77 fold increase in anti-GFAP autoantibody levels from early (0-1 days) to late (7-10 days) times post injury. Changes in autoantibody levels were negatively correlated with outcome as measured by GOS-E score at 6 months, suggesting that TBI patients with greater anti-GFAP immune-responses had worse outcomes. Due to the long lasting nature of IgG, a test to detect anti-GFAP autoantibodies is likely to prolong the temporal window for assessment of brain damage in human patients.
Collapse
Affiliation(s)
- Zhiqun Zhang
- Banyan Biomarkers Inc., Alachua, Florida, United States of America
| | - J. Susie Zoltewicz
- Department of Psychiatry, Center for Neuroproteomics and Biomarker Research, University of Florida, Gainesville, Florida, United States of America
| | | | - Kimberly J. Newsom
- Department of Psychiatry, Center for Neuroproteomics and Biomarker Research, University of Florida, Gainesville, Florida, United States of America
| | - Zhihui Yang
- Banyan Biomarkers Inc., Alachua, Florida, United States of America
| | - Boxuan Yang
- Department of Psychiatry, Center for Neuroproteomics and Biomarker Research, University of Florida, Gainesville, Florida, United States of America
| | - Firas Kobeissy
- Banyan Biomarkers Inc., Alachua, Florida, United States of America
| | - Joy Guingab
- Department of Psychiatry, Center for Neuroproteomics and Biomarker Research, University of Florida, Gainesville, Florida, United States of America
| | - Olena Glushakova
- Department of Psychiatry, Center for Neuroproteomics and Biomarker Research, University of Florida, Gainesville, Florida, United States of America
| | - Steven Robicsek
- Department of Anesthesiology, University of Florida, Gainesville, Florida, United States of America
| | - Shelley Heaton
- Clinical and Health Psychology, University of Florida, Gainesville, Florida, United States of America
| | - Andras Buki
- Department of Neurosurgery, University of Pécs and Clinical Neuroscience Image Center of Hungarian Academy of Sciences (HAS) Pécs, Hungary
| | - Julia Hannay
- Department of Psychology, University of Houston, Houston, Texas, United States of America
| | | | - Richard Rubenstein
- Laboratory of Neurodegenerative Disease and CNS Biomarkers, Departments of Neurology and Physiology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Xi-chun May Lu
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jitendra R. Dave
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Kara Schmid
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Frank Tortella
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Claudia S. Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kevin K. W. Wang
- Banyan Biomarkers Inc., Alachua, Florida, United States of America
| |
Collapse
|
14
|
Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE. Inflammation and adaptive immunity in Parkinson's disease. Cold Spring Harb Perspect Med 2013; 2:a009381. [PMID: 22315722 DOI: 10.1101/cshperspect.a009381] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The immune system is designed to protect the host from infection and injury. However, when an adaptive immune response continues unchecked in the brain, the proinflammatory innate microglial response leads to the accumulation of neurotoxins and eventual neurodegeneration. What drives such responses are misfolded and nitrated proteins. Indeed, the antigen in Parkinson's disease (PD) is an aberrant self-protein, although the adaptive immune responses are remarkably similar in a range of diseases. Ingress of lymphocytes and chronic activation of glial cells directly affect neurodegeneration. With this understanding, new therapies aimed at modulating the immune system's response during PD could lead to decreased neuronal loss and improved clinical outcomes for disease.
