1
|
Wang H, Chen M, Gao Z, Gong Y, Yu X, Wu H. Recombinant human erythropoietin protects long-term cultured ageing primary nerve cells by upregulating the PI3K/Akt pathway. Neuroreport 2022; 33:186-198. [PMID: 35143447 PMCID: PMC8834164 DOI: 10.1097/wnr.0000000000001768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/18/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Previous studies have found that recombinant human erythropoietin (rhEPO) protects long-term cultured ageing primary nerve cells by enhancing the endogenous antioxidant capacity of cells; however, its signalling pathways are not clear. This study aimed to explore the relationship between the rhEPO and PI3K/Akt pathways in the protection of senescent nerve cells at the cellular level. METHODS Primary nerve cells were cultured for 22 days to mimic the natural ageing process of nerve cells. rhEPO and LY294002 were administered as an intervention on the 11th day of culture. Western blot, immunochemistry, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide, immunofluorescence double-labelling staining, Annexin V-FITC/PI double-labelling flow cytometry, and SA-β-gal staining experiments were used to observe the expression levels of erythropoietin receptor (EPOR) and phosphorylated Akt (p-Akt) protein and the related indices of nerve cell senescence. RESULTS Western blot experiments showed that in ageing long-term cultured primary neurons, the EPOR and p-Akt decreased and rhEPO upregulated the expression levels of EPOR and p-Akt protein. The rest showed that the PI3K/Akt pathway blockade reduced the antioxidation capacity, cell viability, cell morphology, and ratio of apoptotic cells and senescent cells of rhEPO on ageing long-term cultured primary nerve cells. CONCLUSIONS This study explored the relationship between the rhEPO and PI3K/Akt pathways in the protection of ageing nerve cells at the cellular level and found that rhEPO protects long-term cultured ageing primary nerve cells by upregulating the PI3K/Akt pathway. These findings provide a theoretical basis and experimental evidence for the antiaeging mechanism of EPO in the nervous system.
Collapse
Affiliation(s)
- Huqing Wang
- Department of Neurology, Second Affiliated Hospital of Xi’an Jiaotong University
| | - Ming Chen
- Department of Neurology, Second Affiliated Hospital of Xi’an Jiaotong University
| | - Zhen Gao
- Department of Neurology, Second Affiliated Hospital of Xi’an Jiaotong University
| | - Yu Gong
- Department of Neurology, Second Affiliated Hospital of Xi’an Jiaotong University
| | - Xiaorui Yu
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Haiqin Wu
- Department of Neurology, Second Affiliated Hospital of Xi’an Jiaotong University
| |
Collapse
|
2
|
Gong Q, Zeng J, Zhang X, Huang Y, Chen C, Quan J, Ling J. Effect of erythropoietin on angiogenic potential of dental pulp cells. Exp Ther Med 2021; 22:1079. [PMID: 34447472 PMCID: PMC8355638 DOI: 10.3892/etm.2021.10513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Erythropoietin (EPO) is a 34-kDa glycoprotein that possesses the potential for angiogenesis, as well as anti-inflammatory and anti-apoptotic properties. The present study aimed to examine the effect of EPO on the angiogenesis of dental pulp cells (DPCs) and to explore the underlying mechanisms of these effects. It was demonstrated that EPO not only promoted DPCs proliferation but also induced angiogenesis of DPCs in a paracrine fashion. EPO enhanced the angiogenic capacity by stimulating DPCs to secrete a series of angiogenic cytokines. ELISA confirmed that high concentrations of EPO increased the production of MMP-3 and angiopoietin-1 but decreased the secretion of IL-6. Furthermore, EPO activated the ERK1/2 and p38 signaling pathways in DPCs, while inhibition of these pathways diminished the angiogenesis capacity of DPCs. The present study suggested that EPO may have an important role in the repair and regeneration of dental pulp.
Collapse
Affiliation(s)
- Qimei Gong
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Junyu Zeng
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xufang Zhang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Chanchan Chen
- Department of Stomatology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Jingjing Quan
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
3
|
Minder AE, Barman-Aksoezen J, Schmid M, Minder EI, Zulewski H, Minder CE, Schneider-Yin X. Beyond pigmentation: signs of liver protection during afamelanotide treatment in Swiss patients with erythropoietic protoporphyria, an observational study. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:26330040211065453. [PMID: 37181106 PMCID: PMC10032460 DOI: 10.1177/26330040211065453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/18/2021] [Indexed: 05/16/2023]
Abstract
Erythropoietic protoporphyria (EPP) is an ultra-rare inherited disorder with overproduction of protoporphyrin in maturating erythroblasts. This excess protoporphyrin leads to incapacitating phototoxic burns in sunlight exposed skin. Its biliary elimination causes cholestatic liver injury in 20% and terminal liver failure in 4% of EPP patients. Thereby, the risk of liver injury increases with increasing erythrocyte protoporphyrin concentrations. Afamelanotide, an α-melanocyte-stimulating hormone (MSH) analog inducing skin pigmentation, was shown to improve sunlight tolerance in EPP. Beyond this well-known effect on pigmentation, the MSHs have liver-protective effects and improve survival of maturating erythroblasts, effects described in animal or in vitro models to date only. We investigated whether afamelanotide treatment in EPP has effects on erythropoiesis, protoporphyrin concentrations, and liver injury by analyzing retrospectively our long-term safety data. Methods From the 47 Swiss EPP-patients treated at our center since 2006, we included those 38 patients in the current analysis who received at least one afamelanotide dose between 2016 and 2018 and underwent regular laboratory testing before and during the treatment. We compared the means of pretreatment measurements with those during the treatment. Results Protoporphyrin concentrations dropped from 21.39 ± 11.12 (mean ± SD) before afamelanotide to 16.83 ± 8.24 µmol/L (p < .0001) during treatment. Aspartate aminotransferase decreased from 26.67 ± 13.16 to 22.9 ± 7.76 IU/L (p = .0146). For both entities, patients with higher values showed a more progressive decrease, indicating a risk reduction of EPP-related liver disease. The pre-existing hypochromia and broad mean red-cell distribution width were further augmented under afamelanotide. This was more likely due to an influence of afamelanotide on maturating erythroblasts than due to an exacerbated iron deficiency, as mean zinc-protoporphyrin decreased significantly and ferritin remained unchanged. No serious afamelanotide-related adverse events were observed for a total of 240 treatment years. Conclusion Our findings point to a protective effect of afamelanotide on erythroblast maturation and protoporphyrin-induced liver injury. Plain Language summary Afamelanotide, a skin tanning hormone, may protect patients with erythropoietic protoporphyria not only from skin burns, but also from liver injury associated with the disease. Patients with erythropoietic protoporphyria (EPP), an inherited metabolic disease, suffer from light-induced skin burns and liver injury elicited by the accumulated light sensitizer protoporphyrin. The excess protoporphyrin is produced in red cell precursors in the bone marrow, and it is eliminated from the body via the liver and bile. A high protoporphyrin excretion burden damages the liver cells, the risk for this increases with higher protoporphyrin concentrations. About 20% of EPP patients show some sign of liver injury and 4% develop life-threatening liver dysfunction.Afamelanotide, closely related to natural α-melanocyte stimulating hormone (MSH), induces skin tanning. This effect protects EPP patients from light-induced skin burns as shown in previous studies. We have treated Swiss EPP patients with afamelanotide since 2006, and we regularly perform safety tests of this treatment.Recent in vitro and animal studies demonstrated α-MSH effects other than skin tanning, including an improved synthesis of red blood cell precursors in the bone-marrow and protection of the liver from experimentally induced damage. Until now, it is unknown whether afamelanotide has similar effects in the human organism.To study this question, we analyzed retrospectively the safety laboratory data of 38 Swiss patients, who received at least one dose of afamelanotide from 2016 to 2019. We found that both, the average protoporphyrin concentrations and aspartate aminotransferase, a test for liver function, improved during afamelanotide treatment as compared to before.We concluded that afamelanotide applied to EPP patients to protect them from light-induced skin burns also may reduce their risk of liver injury.
