1
|
Wuputra K, Hsu WH, Ku CC, Yang YH, Kuo KK, Yu FJ, Yu HS, Nagata K, Wu DC, Kuo CH, Yokoyama KK. The AHR-NRF2-JDP2 gene battery: Ligand-induced AHR transcriptional activation. Biochem Pharmacol 2025; 233:116761. [PMID: 39855429 DOI: 10.1016/j.bcp.2025.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Aryl hydrocarbon receptor (AHR) and nuclear factor-erythroid 2-related factor 2 (NRF2) can regulate a series of genes encoding the detoxifying phase I and II enzymes, via a signaling crosstalk known as the "AHR-NRF2 gene battery". The chromatin transcriptional regulator Jun dimerization protein 2 (JDP2) plays a central role in thetranscription of AHR gene in response to the phase I enzyme ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin. It forms a transcriptional complex with AHR-AHR nuclear translocator (ARNT) and NRF2-small musculoaponeurotic fibrosarcoma proteins (sMAF), which are then recruited to the respective cis-elements, such as dioxin response elements and antioxidant response elements, respectively, in the AHR promoter. Here, we present a revised description of the AHR-NRF2 gene battery as the AHR-NRF2-JDP2 gene battery for transactivating the AHR promoter by phase I enzyme ligands. The chromatin regulator JDP2 was found to be involved in the movement of AHR-NRF2 complexes from the dioxin response element to the antioxidant response element in the AHR promoter, during its activation in a spatiotemporal manner. This new epigenetic and chromatin remodeling role of AHR-NRF2-JDP2 axis is useful for identifying new therapeutic targets for various diseases, including immunological response, detoxification, development, and cancer-related diseases.
Collapse
Affiliation(s)
- Kenly Wuputra
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Wen-Hung Hsu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chia-Chen Ku
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ya-Han Yang
- Division of General Surgery, E-DA Dachang Hospital, Kaohsiung 80706, Taiwan.
| | - Kung-Kai Kuo
- Division of General Surgery, E-DA Dachang Hospital, Kaohsiung 80706, Taiwan.
| | - Fang-Jung Yu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan.
| | - Hsin-Su Yu
- Emeritus Professor in College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Kyosuke Nagata
- Professor, Insitutte of Medicine, University of Tsukuba, Tsukuba 3058577, Japan.
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Superintendant in Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan.
| | - Kazunari K Yokoyama
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
2
|
Anitha M, Kumar SM, Koo I, Perdew GH, Srinivasan S, Patterson AD. Modulation of Ceramide-Induced Apoptosis in Enteric Neurons by Aryl Hydrocarbon Receptor Signaling: Unveiling a New Pathway beyond ER Stress. Int J Mol Sci 2024; 25:8581. [PMID: 39201268 PMCID: PMC11354200 DOI: 10.3390/ijms25168581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent organic pollutant and a potent aryl hydrocarbon receptor (AHR) ligand, causes delayed intestinal motility and affects the survival of enteric neurons. In this study, we investigated the specific signaling pathways and molecular targets involved in TCDD-induced enteric neurotoxicity. Immortalized fetal enteric neuronal (IM-FEN) cells treated with 10 nM TCDD exhibited cytotoxicity and caspase 3/7 activation, indicating apoptosis. Increased cleaved caspase-3 expression with TCDD treatment, as assessed by immunostaining in enteric neuronal cells isolated from WT mice but not in neural crest cell-specific Ahr deletion mutant mice (Wnt1Cre+/-/Ahrb(fl/fl)), emphasized the pivotal role of AHR in this process. Importantly, the apoptosis in IM-FEN cells treated with TCDD was mediated through a ceramide-dependent pathway, independent of endoplasmic reticulum stress, as evidenced by increased ceramide synthesis and the reversal of cytotoxic effects with myriocin, a potent inhibitor of ceramide biosynthesis. We identified Sptlc2 and Smpd2 as potential gene targets of AHR in ceramide regulation by a chromatin immunoprecipitation (ChIP) assay in IM-FEN cells. Additionally, TCDD downregulated phosphorylated Akt and phosphorylated Ser9-GSK-3β levels, implicating the PI3 kinase/AKT pathway in TCDD-induced neurotoxicity. Overall, this study provides important insights into the mechanisms underlying TCDD-induced enteric neurotoxicity and identifies potential targets for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Mallappa Anitha
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Supriya M. Kumar
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Shanthi Srinivasan
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| |
Collapse
|
3
|
Boyi JO, Sonne C, Dietz R, Rigét F, Siebert U, Lehnert K. Gene expression and trace elements in Greenlandic ringed seals (Pusa hispida). ENVIRONMENTAL RESEARCH 2024; 244:117839. [PMID: 38081340 DOI: 10.1016/j.envres.2023.117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Marine top predators such as ringed seals biomagnify environmental contaminants; and with the increasing human activities in the Arctic, ringed seals are exposed to biologically significant concentrations of trace elements resulting in reproductive impairment, immunosuppression, and neurological damages. Little is known about the molecular effects of heavy metals on these vulnerable apex predators suffering from a rapidly changing Arctic with significant loss of sea-ice. In the present study, concentrations of cadmium (Cd), mercury (Hg) and selenium (Se) were measured in liver of sixteen Greenlandic ringed seals (nine adults and seven subadults) together with molecular biomarkers involved in bio-transformation, oxidative stress, endocrine disruption and immune activity in blood and blubber. The concentrations of trace elements increased in the following order: Hg > Se > Cd with levels of mercury and selenium being highest in adults. Aryl hydrocarbon receptor nuclear translocator (ARNT), peroxisome proliferator activated receptor alpha (PPARα, estrogen receptor alpha (ESR1), thyroid hormone receptor alpha (TRα) and interleukin - 2 (IL-2) mRNA transcript levels were highest in blubber, while heat shock protein 70 (HSP70) and interleukin - 10 (IL-10) were significantly higher in blood. There were no significant correlations between the concentrations of trace elements and mRNA transcript levels suggesting that stressors other than the trace elements investigated are responsible for the changes in gene expression levels. Since Hg seems to increase in Greenlandic ringed seals, there is a need to re-enforce health monitoring of this ringed seal population.
