1
|
Talib M, Gyebrovszki B, Bőgér D, Csomor R, Mészáros A, Fodor A, Rojkovich B, Sármay G. Helper T Cells are Hyperactive and Contribute to the Dysregulation of Antibody Production in Patients with Rheumatoid Arthritis. Int J Mol Sci 2024; 25:10190. [PMID: 39337675 PMCID: PMC11431999 DOI: 10.3390/ijms251810190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease, mediated by a complex interaction between B cells and various subsets of T cells. Dysfunction of helper T (Th) and regulatory T (Treg) cells may contribute to the breakdown of self-tolerance and the progression of autoimmune disease. In this study, we investigated the activity of Th and Treg cells on the differentiation of autologous B cells in vitro using cell cultures from the peripheral blood of healthy controls (HCs) and RA patients. The expressions of programmed death 1 (PD-1) and IL-21 were monitored as activation markers for Th cells. Unstimulated Th cells from RA patients showed remarkably higher PD-1 expression than HC samples. Stimulation of Th cells from RA patients with Staphylococcus enterotoxin B (SEB) in the presence of B cells significantly induced their PD-1 and IL-21 expression at a considerably higher level in RA compared to HCs, and Treg cells did not affect IL-21 production. When monitoring B-cell differentiation, a significantly higher frequency of plasma cells was observed, even in unstimulated samples of RA patients compared to HCs. In the SEB-stimulated co-cultures of the RA samples, plasma cell frequency and IgG production were considerably higher than in HCs and were not significantly affected by Tregs. These findings demonstrate that Th cells are constitutively active in RA, and their hyperactivity upon interaction with diseased B cells may lead to uncontrolled antibody production.
Collapse
Affiliation(s)
- Mustafa Talib
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (D.B.); (R.C.); (A.M.); (A.F.)
| | - Balázs Gyebrovszki
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (D.B.); (R.C.); (A.M.); (A.F.)
| | - Dorottya Bőgér
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (D.B.); (R.C.); (A.M.); (A.F.)
| | - Réka Csomor
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (D.B.); (R.C.); (A.M.); (A.F.)
| | - Anna Mészáros
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (D.B.); (R.C.); (A.M.); (A.F.)
| | - Anna Fodor
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (D.B.); (R.C.); (A.M.); (A.F.)
| | - Bernadette Rojkovich
- Rheumatology-Rehabilitation Department, Buda Hospital of the Hospitaller Order of Saint John of God, 1027 Budapest, Hungary;
| | - Gabriella Sármay
- Department of Immunology, Eötvös Loránd University, 1053 Budapest, Hungary; (M.T.); (B.G.); (D.B.); (R.C.); (A.M.); (A.F.)
| |
Collapse
|
2
|
Huo M, Rai SK, Nakatsu K, Deng Y, Jijiwa M. Subverting the Canon: Novel Cancer-Promoting Functions and Mechanisms for snoRNAs. Int J Mol Sci 2024; 25:2923. [PMID: 38474168 PMCID: PMC10932220 DOI: 10.3390/ijms25052923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) constitute a class of intron-derived non-coding RNAs ranging from 60 to 300 nucleotides. Canonically localized in the nucleolus, snoRNAs play a pivotal role in RNA modifications and pre-ribosomal RNA processing. Based on the types of modifications they involve, such as methylation and pseudouridylation, they are classified into two main families-box C/D and H/ACA snoRNAs. Recent investigations have revealed the unconventional synthesis and biogenesis strategies of snoRNAs, indicating their more profound roles in pathogenesis than previously envisioned. This review consolidates recent discoveries surrounding snoRNAs and provides insights into their mechanistic roles in cancer. It explores the intricate interactions of snoRNAs within signaling pathways and speculates on potential therapeutic solutions emerging from snoRNA research. In addition, it presents recent findings on the long non-coding small nucleolar RNA host gene (lncSNHG), a subset of long non-coding RNAs (lncRNAs), which are the transcripts of parental SNHGs that generate snoRNA. The nucleolus, the functional epicenter of snoRNAs, is also discussed. Through a deconstruction of the pathways driving snoRNA-induced oncogenesis, this review aims to serve as a roadmap to guide future research in the nuanced field of snoRNA-cancer interactions and inspire potential snoRNA-related cancer therapies.
Collapse
Affiliation(s)
- Matthew Huo
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA;
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Sudhir Kumar Rai
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Ken Nakatsu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| |
Collapse
|
3
|
Yu L, Ran H, Lu Y, Ma Q, Huang H, Liu W. Targeting HIF-1α alleviates the inflammatory responses and rebuilds the CD4 + T cell subsets balance in the experimental autoimmune myasthenia gravis inflammation model via regulating cellular and humoral immunity. Life Sci 2024; 336:122287. [PMID: 37995933 DOI: 10.1016/j.lfs.2023.122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cells and tissues in an inflammatory state are usually hypoxic. The hypoxic environment can affect the differentiation of immune cells and produce Hypoxia-inducible Factor-1α (HIF-1α). Inflammation is also a major contributor to the development and deterioration of Myasthenia Gravis (MG). There are limited studies on the immunopathological mechanism and targeted therapy associated with MG exacerbated with inflammation. This research aimed to explore whether BAY 87-2243 (HIF-1α inhibitor) ameliorates the symptoms of the Experimental Autoimmune Myasthenia Gravis (EAMG) inflammation model and study its regulatory mechanism on cellular immunity and humoral immunity. METHODS We first establish the EAMG inflammation model using Lipopolysaccharide (LPS), BAY 87-2243 was applied to the EAMG inflammation model and its therapeutic effects were evaluated in vivo and in vitro experiments. RESULTS The proportion of Treg cells was increased whereas Th1, Th17, and Th1/17 cells were decreased in BAY 87-2243-treated EAMG inflammation model. BAY 87-2243 ameliorated the acetylcholine receptors (AChRs) loss and the complement deposited at the neuromuscular junction of the EAMG inflammation model, declined the levels of IFN-γ, IL-17, and IL-6 in serum, and further attenuated responses in the germinal center and reduced the antibody levels by inhibiting the IL-6-dependent STAT3 axis. CONCLUSION BAY 87-2243 restored the balance of CD4+T cell subsets and reduced the production of the pro-inflammatory cytokines, thus acting as both an immune imbalance regulator and anti-inflammatory. The current study suggests that HIF-1α might be a potential target for the treatment of MG exacerbated with inflammation.
Collapse
Affiliation(s)
- Lu Yu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hao Ran
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaru Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Huan Huang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
| |
Collapse
|
4
|
Zhou Y, Du T, Yang CL, Li T, Li XL, Liu W, Zhang P, Dong J, Si WY, Duan RS, Wang CC. Extracellular vesicles encapsulated with caspase-1 inhibitor ameliorate experimental autoimmune myasthenia gravis through targeting macrophages. J Control Release 2023; 364:458-472. [PMID: 37935259 DOI: 10.1016/j.jconrel.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Cysteinyl aspartate-specific proteinase-1 (caspase-1) is a multifunctional inflammatory mediator in many inflammation-related diseases. Previous studies show that caspase-1 inhibitors produce effective therapeutic outcomes in a rat model of myasthenia gravis. However, tissue toxicity and unwanted off-target effects are the major disadvantages limiting their clinical application as therapeutic agents. This study shows that dendritic cell-derived extracellular vesicles (EVs) loaded with a caspase-1 inhibitor (EVs-VX-765) are phagocytized mainly by macrophages, and caspase-1 is precisely expressed in macrophages. Furthermore, EVs-VX-765 demonstrates excellent therapeutic effects through a macrophage-dependent mechanism, and it notably inhibits the level of interleukin-1β and subsequently inhibits Th17 response and germinal center (GC) reactions. In addition, EVs-VX-765 demonstrates better therapeutic effects than routine doses of VX-765, although drug loading is much lower than routine doses, consequently reducing tissue toxicity. In conclusion, this study's findings suggest that EV-mediated delivery of caspase-1 inhibitors is effective for treating myasthenia gravis and is promising for clinical applications.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Shandong Institute of Neuroimmunology, Jinan, Shandong, China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Shandong Institute of Neuroimmunology, Jinan, Shandong, China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Tao Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Shandong Institute of Neuroimmunology, Jinan, Shandong, China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Wei Liu
- Department of Cerebral Disease, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Shandong Institute of Neuroimmunology, Jinan, Shandong, China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Jing Dong
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Wei-Yue Si
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Rui-Sheng Duan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Shandong Institute of Neuroimmunology, Jinan, Shandong, China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China; Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China.
| | - Cong-Cong Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Shandong Institute of Neuroimmunology, Jinan, Shandong, China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China.
| |
Collapse
|
5
|
Abstract
Antibody-mediated rejection (AMR) has a strongly negative impact on long-term renal allograft survival. Currently, no recognized effective treatments are available, especially for chronic antibody-mediated rejection (CAMR). Donor-specific antibodies (DSAs) secreted by long-lived plasma cells and memory B cells are acknowledged as biomarkers of AMR. Nevertheless, it may be too late for the DSA routine examination production since DSAs may have binded to graft vascular endothelial cells through complement-dependent or complement-independent pathways. Therefore, methods to effectively monitor memory B cells and long-lived plasma cells and subsequently prevent DSA production are key to reducing the adverse effects of AMR. Therefore, this review mainly summarizes the production pathways of memory B cells and long-lived plasma cells and provides suggestions for the prevention of AMR after transplantation.