Collapse
Affiliation(s)
- R Lee Mosley
- Movement Disorders Program, Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | |
Collapse
|
15
|
Bell K, Gramlich OW, Von Thun Und Hohenstein-Blaul N, Beck S, Funke S, Wilding C, Pfeiffer N, Grus FH. Does autoimmunity play a part in the pathogenesis of glaucoma? Prog Retin Eye Res 2013; 36:199-216. [PMID: 23541978 DOI: 10.1016/j.preteyeres.2013.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 12/12/2022]
Abstract
Glaucoma is a chronic neurodegenerative disease and one of the leading causes of blindness. Several risk factors have been described, e.g. an elevated intraocular pressure (IOP), oxidative stress or mitochondrial dysfunction. Additionally, alterations in serum antibody profiles of glaucoma patients, upregulation (e.g. anti-HSP60, anti-MBP) and downregulation (e.g. anti-14-3-3), have been described, but it still remains elusive if the autoantibodies seen in glaucoma are an epiphenomenon or causative. However, it is known that elicited autoimmunity causes retinal ganglion cell loss resulting in glaucomatous-like damage and according to the autoaggressive nature of some autoantibodies we found antibody deposits in human glaucomatous retinae in a pro-inflammatory environment. Furthermore, glaucomatous serum has the potential to influence neuroretinal cell regulatory processes. Importantly, we demonstrate that some autoantibodies hold neuroprotective potential for neuroretinal cells. The protective nature of autoantibodies and the molecular mechanisms underlying the very sensitive equilibrium between autoaggression and protection remain subject of future examinations and offer promising target sites for new therapeutic approaches. Additionally, the changes in antibody profiles could be used as highly sensitive and specific marker for diagnostics purposes. Early diagnosis and intervention in risk patients would offer the chance of early treatment and to slow down the progression of glaucoma and delay the resulting blindness.
Collapse
Affiliation(s)
- Katharina Bell
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutewnberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Consequences of repeated blood-brain barrier disruption in football players. PLoS One 2013; 8:e56805. [PMID: 23483891 PMCID: PMC3590196 DOI: 10.1371/journal.pone.0056805] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022] Open
Abstract
The acknowledgement of risks for traumatic brain injury in American football players has prompted studies for sideline concussion diagnosis and testing for neurological deficits. While concussions are recognized etiological factors for a spectrum of neurological sequelae, the consequences of sub-concussive events are unclear. We tested the hypothesis that blood-brain barrier disruption (BBBD) and the accompanying surge of the astrocytic protein S100B in blood may cause an immune response associated with production of auto-antibodies. We also wished to determine whether these events result in disrupted white matter on diffusion tensor imaging (DT) scans. Players from three college football teams were enrolled (total of 67 volunteers). None of the players experienced a concussion. Blood samples were collected before and after games (n = 57); the number of head hits in all players was monitored by movie review and post-game interviews. S100B serum levels and auto-antibodies against S100B were measured and correlated by direct and reverse immunoassays (n = 15 players; 5 games). A subset of players underwent DTI scans pre- and post-season and after a 6-month interval (n = 10). Cognitive and functional assessments were also performed. After a game, transient BBB damage measured by serum S100B was detected only in players experiencing the greatest number of sub-concussive head hits. Elevated levels of auto-antibodies against S100B were elevated only after repeated sub-concussive events characterized by BBBD. Serum levels of S100B auto-antibodies also predicted persistence of MRI-DTI abnormalities which in turn correlated with cognitive changes. Even in the absence of concussion, football players may experience repeated BBBD and serum surges of the potential auto-antigen S100B. The correlation of serum S100B, auto-antibodies and DTI changes support a link between repeated BBBD and future risk for cognitive changes.
Collapse
|
17
|
North SH, Shriver-Lake LC, Taitt CR, Ligler FS. Rapid analytical methods for on-site triage for traumatic brain injury. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:35-56. [PMID: 22462400 DOI: 10.1146/annurev-anchem-062011-143105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Traumatic brain injury (TBI) results from an event that causes rapid acceleration and deceleration of the brain or penetration of the skull with an object. Responses to stimuli and questions, loss of consciousness, and altered behavior are symptoms currently used to justify brain imaging for diagnosis and therapeutic guidance. Tests based on such symptoms are susceptible to false-positive and false-negative results due to stress, fatigue, and medications. Biochemical markers of neuronal damage and the physiological response to that damage are being identified. Biosensors capable of rapid measurement of such markers in the circulation offer a solution for on-site triage, as long as three criteria are met: (a) Recognition reagents can be identified that are sufficiently sensitive and specific, (b) the biosensor can provide quantitative assessment of multiple markers rapidly and simultaneously, and (c) both the sensor and reagents are designed for use outside the laboratory.
