1
|
Wang Y, Lin D. Stress and parental behaviors. Neurosci Res 2024:S0168-0102(24)00154-8. [PMID: 39674404 DOI: 10.1016/j.neures.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
In nearly all mammalian species, newborn pups are weak and vulnerable, relying heavily on care and protection from parents for survival. Thus, developmentally hardwired neural circuits are in place to ensure the timely expression of parental behaviors. Furthermore, several neurochemical systems, including estrogen, oxytocin, and dopamine, facilitate the emergence and expression of parental behaviors. However, stress can adversely affect these systems, impairing parental behaviors. In this review, we will summarize our current knowledge regarding the impact of stress on pup-directed behavior circuits that lead to infant neglect, abuse, and, in extreme cases, killing. We will discuss various stressors that influence parental behaviors at different life stages and how stress induces changes in the neurochemical systems that support parental care, ultimately leading to its poor performance.
Collapse
Affiliation(s)
- Yifan Wang
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA.
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA; Department of Neuroscience and physiology, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Bazzano MV, Köninger A, Solano ME. Beyond defence: Immune architects of ovarian health and disease. Semin Immunopathol 2024; 46:11. [PMID: 39134914 PMCID: PMC11319434 DOI: 10.1007/s00281-024-01021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
Throughout the individual's reproductive period of life the ovary undergoes continues changes, including cyclic processes of cell death, tissue regeneration, proliferation, and vascularization. Tissue-resident leucocytes particularly macrophages, play a crucial role in shaping ovarian function and maintaining homeostasis. Macrophages crucially promote angiogenesis in the follicles and corpora lutea, thereby supporting steroidogenesis. Recent research on macrophage origins and early tissue seeding has unveiled significant insights into their role in early organogenesis, e.g. in the testis. Here, we review evidence about the prenatal ovarian seeding of leucocytes, primarily macrophages with angiogenic profiles, and its connection to gametogenesis. In the prenatal ovary, germ cells proliferate, form cysts, and undergo changes that, following waves of apoptosis, give rice to the oocytes contained in primordial follicles. These follicles constitute the ovarian reserve that lasts throughout the female's reproductive life. Simultaneously, yolk-sac-derived primitive macrophages colonizing the early ovary are gradually replaced or outnumbered by monocyte-derived fetal macrophages. However, the cues indicating how macrophage colonization and follicle assembly are related are elusive. Macrophages may contribute to organogenesis by promoting early vasculogenesis. Whether macrophages contribute to ovarian lymphangiogenesis or innervation is still unknown. Ovarian organogenesis and gametogenesis are vulnerable to prenatal insults, potentially programming dysfunction in later life, as observed in polycystic ovary syndrome. Experimental and, more sparsely, epidemiological evidence suggest that adverse stimuli during pregnancy can program defective folliculogenesis or a diminished follicle reserve in the offspring. While the ovary is highly sensitive to inflammation, the involvement of local immune responses in programming ovarian health and disease remains to be thoroughly investigated.
Collapse
Affiliation(s)
- Maria Victoria Bazzano
- Laboratory of Translational Perinatology, University of Regensburg, Biopark 1-3, D-93053, Regensburg, Germany
| | - Angela Köninger
- University Department of Obstetrics and Gynecology, Clinic St. Hedwig of The Order of St. John, University of Regensburg, Steinmetzstr. 1-3, D-93049, Regensburg, Germany
| | - Maria Emilia Solano
- Laboratory of Translational Perinatology, University of Regensburg, Biopark 1-3, D-93053, Regensburg, Germany.
| |
Collapse
|
3
|
Moreno-Fernández M, Ucha M, Reis-de-Paiva R, Marcos A, Ambrosio E, Higuera-Matas A. Lack of interactions between prenatal immune activation and Δ 9-tetrahydrocannabinol exposure during adolescence in behaviours relevant to symptom dimensions of schizophrenia in rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110889. [PMID: 37918558 DOI: 10.1016/j.pnpbp.2023.110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/27/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
The causality in the association between cannabis use and the risk of developing schizophrenia has been the subject of intense debate in the last few years. The development of animal models recapitulating several aspects of the disease is crucial for shedding light on this issue. Given that maternal infections are a known risk for schizophrenia, here, we used the maternal immune activation (MIA) model combined with THC exposure during adolescence to examine several behaviours in rats (working memory in the Y maze, sociability in the three-chamber test, sucrose preference as a measure, prepulse inhibition and formation of incidental associations) that are similar to the different symptom clusters of the disease. To this end, we administered LPS to pregnant dams and when the offspring reached adolescence, we exposed them to a mild dose of THC to examine their behaviour in adulthood. We also studied several parameters in the dams, including locomotor activity in the open field, elevated plus maze performance and their response to LPS, that could predict symptom severity of the offspring, but found no evidence of any predictive value of these variables. In the adult offspring, MIA was associated with impaired working memory and sensorimotor gating, but surprisingly, it increased sociability, social novelty and sucrose preference. THC, on its own, impaired sociability and social memory, but there were no interactions between MIA and THC exposure. These results suggest that, in this model, THC during adolescence does not trigger or aggravate symptoms related to schizophrenia in rats.