Collapse
Affiliation(s)
- Anna-Elisabeth Minder
- Division of Endocrinology, Diabetology,
Porphyria, Stadtspital Zürich, Birmensdorferstrasse 497, 8063 Zurich,
Switzerland
| | | | - Mathias Schmid
- Department of Hematology and Oncology,
Stadtspital Zürich, Zurich, Switzerland
| | - Elisabeth I. Minder
- Division of Endocrinology, Diabetology,
Porphyria, Stadtspital Zürich, Zurich, Switzerland
| | - Henryk Zulewski
- Division of Endocrinology, Diabetology,
Porphyria, Stadtspital Zürich, Zurich, Switzerland
| | - Christoph E. Minder
- Department of Social and Preventive Medicine,
University of Bern, Bern, Switzerland
| | | |
Collapse
|
4
|
Fecková B, Kimáková P, Ilkovičová L, Szentpéteriová E, Macejová M, Košuth J, Zulli A, Debeljak N, Hudler P, Jašek K, Kašubová I, Kubatka P, Solár P. Methylation of the first exon in the erythropoietin receptor gene does not correlate with its mRNA and protein level in cancer cells. BMC Genet 2019; 20:1. [PMID: 30606107 PMCID: PMC6318971 DOI: 10.1186/s12863-018-0706-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/13/2018] [Indexed: 01/13/2023] Open
Abstract
Background Erythropoietin receptor (EPOR) is a functional membrane-bound cytokine receptor. Erythropoietin (EPO) represents an important hematopoietic factor for production, maturation and differentiation of erythroid progenitors. In non-hematopoietic tissue, EPO/EPOR signalization could also play cytoprotective and anti-apoptotic role. Several studies identified pro-stimulating EPO/EPOR effects in tumor cells; however, numerous studies opposed this fact due to the usage of unspecific EPOR antibodies and thus potential absence or very low levels of EPOR in tumor cells. It seems that this problem is more complex and therefore we have decided to focus on EPOR expression at several levels such as the role of methylation in the regulation of EPOR expression, identification of possible EPOR transcripts and the presence of EPOR protein in selected tumor cells. Methods Methylation status was analysed by bisulfite conversion reaction, PCR and sequencing. The expression of EPOR was monitored by quantitative RT-PCR and western blot analysis. Results In this study we investigated the methylation status of exon 1 of EPOR gene in selected human cancer cell lines. Our results indicated that CpGs methylation in exon 1 do not play a significant role in the regulation of EPOR transcription. However, methylation status of EPOR exon 1 was cell type dependent. We also observed the existence of two EPOR splice variants in human ovarian adenocarcinoma cell line - A2780 and confirmed the expression of EPOR protein in these cells using specific A82 anti-EPOR antibody. Conclusion We outlined the methylation status of all selected cancer cell lines in exon 1 of EPOR gene and these results could benefit future investigations. Moreover, A82 antibody confirmed our previous results demonstrating the presence of functional EPOR in human ovarian adenocarcinoma A2780 cells.
Collapse
Affiliation(s)
- Barbora Fecková
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154, Košice, Slovak Republic
| | - Patrícia Kimáková
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154, Košice, Slovak Republic
| | - Lenka Ilkovičová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154, Košice, Slovak Republic
| | - Erika Szentpéteriová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154, Košice, Slovak Republic
| | - Mária Macejová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154, Košice, Slovak Republic
| | - Ján Košuth
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154, Košice, Slovak Republic
| | - Anthony Zulli
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Nataša Debeljak
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI1000, Ljubljana, Slovenia
| | - Petra Hudler
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI1000, Ljubljana, Slovenia
| | - Karin Jašek
- Biomedical Centre Martin, Division of Oncology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK03601, Martin, Slovak Republic
| | - Ivana Kašubová
- Biomedical Centre Martin, Division of Oncology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK03601, Martin, Slovak Republic
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK03601, Martin, Slovak Republic.,Department of Experimental Carcinogenesis, Biomedical Centre Martin, Division of Oncology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK03601, Martin, Slovak Republic
| | - Peter Solár
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154, Košice, Slovak Republic. .,Institute of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, SK04011, Košice, Slovak Republic.
| |
Collapse
|
5
|
Ribatti D, Tamma R. Hematopoietic growth factors and tumor angiogenesis. Cancer Lett 2018; 440-441:47-53. [PMID: 30312730 DOI: 10.1016/j.canlet.2018.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 01/13/2023]
Abstract
Angiogenesis is regulated by numerous "classic" factors such as vascular endothelial growth factor (VEGF) and many other endogenous "non-classic"peptides, including erythropoietin (Epo), and granulocyte-/granulocyte macrophage colony stimulating factor (G-/GM-CSF). The latter play an important regulatory role in angiogenesis, especially under pathological conditions and constitute a crosslink between angiogenesis and hematopoiesis. This article reviews studies on the ability of hematopoietic cytokines to affect several endothelial cell functions in tumor angiogenesis. These findings in all these studies support the hypothesis formulated at the beginning of this century that a common ancestral cell, the hemangioblast, gives rise to cells of both the endothelial and the hematopoietic lineages.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
6
|
Westphal G, Niederberger E, Blum C, Wollman Y, Knoch TA, Rebel W, Debus J, Friedrich E. Erythropoietin and G-csf Receptors in Human Tumor Cells: Expression and Aspects regarding Functionality. TUMORI JOURNAL 2018; 88:150-9. [PMID: 12088257 DOI: 10.1177/030089160208800214] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and Background Recombinant human erythropoietin (Epo) and granulocyte-colony-stimulating factor (G-CSF) are used to stimulate hematopoiesis in patients with malignant diseases. These cytokines transduce their biological signal via the Epo receptor (EpoR) and G-CSF receptor (G-CSF-R) into the cell. We therefore investigated in human tumor cell lines the expression of these receptors in tumor cells as well as their response to Epo and G-CSF. Methods and Study Design The expression of EpoR and G-CSF-R mRNA was analyzed with reverse transcription-polymerase chain reaction (RT-PCR). EpoR protein expression was further monitored with Western blot and immunocytochemistry analysis. The cellular response to various concentrations of Epo was evaluated using 3[H]-thymidine uptake, Northern blot of c-fos expression and tyrosine kinase activity assay. The proliferation after G-CSF incubation was analyzed with the MTS assay. Results In this study EpoR mRNA and protein were detected in various human tumor cell lines. Treatment with Epo did not influence the proliferation rate of examined EpoR-positive tumor cell lines. Epo did not stimulate the tyrosine kinase activity nor did it affect the c-fos mRNA in these cell lines. G-CSF-R mRNA was only detected in two myeloid cell lines. Treatment with G-CSF did not increase the proliferation of these cells. Conclusions These results demonstrate that Epo and G-CSF did not modulate the growth rate of examined receptor-positive tumor cell lines; the presence of the Epo receptor seems not essential for cell growth of these tumor cells in cell culture.
Collapse
Affiliation(s)
- Gabriela Westphal
- Division of Radiobiology in Radiooncology, German Cancer Research Center (DKFZ), Heidelberg.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Uversky VN, Redwan EM. Erythropoietin and co.: intrinsic structure and functional disorder. MOLECULAR BIOSYSTEMS 2017; 13:56-72. [PMID: 27833947 DOI: 10.1039/c6mb00657d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Erythropoietin (Epo) is a heavily glycosylated protein, with its main function being related to erythropoiesis, where it controls red blood cell production via interaction with the Epo receptor (EpoR). It also plays a number of important roles in various hormonal, growth factor, and cytokine pathways. These roles are defined by Epo partners, such as the homodimeric (EpoR)2 receptor, the heterodimeric EpoR/βCR receptor and hypoxia inducing factor (HIF). Although the main structural features of both Epo and EpoR are conserved in vertebrates, the secretion sites of Epo in mammals are different from those in other vertebrates. Both biosynthetic and synthetic analogues of this protein are available on the market. Several side effects, such as pure red cells aplaisa, increase the rate of cancer-related death in patients treated with recombinant Epo. The multifunctionality of Epo and the ability of this protein to serve as a hormone, a cytokine, and a growth factor suggest the presence of functional disorder, which is a typical "structural" feature of moonlighting proteins. The goal of this article is to evaluate the roles of intrinsic disorder in the functions of Epo and its primary interactors, EpoR, βCR, and HIF-1α.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia. and Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia and Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia. and Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab 21934, Alexandria, Egypt
| |
Collapse
|
8
|
Ahmet I, Lakatta EG, Talan MI. Acute hemodynamic effects of erythropoietin do not mediate its cardioprotective properties. Biol Open 2012; 1:1049-53. [PMID: 23213383 PMCID: PMC3507179 DOI: 10.1242/bio.20122378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/31/2012] [Indexed: 11/26/2022] Open
Abstract
Activation of nitric oxide (NO) signaling is considered, at list partially, a mechanistic basis for EPO-induced cardioprotection. Surprisingly, hemodynamic response subsequent to NO activation after EPO administration has never been reported. The objectives of this study were to evaluate the acute hemodynamic and cardiovascular responses to EPO administration, to confirm their NO genesis, and to test the hypothesis that EPO-induced cardioprotection is mediated through cardiovascular changes related to NO activation. In Experiment 1, after 3000 U/kg of rhEPO was administered intravenously to Wistar rats, arterial blood pressure, monitored via indwelling catheter, progressively declined almost immediately until it leveled off 90 minutes after injection at 20% below control level. In Experiment 2 the 25% reduction of mean blood pressure, compared to control group, was observed 2 hours after intravenous injection of either 3000 or 150 U/kg of rhEPO. Detailed pressure–volume loop analyses of cardiac performance (Experiment 3) 2 hours after intravenous injection of human or rat recombinant EPO (3000 U/kg) revealed a significant reduction of systolic function (PRSW was 33% less than control). Reduction of arterial blood pressure and systolic cardiac function in response to rhEPO were blocked in rats pretreated with a non-selective inhibitor of nitric oxide synthase (L-NAME). In Experiment 4, 24 hours after a permanent ligation of a coronary artery, myocardial infarction (MI) measured 26±3.5% of left ventricle in untreated rats. MI in rats treated with 3000 U/kg of rhEPO immediately after coronary ligation was 56% smaller. Pretreatment with L-NAME did not attenuate the beneficial effect of rhEPO on MI size, while MI size in rats treated with L-NAME alone did not differ from control. Therefore, a single injection of rhEPO resulted in a significant, NO-mediated reduction of systemic blood pressure and corresponding reduction of cardiac systolic function. However, EPO-induced protection of myocardium from ischemic damage is not associated with NO activation or NO-mediated hemodynamic responses.