Collapse
Affiliation(s)
- Joy Ometere Boyi
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Frank Rigét
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
| |
Collapse
|
4
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Female-to-male differential transcription patterns of miRNA-mRNA networks in the livers of dioxin-exposed mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2310-2331. [PMID: 37318321 DOI: 10.1002/tox.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/14/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Non-coding microRNAs (miRNAs) have important roles in regulating the expression of liver mRNAs in response to xenobiotic-exposure, but their roles concerning dioxins such as TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin) are less clear. This report concerns the potential implication of liver (class I) and circulating (class II) miRNAs in hepatotoxicity of female and male mice after acute exposure to TCDD. The data show that, of a total of 38 types of miRNAs, the expression of eight miRNAs were upregulated in both female and male mice exposed to TCDD. Inversely, the expression of nine miRNAs were significantly downregulated in both animal genders. Moreover, certain miRNAs were preferentially induced in either females or males. The potential downstream regulatory effects of miRNAs on their target genes was evaluated by determining the expression of three group of genes that are potentially involved in cancer biogenesis, other diseases and in hepatotoxicity. It was found that certain cancer-related genes were more highly expressed females rather than males after exposure to TCDD. Furthermore, a paradoxical female-to-male transcriptional pattern was found for several disease-related and hepatotoxicity-related genes. These results suggest the possibility of developing of new miRNA-specific interfering molecules to address their dysfunctions as caused by TCDD.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, UK
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
5
|
Nagar N, Saxena H, Pathak A, Mishra A, Poluri KM. A review on structural mechanisms of protein-persistent organic pollutant (POP) interactions. CHEMOSPHERE 2023; 332:138877. [PMID: 37164191 DOI: 10.1016/j.chemosphere.2023.138877] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
With the advent of the industrial revolution, the accumulation of persistent organic pollutants (POPs) in the environment has become ubiquitous. POPs are halogen-containing organic molecules that accumulate, and remain in the environment for a long time, thus causing toxic effects in living organisms. POPs exhibit a high affinity towards biological macromolecules such as nucleic acids, proteins and lipids, causing genotoxicity and impairment of homeostasis in living organisms. Proteins are essential members of the biological assembly, as they stipulate all necessary processes for the survival of an organism. Owing to their stereochemical features, POPs and their metabolites form energetically favourable complexes with proteins, as supported by biological and dose-dependent toxicological studies. Although individual studies have reported the biological aspects of protein-POP interactions, no comprehensive study summarizing the structural mechanisms, thermodynamics and kinetics of protein-POP complexes is available. The current review identifies and classifies protein-POP interaction according to the structural and functional basis of proteins into five major protein targets, including digestive and other enzymes, serum proteins, transcription factors, transporters, and G-protein coupled receptors. Further, analysis detailing the molecular interactions and structural mechanism evidenced that H-bonds, van der Waals, and hydrophobic interactions essentially mediate the formation of protein-POP complexes. Moreover, interaction of POPs alters the protein conformation through kinetic and thermodynamic processes like competitive inhibition and allostery to modulate the cellular signalling processes, resulting in various pathological conditions such as cancers and inflammations. In summary, the review provides a comprehensive insight into the critical structural/molecular aspects of protein-POP interactions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Harshi Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Aakanksha Pathak
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
6
|