Collapse
Affiliation(s)
- Mario Moreno-Fernández
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain; UNED International Graduate School (EIDUNED), Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain.
| | - Raquel Reis-de-Paiva
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alberto Marcos
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain.
| |
Collapse
|
4
|
Merced-Nieves FM, Eitenbichler S, Goldson B, Zhang X, Klein DN, Bosquet Enlow M, Curtin P, Wright RO, Wright RJ. Associations between a metal mixture and infant negative affectivity: Effect modification by prenatal cortisol and infant sex. Child Dev 2024; 95:e47-e59. [PMID: 37610319 PMCID: PMC10840921 DOI: 10.1111/cdev.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/17/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023]
Abstract
In-utero exposures interact in complex ways that influence neurodevelopment. Animal research demonstrates that fetal sex moderates the impact of joint exposure to metals and prenatal stress measures, including cortisol, on offspring socioemotional outcomes. Further research is needed in humans. We evaluated the joint association of prenatal exposures to a metal mixture and cortisol with infant negative affectivity, considering sex differences. Analyses included 226 (29% White, Non-Hispanic) mother-infant pairs with data on exposures and negative affectivity assessed using the Infant Behavior Questionnaire-Revised in 6-month-olds. Results showed that girls whose mothers had higher cortisol had significantly higher scores of Fear and Sadness with greater exposure to the mixture. Examining higher-order interactions may better elucidate the effects of prenatal exposure to metals and cortisol on socioemotional functioning.
Collapse
Affiliation(s)
- Francheska M Merced-Nieves
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Brandon Goldson
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel N Klein
- Department of Psychology, Stony Brook University, Stony Brook, New York, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Disruptions in Hypothalamic-Pituitary-Gonadal Axis Development and Their IgG Modulation after Prenatal Systemic Inflammation in Male Rats. Int J Mol Sci 2023; 24:ijms24032726. [PMID: 36769048 PMCID: PMC9916578 DOI: 10.3390/ijms24032726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The development of the neuroendocrine system, including the hypothalamic-pituitary-gonadal (HPG) axis, is sensitive to environmental impacts during critical developmental periods. Maternal immune system activation by bacterial or viral infection may be one of the negative impacts. This study focused on the effect of systemic inflammation induced by lipopolysaccharides (LPS E. coli) on the HPG axis development in male rat offspring, corrected by the anti-inflammatory action of polyclonal IgG and monoclonal anti-interleukin (IL)-6 receptor antibodies (IL-6RmAbs). A single LPS exposure on the 12th embryonic day (ED) led to a decrease in the number of afferent synaptic inputs on gonadotropin-releasing, hormone-producing neurons in adult male offspring. LPS exposure on ED18 did not lead to such disruptions. Moreover, after the LPS injections on ED12, circulating follicle-stimulating hormone and sex steroid levels were reduced, and the gonadal structure was disrupted. A prenatal IL-6R blockade with IL-6RmAbs and polyclonal IgG reduced the negative effects of inflammation on fetal HPG axis development. Overall, the data obtained confirm the morphogenetic effect of inflammation on fetal HPG development and IL-6 involvement in these processes.
Collapse
|
6
|
Roudmajani EG, Goudarzvand M, Roodbari NH, Parivar K. Astaxanthin ameliorates the impairment consequence of prenatal bacterial lipopolysaccharide exposure in adult male offspring NMRI mice. Physiol Behav 2022; 257:113993. [PMID: 36240864 DOI: 10.1016/j.physbeh.2022.113993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
In this study, the potential effects of astaxanthin (AST) were investigated on preventing the prenatal LPS-induced injures in mothers and adult male offspring of NMRI mice. Pregnant mice were randomly divided into four groups: 1. Saline + vehicle; 2. Saline + AST: received astaxanthin (4 mg/kg for 3 days, ip) on 11-13 gestation days; 3. LPS + vehicle (LPS-treated group): injected with LPS (20 µg/kg, sc) on gestation day 11; 4. LPS + AST: administrated LPS and astaxanthin on gestation days 11 and 11-13, respectively. In each group, maternal care behaviors and TNF-α serum levels were examined until weaning of male offspring at 23 days. At 60 days old, male pups underwent analysis of body weight and length, serum gonadotropins and testosterone hormone levels, sperm quality, gonadal and brain tissues morphologies, and the expression of SOX9 and GnRH genes by real-time PCR. Serum TNF-α level increased significantly in mothers treated with LPS, while AST reduced it. In adult male offspring, serum hormone levels, sperm quality, and the number of spermatocytes and Leydig cells in the testes improved when AST was administrated. According to histological studies of the brain, neurons in the LPS-treated group were smaller and less active, whereas neurons in the LPS + AST group were larger, more numerous, and more active. LPS significantly reduced GnRH expression, while AST induction improved its expression. AST administration during pregnancy prevented the adverse effects of prenatal exposure to LPS, presumably through its genomic and non-genomic effects, in adult male offspring.