Collapse
Affiliation(s)
- Stella H North
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375-5348, USA.
| | | | | | | |
Collapse
|
18
|
New insights into autoantibody profiles from immune privileged sites in the eye: a glaucoma study. Brain Behav Immun 2012; 26:96-102. [PMID: 21843631 DOI: 10.1016/j.bbi.2011.07.241] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/24/2011] [Accepted: 07/30/2011] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a chronic neurodegenerative disease and one of the leading causes of blindness. Autoantibody based immune processes are assumed to be involved in its pathogenesis. However, it is still unclear to what extent autoantibody patterns found in the eye (aqueous humor) are congruent to systemic autoantibodies (blood). Consistency would underline the specificity of known serum antibody markers for glaucoma. In this study we used antigen microarrays to analyze autoantibody reactivities in sera and corresponding aqueous humor samples of primary open-angle glaucoma patients (N=37) and non-glaucomatous controls (N=31). Compared to control subjects several divergent immunoreactivities were identified for the glaucoma group in both body fluids. Interestingly, 20% of the tested antigens revealed increased immunoreactivities (e.g., against HSP27, MBP, and α-1-antitrypsin) and 7.5% decreased immunoreactivities (e.g., against GFAP and β-L-crystallin), thus demonstrating a significant alteration of the autoantibody profiles in glaucoma patients. Using an artificial neural network in combination with a unique serum autoantibody pattern on prospective sera we were able to detect glaucoma with a specificity and sensitivity of approximately 93%. The intraindividual comparison revealed a strong correlation of detected immunoreactivities in sera and comparative aqueous humor samples in both study groups. These results emphasize the specificity of immunoreactions found in blood samples of glaucoma patients. Furthermore they indicate the necessity of analyzing not only up-regulated but also down-regulated antibody reactivities, which might be likewise relevant for the understanding of other diseases.
Collapse
|
19
|
Carter CJ. Schizophrenia: a pathogenetic autoimmune disease caused by viruses and pathogens and dependent on genes. J Pathog 2011; 2011:128318. [PMID: 22567321 PMCID: PMC3335463 DOI: 10.4061/2011/128318] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/25/2011] [Indexed: 12/20/2022] Open
Abstract
Many genes have been implicated in schizophrenia as have viral prenatal or adult infections and toxoplasmosis or Lyme disease. Several autoantigens also target key pathology-related proteins. These factors are interrelated. Susceptibility genes encode for proteins homologous to those of the pathogens while the autoantigens are homologous to pathogens' proteins, suggesting that the risk-promoting effects of genes and risk factors are conditional upon each other, and dependent upon protein matching between pathogen and susceptibility gene products. Pathogens' proteins may act as dummy ligands, decoy receptors, or via interactome interference. Many such proteins are immunogenic suggesting that antibody mediated knockdown of multiple schizophrenia gene products could contribute to the disease, explaining the immune activation in the brain and lymphocytes in schizophrenia, and the preponderance of immune-related gene variants in the schizophrenia genome. Schizophrenia may thus be a “pathogenetic” autoimmune disorder, caused by pathogens, genes, and the immune system acting together, and perhaps preventable by pathogen elimination, or curable by the removal of culpable antibodies and antigens.
Collapse
Affiliation(s)
- C J Carter
- Polygenic Pathways, 20 Upper Maze Hill, St Leonards-on-Sea, East Sussex, TN38 OLG, UK
| |
Collapse
|
20
|
Abstract
Elevated intraocular pressure does not explain glaucoma in all patients, but there is information that autoimmune mechanisms may be involved in this disorder. This review attempts to reveal the findings about specific changes in autoantibody profiles in glaucoma patients and their possible role in glaucoma. Considering that these changes in natural autoimmunity can be found consistently among different study populations, it might be a promising new tool for glaucoma detection.
Collapse
|
21
|
Grus F, Sun D. Immunological mechanisms in glaucoma. Semin Immunopathol 2008; 30:121-6. [PMID: 18330572 DOI: 10.1007/s00281-008-0105-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Accepted: 02/04/2008] [Indexed: 11/29/2022]
Abstract
Glaucoma is one of the most frequent causes of blindness worldwide. The elevated intraocular pressure does not explain glaucoma in all patients but can be considered as a risk factor of the disease. There are some evidences that autoimmune mechanisms may be involved in this disorder. This review attempts to demonstrate the findings about autoimmune mechanisms in glaucoma patients. Consistent up- and down-regulations in the autoantibody profiles against ocular antigens are present in glaucoma patients. These changes in natural autoimmunity could be found in independent study populations and might be a promising tool for glaucoma detection.