Aldeli N, Soukkarie C, Hanano A. Transcriptional, hormonal and histological alterations in the ovaries of BALB/c mice exposed to TCDD in connection with multigenerational female infertility. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114990. [PMID: 37156038 DOI: 10.1016/j.ecoenv.2023.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener of dioxins, has a proven reproductive toxicity. Due to the lack of evidence on the multigenerational female reproductive toxicity of TCDD through the maternal exposure, the current study aims to evaluate, on the one hand, the acute reproductive toxicity of TCDD on adult female pre-gestational exposed to a critical single dose of TCDD (25 μg/kg) for a week (group referred to as AFnG; adult female/non-gestation). On the other hand, the transcription, hormonal and histological effects of TCDD on the females of two generations F1 and F2, were also investigated after the exposure of pregnant females to TCDD on gestational day 13 (GD13) (group referred to as AFG; adult female/gestation). First, our data showed alternations in the ovarian expressional pattern of certain key genes involved in the detoxification of TCDD as well as in the biosynthesis of steroidal hormones. The expression of Cyp1a1 was highly induced in TCDD-AFnG group, but reduced in both F1 and F2. While the transcripts levels of Cyp11a1 and 3βhsd2 were decreased, Cyp19a1 transcripts were increased as a function of TCDD exposure. This was synchronized with a dramatic increase in the level of estradiol hormone in the females of both experimental groups. Beside a significant reduce in their size and weight, ovaries of TCDD-exposed females showed serious histological alterations marked by atrophy of the ovary, congestion in the blood vessels, necrosis in the layer of granular cells, dissolution of the oocyte and nucleus of ovarian follicles. Finally, the female fertility was dramatically affected across generations with a reduced male\female ratio. Our data indicate that the exposure of pregnant female to TCDD has serious negative effects in the female productive system across generations and suggest the use of hormonal alternation as biomarker to monitor and assess the indirect exposure of these generations to TCDD.
Collapse
Affiliation(s)
- Nour Aldeli
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarie
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria.
| |
Collapse
|
7
|
Hwang YJ, Shin DY, Kim MJ, Jang H, Kim S, Yang H, Jang WI, Park S, Shim S, Lee SB. StemRegenin 1 Mitigates Radiation-Mediated Hematopoietic Injury by Modulating Radioresponse of Hematopoietic Stem/Progenitor Cells. Biomedicines 2023; 11:biomedicines11030824. [PMID: 36979803 PMCID: PMC10045038 DOI: 10.3390/biomedicines11030824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Hematopoietic injury resulting from the damage of hematopoietic stem/progenitor cells (HSPCs) can be induced by either nuclear accident or radiotherapy. Radiomitigation of HSPCs is critical for the development of medical countermeasure agents. StemRegenin 1 (SR1) modulates the maintenance and function of HSPCs under non-stress conditions. However, the impact of SR1 in radiation-induced hematopoietic injury both in vivo and in vitro remains unknown. In this study, we found that treatment with SR1 after irradiation of C57BL/6 mice significantly mitigates TBI-induced death (80% of SR1-treated mice survival vs. 30% of saline-treated mice survival) with enhanced recovery of peripheral blood cell counts, with the density and cell proliferation of bone marrow components as observed by Hematoxylin and Eosin (H&E) and Ki-67 staining. Interestingly, in vitro analysis of human HSPCs showed that SR1 enhanced the population of human HSPCs (CD34+) under both non-irradiating and irradiating conditions, and reduced radiation-induced DNA damage and apoptosis. Furthermore, SR1 attenuated the radiation-induced expression of a member of the pro-apoptotic BCL-2 family and activity of caspase-3. Overall, these results suggested that SR1 modulates the radioresponse of HSPCs and might provide a potential radiomitigator of hematopoietic injury, which contributes to increase the survival of patients upon irradiation.
Collapse
Affiliation(s)
- You Jung Hwang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dong-Yeop Shin
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul 01812, Republic of Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Soyeon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyunwon Yang
- Biohealth Convergence, Seoul Women’s University, Seoul 01812, Republic of Korea
| | - Won Il Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Correspondence: (S.S.); (S.B.L.); Tel.: +82-2-3399-5873 (S.S.); +82-2-3399-5874 (S.B.L.)
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Correspondence: (S.S.); (S.B.L.); Tel.: +82-2-3399-5873 (S.S.); +82-2-3399-5874 (S.B.L.)