Collapse
Affiliation(s)
| | - Mahdi Goudarzvand
- Physiology and Pharmacology Department, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran.
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad university, Tehran, Iran
| | - Kazem Parivar
- Cell and Developmental Biology Faculty Member, Islamic Azad university Science and Research Branch, Tehran, Iran
| |
Collapse
|
7
|
Duittoz AH, Tillet Y, Geller S. The great migration: how glial cells could regulate GnRH neuron development and shape adult reproductive life. J Chem Neuroanat 2022; 125:102149. [PMID: 36058434 DOI: 10.1016/j.jchemneu.2022.102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 10/31/2022]
Abstract
In mammals, reproductive function is under the control of hypothalamic neurons named Gonadotropin-Releasing Hormone (GnRH) neurons. These neurons migrate from the olfactory placode to the brain, during embryonic development. For the past 40 years, these neurons have been considered an example of tangential migration, i.e., dependent on the olfactory/vomeronasal/terminal nerves. Numerous studies have highlighted the factors involved in the migration of these neurons but thus far overlooked the cellular microenvironment that produces them. Many of these factors are dysregulated in hypogonadotropic hypogonadism, resulting in subfertility/infertility. Nevertheless, over the past ten years, several papers have reported the influence of glial cells (named olfactory ensheathing cells [OECs]) in the migration and differentiation of GnRH neurons. This review will describe the atypical origins, migration, and differentiation of these neurons, focusing on the latest discoveries. There will be a more specific discussion on the involvement of OECs in the development of GnRH neurons, during embryonic and perinatal life; as well as on their potential implication in the development of congenital or idiopathic hypogonadotropic hypogonadism (such as Kallmann syndrome).
Collapse
Affiliation(s)
- Anne H Duittoz
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Yves Tillet
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Sarah Geller
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Du Y, Zeng Y, Li S, Wang Z, Su C, Zhang S, Ren Y, Song T, Zhang M. Mild infection induced by low-dose LPS does not impair follicular development and is beneficial to pregnancy in mice. Front Vet Sci 2022; 9:1051433. [PMID: 36910123 PMCID: PMC9997723 DOI: 10.3389/fvets.2022.1051433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 02/25/2023] Open
Abstract
The reproductive tract is susceptible to infection by a variety of bacteria, which can impair ovarian and uterine function. However, there is little known about whether mild infection can harm follicle development and embryo implantation. Here our results showed that the immune response to a mild infection simulated by low-dose LPS induced inflammatory factor IL-1b expression and decreased MMP2 expression involved in embryo implantation. LPS treatment also inhibited the ovulation process and reduced litter weight. Despite the immune response and the disturbed ovulation induced by treatment with low-dose LPS, the overall result was beneficial to mouse pregnancy. This research provides the necessary foundation for exploring the effects of mild bacterial infection on ovarian and uterine function in mammals.
Collapse
Affiliation(s)
- Yazhuo Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuo Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhicheng Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Changqi Su
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shilin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Ren
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tianzeng Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, China.,Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
9
|
O'Connor T, Best M, Brunner J, Ciesla AA, Cunning A, Kapula N, Kautz A, Khoury L, Macomber A, Meng Y, Miller RK, Murphy H, Salafia CM, Vallejo Sefair A, Serrano J, Barrett E. Cohort profile: Understanding Pregnancy Signals and Infant Development (UPSIDE): a pregnancy cohort study on prenatal exposure mechanisms for child health. BMJ Open 2021; 11:e044798. [PMID: 33795306 PMCID: PMC8021752 DOI: 10.1136/bmjopen-2020-044798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/08/2021] [Accepted: 03/04/2021] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Extensive research suggests that maternal prenatal distress is reliably related to perinatal and child health outcomes-which may persist into adulthood. However, basic questions remain regarding mechanisms involved. To better understand these mechanisms, we developed the Understanding Pregnancy Signals and Infant Development (UPSIDE) cohort study, which has several distinguishing features, including repeated assessments across trimesters, analysis of multiple biological pathways of interest, and incorporation of placental structure and function as mediators of child health outcomes. PARTICIPANTS Women with normal risk pregnancies were recruited at <14 weeks gestation. Study visits occurred in each trimester and included extensive psychological, sociodemographic, health behaviour and biospecimen collection. Placenta and cord blood were collected at birth. Child visits (ongoing) occur at birth and 1, 6, 12, 24, 36 and 48 months of age and use standard anthropometric, clinical, behavioural, biological and neuroimaging methods to assess child physical and neurodevelopment. FINDINGS TO DATE We recruited 326 pregnancies; 294 (90%) were retained through birth. Success rates for prenatal biospecimen collection were high across all trimesters (96%-99% for blood, 94%-97% for urine, 96%-99% for saliva, 96% of placentas, 88% for cord blood and 93% for buccal swab). Ninety-four per cent of eligible babies (n=277) participated in a birth examination; postnatal visits are ongoing. FUTURE PLANS The current phase of the study follows children through age 4 to examine child neurodevelopment and physical development. In addition, the cohort participates in the National Institutes of Health's Environmental influences on Child Health Outcomes programme, a national study of 50 000 families examining early environmental influences on perinatal outcomes, neurodevelopment, obesity and airway disease. Future research will leverage the rich repository of biological samples and clinical data to expand research on the mechanisms of child health outcomes in relation to environmental chemical exposures, genetics and the microbiome.