Collapse
Affiliation(s)
- F Grus
- Experimental Ophthalmology, Department of Ophthalmology, University of Mainz, Mainz, Germany.
| | | |
Collapse
|
22
|
El-Fawal HAN, McCain WC. Antibodies to neural proteins in organophosphorus-induced delayed neuropathy (OPIDN) and its amelioration. Neurotoxicol Teratol 2008; 30:161-6. [PMID: 18353611 DOI: 10.1016/j.ntt.2008.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 01/27/2008] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
Abstract
The development of OPIDN and the efficacy of experimental intervention using the calcium-channel blocker verapamil were used as a model to test the serial time-measurements of serum autoantibodies against neuronal cytoskeletal proteins [e.g., neurofilament triplet (NF)] and glial proteins [myelin-basic protein (MBP) and glial fibrillary-acidic protein (GFAP)] as biomarkers of neurotoxicity and its amelioration. Ten White Leghorn hens (>7 months, 1.2-1.8 kg) were administered phenyl-saligenin phosphate (PSP; 2.5 mg/kg; im), a dose reported to induce a 70% decrease in neurotoxic esterase (NTE) activity. Five of the hens were administered verapamil (7 mg/kg; im) for 4 days starting one day before PSP administration. Serum was isolated from blood collected by serial brachial venepuncture before PSP (day 0) administration and on days 3, 7 and 21 after PSP administration, each hen acting as its own control. Serum antibodies (IgG) to NF-L, NF-M, NF-H, MBP, and GFAP were assayed using an ELISA. There were no detectable levels of antibodies on days 0 and 3. IgG against all neural proteins were detected on days 7 and 21, with titer levels being significantly (p< or =0.05) higher in sera of hens receiving PSP only. Anti-NF-L titers were highest compared to those against NF-M, NF-H or MBP at 21 days. Titers of anti-NF-L and anti-MBP significantly (p< or =0.01) correlated with clinical scores at days 7 and 21. Detection of anti-NF and anti-MBP antibodies confirms the neuroaxonal degeneration accompanied by myelin loss reported in this model of OPIDN and the amelioration of neuropathy using verapamil. The detection of anti-GFAP antibodies suggests CNS involvement in OPIDN, since astrocytes are only found therein. This study demonstrates that detection of neuroantibodies can be used as biomarkers of neuropathy development and to monitor the amelioration resulting from therapeutic intervention. Together with biomarkers of exposure neuroantibodies can be used to monitor neuropathogenesis due to environmental or occupational exposures.
Collapse
Affiliation(s)
- Hassan A N El-Fawal
- Neurotoxicology Laboratory, Division of Health Professions and Natural Sciences, Mercy College, Dobbs Ferry, NY 10522, USA.
| | | |
Collapse
|
23
|
Avrameas S, Ternynck T, Tsonis IA, Lymberi P. Naturally occurring B-cell autoreactivity: A critical overview. J Autoimmun 2007; 29:213-8. [PMID: 17888629 DOI: 10.1016/j.jaut.2007.07.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In over one century of research in immunology marked progress in the scientific knowledge and the implications derived from it has been made. At the same time several contradictory and seemingly opposing results have been obtained. The term autoimmunity is still conceived by many as a term directly related to an immunopathological state. However, strong evidence exist that not only the immune system is able to recognize self-constituents, but it appears also that this property is essential for homeostasis. Direct or indirect alterations of such self-recognition properties of the immune system may contribute to pathology. In this review, the most recent advances in the field of naturally occurring B-cell autoreactivity in health as well as in disease are presented and discussed.
Collapse
Affiliation(s)
- Stratis Avrameas
- Department of Pathophysiology, Medical School, University of Athens, 75 M. Asias, 11527 Athens, Greece.