| |
Collapse
|
8
|
Roberts EK, Boss J, Mukherjee B, Salerno S, Zota A, Needham BL. Persistent organic pollutant exposure contributes to Black/White differences in leukocyte telomere length in the National Health and Nutrition Examination Survey. Sci Rep 2022; 12:19960. [PMID: 36402910 PMCID: PMC9675834 DOI: 10.1038/s41598-022-24316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
Despite racial disparities in diseases of aging and premature mortality, non-Hispanic Black Americans tend to have longer leukocyte telomere length (LTL), a biomarker of cellular aging, than non-Hispanic White Americans. Previous findings suggest that exposure to certain persistent organic pollutants (POPs) is both racially-patterned and associated with longer LTL. We examine whether Black/White differences in LTL are explained by differences in exposure to 15 POPs by estimating the indirect effect (IE) of self-reported race on LTL that is mediated through nine polychlorinated biphenyls (PCBs), three furans, and three dioxins, as well as their mixtures. Our study population includes 1,251 adults from the 1999-2000 and 2001-2002 cycles of the cross-sectional National Health and Nutrition Examination Survey. We characterized single-pollutant mediation effects by constructing survey-weighted linear regression models. We also implemented various approaches to quantify a global mediation effect of all POPs, including unpenalized linear regression, ridge regression, and examination of three summary exposure scores. We found support for the hypothesis that exposure to PCBs partially mediates Black/White differences in LTL. In single-pollutant models, there were significant IEs of race on LTL through six individual PCBs (118, 138, 153, 170, 180, and 187). Ridge regression (0.013, CI 0.001, 0.023; 26.0% mediated) and models examining summative exposure scores with linear combinations derived from principal components analysis (0.019, CI 0.009, 0.029; 34.8% mediated) and Toxic Equivalency Quotient (TEQ) scores (0.016, CI 0.005, 0.026; 28.8% mediated) showed significant IEs when incorporating survey weights. Exposures to individual POPs and their mixtures, which may arise from residential and occupational segregation, may help explain why Black Americans have longer LTL than their White counterparts, providing an environmental explanation for counterintuitive race differences in cellular aging.
Collapse
Affiliation(s)
- Emily K Roberts
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
- Department of Epidemiology and Center for Social Epidemiology and Population Health, University of Michigan, 1415 Washington Heights, 4659 SPH Tower, Ann Arbor, MI, 48109-2029, USA
| | - Stephen Salerno
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Ami Zota
- Department of Environmental and Occupational Health, George Washington University Milken School of Public Health, Washington, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Belinda L Needham
- Department of Epidemiology and Center for Social Epidemiology and Population Health, University of Michigan, 1415 Washington Heights, 4659 SPH Tower, Ann Arbor, MI, 48109-2029, USA.
| |
Collapse
|
9
|
Yoda T, Tochitani T, Usui T, Kouchi M, Inada H, Hosaka T, Kanno Y, Miyawaki I, Yoshinari K. Involvement of the CYP1A1 inhibition-mediated activation of aryl hydrocarbon receptor in drug-induced hepatotoxicity. J Toxicol Sci 2022; 47:359-373. [PMID: 36047110 DOI: 10.2131/jts.47.359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hepatotoxicity is one of the most common toxicities observed in non-clinical safety studies of drug candidates, and it is important to understand the hepatotoxicity mechanism to assess the risk of drug-induced liver injury in humans. In this study, we investigated the mechanism of hepatotoxicity caused by 2-[2-Methyl-1-(oxan-4-yl)-1H-benzimidazol-5-yl]-1,3-benzoxazole (DSP-0640), a drug candidate that showed hepatotoxicity characterized by centrilobular hypertrophy and vacuolation of hepatocytes in a 4-week oral repeated-dose toxicity study in male rats. In the liver of rats treated with DSP-0640, the expression of aryl hydrocarbon receptor (AHR) target genes, including Cyp1a1, was upregulated. In in vitro reporter assays, however, DSP-0640 showed only minimal AHR-activating potency. Therefore, we investigated the possibility that DSP-0640 indirectly activated AHR by inhibiting the CYP1 enzyme-dependent clearance of endogenous AHR agonists. In in vitro assays, DSP-0640 showed inhibitory effects on both rat and human CYP1A1 and enhanced rat and human AHR-mediated reporter gene expression induced by 6-formylindolo[3,2-b]carbazole, a well-known endogenous AHR agonist. The possible involvement of CYP1A1 inhibition in AHR activation was also demonstrated with other hepatotoxic compounds tacrine and albendazole. These results suggest that CYP1A1 inhibition-mediated AHR activation is involved in the hepatotoxicity caused by DSP-0640 and that DSP-0640 might induce hepatotoxicity in humans as well. We propose that CYP1A1 inhibition-mediated AHR activation is a novel mechanism for drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Tomomi Yoda
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd.,Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | | | - Toru Usui
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd
| | - Mami Kouchi
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd
| | | | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yuichiro Kanno
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | | | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
10
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
11
|