Collapse
Affiliation(s)
- Thomas O'Connor
- Psychiatry, University of Rochester, Rochester, New York, USA
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
- Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
- Wynne Center for Family Research, University of Rochester Medical Center, Rochester, New York, USA
- Psychology, University of Rochester, Rochester, New York, USA
| | - Meghan Best
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jessica Brunner
- Psychiatry, University of Rochester, Rochester, New York, USA
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
- School of Nursing, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Allison Cunning
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ntemena Kapula
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
- School of Nursing, University of Rochester Medical Center, Rochester, New York, USA
| | - Amber Kautz
- Public Health Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Leena Khoury
- Psychiatry, University of Rochester, Rochester, New York, USA
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Allison Macomber
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ying Meng
- School of Nursing, University of Rochester Medical Center, Rochester, New York, USA
| | - Richard K Miller
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Hannah Murphy
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Carolyn M Salafia
- Placental Modulation Laboratory, Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Placental Analytics LLC, Larchmont, New York, USA
| | | | - Jishyra Serrano
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Emily Barrett
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
- Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
10
|
d’Angelo DM, Di Donato G, Breda L, Chiarelli F. Growth and puberty in children with juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2021; 19:28. [PMID: 33712046 PMCID: PMC7953722 DOI: 10.1186/s12969-021-00521-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Juvenile Idiopathic Arthritis is one of the most prevalent chronic diseases in children, with an annual incidence of 2-20 cases per 100,000 and a prevalence of 16-150 per 100,000. It is associated with several complications that can cause short-term or long-term disability and reduce the quality of life. Among these, growth and pubertal disorders play an important role. Chronic inflammatory conditions are often associated with growth failure ranging from slight decrease in height velocity to severe forms of short stature. The prevalence of short stature in JIA varies from 10.4% in children with polyarticular disease to 41% of patients with the systemic form, while oligoarthritis is mostly associated with localized excessive bone growth of the affected limb, leading to limb dissymmetry. The pathogenesis of growth disorders is multifactorial and includes the role of chronic inflammation, long-term use of corticosteroids, undernutrition, altered body composition, delay of pubertal onset or slow pubertal progression. These factors can exert a systemic effect on the GH/IGF-1 axis and on the GnRH-gonadotropin-gonadic axis, or a local influence on the growth plate homeostasis and function. Although new therapeutic options are available to control inflammation, there are still 10-20% of patients with severe forms of the disease who show continuous growth impairment, ending in a short final stature. Moreover, delayed puberty is associated with a reduction in the peak bone mass with the possibility of concomitant or future bone fragility. Monitoring of puberty and bone health is essential for a complete health assessment of adolescents with JIA. In these patients, an assessment of the pubertal stage every 6 months from the age of 9 years is recommended. Also, linear growth should be always evaluated considering the patient's bone age. The impact of rhGH therapy in children with JIA is still unclear, but it has been shown that if rhGH is added at high dose in a low-inflammatory condition, post steroids and on biologic therapy, it is able to favor a prepubertal growth acceleration, comparable with the catch-up growth response in GH-deficient patients. Here we provide a comprehensive review of the pathogenesis of puberty and growth disorders in children with JIA, which can help the pediatrician to properly and timely assess the presence of growth and pubertal disorders in JIA patients.
Collapse
Affiliation(s)
| | - Giulia Di Donato
- grid.412451.70000 0001 2181 4941Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Luciana Breda
- grid.412451.70000 0001 2181 4941Department of Pediatrics, University of Chieti, Chieti, Italy
| | | |
Collapse
|
11
|
Zakharova L, Sharova V, Izvolskaia M. Mechanisms of Reciprocal Regulation of Gonadotropin-Releasing Hormone (GnRH)-Producing and Immune Systems: The Role of GnRH, Cytokines and Their Receptors in Early Ontogenesis in Normal and Pathological Conditions. Int J Mol Sci 2020; 22:ijms22010114. [PMID: 33374337 PMCID: PMC7795970 DOI: 10.3390/ijms22010114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Different aspects of the reciprocal regulatory influence on the development of gonadotropin-releasing hormone (GnRH)-producing- and immune systems in the perinatal ontogenesis and their functioning in adults in normal and pathological conditions are discussed. The influence of GnRH on the development of the immune system, on the one hand, and the influence of proinflammatory cytokines on the development of the hypothalamic-pituitary-gonadal system, on the other hand, and their functioning in adult offspring are analyzed. We have focused on the effects of GnRH on the formation and functional activity of the thymus, as the central organ of the immune system, in the perinatal period. The main mechanisms of reciprocal regulation of these systems are discussed. The reproductive health of an individual is programmed by the establishment and development of physiological systems during critical periods. Regulatory epigenetic mechanisms of development are not strictly genetically controlled. These processes are characterized by a high sensitivity to various regulatory factors, which provides possible corrections for disorders.