Collapse
Affiliation(s)
- Wenlong Yue
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Liu
- Dietetics Teaching and Research Section, Henan Medical College, Xinzheng, People's Republic of China
| | - Xiaohu Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinfeng Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Kee R, Naughton M, McDonnell GV, Howell OW, Fitzgerald DC. A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10102604. [PMID: 36289863 PMCID: PMC9599335 DOI: 10.3390/biomedicines10102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). The most common form of MS is a relapsing–remitting disease characterised by acute episodes of demyelination associated with the breakdown of the blood–brain barrier (BBB). In the relapsing–remitting phase there is often relative recovery (remission) from relapses characterised clinically by complete or partial resolution of neurological symptoms. In the later and progressive stages of the disease process, accrual of neurological disability occurs in a pathological process independent of acute episodes of demyelination and is accompanied by a trapped or compartmentalised inflammatory response, most notable in the connective tissue spaces of the vasculature and leptomeninges occurring behind an intact BBB. This review focuses on compartmentalised inflammation in MS and in particular, what we know about meningeal tertiary lymphoid structures (TLS; also called B cell follicles) which are organised clusters of immune cells, associated with more severe and progressive forms of MS. Meningeal inflammation and TLS could represent an important fluid or imaging marker of disease activity, whose therapeutic abrogation might be necessary to stop the most severe outcomes of disease.
Collapse
Affiliation(s)
- Rachael Kee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence:
| | - Michelle Naughton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | | | - Owain W. Howell
- Institute of Life Sciences, Swansea University, Wales SA2 8QA, UK
| | - Denise C. Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
7
|
Simón R, Martín-Martín A, Morel E, Díaz-Rosales P, Tafalla C. Functional and Phenotypic Characterization of B Cells in the Teleost Adipose Tissue. Front Immunol 2022; 13:868551. [PMID: 35619704 PMCID: PMC9127059 DOI: 10.3389/fimmu.2022.868551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The immune response of the adipose tissue (AT) has been neglected in most animal models until investigations in human and mice linked obesity to chronic inflammation, highlighting the immune nature of this tissue. Despite this, in teleost fish, only a few studies have addressed the immune role of the AT. These studies have mostly focused on reporting transcriptional changes in the AT in response to diverse intraperitoneally delivered stimuli. Although the presence of B cells within the AT was also previously revealed, these cells have never been phenotypically or functionally characterized and this is what we have addressed in the current study. Initially, the B cell populations present in the rainbow trout (Oncorhynchus mykiss) AT were characterized in comparison to B cells from other sources. As occurs in other rainbow trout tissues, IgM+IgD+, IgM+IgD- and IgD+IgM- B cell subsets were identified in the AT. Interestingly, AT IgM+IgD- B cells showed a transcriptional profile that agrees with that of cells that have committed to plasmablasts/plasma cells, being this profile much more pronounced towards a differentiation state than that of blood IgM+IgD- B cells. Accordingly, the IgM-secreting capacity of AT B cells is significantly higher than that of blood B cells. Additionally, AT IgM+IgD+ B cells also showed specific phenotypic traits when compared to their counterparts in other tissues. Finally, we established how these B cell subsets responded when rainbow trout were intraperitoneally injected with a model antigen. Our results demonstrate that the AT hosts plasmablasts/plasma cells that secrete specific IgMs, as happens in the peritoneal cavity and systemic immune tissues. Although the presence of these antigen-specific IgM-secreting cells was more abundant in the peritoneal cavity, these specific differentiated B cells were detected in the AT for long time periods at levels similar to those of spleen and head kidney. Our results provide new evidence regarding the immune role of the teleost AT, indicating that it functions as a secondary lymphoid organ that promotes immunity to peritoneal antigens.
Collapse
Affiliation(s)
- Rocío Simón
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Alba Martín-Martín
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Esther Morel
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Patricia Díaz-Rosales
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Carolina Tafalla
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| |
Collapse
|
8
|
Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmun Rev 2022; 21:103104. [PMID: 35452851 DOI: 10.1016/j.autrev.2022.103104] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
The presence of autoantibodies directed against the muscle nicotinic acetylcholine receptor (AChR) is the most common cause of myasthenia gravis (MG). These antibodies damage the postsynaptic membrane of the neuromuscular junction and cause muscle weakness by depleting AChRs and thus impairing synaptic transmission. As one of the best-characterized antibody-mediated autoimmune diseases, AChR-MG has often served as a reference model for other autoimmune disorders. Classical pharmacological treatments, including broad-spectrum immunosuppressive drugs, are effective in many patients. However, complete remission cannot be achieved in all patients, and 10% of patients do not respond to currently used therapies. This may be attributed to production of autoantibodies by long-lived plasma cells which are resistant to conventional immunosuppressive drugs. Hence, novel therapies specifically targeting plasma cells might be a suitable therapeutic approach for selected patients. Additionally, in order to reduce side effects of broad-spectrum immunosuppression, targeted immunotherapies and symptomatic treatments will be required. This review presents established therapies as well as novel therapeutic approaches for MG and related conditions, with a focus on AChR-MG.
Collapse
|
9
|
Li X, He X, He D, Liu Y, Chen K, Yin P. A polymeric co-assembly of subunit vaccine with polyoxometalates induces enhanced immune responses. NANO RESEARCH 2021; 15:4175-4180. [PMID: 34925708 PMCID: PMC8670867 DOI: 10.1007/s12274-021-4004-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Long-lasting protective immune responses are expected following vaccination. However, most vaccines alone are inability to evoke an efficient protection. The combinatory administration of adjuvants with vaccines is critical for generating the enhanced immune responses. Herein, with biocompatible poly(4-vinylpyridine) (P4VP) as template, 2.5 nm iron/molybdenum oxide cluster, {Mo72Fe30}, is applied as an adjuvant to co-assemble with antigens of Mycobacterium bovis via hydrogen bonding at molecular scale. Molecular scale integration of the antigens and {Mo72Fe30} and their full exposure to body fluid media contribute to the augmentation of both humoral and cellular immune responses of the vaccines after inoculation in mice. Anti-inflammatory factor IL-10 gradually increases after 2 weeks followed by a final back to normal level by the 5th week. The balance between proinflammatory cytokines and anti-inflammatory factors suggests that immune system can be activated in the early stage of infection by the antigens carried by the supra-particles and secrete acute inflammatory factors for host defense and antiinflammatory factors for immune protection. Electronic Supplementary Material Supplementary material (further structural analysis and biological analsyis) is available in the online version of this article at 10.1007/s12274-021-4004-9.
Collapse
Affiliation(s)
- Xinpei Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
| | - Xiaofeng He
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
| | - Dongrong He
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
| | - Yuan Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
| | - Kun Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640 China
| |
Collapse
|
10
|
Borbet TC, Hines MJ, Koralov SB. MicroRNA regulation of B cell receptor signaling. Immunol Rev 2021; 304:111-125. [PMID: 34523719 PMCID: PMC8616848 DOI: 10.1111/imr.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
B lymphocytes play a central role in host immune defense. B cell receptor (BCR) signaling regulates survival, proliferation, and differentiation of B lymphocytes. Signaling through the BCR signalosome is a multi-component cascade that is tightly regulated and is important in the coordination of B cell differentiation and function. At different stages of development, B cells that have BCRs recognizing self are eliminated to prevent autoimmunity. microRNAs (miRNAs) are small single-stranded non-coding RNAs that contribute to post-transcriptional regulation of gene expression and have been shown to orchestrate cell fate decisions through the regulation of lineage-specific transcriptional profiles. Studies have identified miRNAs to be crucial for B cell development in the bone marrow and their subsequent population of the peripheral immune system. In this review, we focus on the role of miRNAs in the regulation of BCR signaling as it pertains to B lymphocyte development and function. In particular, we discuss the most recent studies describing the role of miRNAs in the regulation of both early B cell development and peripheral B cell responses and examine the ways by which miRNAs regulate signal downstream of B cell antigen receptor to prevent aberrant activation and autoimmunity.
Collapse
Affiliation(s)
- Timothy C. Borbet
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| | - Marcus J. Hines
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| | - Sergei B. Koralov
- New York University School of Medicine, Department of Pathology, New York, NY 10016
| |
Collapse
|
11
|
Pathogenesis of IgA Nephropathy: Current Understanding and Implications for Development of Disease-Specific Treatment. J Clin Med 2021; 10:jcm10194501. [PMID: 34640530 PMCID: PMC8509647 DOI: 10.3390/jcm10194501] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
IgA nephropathy, initially described in 1968 as a kidney disease with glomerular “intercapillary deposits of IgA-IgG”, has no disease-specific treatment and is a common cause of kidney failure. Clinical observations and laboratory analyses suggest that IgA nephropathy is an autoimmune disease wherein the kidneys are damaged as innocent bystanders due to deposition of IgA1-IgG immune complexes from the circulation. A multi-hit hypothesis for the pathogenesis of IgA nephropathy describes four sequential steps in disease development. Specifically, patients with IgA nephropathy have elevated circulating levels of IgA1 with some O-glycans deficient in galactose (galactose-deficient IgA1) and these IgA1 glycoforms are recognized as autoantigens by unique IgG autoantibodies, resulting in formation of circulating immune complexes, some of which deposit in glomeruli and activate mesangial cells to induce kidney injury. This proposed mechanism is supported by observations that (i) glomerular immunodeposits in patients with IgA nephropathy are enriched for galactose-deficient IgA1 glycoforms and the corresponding IgG autoantibodies; (ii) circulatory levels of galactose-deficient IgA1 and IgG autoantibodies predict disease progression; and (iii) pathogenic potential of galactose-deficient IgA1 and IgG autoantibodies was demonstrated in vivo. Thus, a better understanding of the structure–function of these immunoglobulins as autoantibodies and autoantigens will enable development of disease-specific treatments.