Fromme H, Fuchs V, Albrecht M, Aschenbrenner B, Röhl C, Janitzki N, Herber-Jonat S, Wöckner M, Völkel W, Flemmer AW, Schober W. Polychlorinated dioxins and dibenzofurans (PCDD/F), polybrominated dioxins and dibenzofurans (PBDD/F), polychlorinated biphenyls (PCB), polybrominated diphenyl ethers (PBDE), and per- and polyfluoroalkyl substances (PFAS) in German breast milk samples (LUPE 8). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154066. [PMID: 35217048 DOI: 10.1016/j.scitotenv.2022.154066] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 02/17/2022] [Indexed: 05/06/2023]
Abstract
Most organic pollutants (POP) are persistent in the environment, accumulate in fatty tissues, and so a transfer through the food chain is probably, thereby causing various health effects. We quantified PCDD/F, PBDD/F, PCB, PBDE, perfluorinated substances, and ADONA in breast milk samples collected in two German federal states and breast milk and blood samples from subjects additionally exposed to PFOA. The median (95th percentile) concentrations were 2.43 (6.58) pgWHO2005TEQ/g l.w. for PCDD/F, 2.45 (4.82) pgWHO2005TEQ/g l.w. for dioxin-like PCB (dl-PCB), and 0.62 (2.69) pgWHO2005TEQ/g l.w. for PBDD/F. The relative contributions of the median values of PCDD/F, dl-PCB, and PBDD/F to the total-TEQ were approximately 41%, 42%, and 11%, respectively. Nondioxin-like PCB (ndl-PCB) concentrations were clearly dominated by the higher chlorinated PCB congeners, with medians of 23.2 ng/g l.w. for PCB 153, 13.9 ng/g l.w. for PCB 138, and 13.0 ng/g l.w. for PCB 180. The sum of the 3 congeners (PCB 138, 153, and 180) were multiplied with 1.64 (total PCB) and showed a median of 82.16 ng/g l.w. and a 95th percentile of 173.3 ng/g l.w. Only PFOA and PFOS could be quantified in 29% and 17% of in total 180 samples with 95th percentiles of 53 ng/l and 33 ng/l, respectively. Milk samples (n = 13) from subjects living on PFOA contaminated sites showed higher levels between 33 and 854 ng/l PFOA (mean: 199 ng/l), whilst PFOS could be quantified only in three samples. The sum of 17 PBDE congeners showed medians (95th percentile) of 1737 pg/g l.w. (22,806 pg/g l.w.), with the highest medians of 422 pg/g l.w. for BDE 209 and 378 pg/g l.w. for BDE 153. Overall, our study confirms the declining contamination level in breast milk during the last decade, but points out the need to further reduce the environmental contamination with persistent substances and subsequently the exposure in childhood.
Collapse
Affiliation(s)
- Hermann Fromme
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Ziemssenstrasse 1, D-80336 Munich, Germany.
| | - Veronika Fuchs
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| | - Michael Albrecht
- Bavarian Health and Food Safety Authority, Department of Dioxins, Irradiation, Nitrosamines, Radioactivity, Veterinaerstrasse 2, D-85764 Oberschleissheim, Germany
| | - Bettina Aschenbrenner
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| | - Claudia Röhl
- Schleswig-Holstein State Agency for Social Services, Department of Environmental Health Protection, Gartenstrasse 24, D-24534 Neumünster, Germany
| | - Nora Janitzki
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| | - Susanne Herber-Jonat
- Division of Neonatology, University Children's Hospital, Dr. V. Hauner and Perinatal Center, LMU Hospital, Marchioninistrasse 15, Munich D-81377, Germany
| | - Mandy Wöckner
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| | - Wolfgang Völkel
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| | - Andreas W Flemmer
- Division of Neonatology, University Children's Hospital, Dr. V. Hauner and Perinatal Center, LMU Hospital, Marchioninistrasse 15, Munich D-81377, Germany
| | - Wolfgang Schober
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, Pfarrstrasse 3, D-80538 Munich, Germany
| |
Collapse
|
12
|
Woo JMP, Parks CG, Jacobsen S, Costenbader KH, Bernatsky S. The role of environmental exposures and gene-environment interactions in the etiology of systemic lupus erythematous. J Intern Med 2022; 291:755-778. [PMID: 35143075 DOI: 10.1111/joim.13448] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex, chronic autoimmune disease, whose etiology includes both genetic and environmental factors. Individual genetic risk factors likely only account for about one-third of observed heritability among individuals with a family history of SLE. A large portion of the remaining risk may be attributable to environmental exposures and gene-environment interactions. This review focuses on SLE risk associated with environmental factors, ranging from chemical and physical environmental exposures to lifestyle behaviors, with the weight of evidence supporting positive associations between SLE and occupational exposure to crystalline silica, current smoking, and exogenous estrogens (e.g., oral contraceptives and postmenopausal hormones). Other risk factors may include lifestyle behaviors (e.g., dietary intake and sleep) and other exposures (e.g., ultraviolet [UV] radiation, air pollution, solvents, pesticides, vaccines and medications, and infections). Alcohol use may be associated with decreased SLE risk. We also describe the more limited body of knowledge on gene-environment interactions and SLE risk, including IL-10, ESR1, IL-33, ITGAM, and NAT2 and observed interactions with smoking, UV exposure, and alcohol. Understanding genetic and environmental risk factors for SLE, and how they may interact, can help to elucidate SLE pathogenesis and its clinical heterogeneity. Ultimately, this knowledge may facilitate the development of preventive interventions that address modifiable risk factors in susceptible individuals and vulnerable populations.