Collapse
|
12
|
Eck SR, Bangasser DA. The effects of early life stress on motivated behaviors: A role for gonadal hormones. Neurosci Biobehav Rev 2020; 119:86-100. [PMID: 33022296 PMCID: PMC7744121 DOI: 10.1016/j.neubiorev.2020.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Motivated behaviors are controlled by the mesocorticolimbic dopamine (DA) system, consisting of projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and prefrontal cortex (PFC), with input from structures including the medial preoptic area (mPOA). Sex differences are present in this circuit, and gonadal hormones (e.g., estradiol and testosterone) are important for regulating DA transmission. Early life stress (ELS) also regulates the mesocorticolimbic DA system. ELS modifies motivated behaviors and the underlying DA circuitry, increasing risk for disorders such as substance use disorder, major depression, and schizophrenia. ELS has been shown to change gonadal hormone signaling in both sexes. Thus, one way that ELS could impact mesocorticolimbic DA is by altering the efficacy of gonadal hormones. This review provides evidence for this idea by integrating the gonadal hormone, motivation, and ELS literature to argue that ELS alters gonadal hormone signaling to impact motivated behavior. We also discuss the importance of these effects in the context of understanding risk and treatments for psychiatric disorders in men and women.
Collapse
Affiliation(s)
- Samantha R Eck
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
13
|
Peripubertal stress following maternal immune activation sex-dependently alters depression-like behaviors in offspring. Behav Brain Res 2020; 393:112800. [DOI: 10.1016/j.bbr.2020.112800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
|
14
|
Watkins JM, von Chamier M, Brown MB, Reyes L, Hayward LF. Prenatal infection with Mycoplasma pulmonis in rats exaggerates the angiotensin II pressor response in adult offspring. Am J Physiol Regul Integr Comp Physiol 2019; 318:R338-R350. [PMID: 31850818 DOI: 10.1152/ajpregu.00194.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to different stressors in utero is linked to adult diseases such as obesity and hypertension. In this study, the impact of prenatal infection (PNI) on adult body weight and cardiovascular function was evaluated using a naturally occurring rodent pathogen, Mycoplasma pulmonis (MP). Pregnant Sprague-Dawley rats were infected with MP on gestational day 14 and gave birth naturally. Adult PNI offspring weighed more than controls, but resting mean arterial pressure (MAP) was unchanged. Subcutaneous injection of angiotensin II (10 μg/kg) elicited a rise in MAP that was greater in both male and female PNI offspring compared with controls (P < 0.03). The accompanying reflex bradycardia was similar to the controls, suggesting that PNI induced baroreflex dysfunction. Subcutaneous nicotine administration, a potent cardiorespiratory stimulus, also elicited a transient rise in MAP that was generally greater in the PNI group, but the change in MAP from baseline was only significant in the PNI females compared with controls (P < 0.03). Elevated body weight and cardiovascular reactivity in the PNI offspring was associated with an increase in the ratio of hypothalamic corticotrophin-releasing hormone receptors type 1 to type 2 gene expression in both sexes compared with controls. These findings support previous studies demonstrating that PNI induces alterations in cardiovascular function and body weight. Yet, unlike previous studies utilizing other models of PNI (e.g., endotoxin), MP PNI did not induce resting hypertension. Thus, our study provides a foundation for future studies evaluating the cardiovascular risks of offspring exposed to microbial challenges in utero.