Collapse
|
12
|
Zhan J, Kipp M, Han W, Kaddatz H. Ectopic lymphoid follicles in progressive multiple sclerosis: From patients to animal models. Immunology 2021; 164:450-466. [PMID: 34293193 PMCID: PMC8517596 DOI: 10.1111/imm.13395] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
Ectopic lymphoid follicles (ELFs), resembling germinal centre‐like structures, emerge in a variety of infectious and autoimmune and neoplastic diseases. ELFs can be found in the meninges of around 40% of the investigated progressive multiple sclerosis (MS) post‐mortem brain tissues and are associated with the severity of cortical degeneration and clinical disease progression. Of predominant importance for progressive neuronal damage during the progressive MS phase appears to be meningeal inflammation, comprising diffuse meningeal infiltrates, B‐cell aggregates and compartmentalized ELFs. However, the absence of a uniform definition of ELFs impedes reproducible and comparable neuropathological research in this field. In this review article, we will first highlight historical aspects and milestones around the discovery of ELFs in the meninges of progressive MS patients. In the next step, we discuss how animal models may contribute to an understanding of the mechanisms underlying ELF formation. Finally, we summarize challenges in investigating ELFs and propose potential directions for future research.
Collapse
Affiliation(s)
- Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University Health Science Cente, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
13
|
Takatani A, Nakamura H, Furukawa K, Endo Y, Umeda M, Shimizu T, Nishihata S, Kitaoka K, Nakamura T, Kawakami A. Inhibitory effect of HTLV-1 infection on the production of B-cell activating factors in established follicular dendritic cell-like cells. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:777-791. [PMID: 33943020 PMCID: PMC8342235 DOI: 10.1002/iid3.432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
Introduction The low frequency of ectopic germinal center in labial salivary glands of patients with human T‐cell leukemia virus type 1 (HTLV‐1) antibody‐positive Sjögren's syndrome (SS) suggests that HTLV‐1 has some effects on follicular dendritic cells (FDCs). Methods We used flow cytometry, immunofluorescence, and enzyme‐linked immunosorbent assays (ELISAs) to investigate the direct effect of HTLV‐1 on B‐cell activating factors produced by established FDC like cells obtained from excised human tonsils. We then measured the serum B‐cell activating factor (BAFF) and C‐X‐C motif ligand (CXCL) 13 concentrations of the HTLV‐1‐seropositive SS patients and the HTLV‐1‐seronegative SS patients by ELISA. Results Among the 31 isolated specimens, 22 showed morphological characteristics of FDCs. Day 2‐cultured specimens showed expressions of CD14, CD23, CD40, intracellular adhesion molecule‐1 (ICAM‐1), and vascular cell adhesion molecule‐1. After 2 weeks, 12 of these specimens expressed ICAM‐1, FDC, and fibroblast cell marker. Intracellular BAFF and CXCL13 were constitutively expressed regardless of stimulation. After direct coculture with the HTLV‐1‐infected T‐cell line HCT‐5 or MT‐2, the BAFF and CXCL13 expressions on the FDC‐like cells were decreased in accord with the increased number of HCT‐5 and MT‐2 cells with styliform change and without HTLV‐1 Gag protein expression. Interferons upregulated the concentration of BAFF (but not CXCL13) in the culture supernatant, which showed a declining trend under the presence of HCT‐5 or MT‐2. The serum concentrations of BAFF and CXCL13 in the HTLV‐1‐seropositive SS patients were lower than those of the HTLV‐1 seronegative SS patients. Conclusions HTLV‐1 partially inhibited the BAFF and CXCL13 expressions of established FDC‐like cells.
Collapse
Affiliation(s)
- Ayuko Takatani
- Division of Advanced Preventive Medical Sciences, Department of Immunology and RheumatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Hideki Nakamura
- Division of Advanced Preventive Medical Sciences, Department of Immunology and RheumatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Kaori Furukawa
- Division of Advanced Preventive Medical Sciences, Department of Immunology and RheumatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Yushiro Endo
- Division of Advanced Preventive Medical Sciences, Department of Immunology and RheumatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Masataka Umeda
- Division of Advanced Preventive Medical Sciences, Department of Immunology and RheumatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Toshimasa Shimizu
- Division of Advanced Preventive Medical Sciences, Department of Immunology and RheumatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Shin‐ya Nishihata
- Division of Advanced Preventive Medical Sciences, Department of Immunology and RheumatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Kyoko Kitaoka
- Department of Otolaryngology—Head and Neck SurgeryNagasaki University HospitalNagasakiJapan
| | - Tatsufumi Nakamura
- Department of Social Work, Faculty of Human and Social StudiesNagasaki International UniversitySaseboJapan
| | - Atsushi Kawakami
- Division of Advanced Preventive Medical Sciences, Department of Immunology and RheumatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| |
Collapse
|
14
|
Metur SP, Klionsky DJ. Adaptive immunity at the crossroads of autophagy and metabolism. Cell Mol Immunol 2021; 18:1096-1105. [PMID: 33785844 PMCID: PMC8093269 DOI: 10.1038/s41423-021-00662-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 02/01/2023] Open
Abstract
The function of lymphocytes is dependent on their plasticity, particularly their adaptation to energy availability and environmental stress, and their protein synthesis machinery. Lymphocytes are constantly under metabolic stress, and macroautophagy/autophagy is the primary metabolic pathway that helps cells overcome stressors. The intrinsic role of autophagy in regulating the metabolism of adaptive immune cells has recently gained increasing attention. In this review, we summarize and discuss the versatile roles of autophagy in regulating cellular metabolism and the implications of autophagy for immune cell function and fate, especially for T and B lymphocytes.
Collapse
Affiliation(s)
- Shree Padma Metur
- grid.214458.e0000000086837370University of Michigan, Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, Ann Arbor, MI USA
| | - Daniel J. Klionsky
- grid.214458.e0000000086837370University of Michigan, Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, Ann Arbor, MI USA
| |
Collapse
|
15
|
Negron A, Stüve O, Forsthuber TG. Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control? Front Neurol 2020; 11:607766. [PMID: 33363512 PMCID: PMC7753025 DOI: 10.3389/fneur.2020.607766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Olaf Stüve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Neurology Section, Veterans Affairs North Texas Health Care System, Medical Service, Dallas, TX, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
16
|
Sintou A, Mansfield C, Iacob A, Chowdhury RA, Narodden S, Rothery SM, Podovei R, Sanchez-Alonso JL, Ferraro E, Swiatlowska P, Harding SE, Prasad S, Rosenthal N, Gorelik J, Sattler S. Mediastinal Lymphadenopathy, Class-Switched Auto-Antibodies and Myocardial Immune-Complexes During Heart Failure in Rodents and Humans. Front Cell Dev Biol 2020; 8:695. [PMID: 32850816 PMCID: PMC7426467 DOI: 10.3389/fcell.2020.00695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
Mediastinal lymphadenopathy and auto-antibodies are clinical phenomena during ischemic heart failure pointing to an autoimmune response against the heart. T and B cells have been convincingly demonstrated to be activated after myocardial infarction, a prerequisite for the generation of mature auto-antibodies. Yet, little is known about the immunoglobulin isotype repertoire thus pathological potential of anti-heart auto-antibodies during heart failure. We obtained human myocardial tissue from ischemic heart failure patients and induced experimental MI in rats. We found that anti-heart autoimmunity persists during heart failure. Rat mediastinal lymph nodes are enlarged and contain active secondary follicles with mature isotype-switched IgG2a B cells. Mature IgG2a auto-antibodies specific for cardiac antigens are present in rat heart failure serum, and IgG and complement C3 deposits are evident in heart failure tissue of both rats and human patients. Previously established myocardial inflammation, and the herein provided proof of B cell maturation in lymph nodes and myocardial deposition of mature auto-antibodies, provide all the hallmark signs of an established autoimmune response in chronic heart failure.
Collapse
Affiliation(s)
- Amalia Sintou
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Catherine Mansfield
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alma Iacob
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Rasheda A. Chowdhury
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Salomon Narodden
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen M. Rothery
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Robert Podovei
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Elisa Ferraro
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pamela Swiatlowska
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sian E. Harding
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sanjay Prasad
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Nadia Rosenthal
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Hidalgo Y, Núñez S, Fuenzalida MJ, Flores-Santibáñez F, Sáez PJ, Dorner J, Lennon-Dumenil AM, Martínez V, Zorn E, Rosemblatt M, Sauma D, Bono MR. Thymic B Cells Promote Germinal Center-Like Structures and the Expansion of Follicular Helper T Cells in Lupus-Prone Mice. Front Immunol 2020; 11:696. [PMID: 32411134 PMCID: PMC7199236 DOI: 10.3389/fimmu.2020.00696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the activation of autoreactive T and B cells, autoantibody production, and immune complex deposition in various organs. Previous evidence showed abnormal accumulation of B cells in the thymus of lupus-prone mice, but the role of this population in the progression of the disease remains mostly undefined. Here we analyzed the spatial distribution, function, and properties of this thymic B cell population in the BWF1 murine model of SLE. We found that in diseased animals, thymic B cells proliferate, and cluster in structures that resemble ectopic germinal centers. Moreover, we detected antibody-secreting cells in the thymus of diseased-BWF1 mice that produce anti-dsDNA IgG autoantibodies. We also found that thymic B cells from diseased-BWF1 mice induced the differentiation of thymocytes to follicular helper T cells (TFH). These data suggest that the accumulation of B cells in the thymus of BWF1 mice results in the formation of germinal center-like structures and the expansion of a TFH population, which may, in turn, activate and differentiate B cells into autoreactive plasma cells. Therefore, the thymus emerges as an important niche that supports the maintenance of the pathogenic humoral response in the development of murine SLE.