Collapse
Affiliation(s)
- Jennifer M P Woo
- Epidemiology Branch, National Institutes of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Christine G Parks
- Epidemiology Branch, National Institutes of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sasha Bernatsky
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Hoyeck MP, Matteo G, MacFarlane EM, Perera I, Bruin JE. Persistent organic pollutants and β-cell toxicity: a comprehensive review. Am J Physiol Endocrinol Metab 2022; 322:E383-E413. [PMID: 35156417 PMCID: PMC9394781 DOI: 10.1152/ajpendo.00358.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023]
Abstract
Persistent organic pollutants (POPs) are a diverse family of contaminants that show widespread global dispersion and bioaccumulation. Humans are continuously exposed to POPs through diet, air particles, and household and commercial products; POPs are consistently detected in human tissues, including the pancreas. Epidemiological studies show a modest but consistent correlation between exposure to POPs and increased diabetes risk. The goal of this review is to provide an overview of epidemiological evidence and an in-depth evaluation of the in vivo and in vitro evidence that POPs cause β-cell toxicity. We review evidence for six classes of POPs: dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), flame retardants, and per- and polyfluoroalkyl substances (PFAS). The available data provide convincing evidence implicating POPs as a contributing factor driving impaired glucose homeostasis, β-cell dysfunction, and altered metabolic and oxidative stress pathways in islets. These findings support epidemiological data showing that POPs increase diabetes risk and emphasize the need to consider the endocrine pancreas in toxicity assessments. Our review also highlights significant gaps in the literature assessing islet-specific endpoints after both in vivo and in vitro POP exposure. In addition, most rodent studies do not consider the impact of biological sex or secondary metabolic stressors in mediating the effects of POPs on glucose homeostasis and β-cell function. We discuss key gaps and limitations that should be assessed in future studies.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Geronimo Matteo
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erin M MacFarlane
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer E Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Fernández-Martos S, Calvo-Sánchez MI, Lobo-Aldezabal A, Sánchez-Adrada AI, Moreno C, Vitale M, Espada J. The deleterious effects induced by an acute exposure of human skin to common air pollutants are prevented by extracts of Deschampsia antarctica. Sci Rep 2021; 11:23751. [PMID: 34887500 PMCID: PMC8660883 DOI: 10.1038/s41598-021-03190-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
The homeostatic and regenerative potential of the skin is critically impaired by an increasing accumulation of air pollutants in human ecosystems. These toxic compounds are frequently implicated in pathological processes such as premature cutaneous ageing, altered pigmentation and cancer. In this scenario, innovative strategies are required to tackle the effects of severe air pollution on skin function. Here we have used a Human Skin Organotypic Culture (HSOC) model to characterize the deleterious effects of an acute topic exposure of human skin to moderately high concentrations of common ambient pollutants, including As, Cd, Cr, dioxins and tobacco smoke. All these toxic compunds inflict severe damage in the tissue, activating the AHR-mediated response to xenobiotics. We have further evaluated the potential of an aqueous leaf extract of the polyextremophile plant Deschampsia antarctica (Edafence) to protect human skin against the acute exposure to toxic pollutants. Our results indicate that pre-treatment of HSOC samples with this aqueous extract conuterbalances the deleterious effects of the exposure to toxic comunds and triggers the activation of key genes invoved in the redox system and in the pro-inflammatory/wound healing response in the skin, suggesting that this natural compound might be effectively used in vivo to protect human skin routinely in different daily conditions.
Collapse
Affiliation(s)
- Sandra Fernández-Martos
- Experimental Dermatology and Skin Biology Group, Ramon y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - María I Calvo-Sánchez
- Experimental Dermatology and Skin Biology Group, Ramon y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Building E, Ctra. M-515 Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Ana Lobo-Aldezabal
- Experimental Dermatology and Skin Biology Group, Ramon y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Building E, Ctra. M-515 Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | | | - Carmen Moreno
- Anatomic Pathology Service, Ramón y Cajal University Hospital, Madrid, Spain
| | - María Vitale
- Medical Affairs Department, Cantabria Labs, Madrid, Spain
| | - Jesús Espada
- Experimental Dermatology and Skin Biology Group, Ramon y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain.