Collapse
Affiliation(s)
- J M Watkins
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - M von Chamier
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - M B Brown
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - L Reyes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - L F Hayward
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
15
|
Fuller EA, Younesi S, Xavier S, Sominsky L. Neuroimmune regulation of female reproduction in health and disease. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2019.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Ignatiuk VM, Izvolskaya MS, Sharova VS, Voronova SN, Zakharova LA. Disruptions in the reproductive system of female rats after prenatal lipopolysaccharide-induced immunological stress: role of sex steroids. Stress 2019; 22:133-141. [PMID: 30369279 DOI: 10.1080/10253890.2018.1508440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Stress signals during fetal or early postnatal periods may disorganize reproductive axis development at different levels. This study was aimed to test the hypothesis that prenatal immunological stress induced by bacterial endotoxin, lipopolysaccharide (LPS), has impact on structure and function of the reproductive system in female offspring. Adult female Wistar rats were divided into two groups, a control group (n = 5) and a LPS group (n = 12). Rats were injected with LPS 50 μg/kg body or 0.9% saline intraperitoneally on the 12th day of pregnancy. After birth the female pups (n = 20 in each group) were divided into four groups: (group 1) 0.9% saline prenatally, sesame oil (vehicle) postnatally; (group 2) LPS prenatally, sesame oil postnatally; (group 3) LPS prenatally, fulvestrant postnatally; (group 4) LPS prenatally, flutamide postnatally. Pups were injected subcutaneously into the neck with fulvestrant (estrogen receptor antagonist), 1.5 mg/kg in sesame oil, from postnatal day (PND) 5 to PND14; or flutamide (androgen receptor antagonist), 20 mg/kg in sesame oil, from PND14 to PND30. Rats of the control group were injected with sesame oil during the same time period. Parameters were evaluated by ELISA (serum estradiol and testosterone) and ovarian histology. The main findings were: (1) prenatal stress during the critical period resulted in delayed vaginal opening, decreased body weight and serum concentrations of sex steroids, and significant disorders in ovarian development; (2) postnatal estradiol and testosterone antagonist treatments decreased follicular atresia through increasing the number of healthy follicles and restored endogenous steroid production. Lay summaryImmunological stress, caused by simulating infection through exposure to a bacterial toxin (LPS), during a critical period of fetal development in laboratory rats results in delayed reproductive maturity, decreased body weight and decreased secretion of sex steroids in female offspring, and abnormalities in the ovaries like those in polycystic ovarian syndrome. These prenatally toxin-induced sexual disorders in females could be corrected by estradiol/testosterone antagonists during the postnatal period.
Collapse
Affiliation(s)
- V M Ignatiuk
- a Moscow State University GSP-1 , Moscow , Russia
| | - M S Izvolskaya
- b Koltsov Institute of Developmental Biology , Russian Academy of Sciences , Moscow , Russia
| | - V S Sharova
- b Koltsov Institute of Developmental Biology , Russian Academy of Sciences , Moscow , Russia
| | - S N Voronova
- b Koltsov Institute of Developmental Biology , Russian Academy of Sciences , Moscow , Russia
| | - L A Zakharova
- b Koltsov Institute of Developmental Biology , Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
17
|
Izvolskaia M, Sharova V, Zakharova L. Prenatal Programming of Neuroendocrine System Development by Lipopolysaccharide: Long-Term Effects. Int J Mol Sci 2018; 19:ijms19113695. [PMID: 30469423 PMCID: PMC6274672 DOI: 10.3390/ijms19113695] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Various stress factors during critical periods of fetal development modulate the epigenetic mechanisms controlling specific genes, which can affect the structure and function of physiological systems. Maternal immune stress by bacterial infection simulated by lipopolysaccharide (LPS) in an experiment is considered to be a powerful programming factor of fetal development. Studies of the molecular mechanisms controlling the formation and functioning of physiological systems are in the pilot stage. LPSs are the most potent natural inflammation factors. LPS-induced increases in fetal levels of pro- and anti-inflammatory cytokines can affect brain development and have long-term effects on behavior and neuroendocrine functions. The degradation of serotonergic neurons induced by LPS in the fetus is attributed to the increased levels of interleukin (IL)-6 and tumor necrosis factor (TNFα) as well as to anxiety and depression in children. Dopamine deficiency causes dysthymia, learning disability, and Parkinson’s disease. According to our data, an LPS-induced increase in the levels of IL-6, leukemia inhibitory factor (LIF), and monocyte chemotactic protein (MCP-1) in maternal and fetal rats during early pregnancy disturbs the development and functioning of gonadotropin-releasing hormone production and reproductive systems. It is important to note the high responsiveness of epigenetic developmental mechanisms to many regulatory factors, which offers opportunities to correct the defects.
Collapse
Affiliation(s)
- Marina Izvolskaia
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| | - Viktoria Sharova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| | - Liudmila Zakharova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| |
Collapse
|
18
|
The Role of Interleukin-10 in Mediating the Effect of Immune Challenge on Mouse Gonadotropin-Releasing Hormone Neurons In Vivo. eNeuro 2018; 5:eN-NWR-0211-18. [PMID: 30406179 PMCID: PMC6220573 DOI: 10.1523/eneuro.0211-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Immune challenge alters neural functioning via cytokine production. Inflammation has profound impact on the central regulation of fertility, but the mechanisms involved are not clearly defined. The anti-inflammatory cytokine interleukin (IL)-10 is responsible for balancing the immune response in the brain. To examine whether IL-10 has an effect on the function of the gonadotropin-releasing hormone (GnRH) neurons, we first examined the effect of immune responses with distinct cytokine profiles, such as the T cell-dependent (TD) and T cell-independent (TI) B-cell response. We investigated the effect of the TD and TI immune responses on ERK1/2 phosphorylation in GnRH neurons by administering fluorescein isothiocyanate/keyhole limpet hemocyanin (KLH-FITC) or dextran-FITC to female mice. Although dextran-FITC had no effect, KLH-FITC induced ERK1/2 phosphorylation in GnRH neurons after 6 d. KLH-FITC treatment increased the levels of IL-10 in the hypothalamus (HYP), but this treatment did not cause lymphocyte infiltration or an increase in the levels of proinflammatory cytokines. In IL-10 knock-out (KO) mice, KLH-FITC-induced ERK1/2 phosphorylation in the GnRH neurons was absent. We also showed that in IL-10 KO mice, the estrous cycle was disrupted. Perforated patch-clamp recordings from GnRH-GFP neurons, IL-10 immunohistochemistry, and in vitro experiments on acute brain slices revealed that IL-10 can directly alter GnRH neuron firing and induce ERK1/2 phosphorylation. These observations demonstrate that IL-10 plays a role in influencing signaling of GnRH neurons in the TD immune response. These results also provide the first evidence that IL-10 can directly alter the function of GnRH neurons and may help the maintenance of the integrity of the estrous cycle.