Collapse
Affiliation(s)
- Yessia Hidalgo
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Cells for Cells-Consorcio Regenero, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | | | - Maria Jose Fuenzalida
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile
| | | | - Pablo J Sáez
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, France
| | - Jessica Dorner
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | | | - Victor Martínez
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Emmanuel Zorn
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Mario Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Maria Rosa Bono
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Lopez-Ocasio M, Buszko M, Blain M, Wang K, Shevach EM. T Follicular Regulatory Cell Suppression of T Follicular Helper Cell Function Is Context-Dependent in vitro. Front Immunol 2020; 11:637. [PMID: 32362895 PMCID: PMC7181357 DOI: 10.3389/fimmu.2020.00637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
The production of antibody-secreting plasma cells and memory B cells requires the interaction of T follicular helper (Tfh) cells with B cells in the follicle and is modulated by T follicular regulatory (Tfr) cells. We compare the effects of Tfr cells in an in vitro model of bystander Tfh function in the absence of BCR engagement and in a model in which mimics cognate T-B interactions in which the BCR is engaged. In the absence of Tfr cells, Tfh cells from primed mice induce naive B cell differentiation into GC B cells and class switch recombination (CSR) in the presence of anti-CD3 alone or anti-CD3/IgM in a contact-dependent manner. Addition of primed Tfr cells efficiently suppressed GC B cell proliferation, differentiation and CSR in the anti-CD3 alone cultures, but only moderately suppressed BCR-stimulated B cells. When stimulated with anti-CD3 alone, IL-4 is critical for the induction of GC B cells and CSR. IL-21 plays a minimal role in GC B cell differentiation, but a greater role in switching. When the BCR is engaged, IL-4 is primarily required for switching and IL-21 only modestly affects switching. CD40L expression was critical for Tfh-mediated B cell proliferation/differentiation in the absence of B cell engagement. When the BCR was engaged, proliferation of CD40 deficient B cells was partially restored, but was susceptible to suppression by Tfr. These studies suggest that in vitro Tfr suppressor function is complex and is modulated by BCR signaling and CD40-CD40L interactions.
Collapse
Affiliation(s)
- Maria Lopez-Ocasio
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Maja Buszko
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Melissa Blain
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ke Wang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Abstract
The immune system plays an important role in obesity-induced adipose tissue inflammation and the resultant metabolic dysfunction, which can lead to hypertension, dyslipidemia, and insulin resistance and their downstream sequelae of type 2 diabetes mellitus and cardiovascular disease. While macrophages are the most abundant immune cell type in adipose tissue, other immune cells are also present, such as B cells, which play important roles in regulating adipose tissue inflammation. This brief review will overview B-cell subsets, describe their localization in various adipose depots and summarize our knowledge about the function of these B-cell subsets in regulating adipose tissue inflammation, obesity-induced metabolic dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Prasad Srikakulapu
- From the Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| | - Coleen A McNamara
- From the Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| |
Collapse
|
20
|
Chen C, Zhang C, Li R, Wang Z, Yuan Y, Li H, Fu Z, Zhou M, Zhao L. Monophosphoryl-Lipid A (MPLA) is an Efficacious Adjuvant for Inactivated Rabies Vaccines. Viruses 2019; 11:E1118. [PMID: 31816996 PMCID: PMC6950009 DOI: 10.3390/v11121118] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Rabies, as one of the most threatening zoonoses in the world, causes a fatal central nervous system (CNS) disease. So far, vaccination with rabies vaccines has been the most effective measure to prevent and control this disease. At present, inactivated rabies vaccines are widely used in humans and domestic animals. However, humoral immune responses induced by inactivated rabies vaccines are relatively low and multiple shots are required to achieve protective immunity. Supplementation with an adjuvant is a practical way to improve the immunogenicity of inactivated rabies vaccines. In this study, we found that monophosphoryl-lipid A (MPLA), a well-known TLR4 agonist, could significantly promote the maturation of bone marrow-derived dendritic cells (BMDC) through a TLR4-dependent pathway in vitro and the maturation of conventional DCs (cDCs) in vivo. We also found that MPLA, serving as an adjuvant for inactivated rabies vaccines, could significantly facilitate the generation of T follicular helper (Tfh) cells, germinal center (GC) B cells, and plasma cells (PCs), consequently enhancing the production of RABV-specific total-IgG, IgG2a, IgG2b, and the virus-neutralizing antibodies (VNAs). Furthermore, MPLA could increase the survival ratio of mice challenged with virulent RABV. In conclusion, our results demonstrate that MPLA serving as an adjuvant enhances the intensity of humoral immune responses by activating the cDC-Tfh-GC B axis. Our findings will contribute to the improvement of the efficiency of traditional rabies vaccines.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengguang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiming Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoqi Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenfang Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (C.Z.); (R.L.); (Z.W.); (Y.Y.); (H.L.); (Z.F.); (M.Z.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Skarstein K, Jensen JL, Galtung H, Jonsson R, Brokstad K, Aqrawi LA. Autoantigen-specific B cells and plasma cells are prominent in areas of fatty infiltration in salivary glands of patients with primary Sjögren’s syndrome. Autoimmunity 2019; 52:242-250. [DOI: 10.1080/08916934.2019.1684475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kathrine Skarstein
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | | | - Hilde Galtung
- Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Karl Brokstad
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lara A. Aqrawi
- Department of Oral Surgery and Oral Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
23
|
Baicalin ameliorates lupus autoimmunity by inhibiting differentiation of Tfh cells and inducing expansion of Tfr cells. Cell Death Dis 2019; 10:140. [PMID: 30760702 PMCID: PMC6374440 DOI: 10.1038/s41419-019-1315-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
Baicalin is a natural compound isolated from Chinese herb, which has been reported as an anti-inflammatory drug. Here, we demonstrated that Baicalin treatment could reduce urine protein, inhibit anti-ds-DNA antibody titers, and ameliorate lupus nephritis in MRL/lpr lupus-prone mice. Baicalin inhibited Tfh cell differentiation and IL-21 production, but promoted Foxp3+ regulatory T cell differentiation including part of follicular regulatory T (Tfr) cells. Intravenous injection of Baicalin-induced Foxp3+ regulatory T cells could relieve nephritis, inhibit Tfh cell differentiation and IL-21 production. Baicalin inhibited mTOR activation, reduced mTOR agonist-mediated Tfh cell expansion and increased Tfr cells. These data suggest that Baicalin attenuates lupus autoimmunity by up- and downregulating the differentiation of Tfr cells and Tfh cells, respectively. Baicalin and ex vivo expanded Foxp3+ regulatory T cells are promising therapeutics for the treatment of lupus.
Collapse
|
24
|
Negron A, Robinson RR, Stüve O, Forsthuber TG. The role of B cells in multiple sclerosis: Current and future therapies. Cell Immunol 2018; 339:10-23. [PMID: 31130183 DOI: 10.1016/j.cellimm.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
While it was long held that T cells were the primary mediators of multiple sclerosis (MS) pathogenesis, the beneficial effects observed in response to treatment with Rituximab (RTX), a monoclonal antibody (mAb) targeting CD20, shed light on a key contributor to MS that had been previously underappreciated: B cells. This has been reaffirmed by results from clinical trials testing the efficacy of subsequently developed B cell-depleting mAbs targeting CD20 as well as studies revisiting the effects of previous disease-modifying therapies (DMTs) on B cell subsets thought to modulate disease severity. In this review, we summarize current knowledge regarding the complex roles of B cells in MS pathogenesis and current and potential future B cell-directed therapies.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, USA
| | | |
Collapse
|
25
|
Luo W, Weisel F, Shlomchik MJ. B Cell Receptor and CD40 Signaling Are Rewired for Synergistic Induction of the c-Myc Transcription Factor in Germinal Center B Cells. Immunity 2018; 48:313-326.e5. [PMID: 29396161 DOI: 10.1016/j.immuni.2018.01.008] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
Positive selection of germinal center (GC) B cells is driven by B cell receptor (BCR) affinity and requires help from follicular T helper cells. The transcription factors c-Myc and Foxo1 are critical for GC B cell selection and survival. However, how different affinity-related signaling events control these transcription factors in a manner that links to selection is unknown. Here we showed that GC B cells reprogram CD40 and BCR signaling to transduce via NF-κB and Foxo1, respectively, whereas naive B cells propagate both signals downstream of either receptor. Although either BCR or CD40 ligation induced c-Myc in naive B cells, both signals were required to highly induce c-Myc, a critical mediator of GC B cell survival and cell cycle reentry. Thus, GC B cells rewire their signaling to enhance selection stringency via a requirement for both antigen receptor- and T cell-mediated signals to induce mediators of positive selection.
Collapse
Affiliation(s)
- Wei Luo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Florian Weisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
26
|
Sun W, Zhang N, Zhang Y, Shao Z, Gong L, Wei W. Immunophenotypes and clinical features of lymphocytes in the labial gland of primary Sjogren's syndrome patients. J Clin Lab Anal 2018; 32:e22585. [PMID: 29923220 PMCID: PMC6282844 DOI: 10.1002/jcla.22585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Objective To investigate consistency of lymphocyte immunophenotype between labial gland and peripheral blood in patients with primary Sjogren's syndrome (pSS). Methods Seventy‐one pSS patients and 35 patients with maxillofacial trauma were included in the study. Based on the ratio of CD20 to CD3 in labial gland from 71 pSS patients, they were divided into the high and (n = 48) and low CD20 expression group (n = 23). Lymphocyte immunophenotypes in labial glands, course of disease, erythrocyte sedimentation rate (ESR), C‐reactive protein, immunoglobulin, and complement levels were analyzed. Results In the labial gland, the levels of IgG, IgA, IgM, and C3c were higher, but C1q was lower in the pSS group than in the control group (all P < .05). CD20 was detected in labial gland samples of all pSS patients, in which CD3 was positive in 66 (93.0%) patients, and negative in 5 (7.0%). The plasma levels of IgG, IgA, IgM, and CRP, and ESR were higher, but serum C4 level was lower in pSS patients than in the control group (all P < .01). Serum IgG level, ESR, and labial gland CD20 were higher in the high CD20 expression group than the low expression group (all P < .05). Conclusion Primary Sjogren's syndrome patients had a higher expression of CD20 positive infiltrating lymphocytes of the labial gland, accompanied with the changes of immunoglobulins, and complements in both the labial gland and peripheral blood.