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
15
|
Liang Y, Tang Z, Jiang Y, Ai C, Peng J, Liu Y, Chen J, Xin X, Lei B, Zhang J, Cai Z. Lipid metabolism disorders associated with dioxin exposure in a cohort of Chinese male workers revealed by a comprehensive lipidomics study. ENVIRONMENT INTERNATIONAL 2021; 155:106665. [PMID: 34098336 DOI: 10.1016/j.envint.2021.106665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Dioxins, environmentally stable and ubiquitous, have been found to induce metabolic changes especially in lipids and be related to multiple diseases. However, limited study is available on lipid alternations related to human exposure to dioxins. This study aims to explore the serum lipidomic characterization and to understand the underlying mechanisms of adverse health risks associated with dioxin exposure. A lipidomic study integrating nontargeted lipidomics, and targeted free fatty acid (FFA) and acyl-coenzyme A (acyl-CoA) analyses were conducted to investigate the 94 serum samples from two groups of male workers with remarkably different dioxin concentrations. The obtained results exhibited distinct lipidomic signatures between the high and low exposed groups. A total of 37 lipids were identified with the significant changes. The results revealed that dioxin exposure caused accumulations of triglyceride (TG), ceramide (Cer) and sphingoid (So), remodeling of glycerophospholipid (GP), imbalanced FFA metabolism, as well as upregulation of platelet-activating factor (PAF). These findings implied the associations between dioxin exposure and potential adverse health risks including inflammation, apoptosis, cardiovascular diseases (CVDs), and liver diseases. This study is the first to explain the associations between dioxin exposure and health effects at the level of lipid metabolism.
Collapse
Affiliation(s)
- Yanshan Liang
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhi Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chunyan Ai
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jinling Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuan Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jinru Chen
- Songgang Preventive Health Center of Baoan District, Shenzhen, 518105, China
| | - Xiong Xin
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Bo Lei
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Zongwei Cai
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
16
|
Hu LX, Xiong Q, Shi WJ, Huang GY, Liu YS, Ying GG. New insight into the negative impact of imidazolium-based ionic liquid [C 10mim]Cl on Hela cells: From membrane damage to biochemical alterations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111629. [PMID: 33396149 DOI: 10.1016/j.ecoenv.2020.111629] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 05/08/2023]
Abstract
As an alternative to volatile organic solvents, ionic liquids (ILs) are known as "green solvents", and widely used in industrial applications. However, due to their high solubility and stability, ILs have tendency to persist in the water environment, thus having potential negative impacts on the aquatic ecosystem. For assessing the environmental risks of ILs, a fundamental understanding of the toxic effects and mechanisms of ILs is needed. Here we evaluated the cytotoxicity of 1-methyl-3-decylimidazolium chloride ([C10mim]Cl) and elucidated the main toxic mechanism of [C10mim]Cl in human cervical carcinoma (Hela) cells. Microstructural analysis revealed that [C10mim]Cl exposure caused the cell membrane breakage, swollen and vacuolated mitochondria, and spherical cytoskeletal structure. Cytotoxicity assays found that [C10mim]Cl exposure increased ROS production, decreased mitochondrial membrane potential, induced cell apoptosis and cell cycle arrest. These results indicated that [C10mim]Cl could induce damage to cellular membrane structure, affect the integrity of cell ultrastructure, cause the oxidative damage and ultimately lead to the inhibition of cell proliferation. Moreover, alterations of biochemical information including the increased ratios of unsaturated fatty acid and carbonyl groups to lipid, and lipid to protein, and the decreased ratios of Amide I to Amide II, and α-helix to β-sheet were observed in [C10mim]Cl treated cells, suggesting that [C10mim]Cl could affect the structure of membrane lipid alkyl chain and cell membrane fluidity, promote the lipid peroxidation and alter the protein secondary structure. The findings from this work demonstrated that membrane structure is the key target, and membrane damage is involved in [C10mim]Cl induced cytotoxicity.
Collapse
Affiliation(s)
- Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian Xiong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
17
|
Liang Y, Tang Z, Jiang Y, Ai C, Peng J, Liu Y, Chen J, Zhang J, Cai Z. Serum metabolic changes associated with dioxin exposure in a Chinese male cohort. ENVIRONMENT INTERNATIONAL 2020; 143:105984. [PMID: 32712422 DOI: 10.1016/j.envint.2020.105984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Dioxins, a group of persistent organic pollutants, have been proved to correlate with ranges of diseases by activating the aryl hydrocarbon receptor (AhR). However, previous dioxin toxicity studies primarily focused on the activation of AhR with signaling pathways at gene and protein levels. The investigation of underlying mechanisms at the metabolic level is still necessary. In this study, serum samples of 48 and 47 healthy participants with the highest and lowest dioxin levels based on quartile distribution of the serum dioxin concentrations of 215 male adults were selected for metabolomics analysis by using liquid chromatography coupled with orbitrap high-resolution mass spectrometry to investigate dioxin-related metabolic responses. The identified potential biomarkers included acylcarnitines, fatty acids and derivatives, glycerophospholipids, etc. suggested that metabolic pathways such as fatty acid β-oxidation, essential fatty acid metabolism, arachidonic acid metabolism, glycerophospholipid and sphingolipid metabolism and purine metabolism were disturbed by dioxin exposure. The results indicated that people with high dioxin exposure levels were at the potential health risks of inflammation, liver and cardiovascular diseases. The metabolic findings may help understand the link between dioxin exposure and the diseases.