| | | | | | | |
Collapse
|
24
|
El-Fawal HAN, O'Callaghan JP. Autoantibodies to neurotypic and gliotypic proteins as biomarkers of neurotoxicity: assessment of trimethyltin (TMT). Neurotoxicology 2007; 29:109-15. [PMID: 18001836 DOI: 10.1016/j.neuro.2007.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 08/30/2007] [Accepted: 09/23/2007] [Indexed: 12/24/2022]
Abstract
Developing accessible biomarkers of neurotoxic effects which are readily applicable to human populations poses a challenge for neurotoxicology. In the past, the neurotoxic organometal trimethyltin (TMT) has been used as a denervation tool to validate the enhanced expression of GFAP as a biomarker of astrogliosis and neurotoxicity resulting from chemical exposures. In the present study, TMT was used to assess the detection of serum autoantibodies as biomarkers of neurotoxicity. Previous studies in both human and animals have demonstrated the presence of serum autoantibodies to neurotypic [e.g., neurofilament triplet (NF)] and gliotypic proteins [myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP)] as a peripheral marker of neurodegeneration that may be applicable to humans and experimental studies. Male Long-Evans rats (45 days of age) were administered either TMT (8 mg/kg; s) or an equal volume of sterile 0.9% saline. At 1, 2, and 3 weeks post-administration, serum was collected, and rats were sacrificed for the collection of brains. Serum autoantibodies (both IgM and IgG isotypes) to NF68, NF160, NF200, MBP, and GFAP were assayed using an ELISA. Saline only rats did not have detectable levels of autoantibodies. Only sera from TMT-exposed rats had detectable titers of autoantibodies to NFs with IgG predominating starting week 2. Anti-NF68 titers were highest compared to NF160, or NF200. Autoantibodies to MBP and GFAP also were detected; however, there was no significant increase in their titers until week 3. Hippocampal GFAP, detected at these time points, was significantly (p<0.05) higher than in control brains, indicating the induction of astrogliosis as confirmed by immunostaining of brain sections. The detection of anti-NFs, as indicative of neuronal insult, was consistent with loss of hippocampal neurons in CA3 and CA1. Our results suggest that the detection of autoantibodies to neurotypic and gliotypic proteins may be used as peripheral biomarkers to reveal evidence of nervous system neurotoxicity.
Collapse
Affiliation(s)
- Hassan A N El-Fawal
- Neurotoxicology Laboratory, Division of Health Professions and Natural Sciences, Mercy College, 555 Broadway, Dobbs Ferry, NY 10522, USA.
| | | |
Collapse
|
25
|
Wilhelm KR, Yanamandra K, Gruden MA, Zamotin V, Malisauskas M, Casaite V, Darinskas A, Forsgren L, Morozova-Roche LA. Immune reactivity towards insulin, its amyloid and protein S100B in blood sera of Parkinson's disease patients. Eur J Neurol 2007; 14:327-34. [PMID: 17355556 DOI: 10.1111/j.1468-1331.2006.01667.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Peripheral immune responses can be sensitive indicators of disease pathology. We evaluated the autoimmune reactions to endocrine (insulin) and astrocytical (S100B) biomarkers in the blood sera of 26 Parkinson's disease (PD) patients compared with controls by using ELISA. We found a statistically significant increase of the autoimmune responses to both antigens in PD patients compared with controls with a mean increase of 70% and 50% in the autoimmune reactions towards insulin and S100B, respectively. Heterogeneity of the immune responses observed in patients may reflect the modulating effect of multiple variables associated with neurodegeneration and also changes in the basic mechanisms of individual autoimmune reactivity. We did not detect any pronounced immune reactions towards insulin amyloid fibrils and oligomers in PD patients, indicating that an amyloid-specific conformational epitope is not involved in immune recognition of this amyloid type, while sequential epitope of native insulin is hidden within the amyloid structures. Immune reactions towards S100B and insulin may reflect the neurodegenerative brain damaging processes and impaired insulin homeostasis occurring in PD.
Collapse
Affiliation(s)
- K R Wilhelm
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Warrington RJ, Lewis KE. Biologically active anti-nerve growth factor antibodies in commercial intravenous gammaglobulin. J Autoimmun 2007; 28:24-9. [PMID: 17218083 DOI: 10.1016/j.jaut.2006.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 11/23/2006] [Indexed: 10/23/2022]
Abstract
Neurotrophins are regulators of development, survival and function of neuronal and non-neuronal cells, one of the most important of which is nerve growth factor (NGF). Previous studies have demonstrated the presence of antibodies to NGF in normal human serum. It would therefore be predicted that antibodies to NGF would also be present in commercial intravenous gammaglobulin (IVIg). It has been shown in the present investigation that ELISA can detect anti-NGF antibodies in IVIg. The functional activity of these antibodies has been demonstrated after affinity purification, by their inhibitory effects upon (a) the proliferation of the NGF-responsive rat pheochromocytoma cell line PC-12, (b) the differentiation of PC-12 cells as determined by neurite outgrowth. All batches of commercially tested IVIg contained anti-NGF antibodies. Since NGF has an important role in the inflammatory immune response and in cell growth and differentiation, these findings may (a) facilitate our understanding of the mechanisms of action of IVIg, (b) indicate new disease states in which IVIg or its derivatives may exert beneficial effects.