Collapse
Affiliation(s)
- Wenwen Sun
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Na Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yujie Zhang
- Department of Pathology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Gong
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
27
|
Signalling pathways identified in salivary glands from primary Sjögren's syndrome patients reveal enhanced adipose tissue development. Autoimmunity 2018; 51:135-146. [PMID: 29504848 DOI: 10.1080/08916934.2018.1446525] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A characteristic feature of primary Sjögren's syndrome (pSS) is the destruction of salivary and lacrimal glands mediated by mononuclear cell infiltration. Adipocytes can also occupy a large portion of the salivary gland (SG) tissue area, although little is known about their significance in pSS. We have previously investigated adipose tissue infiltration in SG biopsies from pSS patients and non-SS sicca controls. Our findings indicated the distinct incidence of adipose tissue replacement in pSS patients, where adipocytes were detected in interleukin (IL) 6 rich regions. We now aimed to examine the development of adipocytes in the SG microenvironment, and delineate their possible involvement in immune reactions. A microarray analysis was performed on SG from 6 pSS patients and 6 non-SS controls, where the expression levels of genes involved in adipose tissue development, inflammatory responses, and lymphoma development were assessed. Real-time PCR was carried out on SG from 14 pSS patients and 15 non-SS controls to account for IL6, IL10, and IL17 mRNA levels. Immunohistochemical staining of frozen SG tissue using IL17 was also conducted. Our results indicate signalling pathways identified in SG of pSS patients displayed genes leading to prominent adipose tissue development and reduced mitochondrial fatty acid beta-oxidation (ARID5B, OXCT1, BDH1, SOX8, HMGCS2, FTO, ECHS1, PCCA, ACADL and ACADVL), inflammatory responses (IL1R1, IL7R, IL10RA, IL15, IL18RAP, CCL2, CCL5, CCL22, CXCR6, CD14, and CD48), and lymphoma development via JAK-STAT signalling (STAT2, TYK2, EBI3, FAS, TNFRSF1B, MAP3K8, HMOX1, LTB, TNF, STAT1, and BAK1). Genes involved in interferon production and signalling were also detected (IRF1, IRF9, and IRF7), in addition to IL6, IL10, and IL17. Higher mRNA levels of IL6, IL17 and IL10 were observed in the SG of pSS patients compared to controls. Moreover, IL17 positive cells were detected mostly interstitially in the SG and around adipocytes, also within the focal infiltrates. In conclusion, adipocyte development seems to be more prominent in the SG of pSS patients, where adipose tissue replacement is also evident. Whether this is due to disease progression, or the repair process, remains to be investigated. Detection of IL17 positive adipocytes in the target organ suggests their involvement in immune reactions.
Collapse
|
28
|
Rodriguez S, Roussel M, Tarte K, Amé-Thomas P. Impact of Chronic Viral Infection on T-Cell Dependent Humoral Immune Response. Front Immunol 2017; 8:1434. [PMID: 29163507 PMCID: PMC5671495 DOI: 10.3389/fimmu.2017.01434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
During the last decades, considerable efforts have been done to decipher mechanisms supported by microorganisms or viruses involved in the development, differentiation, and function of immune cells. Pathogens and their associated secretome as well as the continuous inflammation observed in chronic infection are shaping both innate and adaptive immunity. Secondary lymphoid organs are functional structures ensuring the mounting of adaptive immune response against microorganisms and viruses. Inside these organs, germinal centers (GCs) are the specialized sites where mature B-cell differentiation occurs leading to the release of high-affinity immunoglobulin (Ig)-secreting cells. Different steps are critical to complete B-cell differentiation process, including proliferation, somatic hypermutations in Ig variable genes, affinity-based selection, and class switch recombination. All these steps require intense interactions with cognate CD4+ helper T cells belonging to follicular helper lineage. Interestingly, pathogens can disturb this subtle machinery affecting the classical adaptive immune response. In this review, we describe how viruses could act directly on GC B cells, either through B-cell infection or by their contribution to B-cell cancer development and maintenance. In addition, we depict the indirect impact of viruses on B-cell response through infection of GC T cells and stromal cells, leading to immune response modulation.
Collapse
Affiliation(s)
- Stéphane Rodriguez
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Mikaël Roussel
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Karin Tarte
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| | - Patricia Amé-Thomas
- UMR U1236, INSERM, Université de Rennes 1, Etablissement Français du Sang Bretagne, Equipe labellisée Ligue Contre le Cancer, LabEx IGO, Rennes, France.,Centre Hospitalier Universitaire de Rennes, pôle Biologie, Rennes, France
| |
Collapse
|
29
|
Ayala VI, Deleage C, Trivett MT, Jain S, Coren LV, Breed MW, Kramer JA, Thomas JA, Estes JD, Lifson JD, Ott DE. CXCR5-Dependent Entry of CD8 T Cells into Rhesus Macaque B-Cell Follicles Achieved through T-Cell Engineering. J Virol 2017; 91:e02507-16. [PMID: 28298605 PMCID: PMC5432868 DOI: 10.1128/jvi.02507-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023] Open
Abstract
Follicular helper CD4 T cells, TFH, residing in B-cell follicles within secondary lymphoid tissues, are readily infected by AIDS viruses and are a major source of persistent virus despite relative control of viral replication. This persistence is due at least in part to a relative exclusion of effective antiviral CD8 T cells from B-cell follicles. To determine whether CD8 T cells could be engineered to enter B-cell follicles, we genetically modified unselected CD8 T cells to express CXC chemokine receptor 5 (CXCR5), the chemokine receptor implicated in cellular entry into B-cell follicles. Engineered CD8 T cells expressing human CXCR5 (CD8hCXCR5) exhibited ligand-specific signaling and chemotaxis in vitro Six infected rhesus macaques were infused with differentially fluorescent dye-labeled autologous CD8hCXCR5 and untransduced CD8 T cells and necropsied 48 h later. Flow cytometry of both spleen and lymph node samples revealed higher frequencies of CD8hCXCR5 than untransduced cells, consistent with preferential trafficking to B-cell follicle-containing tissues. Confocal fluorescence microscopy of thin-sectioned lymphoid tissues demonstrated strong preferential localization of CD8hCXCR5 T cells within B-cell follicles with only rare cells in extrafollicular locations. CD8hCXCR5 T cells were present throughout the follicles with some observed near infected TFH In contrast, untransduced CD8 T cells were found in the extrafollicular T-cell zone. Our ability to direct localization of unselected CD8 T cells into B-cell follicles using CXCR5 expression provides a strategy to place highly effective virus-specific CD8 T cells into these AIDS virus sanctuaries and potentially suppress residual viral replication.IMPORTANCE AIDS virus persistence in individuals under effective drug therapy or those who spontaneously control viremia remains an obstacle to definitive treatment. Infected follicular helper CD4 T cells, TFH, present inside B-cell follicles represent a major source of this residual virus. While effective CD8 T-cell responses can control viral replication in conjunction with drug therapy or in rare cases spontaneously, most antiviral CD8 T cells do not enter B-cell follicles, and those that do fail to robustly control viral replication in the TFH population. Thus, these sites are a sanctuary and a reservoir for replicating AIDS viruses. Here, we demonstrate that engineering unselected CD8 T cells to express CXCR5, a chemokine receptor on TFH associated with B-cell follicle localization, redirects them into B-cell follicles. These proof of principle results open a pathway for directing engineered antiviral T cells into these viral sanctuaries to help eliminate this source of persistent virus.
Collapse
Affiliation(s)
- Victor I Ayala
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew T Trivett
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sumiti Jain
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Lori V Coren
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew W Breed
- Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joshua A Kramer
- Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James A Thomas
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David E Ott
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
30
|
Qu XL, Hei Y, Kang L, Yang XJ, Wang Y, Lu XZ, Xiao LH, Yang G. Establishment of a combination scoring method for diagnosis of ocular adnexal lymphoproliferative disease. PLoS One 2017; 12:e0160175. [PMID: 28510589 PMCID: PMC5433690 DOI: 10.1371/journal.pone.0160175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/14/2016] [Indexed: 11/19/2022] Open
Abstract
Lymphoproliferative diseases (LPDs) of the ocular adnexa encompass the majority of orbital diseases and include reactive follicular hyperplasia (RFH), atypical lymphoid hyperplasia (ALH), and mucosa-associated lymphoid tissue lymphoma (MALToma). Lymphoid follicles (LFs) are usually observed during the histological examination of LPDs. Currently, because there is a lack of specific clinical signs and diagnostic immunohistochemical biomarkers, it is difficult for pathologists to distinguish MALToma from ocular RFH and ALH, which makes the clinical management of these conditions difficult. Here, we analyzed the clinical features of patients with ocular adnexal LPDs (n = 125) and investigated the structure of LFs in paraffin-embedded tissue samples using anti-CD23 and anti-IgD immunochemistry. We found that some clinical features including age, sex, and laterality were different among RFH, LFH, and MALToma. Additionally, immunohistochemistry revealed that the expression of IgD and CD23 was higher in RFH patients and decreased in patients with ALH and MALToma. Moreover, LFs in RFH were intact, whereas the structures of most LFs were disrupted in ALH. In MALToma specimens, few intact LFs were observed. In a further investigation, we combined the results for CD23/IgD immunohistochemistry and the structure of LFs to establish a scoring method for the differential diagnosis of LPDs. According to the BIOMED-2 protocol, we further detected IgH gene monoclonal rearrangement in 73 cases (35 RFH, 17 ALH, and 21 MALToma cases). The sensitivity of our scoring method, based on a comparison with the results of IgH gene monoclonal rearrangement detection, was 85.7% (18/21) for MALToma and 35.3% (6/17) for ALH. Our study provides a method that may be useful for the differential diagnosis of RFH, ALH, and MALToma.