Collapse
Affiliation(s)
- Ismayil Ahmet
- Laboratory of Cardiovascular Sciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Sciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Mark I. Talan
- Laboratory of Cardiovascular Sciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Erythropoietin is detectable in the ascitic fluid in patients with ovarian tumors. Int J Gynecol Cancer 2012; 22:1470-3. [PMID: 23027039 DOI: 10.1097/igc.0b013e31826fd607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Erythropoietin (Epo) is a glycoprotein that stimulates proliferation and migration of human endothelial cells and promotes angiogenesis, which are crucial phenomena in cancer biology. The objective of this study was to investigate whether Epo is detectable in the ascitic fluid of patients with ovarian tumors. PATIENTS AND METHODS We investigated the presence of Epo in the ascitic fluid of 100 women undergoing laparotomy for an ovarian tumor. Epo concentration was quantitated with an immunochemiluminometric assay. RESULTS Ten women had a benign tumor, 13 women had a borderline tumor, and 77 women had ovarian cancer. Epo was detected in all ascitic fluid samples, in similar amounts as in corresponding serum samples. Ascitic fluid Epo concentration did not differ between the 3 study groups (P = 0.081), but in multiple comparisons, ascitic fluid Epo was higher in the women with cancer than in the women with a benign tumor (P = 0.006). Ascitic fluid Epo concentration correlated positively with serum Epo (P < 0.0001) and the volume of ascites (P < 0.0001). In regression analyses, serum Epo, volume of ascites, blood hemoglobin, plasma CA125, tumor stage, tumor grade, and the presence of residual tumor after surgery had no significant independent effect on ascitic fluid Epo. CONCLUSION Considerable amounts of Epo are present in the ascitic fluid of women with ovarian tumors. The origin of Epo in the ascitic fluid of women with ovarian tumors as well as the clinical relevance of our finding remain to be clarified.
Collapse
|
10
|
Ribatti D. Angiogenic Effects of Erythropoietin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:199-234. [DOI: 10.1016/b978-0-12-394310-1.00005-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Murua A, Orive G, Hernández RM, Pedraz JL. Emerging technologies in the delivery of erythropoietin for therapeutics. Med Res Rev 2011; 31:284-309. [PMID: 19967731 DOI: 10.1002/med.20184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deciphering the function of proteins and their roles in signaling pathways is one of the main goals of biomedical research, especially from the perspective of uncovering pathways that may ultimately be exploited for therapeutic benefit. Over the last half century, a greatly expanded understanding of the biology of the glycoprotein hormone erythropoietin (Epo) has emerged from regulator of the circulating erythrocyte mass to a widely used therapeutic agent. Originally viewed as the renal hormone responsible for erythropoiesis, recent in vivo studies in animal models and clinical trials demonstrate that many other tissues locally produce Epo independent of its effects on red blood cell mass. Thus, not only its hematopoietic activity but also the recently discovered nonerythropoietic actions in addition to new drug delivery systems are being thoroughly investigated in order to fulfill the specific Epo release requirements for each therapeutic approach. The present review focuses on updating the information previously provided by similar reviews and recent experimental approaches are presented to describe the advances in Epo drug delivery achieved in the last few years and future perspectives.
Collapse
Affiliation(s)
- Ainhoa Murua
- Laboratory of Pharmacy and Pharmaceutical Technology, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, Faculty of Pharmacy, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | | | | | | |
Collapse
|
12
|
Gong Q, Jiang H, Wei X, Ling J, Wang J. Expression of Erythropoietin and Erythropoietin Receptor in Human Dental Pulp. J Endod 2010; 36:1972-7. [DOI: 10.1016/j.joen.2010.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/15/2010] [Accepted: 08/25/2010] [Indexed: 10/18/2022]
|
13
|
Prognostic impact of erythropoietin expression and erythropoietin receptor expression on locoregional control and survival of patients irradiated for stage II/III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2010; 80:499-505. [PMID: 20646855 DOI: 10.1016/j.ijrobp.2010.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 02/05/2010] [Accepted: 02/09/2010] [Indexed: 11/23/2022]
Abstract
PURPOSE Prognostic factors can guide the physician in selecting the optimal treatment for an individual patient. This study investigates the prognostic value of erythropoietin (EPO) and EPO receptor (EPO-R) expression of tumor cells for locoregional control and survival in non-small-cell lung cancer (NSCLC) patients. METHODS AND MATERIALS Fourteen factors were investigated in 62 patients irradiated for stage II/III NSCLC, as follows: age, gender, Karnofsky performance score (KPS), histology, grading, TNM/American Joint Committee on Cancer (AJCC) stage, surgery, chemotherapy, pack years (average number of packages of cigarettes smoked per day multiplied by the number of years smoked), smoking during radiotherapy, hemoglobin levels during radiotherapy, EPO expression, and EPO-R expression. Additionally, patients with tumors expressing both EPO and EPO-R were compared to those expressing either EPO or EPO-R and to those expressing neither EPO nor EPO-R. RESULTS On univariate analysis, improved locoregional control was associated with AJCC stage II cancer (p < 0.048), surgery (p < 0.042), no smoking during radiotherapy (p = 0.024), and no EPO expression (p = 0.001). A trend was observed for a KPS of >70 (p = 0.08), an N stage of 0 to 1 (p = 0.07), and no EPO-R expression (p = 0.10). On multivariate analysis, AJCC stage II and no EPO expression remained significant. No smoking during radiotherapy was almost significant. On univariate analysis, improved survival was associated with N stage 0 to 1 (p = 0.009), surgery (p = 0.039), hemoglobin levels of ≥12 g/d (p = 0.016), and no EPO expression (p = 0.001). On multivariate analysis, N stage 0 to 1 and no EPO expression maintained significance. Hemoglobin levels of ≥12 g/d were almost significant. On subgroup analyses, patients with tumors expressing both EPO and EPO-R had worse outcomes than those expressing either EPO or EPO-R and those expressing neither EPO nor RPO-R. CONCLUSIONS EPO expression of tumor cells was an independent prognostic factor for locoregional control and survival in patients irradiated for NSCLC. EPO-R expression showed a trend. Patients with tumors expressing both EPO and EPO-R have an unfavorable prognosis.