Collapse
Affiliation(s)
- Richard J Warrington
- Department of Immunology, Room 616, 730 William Avenue, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada.
| | | |
Collapse
|
27
|
Poletaev A, Osipenko L. General network of natural autoantibodies as immunological homunculus (Immunculus). Autoimmun Rev 2003; 2:264-71. [PMID: 12965177 DOI: 10.1016/s1568-9972(03)00033-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The term 'Immunculus' has been proposed for designation of the global system (network) of constitutively expressed natural autoantibodies (na-Ab) interacting specifically with different extracellular, membrane, cytoplasmic, and nuclear self-antigens. In healthy persons the repertoires of such na-Ab are surprisingly constant and characterized by minimal individual quantitative variations. On the other hand, abnormal metabolic deviations, which precede or accompany different diseases show easily detectable prominent changes, rather quantitative than qualitative, in the network of na-Ab in the patient's sera (Immunculus distortions). This phenomenon can be used for 'mapping' the state of physiological norm in terms of the millennia of na-Ab repertoires, and for the elaboration of methods for an early (pre-clinical) detection of potentially pathogenic metabolic changes. Can the individual features of the general network of constitutively expressed na-Ab reflect the functional state of the body and be used for 'mapping' of normal and pathological functional state? Can the changes in production of some biologically active na-Ab not only reflect the state of the body, but also be used for partial compensation of functional deficiency of certain molecular systems? These and related questions are discussed in this article. The research project 'Immunculus' is proposed for international cooperative investigations.
Collapse
Affiliation(s)
- Alexander Poletaev
- Medical Research Center 'Immunculus', Otkrytoye Shosse 14, 107370 Moscow, Russia.
| | | |
Collapse
|
28
|
Koppal T, Lam AG, Guo L, Van Eldik LJ. S100B proteins that lack one or both cysteine residues can induce inflammatory responses in astrocytes and microglia. Neurochem Int 2001; 39:401-7. [PMID: 11578775 DOI: 10.1016/s0197-0186(01)00047-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The astrocytic protein S100B stimulates neurite outgrowth and neuronal survival during CNS development. S100B can also stimulate glial activation, leading to induction of pro-inflammatory molecules like interleukin-1 beta (IL-1 beta) and inducible nitric oxide synthase (iNOS). Although it is known that S100B's neurotrophic activity requires a disulfide-linked dimeric form of the protein, the structural features of S100B that are important for glial activation have not been defined. As an initial step towards understanding the structural features of S100B required for its action on glia and to determine if these features are different from those required for its action on neurons, we tested two mutants of S100B for their ability to activate glia. The C68VC84S mutant lacks S100B's two cysteine residues (cys68, cys84) and lacks neurotrophic activity (Winningham-Major et al., 1989, J. Cell Biol. 109 3063-3071), and the truncation mutant S100B83stop lacks the C-terminal nine residues (including cys84) that have been shown to be important for some S100B:target protein interactions. We report here that both C68VC84S and S100B83stop stimulate glial activation, as determined by induction of iNOS and IL-1 beta in rat primary astrocyte and microglial cultures. C68VC84S showed activation profiles similar to those of wild-type S100B, demonstrating that a disulfide-linked dimer is not required for glial activation. S100B83stop also stimulated both iNOS and IL-1 beta, although S100B83stop was significantly less effective than wild-type S100B in inducing iNOS. These results indicate that the C-terminal region of S100B is not required for glial activation; however, its presence may influence the degree of activation by the protein. Altogether, these studies demonstrate that the structural features required for S100B's neurotrophic activity are distinct from those affecting its glial activation activity.
Collapse
Affiliation(s)
- T Koppal
- Department of Cell and Molecular Biology, Ward 4-202, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611-3008, USA
| | | | | | | |
Collapse
|