Collapse
Affiliation(s)
- Xiao-Li Qu
- Ophthalmology Department, Qianfoshan Hospital, Shandong Province, China
| | - Yan Hei
- Institute of Orbital Disease, General Hospital of Chinese People’s Armed Police Forces, Beijing, China
| | - Li Kang
- Institute of Orbital Disease, General Hospital of Chinese People’s Armed Police Forces, Beijing, China
| | - Xin-Ji Yang
- Institute of Orbital Disease, General Hospital of Chinese People’s Armed Police Forces, Beijing, China
| | - Yi Wang
- Institute of Orbital Disease, General Hospital of Chinese People’s Armed Police Forces, Beijing, China
| | - Xiao-Zhong Lu
- Institute of Orbital Disease, General Hospital of Chinese People’s Armed Police Forces, Beijing, China
| | - Li-Hua Xiao
- Institute of Orbital Disease, General Hospital of Chinese People’s Armed Police Forces, Beijing, China
- * E-mail: (LX); (GY)
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (LX); (GY)
| |
Collapse
|
31
|
Srikakulapu P, McNamara CA. B cells and atherosclerosis. Am J Physiol Heart Circ Physiol 2017; 312:H1060-H1067. [PMID: 28314764 DOI: 10.1152/ajpheart.00859.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
B cells have emerged as important immune cells in cardiovascular disease. Initial studies have suggested that B cells protect against atherosclerosis development. However, subsequent studies demonstrating aggravation of atherosclerosis by B-2 cells have shed light on the subset-dependent effects of B cells. Here, we review the literature that has led to our current understanding of B cell regulation of atherosclerosis, touching on the importance of subsets, local regulation, human translation, and therapeutic potential.
Collapse
Affiliation(s)
| | - Coleen A McNamara
- Cardiovascular Research Center, Charlottesville, Virginia; and.,Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
32
|
Friman V, Winqvist O, Blimark C, Langerbeins P, Chapel H, Dhalla F. Secondary immunodeficiency in lymphoproliferative malignancies. Hematol Oncol 2016; 34:121-32. [PMID: 27402426 DOI: 10.1002/hon.2323] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 11/10/2022]
Abstract
Secondary immunodeficiencies occur as a consequence of various diseases, including hematological malignancies, and the use of pharmacological therapies, such as immunosuppressive, anti-inflammatory, and biological drugs. Infections are the main cause of morbidity and mortality in multiple myeloma (MM) and chronic lymphocytic leukemia (CLL) patients. Recent advances in treatment have prolonged the duration of remission and the time between relapse phases in MM and CLL patients. However, managing multiple relapses and the use of salvage therapies can lead to cumulative immunosuppression and a higher risk of infections. The pathogenesis of immune deficiency secondary to lymphoproliferative malignancy is multifactorial including disease- and treatment-related factors. Supportive treatment, including early vaccination, anti-infective prophylaxis, and replacement immunoglobulin, plays a key role in preventing infections in MM and CLL. This article provides an overview of the basic immunology necessary to understand the pathogenesis of secondary immunodeficiency and the infectious complications in MM and CLL. We also discuss the evidence supporting the role of prophylactic replacement immunoglobulin treatment in patients with antibody failure secondary to MM and CLL and the indications for its use. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Vanda Friman
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ola Winqvist
- Translational Immunology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cecilie Blimark
- Department of Internal Medicine, Hematology Section, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Petra Langerbeins
- German CLL Study Group, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Helen Chapel
- Department of Clinical Immunology, University of Oxford, Oxford, UK
| | - Fatima Dhalla
- Department of Clinical Immunology, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Skarstein K, Aqrawi LA, Øijordsbakken G, Jonsson R, Jensen JL. Adipose tissue is prominent in salivary glands of Sjögren's syndrome patients and appears to influence the microenvironment in these organs. Autoimmunity 2016; 49:338-46. [PMID: 27206986 DOI: 10.1080/08916934.2016.1183656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A minor salivary gland (SG) biopsy with focal lymphocytic sialadenitis and a focus score of ≥1 is today's widely accepted pathological finding confirming the SG component of Sjögren's syndrome (SS). Adipocytes can occupy a large percentage of the SG area although little is known about their significance in SS lesions. This study aimed to characterise adipose tissue infiltration in labial SG biopsies from 27 SS patients and 28 non-SS sicca controls. Biopsies were evaluated by one oral pathologist and assessed for focus score, acinar atrophy, fatty replacement and non-specific chronic inflammation. Moreover, to explore the SG microenvironment, immunohistochemical staining of paraffin-embedded SG tissue was performed using interleukin-6 (IL-6). The fatty replacement was evident in all SS patients possessing autoantibodies (Ro/SSA and/or La/SSB) as well as a positive SG biopsy (focus score ≥1). Additionally, 62% of SS patients having autoantibodies but a negative biopsy showed fatty infiltration (FI) while non-SS controls demonstrated fatty replacement in only 32% of the cases. Overall, the SS group (mean age 53.0 years) had a significantly higher incidence (p value 0.005) of FI than the non-SS controls (mean age 54.8 years). Interestingly, adipocytes were located in IL-6 rich areas, and IL-6 positive adipocytes were detected. As fat deposition seems to be more recurrent in SGs affected by SS, we propose the assessment of adipose tissue replacement as a helpful tool for diagnostic evaluation in SS. Detection of IL-6 positive adipocytes suggests their involvement in immune reactions. Still, functional studies are needed to investigate the SG microenvironment further.
Collapse
Affiliation(s)
- Kathrine Skarstein
- a Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen , Bergen , Norway .,b Department of Pathology , Haukeland University Hospital , Bergen , Norway
| | - Lara A Aqrawi
- a Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen , Bergen , Norway .,c Department of Oral Surgery and Oral Medicine , University of Oslo , Oslo , Norway
| | - Gunnvor Øijordsbakken
- a Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen , Bergen , Norway
| | - Roland Jonsson
- d Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen , Bergen , Norway , and.,e Department of Rheumatology , Haukeland University Hospital , Bergen , Norway
| | | |
Collapse
|
34
|
Ding C, Chen X, Dascani P, Hu X, Bolli R, Zhang HG, Mcleish KR, Yan J. STAT3 Signaling in B Cells Is Critical for Germinal Center Maintenance and Contributes to the Pathogenesis of Murine Models of Lupus. THE JOURNAL OF IMMUNOLOGY 2016; 196:4477-86. [PMID: 27183592 DOI: 10.4049/jimmunol.1502043] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/30/2016] [Indexed: 01/18/2023]
Abstract
Ab maturation as well as memory B and plasma cell differentiation occur primarily in the germinal centers (GCs). Systemic lupus erythematosus (SLE) may develop as a result of enhanced GC activity. Previous studies have shown that the dysregulated STAT3 pathway is linked to lupus pathogenesis. However, the exact role of STAT3 in regulating SLE disease progression has not been fully understood. In this study, we demonstrated that STAT3 signaling in B cells is essential for GC formation and maintenance as well as Ab response. Increased cell apoptosis and downregulated Bcl-xL and Mcl-1 antiapoptotic gene expression were found in STAT3-deficient GC B cells. The follicular helper T cell response positively correlated with GC B cells and was significantly decreased in immunized B cell STAT3-deficient mice. STAT3 deficiency also led to the defect of plasma cell differentiation. Furthermore, STAT3 deficiency in autoreactive B cells resulted in decreased autoantibody production. Results obtained from B cell STAT3-deficient B6.MRL/lpr mice suggest that STAT3 signaling significantly contributes to SLE pathogenesis by regulation of GC reactivity, autoantibody production, and kidney pathology. Our findings provide new insights into the role of STAT3 signaling in the maintenance of GC formation and GC B cell differentiation and identify STAT3 as a novel target for treatment of SLE.