Collapse
|
14
|
Digkas E, Kareli D, Chrisafi S, Passadaki T, Mantadakis E, Hatzimichail A, Vargemezis V, Lialiaris T. Attenuation of cytogenetic effects by erythropoietin in human lymphocytes in vitro and P388 ascites tumor cells in vivo treated with irinotecan (CPT-11). Food Chem Toxicol 2010; 48:242-9. [DOI: 10.1016/j.fct.2009.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/23/2009] [Accepted: 10/01/2009] [Indexed: 11/30/2022]
|
15
|
Vogiatzi G, Briasoulis A, Tousoulis D, Papageorgiou N, Stefanadis C. Is there a role for erythropoietin in cardiovascular disease? Expert Opin Biol Ther 2009; 10:251-64. [PMID: 20028188 DOI: 10.1517/14712590903547819] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Ribatti D, Crivellato E, Nico B, Guidolin D, Gassmann M, Djonov V. Mast cells and macrophages in duodenal mucosa of mice overexpressing erythropoietin. J Anat 2009; 215:548-54. [PMID: 19691658 DOI: 10.1111/j.1469-7580.2009.01131.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
There is increasing evidence suggesting a wider biological role of erythropoietin (Epo) and Epo receptor (EpoR) not related to erythropoiesis, such as the detection of EpoR in other cells, i.e. polymorphonuclear leukocytes, megakaryocytes, endothelial, myocardial and neural cells. In this study, by using a mouse model (designated tg6) that constitutively overexpresses human Epo in an oxygen-independent manner, we have investigated mast cell and macrophage number and distribution in duodenal mucosa using immunohistochemical, morphometric and image analysis methods. The results showed that tryptase-positive mast cells and BM8-positive macrophages were more numerous in duodenal mucosa specimens of tg6 mice compared with wild-type mice. Moreover, whereas in wild-type specimens both mast cells and macrophages were generally scattered throughout the villus, in tg6 specimens they were aligned along the axis of the villus. Morphometric analysis confirms this observation, and the quantitative analysis of the spatial distribution of the cells in duodenal villi indicated that in both wild-type and tg6 groups the macrophage and mast cell distribution was characterized by significant deviations from randomness. In addition, an increased number of c-kit-positive cells have been identified in the villus axis of tg6 mice, indicating an expanded compartment of mast cell precursors in the intestinal mucosa of these animals. Finally, we have also demonstrated that in tg6 specimens the number of duodenal epithelial cells positive for Epo were significantly higher as compared to wild type. Overall, these data confirm that Epo, acting as a general stimulator of the hemopoietic compartment, is able to induce an expansion of two effectors of the immune response, mast cells and macrophages, in a specific peripheral site, the duodenal mucosa, in the tg6 mouse experimental model.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
EPO-R expression patterns in resected gastric adenocarcinoma followed by adjuvant chemoradiation treatment. Pathol Oncol Res 2008; 15:1-10. [PMID: 19002606 DOI: 10.1007/s12253-008-9118-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 10/16/2008] [Indexed: 10/21/2022]
Abstract
The primary aim was to determine whether Epo-R immunohistochemical expression is related to disease free survival (DFS) in specimens of GC from patients who underwent adjuvant chemoradiation. Specimens of gastric adenocarcinomas obtained from 44 patients who had undergone curative gastrectomy and adjuvant treatment were investigated immunohistochemically expression of Epo-R. Three patterns for Epo-R staining were defined: Pattern A (secretory cells-like staining), Pattern B (parietal-like staining) and Pattern C (chief-like staining). Median DFS was 38 months (CI 95%: 33-43) and 15 months (IC 95%: 3-27) in the pattern B and C, respectively, but it was not reached in the pattern A (p = 0.06). Our findings suggest that there may be a relationship between Epo-R expression and DFS in the patients with GC resected.
Collapse
|
18
|
Saintigny P, Besse B, Callard P, Vergnaud AC, Czernichow S, Colombat M, Girard P, Validire P, Breau JL, Bernaudin JF, Soria JC. Erythropoietin and erythropoietin receptor coexpression is associated with poor survival in stage I non-small cell lung cancer. Clin Cancer Res 2007; 13:4825-31. [PMID: 17699861 DOI: 10.1158/1078-0432.ccr-06-3061] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study was designed to evaluate the prognostic effect of erythropoietin (EPO) and EPO receptor (EPO-R) expression in stage I non-small cell lung cancer (NSCLC) patients. EXPERIMENTAL DESIGN EPO and EPO-R expression in 158 tumor samples from resected stage I NSCLC was evaluated using immunohistochemistry and tissue array technology. RESULTS EPO-R and EPO were highly expressed in 20.9% and 35.4% of tumors, respectively. High EPO-R expression compared with negative or low-level expression was associated with a poor 5-year disease-specific survival (60.6% versus 80.8%; P = 0.01, log-rank test). High EPO expression compared with negative and low-level expression was associated with a trend toward a poor 5-year disease-specific survival (69.6% versus 80.4%; P = 0.13, log-rank test). A high level of EPO-R and EPO coexpression was associated with a poor 5-year disease-specific survival compared with other groups of patients (50.0% versus 80.0% survival at the end of follow-up; P = 0.005, log-rank test). In multivariate analysis for disease-specific survival, high-level EPO-R and EPO coexpression was an independent prognostic factor for disease-specific survival (hazard ratio, 2.214; 95% confidence interval, 1.012-4.848; P = 0.046). CONCLUSION These results establish the pejorative prognostic value of EPO and EPO-R expression in early-stage resected NSCLC and suggest a potential paracrine and/or autocrine role of endogenous EPO in NSCLC aggressiveness.
Collapse
Affiliation(s)
- Pierre Saintigny
- Service d'Oncologie Médicale, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Université Paris 13, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Diensthuber M, Ilner T, Rodt T, Samii M, Brandis A, Lenarz T, Stöver T. Erythropoietin and Erythropoietin Receptor Expression in Vestibular Schwannoma. Otol Neurotol 2007; 28:559-65. [PMID: 17429338 DOI: 10.1097/mao.0b013e3180423b05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Hypoxia-inducible factor (HIF)-1alpha, erythropoietin (Epo), Epo receptor (EpoR), and bcl-2 are expressed in both sporadic unilateral vestibular schwannomas (VSs) and those associated with neurofibromatosis Type 2, and the expression data correlate with clinicopathological tumor features including microvessel density and Ki-67-labeling index. BACKGROUND Erythropoietin expression is regulated by the transcription factor, HIF-1alpha. Erythropoietin signaling via EpoR results in stimulation of cell proliferation and elevated expression of the antiapoptotic protein, bcl-2, and then inhibition of apoptosis. Erythropoietin has been shown to be associated with Schwann cell proliferation, and a recent report suggested a role in VS growth. METHODS Immunohistochemical analysis of HIF-1alpha, Epo, EpoR, and bcl-2 was performed on formalin-fixed paraffin-embedded archival surgical specimens. Microvessel density and Ki-67-labeling index of VS were analyzed and correlated with the immunoreactivity pattern of the examined factors. RESULTS Immunoreactivity data demonstrate robust protein expression for HIF-1alpha, Epo, EpoR, and bcl-2 in VS. Sixty-six percent of the cases showed Epo expression, and EpoR was found in 85% of tumor samples. A significantly positive correlation of the immunoreactivity scores of Epo/EpoR and bcl-2 expression could be noted. In case of tumor specimens with high levels of HIF-1alpha expression, a significantly higher Ki-67-labeling index was observed. There was no correlation between the expression of HIF-1alpha, Epo, EpoR, and bcl-2 and microvessel density, tumor size, sex, and age. CONCLUSION Expression of Epo and EpoR might suggest a functional role in VS biology. The observed correlation of Epo/EpoR and bcl-2 expression levels may suggest a proliferative and antiapoptotic role of the Epo/EpoR system in VS.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Capillaries/pathology
- Cell Proliferation
- Disease Progression
- Ear Neoplasms/genetics
- Ear Neoplasms/metabolism
- Ear Neoplasms/pathology
- Erythropoietin/biosynthesis
- Erythropoietin/genetics
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- Genes, bcl-2/genetics
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunohistochemistry
- Ki-67 Antigen/metabolism
- Male
- Microsurgery
- Middle Aged
- Neovascularization, Pathologic/pathology
- Neuroma, Acoustic/genetics
- Neuroma, Acoustic/metabolism
- Neuroma, Acoustic/pathology
- Receptors, Erythropoietin/biosynthesis
- Receptors, Erythropoietin/genetics
- Vestibular Diseases/genetics
- Vestibular Diseases/metabolism
- Vestibular Diseases/pathology
Collapse
Affiliation(s)
- Marc Diensthuber
- Department of Otorhinolaryngology, Medical University of Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Singh AK, Gupta S, Barnes A, Carlson JM, Ayers JK. Red blood cell erythropoietin, not plasma erythropoietin, concentrations correlate with changes in hematological indices in horses receiving a single dose of recombinant human erythropoietin by subcutaneous injection. J Vet Pharmacol Ther 2007; 30:175-8. [PMID: 17348906 DOI: 10.1111/j.1365-2885.2007.00828.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A K Singh
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA.
| | | | | | | | | |
Collapse
|
21
|
Diamanti-Kandarakis E, Konstantinopoulos PA, Papailiou J, Kandarakis SA, Andreopoulos A, Sykiotis GP. Erythropoietin abuse and erythropoietin gene doping: detection strategies in the genomic era. Sports Med 2006; 35:831-40. [PMID: 16180943 DOI: 10.2165/00007256-200535100-00001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The administration of recombinant human erythropoietin (rhEPO) increases the maximum oxygen consumption capacity, and is therefore abused as a doping method in endurance sports. The detection of erythropoietin (EPO) abuse is based on direct pharmacological and indirect haematological approaches, both of which have several limitations. In addition, current detection methods cannot cope with the emerging doping strategies of EPO mimicry, analogues and gene doping, and thus novel detection strategies are urgently needed. Direct detection methods for EPO misuse can be either pharmacological approaches that identify exogenous substances based on their physicochemical properties, or molecular methods that recognise EPO transgenes or gene transfer vectors. Since direct detection with molecular methods requires invasive procedures, it is not appropriate for routine screening of large numbers of athletes. In contrast, novel indirect methods based on haematological and/or molecular profiling could be better suited as screening tools, and athletes who are suspect of doping would then be submitted to direct pharmacological and molecular tests. This article reviews the current state of the EPO doping field, discusses available detection methods and their shortcomings, outlines emerging pharmaceutical and genetic technologies in EPO misuse, and proposes potential directions for the development of novel detection strategies.