Collapse
|
19
|
Imai K, Kotani T, Tsuda H, Nakano T, Ushida T, Iwase A, Nagai T, Toyokuni S, Suzumura A, Kikkawa F. Administration of molecular hydrogen during pregnancy improves behavioral abnormalities of offspring in a maternal immune activation model. Sci Rep 2018; 8:9221. [PMID: 29907804 PMCID: PMC6003913 DOI: 10.1038/s41598-018-27626-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to investigate long-term outcomes of the offspring in a lipopolysaccharide (LPS)-induced maternal immune activation (MIA) model and the effect of maternal molecular hydrogen (H2) administration. We have previously demonstrated in the MIA mouse model that maternal administration of H2 attenuates oxidative damage and neuroinflammation, including induced pro-inflammatory cytokines and microglial activation, in the fetal brain. Short-term memory, sociability and social novelty, and sensorimotor gating were evaluated using the Y-maze, three-chamber, and prepulse inhibition (PPI) tests, respectively, at postnatal 3 or 4 weeks. The number of neurons and oligodendrocytes was also analyzed at postnatal 5 weeks by immunohistochemical analysis. Offspring of the LPS-exposed dams showed deficits in short-term memory and social interaction, following neuronal and oligodendrocytic loss in the amygdala and cortex. Maternal H2 administration markedly attenuated these LPS-induced abnormalities. Moreover, we evaluated the effect of H2 on LPS-induced astrocytic activation, both in vivo and in vitro. The number of activated astrocytes with hypertrophic morphology was increased in LPS-exposed offspring, but decreased in the offspring of H2-administered dams. In primary cultured astrocytes, LPS-induced pro-inflammatory cytokines were attenuated by H2 administration. Overall, these findings indicate that maternal H2 administration exerts neuroprotective effects and ameliorates MIA-induced neurodevelopmental deficits of offspring later in life.
Collapse
Affiliation(s)
- Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Hiroyuki Tsuda
- Department of Obstetrics and Gynecology, Japanese Red Cross Nagoya Daiichi Hospital, 3-35, Michishita-Cho, Nakamura-Ku, Nagoya, 453-8511, Japan
| | - Tomoko Nakano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akio Suzumura
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
20
|
Cakan P, Yildiz S, Ozgocer T, Yildiz A, Vardi N. Maternal viral mimetic administration at the beginning of fetal hypothalamic nuclei development accelerates puberty in female rat offspring. Can J Physiol Pharmacol 2018; 96:506-514. [DOI: 10.1139/cjpp-2016-0535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study aimed to investigate the effects of maternal viral infection during a critical time window of fetal hypothalamic development on timing of puberty in the female offspring. For that purpose, a viral mimetic (i.e., synthetic double-strand RNA, namely, polyinosinic–polycytidylic acid, poly (I:C)) or saline was injected (i.p.) to the pregnant rats during the beginning (day 12 of pregnancy, n = 5 for each group) or at the end of this time window (day 14 of pregnancy, n = 5 for each group). Four study groups were formed from the female pups (n = 9–10 pups/group). Following weaning of pups, vaginal opening and vaginal smearing was studied daily until 2 sequential estrous cycles were observed. During the second diestrus phase, blood samples were taken for progesterone, leptin, corticosterone, follicle-stimulating hormone, and luteinizing hormone. Maternal poly (I:C) injection on day 12 of pregnancy increased body mass and reduced the time to puberty in the female offspring. Neither poly (I:C) nor timing of injection affected other parameters studied (p > 0.05). It has been shown for the first time that maternal viral infection during the beginning of fetal hypothalamic development might hasten puberty by increasing body mass in rat offspring.