Collapse
Affiliation(s)
- Chuanlin Ding
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202;
| | - Xingguo Chen
- Department of Rheumatology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Paul Dascani
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Xiaoling Hu
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292; and
| | - Huang-Ge Zhang
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Kenneth R Mcleish
- Section of Nephrology, Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Jun Yan
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202;
| |
Collapse
|
35
|
B cells biology in systemic lupus erythematosus—from bench to bedside. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1111-25. [DOI: 10.1007/s11427-015-4953-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/09/2015] [Indexed: 12/20/2022]
|
36
|
Gonzales JR. T- and B-cell subsets in periodontitis. Periodontol 2000 2015; 69:181-200. [DOI: 10.1111/prd.12090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 12/17/2022]
|
37
|
Luo J, Niu X, Zhang M, Zhang K, Chen M, Deng S. Inhibition of B lymphocyte-induced maturation protein-1 reduces the production of autoantibody and alleviates symptoms of systemic lupus erythematosus. Autoimmunity 2015; 48:80-6. [PMID: 25347333 PMCID: PMC4389764 DOI: 10.3109/08916934.2014.976627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 09/14/2014] [Accepted: 10/05/2014] [Indexed: 12/21/2022]
Abstract
The B lymphocyte-induced maturation protein-1 (Blimp-1) is an important transcription factor for the maintenance of antigen-specific immune responses, and it is crucial in the development of systemic lupus erythematosus (SLE). This study aimed to investigate the role of Blimp-1 in the development of SLE and autoimmune-like symptoms. Lentivirus-mediated Blimp-1 siRNA was constructed and injected into MRL-Fas(lpr) lupus mice. The expression levels of Blimp-1, J-chain, C-myc, XBP-1 and BCMA in peripheral blood mononuclear cells (PMBCs) were determined by RT-PCR. Anti-dsDNA autoantibody levels were detected using ELISA. The expression levels of Blimp-1 in liver, kidney, spleen and lymph nodes of mice were also detected by Western blot. The 24-h urinary protein was monitored weekly. Our results demonstrated that in MRL-Fas(lpr) lupus mice, Blimp-1 was upregulated in PMBCs, liver, kidney, spleen and lymph nodes. Administration of Blimp-1 siRNA reduced the expression of Blimp-1 and the anti-dsDNA level by 78 and 28%, respectively, in the peripheral blood, and the expression of XBP-1, J-chain and BCMA was also decreased. Although the Blimp-1 level in liver showed no significant changes, the levels of Blimp-1 in kidney, spleen and lymph nodes were dramatically decreased by 95, 72 and 47%, respectively. Kidney diseases induced by SLE in lupus mice were mitigated, and urinary protein levels were significantly decreased. These results indicate that Blimp-1 plays an important role in promoting the progression of SLE. Therefore, Blimp-1 may provide a new therapeutic target in the treatment of SLE.
Collapse
MESH Headings
- Animals
- Autoantibodies/biosynthesis
- B-Cell Maturation Antigen/genetics
- B-Cell Maturation Antigen/immunology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Female
- Gene Expression Regulation
- Genetic Vectors
- Immunoglobulin J-Chains/genetics
- Immunoglobulin J-Chains/immunology
- Injections, Intravenous
- Kidney/immunology
- Kidney/pathology
- Lentivirus/genetics
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Liver/immunology
- Liver/pathology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Lupus Erythematosus, Systemic/therapy
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Mice
- Mice, Inbred MRL lpr
- Positive Regulatory Domain I-Binding Factor 1
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/immunology
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- Regulatory Factor X Transcription Factors
- Signal Transduction
- Spleen/immunology
- Spleen/pathology
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/immunology
- X-Box Binding Protein 1
Collapse
Affiliation(s)
- Jie Luo
- Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaochang Niu
- Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Mingxu Zhang
- Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Kejun Zhang
- Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Ming Chen
- Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing, China
- Address for correspondence: Shaoli Deng, MD and Ming Chen, MD, Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, 10 Chang Jiang Zhi Road, Chongqing 400042, China. E-mail address: (S.D.); (M.C.)
| | - Shaoli Deng
- Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing, China
- Address for correspondence: Shaoli Deng, MD and Ming Chen, MD, Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, 10 Chang Jiang Zhi Road, Chongqing 400042, China. E-mail address: (S.D.); (M.C.)
| |
Collapse
|
38
|
Gao F, Yang Y, Wang Z, Gao X, Zheng B. BRAD4 plays a critical role in germinal center response by regulating Bcl-6 and NF-κB activation. Cell Immunol 2015; 294:1-8. [DOI: 10.1016/j.cellimm.2015.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/19/2015] [Indexed: 12/19/2022]
|
39
|
Liarski VM, Kaverina N, Chang A, Brandt D, Yanez D, Talasnik L, Carlesso G, Herbst R, Utset TO, Labno C, Peng Y, Jiang Y, Giger ML, Clark MR. Cell distance mapping identifies functional T follicular helper cells in inflamed human renal tissue. Sci Transl Med 2014; 6:230ra46. [PMID: 24695686 DOI: 10.1126/scitranslmed.3008146] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T follicular helper (TFH) cells are critical for B cell activation in germinal centers and are often observed in human inflamed tissue. However, it is difficult to know if they contribute in situ to inflammation. Expressed markers define TFH subsets associated with distinct functions in vitro. However, such markers may not reflect in situ function. The delivery of T cell help to B cells requires direct cognate recognition. We hypothesized that by visualizing and quantifying such interactions, we could directly assess TFH cell competency in situ. Therefore, we developed computational tools to quantify spatial relationships between different cell subtypes in tissue [cell distance mapping (CDM)]. Analysis of inflamed human tissues indicated that measurement of internuclear distances between TFH and B cells could be used to discriminate between apparent cognate and noncognate interactions. Furthermore, only cognate-competent TFH cell populations expressed high levels of Bcl-6 and interleukin-21. These data suggest that CDM can be used to identify adaptive immune cell networks driving in situ inflammation. Such knowledge should help identify diseases, and disease subsets, that may benefit from therapeutic targeting of specific T cell-antigen-presenting cell interactions.
Collapse
Affiliation(s)
- Vladimir M Liarski
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen MY, Chen YP, Wu MS, Yu GY, Lin WJ, Tan TH, Su YW. PP4 is essential for germinal center formation and class switch recombination in mice. PLoS One 2014; 9:e107505. [PMID: 25215539 PMCID: PMC4162579 DOI: 10.1371/journal.pone.0107505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/11/2014] [Indexed: 01/12/2023] Open
Abstract
PP4 is a serine/threonine phosphatase required for immunoglobulin (Ig) VDJ recombination and pro-B/pre-B cell development in mice. To elucidate the role of PP4 in mature B cells, we ablated the catalytic subunit of murine PP4 invivo utilizing the CD23 promoter and cre-loxP recombination and generated CD23crePP4F/F mice. The development of follicular and marginal zone B cells was unaffected in these mutants, but the proliferation of mature PP4-deficient B cells stimulated by invitro treatment with either anti-IgM antibody (Ab) or LPS was partially impaired. Interestingly, the induction of CD80 and CD86 expression on these stimulated B cells was normal. Basal levels of serum Igs of all isotypes were strongly reduced in CD23crePP4F/F mice, and their B cells showed a reduced efficiency of class switch recombination (CSR) invitro upon stimulation by LPS or LPS plus IL-4. When CD23crePP4F/F mice were challenged with either the T cell-dependent antigen TNP-KLH or the T cell-independent antigen TNP-Ficoll, or by H1N1 virus infection, the mutant animals failed to form germinal centers (GCs) in the spleen and the draining mediastinal lymph nodes, and did not efficiently mount antigen-specific humoral responses. In the resting state, PP4-deficient B cells exhibited pre-existing DNA fragmentation. Upon stimulation by DNA-damaging drug etoposide invitro, mutant B cells showed increased cleavage of caspase 3. In addition, the mutant B cells displayed impaired CD40-mediated MAPK activation, abnormal IgM-mediated NF-κB activation, and reduced S phase entry upon IgM/CD40-stimulation. Taken together, our results establish a novel role for PP4 in CSR, and reveal crucial functions for PP4 in the maintenance of genomic stability, GC formation, and B cell-mediated immune responses.
Collapse
Affiliation(s)
- Ming-Yu Chen
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ya-Ping Chen
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ming-Sian Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Guanni-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Wen-Jye Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- * E-mail:
| |
Collapse
|
41
|
Aqrawi LA, Kvarnström M, Brokstad KA, Jonsson R, Skarstein K, Wahren-Herlenius M. Ductal epithelial expression of Ro52 correlates with inflammation in salivary glands of patients with primary Sjögren's syndrome. Clin Exp Immunol 2014; 177:244-52. [PMID: 24673429 DOI: 10.1111/cei.12341] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2014] [Indexed: 11/28/2022] Open
Abstract
Ro52 is an E3 ubiquitin ligase with a prominent regulatory role in inflammation. The protein is a common target of circulating autoantibodies in rheumatic autoimmune diseases, particularly Sjögren's syndrome (SS). In this study we aimed to investigate the expression of the SS target autoantigen Ro52 in salivary glands of patients with primary Sjögren's syndrome (pSS). Ro52 expression was assessed by immunohistochemical staining of paraffin-embedded and frozen salivary gland biopsies from 28 pSS patients and 19 non-pSS controls from Swedish and Norwegian registries, using anti-human Ro52 monoclonal antibodies. The degree and pattern of staining and inflammation was then evaluated. Furthermore, secreted Ro52 protein was measured in saliva and serum samples from the same individuals through a catch-enzyme-linked immunosorbent assay (ELISA). Ro52 was highly expressed in all the focal infiltrates in pSS patients. Interestingly, a significantly higher degree of Ro52 expression in ductal epithelium was observed in the patients compared to the non-pSS controls (P < 0·03). Moreover, the degree of ductal epithelial expression of Ro52 correlated with the level of inflammation (Spearman's r = 0·48, P < 0·0120). However, no secreted Ro52 protein could be detected in serum and saliva samples of these subjects. Ro52 expression in ductal epithelium coincides with degree of inflammation and is up-regulated in pSS patients. High expression of Ro52 might result in the breakage of tolerance and generation of Ro52 autoantibodies in genetically susceptible individuals. We conclude that the up-regulation of Ro52 in ductal epithelium might be a triggering factor for disease progression in SS.