Collapse
|
22
|
LaMontagne KR, Butler J, Marshall DJ, Tullai J, Gechtman Z, Hall C, Meshaw A, Farrell FX. Recombinant epoetins do not stimulate tumor growth in erythropoietin receptor–positive breast carcinoma models. Mol Cancer Ther 2006; 5:347-55. [PMID: 16505108 DOI: 10.1158/1535-7163.mct-05-0203] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the significance of erythropoietin receptor (EPOR) expression following treatment with recombinant human erythropoietin (rHuEPO; epoetin alpha) and the effect of recombinant epoetins (epoetin alpha, epoetin beta, and darbepoetin alpha) alone or in combination with anticancer therapy on tumor growth in two well-established preclinical models of breast carcinoma (MDA-MB-231 and MCF-7 cell lines). Expression and localization of EPOR under hypoxic and normoxic conditions in MDA-MB-231 and MCF-7 cells were evaluated by immunoblotting, flow cytometry, and immunohistochemistry. EPOR binding was evaluated using [125I]rHuEPO. Proliferation, migration, and signaling in MDA-MB-231 and MCF-7 cells following treatment with rHuEPO were evaluated. Tumor growth was assessed following administration of recombinant epoetins alone and in combination with paclitaxel (anticancer therapy) in orthotopically implanted MDA-MB-231 and MCF-7 breast carcinoma xenograft models in athymic mice. EPOR expression was detected in both tumor cell lines. EPOR localization was found to be exclusively cytosolic and no specific [125I]rHuEPO binding was observed. There was no stimulated migration, proliferation, or activation of mitogen-activated protein kinase and AKT following rHuEPO treatment. In mice, treatment with recombinant epoetins alone and in combination with paclitaxel resulted in equivalent tumor burdens compared with vehicle-treated controls. Results from our study suggest that although EPOR expression was observed in two well-established breast carcinoma cell lines, it was localized to a cytosolic distribution and did not transduce a signaling cascade in tumors that leads to tumor growth. The addition of recombinant epoetins to paclitaxel did not affect the outcome of paclitaxel therapy in breast carcinoma xenograft models. These results show that recombinant epoetins do not evoke a physiologic response on EPOR-bearing tumor cells as assessed by numerous variables, including growth, migration, and cytotoxic challenge in preclinical in vivo tumor models.
Collapse
Affiliation(s)
- Kenneth R LaMontagne
- Drug Discovery, Growth Factors, Johnson and Johnson Pharmaceutical Research and Development, Room B354, OMP Building, 1000 Route 202, PO Box 300, Raritan, NJ 08869, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
David RB, Sjaastad OV, Blom AK, Skogtvedt S, Harbitz I. Ontogeny of erythropoietin receptor mRNA expression in various tissues of the foetal and the neonatal pig. Domest Anim Endocrinol 2005; 29:556-63. [PMID: 16153504 DOI: 10.1016/j.domaniend.2005.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 02/03/2005] [Accepted: 02/11/2005] [Indexed: 11/25/2022]
Abstract
Erythropoietin receptor (EPOR) mRNA expression in liver, spleen, bone marrow and testes of foetal and neonatal pigs was analysed using a real-time RT-PCR assay. The results showed that early in the foetal life, EPOR expression is greatest in the liver. Later in foetal life, the spleen has the greatest expression of EPOR, whereas at 2 weeks after birth, the main expression of EPOR is found in the bone marrow. These findings contradict our earlier hypothesis that erythropoietin (EPO) acting in a paracrine fashion can account for an extensive erythropoiesis at birth, a point of time when plasma EPO concentrations are low. Results presented in the present paper suggest that the spleen or, alternatively, the bone marrow is able to respond to very low concentrations of circulating EPO around the time of birth. The testes were found to express significant amounts of EPOR. Since EPO mRNA has previously been found in the testes, a paracrine function of EPO may exist in this organ.
Collapse
Affiliation(s)
- R B David
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo.
| | | | | | | | | |
Collapse
|
24
|
Katsura Y, Okano T, Matsuno K, Osako M, Kure M, Watanabe T, Iwaki Y, Noritake M, Kosano H, Nishigori H, Matsuoka T. Erythropoietin is highly elevated in vitreous fluid of patients with proliferative diabetic retinopathy. Diabetes Care 2005; 28:2252-4. [PMID: 16123502 DOI: 10.2337/diacare.28.9.2252] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yoshiya Katsura
- Fifth Department of Internal Medicine, Tokyo Medical University, 3-20-1 Chuou Ami, Inashiki, Ibaraki, Japan, 300-0395.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dagnon K, Pacary E, Commo F, Antoine M, Bernaudin M, Bernaudin JF, Callard P. Expression of Erythropoietin and Erythropoietin Receptor in Non–Small Cell Lung Carcinomas. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.993.11.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Purpose: Expression of erythropoietin (Epo) and its receptor (Epo-R) has been shown in various normal and neoplastic nonhematopoietic tissues. This study, in non–small cell lung carcinoma, was designed to investigate the previously unreported expression of Epo and Epo-R as well as hypoxia-inducible factor-1α (HIF-1α), which is known to control Epo expression.
Experimental Design: Samples from lung squamous cell carcinomas (n = 17) and adenocarcinomas (n = 12) were obtained from patients undergoing curative surgery. mRNA transcripts of Epo, Epo-R, soluble Epo-R (sEpo-R), HIF-1α, and factor inhibiting HIF-1 (FIH-1) were evaluated by reverse transcription-PCR, whereas localization of Epo, Epo-R, and HIF-1α was assessed by immunohistochemistry.
Results: Epo, Epo-R, sEpo-R, HIF-1α, and FIH-1 transcripts were detected by reverse transcription-PCR in all samples tested, but with heterogeneous levels of expression for Epo, Epo-R, and sEpo-R. Coordinated levels of mRNA were observed for HIF-1α and FIH-1.
Epo was detected in carcinomatous cells by immunohistochemistry in 50% of samples and Epo-R was detected in 96% of samples. Co-expression of Epo and Epo-R was observed on contiguous sections from 50% of tumors. HIF-1α was immunolocalized in 80% of non–small cell lung carcinomas.
Conclusion: Epo-R was expressed in almost all samples and Epo was expressed in one half of samples on immunohistochemistry and in 100% of samples by mRNA detection, suggesting a potential paracrine and/or autocrine role of endogenous Epo in non–small cell lung carcinoma. The detection of stabilized HIF-1α suggests a possible role in Epo expression. Moreover, in the light of these results, the potential interactions between therapeutic recombinant Epo and the putative neoplastic Epo/Epo-R signaling pathways must be considered.