Collapse
Affiliation(s)
- Pinar Cakan
- Department of Physiology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| | - Sedat Yildiz
- Department of Physiology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| | - Tuba Ozgocer
- Department of Physiology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| | - Azibe Yildiz
- Department of Histology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| | - Nigar Vardi
- Department of Histology, Faculty of Medicine, University of Inonu, 44280 Malatya, Turkey
| |
Collapse
|
21
|
Sarchielli E, Comeglio P, Squecco R, Ballerini L, Mello T, Guarnieri G, Idrizaj E, Mazzanti B, Vignozzi L, Gallina P, Maggi M, Vannelli GB, Morelli A. Tumor Necrosis Factor-α Impairs Kisspeptin Signaling in Human Gonadotropin-Releasing Hormone Primary Neurons. J Clin Endocrinol Metab 2017; 102:46-56. [PMID: 27736314 PMCID: PMC5413096 DOI: 10.1210/jc.2016-2115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022]
Abstract
CONTEXT Inflammatory pathways may impair central regulatory networks involving gonadotropin-releasing hormone (GnRH) neuron activity. Studies in humans are limited by the lack of human GnRH neuron cell lines. OBJECTIVE To establish an in vitro model of human GnRH neurons and analyze the effects of proinflammatory cytokines. DESIGN The primary human fetal hypothalamic cells (hfHypo) were isolated from 12-week-old fetuses. Responsiveness to kisspeptin, the main GnRH neurons' physiological regulator, was evaluated for biological characterization. Tumor necrosis factor alpha (TNF-α) was used as a proinflammatory stimulus. Main Outcome Measures: Expression of specific GnRH neuron markers by quantitative reverse transcription-polymerase chain reaction, flow cytometry, and immunocytochemistry analyses; and GnRH-releasing ability and electrophysiological changes in response to kisspeptin. RESULTS The primary hfHypo showed a high percentage of GnRH-positive cells (80%), expressing a functional kisspeptin receptor (KISS1R) and able to release GnRH in response to kisspeptin. TNF-α exposure determined a specific inflammatory intracellular signaling and reduced GnRH secretion, KISS1R expression, and kisspeptin-induced depolarizing effect. Moreover, hfHypo possessed a primary cilium, whose assembly was inhibited by TNF-α. CONCLUSION The hfHypo cells represent a novel tool for investigations on human GnRH neuron biology. TNF-α directly affects GnRH neuron function by interfering with KISS1R expression and ciliogenesis, thereby impairing kisspeptin signaling.
Collapse
Affiliation(s)
| | | | | | - Lara Ballerini
- Cell Therapy and Transfusion Medicine Unit, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Tommaso Mello
- Gastroenterology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, 50134 Florence, Italy
| | | | | | - Benedetta Mazzanti
- Cell Therapy and Transfusion Medicine Unit, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | | | - Pasquale Gallina
- Neurosurgery School of Tuscany, Department of Surgery and Translational Medicine, University of Florence, 50139 Florence, Italy; and
| | - Mario Maggi
- Sexual Medicine and Andrology Unit and
- Istituto Nazionale Biostrutture e Biosistemi, 00136 Rome, Italy
| | | | | |
Collapse
|
22
|
Yoo DK, Lee SH. Effect of Lipopolysaccharide (LPS) Exposure on the Reproductive Organs of Immature Female Rats. Dev Reprod 2016; 20:113-21. [PMID: 27660826 PMCID: PMC5027216 DOI: 10.12717/dr.2016.20.2.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipopolysaccharide (LPS), an endotoxin, elicits strong immune responses in mammals. Several lines of evidence demonstrate that LPS challenge profoundly affects female reproductive function. For example, LPS exposure affects steroidogenesis and folliculogenesis, resulting in delayed puberty onset. The present study was conducted to clarify the mechanism underlying the adverse effect of LPS on the delayed puberty in female rats. LPS was daily injected for 5 days (50 μg/kg, PND 25-29) to treated animals and the date at VO was evaluated through daily visual examination. At PND 39, animals were sacrificed, and the tissues were immediately removed and weighed. Among the reproductive organs, the weights of the ovaries and oviduct from LPS-treated animals were significantly lower than those of control animals. There were no changes in the weights of uterus and vagina between the LPS-treated and their control animals. Immunological challenge by LPS delayed VO. Multiple corpora lutea were found in the control ovaries, indicating ovulations were occurred. However, none of corpus luteum was present in the LPS-treated ovary. The transcription level of steroidogenic acute regulatory protein (StAR), CYP11A1, CYP17A1 and CYP19 were significantly increased by LPS treatment. On the other hand, the levels of 3β- HSD, 17β-HSD and LH receptor were not changed by LPS challenge. In conclusion, the present study demonstrated that the repeated LPS exposure during the prepubertal period could induce multiple alterations in the steroidogenic machinery in ovary, and in turn, delayed puberty onset. The prepubertal LPS challenge model used in our study is useful to understand the reciprocal regulation of immune (stress) - reproductive function in early life.
Collapse
Affiliation(s)
- Da Kyung Yoo
- Dept. of Life Science, Sangmyung University, Seoul 03016, Korea
| | - Sung-Ho Lee
- Dept. of Life Science, Sangmyung University, Seoul 03016, Korea
| |
Collapse
|