Collapse
Affiliation(s)
- L A Aqrawi
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
42
|
Apor E, O'Brien J, Stephen M, Castillo JJ. Systemic lupus erythematosus is associated with increased incidence of hematologic malignancies: a meta-analysis of prospective cohort studies. Leuk Res 2014; 38:1067-71. [PMID: 25052307 DOI: 10.1016/j.leukres.2014.06.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022]
Abstract
Our objective was to define the risk of lymphoma, leukemia and myeloma in adult patients with SLE with a meta-analysis of prospective cohort studies. A literature search from 1995 to 2013 revealed eight studies evaluating this association. The outcome of interest was the standardized incidence ratio (SIR). Our study included 401 cases in a cohort of approximately 68,000 SLE patients, and showed an increased incidence of all hematologic malignancies (SIR 2.9), non-Hodgkin lymphoma (SIR 5.7), Hodgkin lymphoma (SIR 3.1), leukemia (SIR 2.3) and myeloma (SIR 1.5) in SLE patients compared with the general population. The increased SIR was consistent regardless of age, sex or geographical region.
Collapse
Affiliation(s)
- Emmanuel Apor
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA; Department of Medicine, The Miriam Hospital, Providence, RI, USA
| | - Jennifer O'Brien
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA; Department of Medicine, The Miriam Hospital, Providence, RI, USA
| | - Merin Stephen
- Division of Hematology and Oncology, Roger Williams Medical Center, Providence, RI, USA
| | - Jorge J Castillo
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
43
|
Matthews AJ, Husain S, Chaudhuri J. Binding of AID to DNA does not correlate with mutator activity. THE JOURNAL OF IMMUNOLOGY 2014; 193:252-7. [PMID: 24879790 DOI: 10.4049/jimmunol.1400433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The DNA deaminase activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) by deaminating cytidines to uridines at V region (V) genes and switch (S) regions. The mechanism by which AID is recruited to V genes and S region DNA is poorly understood. In this study, we used the CH12 B lymphoma line to demonstrate that, although S regions can efficiently recruit AID and undergo mutations and deletions, AID neither binds to nor mutates the V gene, thus clearly demonstrating intraimmunoglobulin locus specificity. Depletion of the RNA-binding protein polypyrimidine tract binding protein-2, previously shown to promote recruitment of AID to S regions, enables stable association of AID with the V gene. Surprisingly, AID binding to the V gene does not induce SHM. These results unmask a striking lack of correlation between AID binding and its mutator activity, providing evidence for the presence of factors required downstream of AID binding to effect SHM. Furthermore, our findings suggest that S regions are preferred targets for AID and, aided by polypyrimidine tract binding protein-2, act as "sinks" to sequester AID activity from other genomic regions.
Collapse
Affiliation(s)
- Allysia J Matthews
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, New York, NY 10065; andImmunology and Microbial Pathogenesis Program, Weill-Cornell Medical School, New York, NY 10065
| | - Solomon Husain
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, New York, NY 10065; andImmunology and Microbial Pathogenesis Program, Weill-Cornell Medical School, New York, NY 10065
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, New York, NY 10065; andImmunology and Microbial Pathogenesis Program, Weill-Cornell Medical School, New York, NY 10065
| |
Collapse
|
44
|
Hamel KM, Cao Y, Olalekan SA, Finnegan A. B cell-specific expression of inducible costimulator ligand is necessary for the induction of arthritis in mice. Arthritis Rheumatol 2014; 66:60-7. [PMID: 24449576 DOI: 10.1002/art.38207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/19/2013] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Inducible costimulator (ICOS)-ICOSL interactions are necessary for activation of Teff cells and follicular helper T (Tfh) cells. ICOSL is expressed on B cells, macrophages, and dendritic cells and can be induced on nonhematopoietic cells. The aim of this study was to determine whether expression of ICOSL on B cells is necessary for the development of proteoglycan (PG)-induced arthritis (PGIA). METHODS PGIA was initiated by immunizing wild-type and ICOSL-deficient (ICOSL(-/-) ) or B cell-specific ICOSL(-/-) chimeric BALB/c mice with human PG in adjuvant. The onset and severity of arthritis were monitored over time. CD4+ T cell proliferation and CD4+ T cell cytokine production were measured in vitro after the cells were restimulated with PG. Germinal center (GC) B cells, plasma cells, Tfh cells, and Treg cells were identified by staining with specific antibodies. RESULTS Arthritis progression was completely inhibited in both ICOSL(-/-) mice and B cell-specific ICOSL(-/-) chimeric mice. Production of the Teff cell-produced cytokines interferon-γ and interleukin-17 (IL-17) and the antiinflammatory cytokine IL-4 was suppressed. The reduced percentages of GCs and Tfh cells and the decreased production of IL-21 correlated with a decrease in the anti-mouse PG antibody response. However, the percentage of plasma cells was not reduced despite a reduction in IgG responses. CONCLUSION These data indicate that the signals provided by ICOSL-expressing B cells to Teff cells and Tfh cells are necessary for the development of arthritis. Thus, therapeutic blockade of ICOSL-ICOS interactions may be an effective strategy for the treatment of rheumatoid arthritis.
Collapse
|
45
|
Aqrawi LA, Skarstein K, Øijordsbakken G, Brokstad KA. Ro52- and Ro60-specific B cell pattern in the salivary glands of patients with primary Sjögren's syndrome. Clin Exp Immunol 2013; 172:228-37. [PMID: 23574319 DOI: 10.1111/cei.12058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2012] [Indexed: 01/24/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is characterized by the presence of autoantibodies against the ribonucleoprotein (RNP) particles Ro/SSA and La/SSB, and mononuclear cell infiltration of exocrine tissues, especially salivary and lachrymal glands. Low numbers of autoantigen-specific memory B cells and elevated levels of plasma cells have been detected previously in the peripheral blood (PB) of pSS patients compared to controls. As both Ro52 and Ro60-specific cells have been detected in the salivary glands (SG) of pSS patients, we aimed to characterize the SSA-specific B cell pattern in SG biopsies. A series of double immunohistochemical stainings were performed on paraffin-embedded tissue from 10 well-characterized pSS patients for each Ro52 and Ro60 along with CD19, CD5, CD20 or CD27, respectively. Ro52 and Ro60-specific cells detected in SG tissue were found to be CD19(+) B cells located outside the CD19(+)/CD20(+) B cell zones (BCZ) and also interstitially. These SSA-specific cells were also quantified. No SSA-specific cells were CD5(+), indicating that they do not belong to the B-1 B cell subset. Furthermore, no SSA-specific cells were observed within the CD20(+) BCZ. Hence, no SSA-specific memory B cells were detected in these individuals. Contrary to this, SSA-specific cells were found to be CD19(+)/CD27(++), demonstrating that they are differentiating short or long-lived plasma cells. Taken together, our findings suggest that these lower levels of SSA-specific memory B cells in PB and absence of SSA-specific memory B cells in SG of pSS patients could result from activation of these cells into plasma cells at the site of inflammation.
Collapse
Affiliation(s)
- L A Aqrawi
- Broegelmann Research Laboratory, The Gade Institute, Bergen, Norway.
| | | | | | | |
Collapse
|
46
|
Activation of the B cell antigen receptor triggers reactivation of latent Kaposi's sarcoma-associated herpesvirus in B cells. J Virol 2013; 87:8004-16. [PMID: 23678173 DOI: 10.1128/jvi.00506-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus and the cause of Kaposi's sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman's disease. Latently infected B cells are the main reservoir of this virus in vivo, but the nature of the stimuli that lead to its reactivation in B cells is only partially understood. We established stable BJAB cell lines harboring latent KSHV by cell-free infection with recombinant virus carrying a puromycin resistance marker. Our latently infected B cell lines, termed BrK.219, can be reactivated by triggering the B cell receptor (BCR) with antibodies to surface IgM, a stimulus imitating antigen recognition. Using this B cell model system we studied the mechanisms that mediate the reactivation of KSHV in B cells following the stimulation of the BCR and could identify phosphatidylinositol 3-kinase (PI3K) and X-box binding protein 1 (XBP-1) as proteins that play an important role in the BCR-mediated reactivation of latent KSHV.
Collapse
|
47
|
Yang X, Yang J, Chu Y, Wang J, Guan M, Zhu X, Xue Y, Zou H. T follicular helper cells mediate expansion of regulatory B cells via IL-21 in Lupus-prone MRL/lpr mice. PLoS One 2013; 8:e62855. [PMID: 23638156 PMCID: PMC3634758 DOI: 10.1371/journal.pone.0062855] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 03/28/2013] [Indexed: 12/31/2022] Open
Abstract
T follicular helper (Tfh) cells can mediate humoral immune responses and augment autoimmunity, whereas the role of Tfh cells on regulatory B (B10) cells in autoimmunity diseases is not clear. Here, we investigated the percentages of Tfh cells and B10 cells in lupus-prone MRL/Mp-lpr/lpr (MRL/lpr) mice and examined the effects and mechanism of Tfh cell-derived interleukin-21 (IL-21) on IL-10 production during the differentiation of B10 cells. Both Tfh cells and B10 cells were expanded in spleens of MRL/lpr mice. In addition, a positive correlation between the proportions of Tfh cells and B10 cells was observed. Tfh cell-derived IL-21 from MRL/lpr mice could promote IL-10 production during the differentiation of B10 cells. Importantly, neutralization of IL-21 inhibited IL-10 production and expansion of B10 cells both in vitro and in vivo. IL-21 induced IL-10 production via activation of phosphorylated signal transduction and activator of transcription 3 (p-STAT3). Inhibition of p-STAT3 effectively blocked IL-10 production during the differentiation of B10 cells. Moreover, IL-21-induced IL-10 exerted a regulatory function by inhibiting the proliferation of T cells. These data suggest that Tfh cells not only mediate humoral immune responses and augment autoimmunity but also play a broader role in immune regulatory actions via the induction of IL-10 production.
Collapse
Affiliation(s)
- Xue Yang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Ming Guan
- Central Laboratory, Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yu Xue
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- * E-mail: .
| |
Collapse
|
48
|
|