Collapse
Affiliation(s)
| | - Emilie Pacary
- 3Unité Mixte de Recherche-Centre National de la Recherche Scientifique 6185, Université de Caen, Caen, France
| | - Frédéric Commo
- 2Service d'Anatomie Pathologique, Unité Propre de Recherche de l'Enseignement Supérieur EA 3499, Université Paris 6, Hôpital Tenon, Paris, France and
| | - Martine Antoine
- 2Service d'Anatomie Pathologique, Unité Propre de Recherche de l'Enseignement Supérieur EA 3499, Université Paris 6, Hôpital Tenon, Paris, France and
| | - Myriam Bernaudin
- 3Unité Mixte de Recherche-Centre National de la Recherche Scientifique 6185, Université de Caen, Caen, France
| | | | - Patrice Callard
- 2Service d'Anatomie Pathologique, Unité Propre de Recherche de l'Enseignement Supérieur EA 3499, Université Paris 6, Hôpital Tenon, Paris, France and
| |
Collapse
|
26
|
Pollio F, Staibano S, Mansueto G, De Rosa G, Persico F, De Falco M, Di Lieto A. Erythropoietin and erythropoietin receptor system in a large uterine myoma of a patient with myomatous erythrocytosis syndrome: possible relationship with the pathogenesis of unusual tumor size. Hum Pathol 2005; 36:120-7. [PMID: 15712191 DOI: 10.1016/j.humpath.2004.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rare condition of women with erythrocytosis and a concurrent myomatous uterus has been classified as "myomatous erythrocytosis syndrome". Substantial myoma size has been noted as a common denominator in this condition in which recent evidence have confirmed erythropoietin (Epo) production by myoma tissues themselves. Apart from its primary endocrine role in controlling erythropoiesis, Epo has been demonstrated to mediate several cellular processes such as angiogenesis, mitogenesis, and inhibition of apoptosis by autocrine and paracrine mechanisms. Recently, Epo and its receptor (Epo-R) have been shown to be involved in the growth, viability, and angiogenesis of several malignant tumors including human female reproductive organ malignancies. In this paper, we researched on Epo and, as a first in the literature, Epo-R immunoexpression in a large uterine myoma of a term pregnant patient suffering from the myomatous erythrocytosis syndrome. Eight nongravidic leiomyomas and 8 gravidic leiomyomas were used as control group samples. Apart from confirming Epo production by myoma smooth muscle cells in the myomatous erythrocytosis syndrome, we reveal in this pathologic condition a characteristic strong Epo-R expression in myoma endothelial cells and a weak and sporadic Epo-R expression in myoma smooth muscle cells. The striking presence of Epo-R within myoma tissues in the case of the myomatous erythrocytosis syndrome allows us to speculate that myoma Epo production, besides determining erythrocytosis through systemic effects, may contribute, acting by autocrine and paracrine mechanisms, in determining the large myoma size almost always observed in this condition. Finally, we confirm a less but specific immunostaining for Epo in uterine myomas of patients without erythrocytosis and, as a first in the literature, we prove a weak and sporadic Epo-R expression in these lesions. These last results may contribute to knowledge of the yet unclear etiopathogenesis of the most common human gynecologic neoplasm.
Collapse
Affiliation(s)
- Fabrizio Pollio
- Department of Obstetrical-Gynecological and Urological Science and Reproductive Medicine, University Federico II of Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millán JL, Liu S, Lu H, Verma A. Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. THE AMERICAN JOURNAL OF PATHOLOGY 2004. [PMID: 15039209 DOI: 10.1016/s0002-9440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes the mineralization inhibitor inorganic pyrophosphate (PP(i)). Deletion of the TNAP gene (Akp2) in mice results in hypophosphatasia characterized by elevated levels of PP(i) and poorly mineralized bones, which are rescued by deletion of nucleotide pyrophosphatase phosphodiesterase 1 (NPP1) that generates PP(i). Mice deficient in NPP1 (Enpp1(-/-)), or defective in the PP(i) channeling function of ANK (ank/ank), have decreased levels of extracellular PP(i) and are hypermineralized. Given the similarity in function between ANK and NPP1 we crossbred Akp2(-/-) mice to ank/ank mice and found a partial normalization of the mineralization phenotypes and PP(i) levels. Examination of Enpp1(-/-) and ank/ank mice revealed that Enpp1(-/-) mice have a more severe hypermineralized phenotype than ank/ank mice and that NPP1 but not ANK localizes to matrix vesicles, suggesting that failure of ANK deficiency to correct hypomineralization in Akp2(-/-) mice reflects the lack of ANK activity in the matrix vesicle compartment. We also found that the mineralization inhibitor osteopontin (OPN) was increased in Akp2(-/-), and decreased in ank/ank mice. PP(i) and OPN levels were normalized in [Akp2(-/-); Enpp1(-/-)] and [Akp2(-/-); ank/ank] mice, at both the mRNA level and in serum. Wild-type osteoblasts treated with PP(i) showed an increase in OPN, and a decrease in Enpp1 and Ank expression. Thus TNAP, NPP1, and ANK coordinately regulate PP(i) and OPN levels. The hypomineralization observed in Akp2(-/-) mice arises from the combined inhibitory effects of PP(i) and OPN. In contrast, NPP1 or ANK deficiencies cause a decrease in the PP(i) and OPN pools that leads to hypermineralization.
Collapse
|
28
|
Acs G, Xu X, Chu C, Acs P, Verma A. Prognostic significance of erythropoietin expression in human endometrial carcinoma. Cancer 2004; 100:2376-86. [PMID: 15160341 DOI: 10.1002/cncr.20244] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Erythropoietin (Epo), which is induced by hypoxia, controls erythropoiesis and protects neurons from hypoxic damage. Hypoxia in malignant disease is associated with invasion, metastasis, and resistance to therapy. The authors recently demonstrated hypoxia-stimulated expression of Epo and Epo receptor (EpoR) in human breast and cervical carcinomas, suggesting a role for autocrine Epo signaling in the hypoxic adaptations of carcinomas. METHODS The authors characterized the expression of Epo, EpoR, hypoxia-inducible factor (HIF)-1alpha, estrogen receptor (ER), and progesterone receptor (PR) by immunohistochemical methods using endometrial carcinoma samples from 107 women and benign endometrial samples from 59 women in various phases of the menstrual cycle. They then analyzed potential correlations of Epo and EpoR immunostaining and clinicopathologic tumor features with outcome. RESULTS In benign endometrial tissue samples, Epo and EpoR expression increased over the course of the cycle, with the highest levels observed in the late secretory phase. Epo expression in benign endometrial samples showed a negative correlation with ER and PR expression. The authors found Epo and EpoR expression in 95.3 % and 100% of endometrial carcinoma samples, respectively. Increased EpoR, but not Epo, expression in tumors was associated with advanced-stage disease, lymphovascular invasion, lymph node metastasis, and loss of ER expression. Increased Epo expression was observed in perinecrotic tumor regions in a pattern similar to the HIF-1alpha expression pattern. Increased Epo expression was significantly associated with adverse clinical outcome on both univariate and multivariate analysis. CONCLUSIONS Hypoxia-inducible autocrine Epo signaling in endometrial carcinoma may contribute to tumor progression and increased aggressiveness. Increased Epo expression in endometrial carcinomas may be an independent prognostic and/or predictive factor.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/pathology
- Adult
- Aged
- Aged, 80 and over
- Cell Hypoxia
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/pathology
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Endometrium/metabolism
- Endometrium/pathology
- Erythropoietin/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit
- Immunoenzyme Techniques
- Lymphatic Metastasis
- Menstrual Cycle
- Middle Aged
- Neoplasm Invasiveness/pathology
- Neoplasm Staging
- Prognosis
- Receptors, Erythropoietin/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Survival Rate
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Geza Acs
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|
29
|
Li K, Menon MP, Karur VG, Hegde S, Wojchowski DM. Attenuated signaling by a phosphotyrosine-null Epo receptor form in primary erythroid progenitor cells. Blood 2003; 102:3147-53. [PMID: 12869513 DOI: 10.1182/blood-2003-01-0078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signals provided by the erythropoieitin receptor (EpoR) are required for erythroid development beyond the erythroid colony-forming unit (CFU-e) stage and are propagated via the EpoR-tethered Janus kinase, JAK2. JAK2 functions, in part, to phosphorylate 8 conserved EpoR phosphotyrosine (PY) sites for the binding of a diverse set of signaling factors. However, recent studies in transgenic and knock-in mice have demonstrated substantial bioactivity for PY-null EpoR forms. Presently, the activities of a PY-null EpoR-HM form in primary progenitor cells from knock-in mice were further assessed using optimized Epo dose-dependent proliferation, survival, and differentiation assays. As compared with the wild-type (wt)-EpoR, EpoR-HM activity was compromised several-fold in each context when Epo was limited to physiologic concentrations. Possible compensatory increases in serum growth factor levels also were investigated, and as assayed using embryonic stem (ES) cell-derived erythroid G1E2 cells, activities in serum from EpoR-HM mice were substantially elevated. In addition, when challenged with phenylhydrazine-induced anemia, EpoR-HM mice failed to respond with efficient splenic stress erythropoiesis. Thus, the function of this JAK2-coupled but minimal PY-null EpoR-HM form appears to be attenuated in several contexts and to be assisted in vivo by compensatory mechanisms. Roles normally played by EpoR PY sites and distal domains therefore should receive continued attention.
Collapse
Affiliation(s)
- Ke Li
- Immunobiology Program and Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
30
|
Li K, Miller C, Hegde S, Wojchowski D. Roles for an Epo receptor Tyr-343 Stat5 pathway in proliferative co-signaling with kit. J Biol Chem 2003; 278:40702-9. [PMID: 12909618 DOI: 10.1074/jbc.m307182200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid progenitor cell expansion depends upon co-signaling by Epo receptor (EpoR) and Kit, but underlying mechanisms are incompletely understood. To quantitatively analyze EpoR contributions to co-signaling, phosphotyrosine (Tyr(P)) mutants were expressed as human epidermal growth factor (hEGF) receptor-mEpoR EE chimeras at matched and physiological levels in FDCW2 hematopoietic progenitor cells and were assayed for proliferative activities in the absence or presence of endogenous Kit stimulation. Two Tyr(P)-null (but Jak2-coupled) EpoR forms each retained <or=25% of the wild-type activity, whereas the add-back of single Tyr(P) sites in the EpoR forms EE-T-Y343 (Stat5 binding site), EE-Y479 (p85/phosphatidylinositol 3-kinase binding site), or EE-Y464 (Src kinase binding site) significantly enhanced activities (to 100, 95, and 50% of EE-WT (wild type) levels, respectively). EE-Y343&Y401 and EEF343&F401 double add-back and deletion constructs were also prepared and were shown to possess 90 and <or=50% of wild-type activity. In contrast, efficient Kit co-signaling activity was retained only by EE-T-Y343 and EE-Y343&Y401 EpoR forms. EE-T-Y343 together with EE-T-Y343F and EE-WT EpoR forms were also analyzed in embryonic stem cell-derived erythroid G1E-2 cells with highly comparable outcomes, including the ability of EE-T-Y343 (but not EE-T-Y-343F) to synergize with Kit. Despite specific connection of EE-T-Y343 to Stat5, the contributions of Kit to EpoR-dependent proliferation did not involve Kit effects on Stat5 activation (but was limited by the mutation of Kit Tyr(P)-567 and Tyr(P)-569 Src kinase recruitment sites). Instead, co-signaling appears to depend upon the downstream integration of Kit signals with the targets of an EpoR/Jak2/Y343/Stat 5 response axis.
Collapse
Affiliation(s)
- Ke Li
- Department of Veterinary Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
31
|
Caine GJ, Blann AD, Stonelake PS, Ryan P, Lip GYH. Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1. Eur J Clin Invest 2003; 33:883-90. [PMID: 14511360 DOI: 10.1046/j.1365-2362.2003.01243.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Angiogenesis is essential for tumour growth and metastasis, and is coordinated by several classes of growth factors mediating their effect through receptors linked, in turn, to tyrosine kinase. These growth factors include angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2) and vascular endothelial growth factor (VEGF), which act through receptors Flt-1 and Tie-2. MATERIALS AND METHODS In order to further determine abnormalities in levels of Ang-1, Ang-2, Tie-2, sFlt-1 and VEGF in human cancer (and their interrelationships), these molecules were measured in plasma from 30 patients with breast cancer, 30 patients with prostate cancer and 12 healthy controls per cancer group. RESULTS In breast cancer, levels of Ang-1 (P=0.0005), Ang-2 (P=0.0173), Tie-2 (P=0.0001), and VEGF (P=0.0001) were all significantly raised, and plasma levels of sFlt-1 (P=0.045) were significantly reduced compared with controls. However, in prostate cancer, only levels of VEGF and Tie-2 were significantly higher (both P=0.001). There were no significant differences between levels of any molecule between the two groups of cancer. The only difference between the healthy control groups was lower Ang-1 in the women compared with men. Significant correlations were found between levels of Ang-1 and Tie-2 both in breast (r=0.498, P=0.005) and prostate cancer (r=0.643, P=<0.001). Angiopoietin-1 was also positively correlated with Ang-2 in both breast (r=0.422, P=0.02) and prostate cancer (r=0.543, P=0.002). CONCLUSIONS Abnormal levels of Ang-1, Ang-2 and their receptor, Tie-2, are present in breast and prostate cancer, and their interrelationships may be important in the pathophysiology of these conditions.
Collapse
Affiliation(s)
- G J Caine
- Haemostasis, Thrombosis and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham, UK
| | | | | | | | | |
Collapse
|
32
|
Abstract
Erythropoietin (Epo) is produced by the fetal liver and adult kidney and is an essential stimulator of erythropoiesis. It has, however, been shown to modulate host cellular signal transduction pathway to perform many other functions. New sites of Epo production have been found, such as the female reproductive organs and central nervous system. This review summarizes the involvement of Epo in the regulation of angiogenesis in both normal and pathological conditions.
Collapse
Affiliation(s)
- D Ribatti
- Department of Human Anatomy, University of Bari Medical School, Bari, Italy.
| | | | | | | | | |
Collapse
|
33
|
Acs G, Zhang PJ, McGrath CM, Acs P, McBroom J, Mohyeldin A, Liu S, Lu H, Verma A. Hypoxia-inducible erythropoietin signaling in squamous dysplasia and squamous cell carcinoma of the uterine cervix and its potential role in cervical carcinogenesis and tumor progression. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1789-806. [PMID: 12759237 PMCID: PMC1868129 DOI: 10.1016/s0002-9440(10)64314-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissue hypoxia is a characteristic property of cervical cancers that makes tumors resistant to chemo- and radiation therapy. Erythropoietin (Epo) is a hypoxia-inducible stimulator of erythropoiesis. Acting via its receptor (EpoR), Epo up-regulates bcl-2 and inhibits apoptosis of erythroid cells and rescues neurons from hypoxic damage. In addition to human papillomavirus infection, increased bcl-2 expression and decreased apoptosis are thought to play a role in the progression of cervical neoplasia. Using reverse transcriptase-polymerase chain reaction and Western blotting we showed that HeLa and SiHa cervical carcinoma cells and human cervical carcinomas express EpoR, and that hypoxia enhances EpoR expression. Exogenous Epo stimulated tyrosine phosphorylation and inhibited the cytotoxic effect of cisplatin in HeLa cervical carcinoma cells. Using immunohistochemistry, we examined the expression of Epo, EpoR, p16, hypoxia-inducible factor (HIF)-1alpha, and bcl-2 in benign and dysplastic cervical squamous epithelia and invasive squamous cell carcinomas (ISCCs). EpoR expression in benign epithelia was confined to the basal cell layers, whereas in dysplasias it increasingly appeared in more superficial cell layers and showed a significant correlation with severity of dysplasia. Diffuse EpoR expression was found in all ISCCs. Expression of Epo and HIF-1alpha was increased in dysplasias compared to benign epithelia. Focal Epo and HIF-1alpha expression was seen near necrotic areas in ISCCs, and showed correlation in their spatial distribution. Significant correlation was found between expression of EpoR, and p16 and bcl-2 in benign and dysplastic squamous epithelia. Our results suggest that increased expression of Epo and EpoR may play a significant role in cervical carcinogenesis and tumor progression. Hypoxia-inducible Epo signaling may play a significant role in the aggressive behavior and treatment resistance of hypoxic cervical cancers.
Collapse
MESH Headings
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Hypoxia
- Cell Survival/drug effects
- Cyclin-Dependent Kinase Inhibitor p16/biosynthesis
- Disease Progression
- Dose-Response Relationship, Drug
- Erythropoietin/genetics
- Erythropoietin/metabolism
- Erythropoietin/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- HeLa Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit
- Immunohistochemistry
- Neoplasm Staging
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Erythropoietin/genetics
- Receptors, Erythropoietin/metabolism
- Recombinant Proteins
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Transcription Factors/biosynthesis
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Uterine Cervical Dysplasia/genetics
- Uterine Cervical Dysplasia/metabolism
- Uterine Cervical Dysplasia/pathology
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Geza Acs
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sarna MK, Ingley E, Busfield SJ, Cull VS, Lepere W, McCarthy DJ, Wright MJ, Palmer GA, Chappell D, Sayer MS, Alexander WS, Hilton DJ, Starr R, Watowich SS, Bittorf T, Klinken SP, Tilbrook PA. Differential regulation of SOCS genes in normal and transformed erythroid cells. Oncogene 2003; 22:3221-30. [PMID: 12761492 PMCID: PMC2396148 DOI: 10.1038/sj.onc.1206381] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The SOCS family of genes are negative regulators of cytokine signalling with SOCS-1 displaying tumor suppressor activity. SOCS-1, CIS and SOCS-3 have been implicated in the regulation of red blood cell production. In this study, a detailed examination was conducted on the expression patterns of these three SOCS family members in normal erythroid progenitors and a panel of erythroleukemic cell lines. Unexpectedly, differences in SOCS gene expression were observed during maturation of normal red cell progenitors, viz changes to CIS were inversely related to the alterations of SOCS-1 and SOCS-3. Similarly, these SOCS genes were differentially expressed in transformed erythoid cells - erythroleukemic cells immortalized at an immature stage of differentiation expressed SOCS-1 and SOCS-3 mRNA constitutively, whereas in more mature cell lines SOCS-1 and CIS were induced only after exposure to erythropoietin (Epo). Significantly, when ectopic expression of the tyrosine kinase Lyn was used to promote differentiation of immature cell lines, constitutive expression of SOCS-1 and SOCS-3 was completely suppressed. Modulation of intracellular signalling via mutated Epo receptors in mature erythroleukemic lines also highlighted different responses by the three SOCS family members. Close scrutiny of SOCS-1 revealed that, despite large increases in mRNA levels, the activity of the promoter did not alter after erythropoietin stimulation; in addition, erythroid cells from SOCS-1-/- mice displayed increased sensitivity to Epo. These observations indicate complex, stage-specific regulation of SOCS genes during normal erythroid maturation and in erythroleukemic cells.
Collapse
Affiliation(s)
- Mohinder K Sarna
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Evan Ingley
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Samantha J Busfield
- Neurotrauma Laboratory, Western Australian Institute for Medical Research, Royal Perth Hospital, Australia
| | - Vanessa S Cull
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Winald Lepere
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
- Institute of Medical Biochemistry, University of Rostock, Rostock, Germany
| | - David J McCarthy
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Michael J Wright
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Gene A Palmer
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - David Chappell
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Melissa S Sayer
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Warren S Alexander
- Walter and Eliza Hall Institute of Medical Research and The Cooperative Research Center for Cellular Growth Factors, PO Box Royal Melbourne Hospital, Melbourne, Australia
| | - Douglas J Hilton
- Walter and Eliza Hall Institute of Medical Research and The Cooperative Research Center for Cellular Growth Factors, PO Box Royal Melbourne Hospital, Melbourne, Australia
| | - Robyn Starr
- Walter and Eliza Hall Institute of Medical Research and The Cooperative Research Center for Cellular Growth Factors, PO Box Royal Melbourne Hospital, Melbourne, Australia
| | | | - Thomas Bittorf
- Institute of Medical Biochemistry, University of Rostock, Rostock, Germany
| | - S Peter Klinken
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
- *Correspondence: SP Klinken, Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, 6th Floor MRF Building, Rear, 50 Murray St, Perth, WA 6000, Australia; E-mail:
| | - Peta A Tilbrook
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and Centre for Medical Research, The University of Western Australia, Perth, Australia
| |
Collapse
|
35
|
Matsuzaki S, Canis M, Yokomizo R, Yaegashi N, Bruhat MA, Okamura K. Expression of erythropoietin and erythropoietin receptor in peritoneal endometriosis. Hum Reprod 2003; 18:152-6. [PMID: 12525458 DOI: 10.1093/humrep/deg007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recent studies have indicated new physiological roles for erythropoietin (Epo) unrelated to erythropoiesis. We previously demonstrated that the Epo concentrations in peritoneal fluid from patients with stage I endometriosis were significantly higher than those with stages II, III and IV of the disease. Therefore, we hypothesized that Epo may play a role in the pathogenesis of endometriosis, particularly during the early stages of the disease. METHOD We investigated the localization of Epo and the Epo receptor (Epo-R) in peritoneal endometriosis and eutopic endometrium, using immunohistochemistry. RESULTS We detected Epo and Epo-R localized within glandular epithelial cells in both peritoneal endometriosis and eutopic endometrium. There was no significant difference in Epo expression between red and black peritoneal lesions, whereas Epo-R expression was significantly lower in black peritoneal lesions when compared to red lesions. Epo and Epo-R expression levels within red peritoneal lesions were comparable to those of eutopic endometrium from patients with endometriosis. CONCLUSION The present findings suggest that Epo may play a role in the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Sachiko Matsuzaki
- Department of Obstetrics & Gynecology, Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
David RB, Lim GB, Moritz KM, Koukoulas I, Wintour EM. Quantitation of the mRNA levels of Epo and EpoR in various tissues in the ovine fetus. Mol Cell Endocrinol 2002; 188:207-18. [PMID: 11911958 DOI: 10.1016/s0303-7207(01)00718-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A partial cDNA of the sheep erythropoietin receptor (EpoR) was obtained and used in real-time PCR to quantitate mRNA levels in placenta, liver and kidney throughout development (term=150 days). This was compared with Epo mRNA levels in the same tissues. Both Epo and EpoR mRNA were present in the placenta throughout gestation at low levels from 66 days onwards and these did not vary throughout gestation. Compared with the expression levels in the placenta, the levels of EpoR gene expression in the liver at 66, 99 and 140 days were, median (range)-288 (120-343), 278 (63-541) and 7 (3-15), respectively, reflecting the disappearance of erythropoiesis after 130 days. Low levels of EpoR gene expression were seen in the kidney at 3 (2-5), 5 (2-7), and 7 (2-10) times that in the placenta at 66, 99, and 140 days, respectively. By hybridization histochemistry the EpoR mRNA was located in the proximal tubular cells of the mesonephros and metanephros at 42 days. Epo mRNA levels in the kidney were 215 (116-867), 528 (113-765) and 46 (15-204) times those in the placenta at 69, 99, and 140 days, respectively. In the liver at the same ages the concentrations of mRNA were lower than in the kidney, the liver/placenta ratios being 50 (11-90), 17 (3-39), 9 (5-14). At 130 days Epo/EpoR levels in the hippocampus were 6+/-3 and 8+/-3 times that in the term placenta, respectively. These studies demonstrate that the ovine placenta expresses the Epo gene from at least 66 days of gestation. However, gene expression levels are very low compared with those in the liver and kidney, and even the hippocampus.
Collapse
Affiliation(s)
- R Bruce David
- Norwegian School of Veterinary Science, Oslo, Norway
| | | | | | | | | |
Collapse
|
37
|
Tilbrook PA, Colley SM, McCarthy DJ, Marais R, Klinken SP. Erythropoietin-stimulated Raf-1 tyrosine phosphorylation is associated with the tyrosine kinase Lyn in J2E erythroleukemic cells. Arch Biochem Biophys 2001; 396:128-32. [PMID: 11716471 DOI: 10.1006/abbi.2001.2577] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The serine/threonine kinase Raf-1 is crucial for transducing intracellular signals emanating from numerous growth factors. Here we used the J2E erythroid cell line transformed by the nu-raf/nu-myc oncogenes to examine the effects of erythropoietin on endogenous Raf-1 activity. Despite the presence of constitutively active v-raf in these cells, Raf-1 exokinase activity increased after erythropoietin stimulation. This increase in enzymatic activity coincided with tyrosine phosphorylation of Raf-1 on residue Y341. Significantly, the tyrosine kinase Lyn coimmunoprecipitated with Raf-1, and Raf-1 was not tyrosine-phosphorylated in a J2E subclone lacking Lyn. Therefore, it was concluded that Lyn may be the kinase responsible for tyrosine phosphorylating Raf-1 and increasing its exokinase activity in response to erythropoietin.
Collapse
Affiliation(s)
- P A Tilbrook
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital, Department of Biochemistry, The University of Western Australia, Western Australia 6000, Australia
| | | | | | | | | |
Collapse
|
38
|
Matsuzaki S, Murakami T, Uehara S, Yokomizo R, Noda T, Kimura Y, Okamura K. Erythropoietin concentrations are elevated in the peritoneal fluid of women with endometriosis. Hum Reprod 2001; 16:945-8. [PMID: 11331642 DOI: 10.1093/humrep/16.5.945] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Erythropoietin (Epo) is an important regulator of erythropoiesis and stimulates the proliferation of early erythroid precursors as well as the differentiation of late erythroid precursors of the erythroid lineage. However, recent studies have indicated that Epo also has angiogenic properties and plays an important role in the oestrogen-dependent cyclical angiogenesis within the mouse uterus. It was therefore postulated that Epo may be an important angiogenic factor in endometriosis. In order to address this hypothesis the concentration of Epo in peritoneal fluid (PF) was determined in patients with or without endometriosis. PF was collected from patients with endometriosis (n = 42) or without endometriosis (n = 18). Detectable concentrations of Epo were found in all PF samples analysed. The concentration of Epo in PF from patients with endometriosis was significantly higher than that in the control group (13.1 +/- 1.2 mIU/ml versus 7.2 +/- 0.7 mIU/ml, mean +/- SE respectively, P < 0.01). Furthermore, in patients with endometriosis the Epo concentrations in PF from patients with stage I disease (n = 17, 16.6 +/- 3.0 mIU/ml) were significantly higher than those with stage II (n = 8, 10.7 +/- 1.2 mIU/ml, P < 0.03), III (n = 13, 8.4 +/- 1.0 mIU/ml, P < 0.01), IV disease (n = 7, 7.5 +/- 1.0 mIU/ml, P < 0.01). These data suggest that Epo may play a role in the pathogenesis of endometriosis particularly in the initiation of the disease.
Collapse
Affiliation(s)
- S Matsuzaki
- Department of Obstetrics & Gynecology, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|