Collapse
Affiliation(s)
- Yanshan Liang
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region; Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhi Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China; Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Chunyan Ai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinling Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yuan Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinru Chen
- Songgang Preventive Health Center of Baoan District, Shenzhen, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Zongwei Cai
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
18
|
Svobodová J, Procházková J, Kabátková M, Krkoška M, Šmerdová L, Líbalová H, Topinka J, Kléma J, Kozubík A, Machala M, Vondráček J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Disrupts Control of Cell Proliferation and Apoptosis in a Human Model of Adult Liver Progenitors. Toxicol Sci 2020; 172:368-384. [PMID: 31536130 DOI: 10.1093/toxsci/kfz202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) activation has been shown to alter proliferation, apoptosis, or differentiation of adult rat liver progenitors. Here, we investigated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated AhR activation on a human model of bipotent liver progenitors, undifferentiated HepaRG cells. We used both intact undifferentiated HepaRG cells, and the cells with silenced Hippo pathway effectors, yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which play key role(s) in tissue-specific progenitor cell self-renewal and expansion, such as in liver, cardiac, or respiratory progenitors. TCDD induced cell proliferation in confluent undifferentiated HepaRG cells; however, following YAP, and, in particular, double YAP/TAZ knockdown, TCDD promoted induction of apoptosis. These results suggested that, unlike in mature hepatocytes, or hepatocyte-like cells, activation of the AhR may sensitize undifferentiated HepaRG cells to apoptotic stimuli. Induction of apoptosis in cells with silenced YAP/TAZ was associated with upregulation of death ligand TRAIL, and seemed to involve both extrinsic and mitochondrial apoptosis pathways. Global gene expression analysis further suggested that TCDD significantly altered expression of constituents and/or transcriptional targets of signaling pathways participating in control of expansion or differentiation of liver progenitors, including EGFR, Wnt/β-catenin, or tumor growth factor-β signaling pathways. TCDD significantly upregulated cytosolic proapoptotic protein BMF (Bcl-2 modifying factor) in HepaRG cells, which could be linked with an enhanced sensitivity of TCDD-treated cells to apoptosis. Our results suggest that, in addition to promotion of cell proliferation and alteration of signaling pathways controlling expansion of human adult liver progenitors, AhR ligands may also sensitize human liver progenitor cells to apoptosis.
Collapse
Affiliation(s)
- Jana Svobodová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Markéta Kabátková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Martin Krkoška
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| | - Lenka Šmerdová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Helena Líbalová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Jan Topinka
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University, Prague 12135, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| |
Collapse
|
19
|
Li C, Liu Y, Dong Z, Xu M, Gao M, Cong M, Liu S. TCDD promotes liver fibrosis through disordering systemic and hepatic iron homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122588. [PMID: 32325343 DOI: 10.1016/j.jhazmat.2020.122588] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) is a toxic environmental pollutant which can cause severe health problems, such as fibrosis. However, the toxic effects and related mechanism of TCDD on the liver remain largely unknown. In this study, we established a liver fibrosis mouse model upon exposure of TCDD, as evidenced by increased collagen I, tumor growth factor β1 (TGFβ1), α-smooth muscle actin (α-SMA), and Masson staining. Meanwhile, there was also a significant increase of inflammatory factors and TUNEL-positive hepatocytes in liver, indicating that liver inflammation and hepatic cell apoptosis occurred. In addition, increased serum and liver iron were concomitant with liver injury induced by TCDD. We further investigated the mechanism underlying TCDD-induced hepatocyte apoptosis through apoptosis polymerase chain reaction array, and found that a crucial apoptosis-related gene, cell death-inducing DFF45-like effector b (Cideb), was significantly increased in primary hepatocytes from TCDD-exposed mice, and accompanied by liver iron deposition in hepcidin knockout mice. Therefore, Cideb depletion could effectively attenuated TCDD or iron induced cell death related genes expression. In conclusion, our results showed that iron-induced Cideb expression played a critical role in promoting TCDD-induced hepatocyte apoptosis and liver fibrosis, which provide a novel mechanism for understanding TCDD-induced liver injury.
Collapse
Affiliation(s)
- Changying Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, 100050, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingying Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Beijing, 100050, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Fang L, Zhang S, Ou K, Zuo Z, Yu A, Wang C. Exposure to Aroclor 1254 differentially affects the survival of pancreatic β-cells and α-cells in the male mice and the potential reason. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109875. [PMID: 31706244 DOI: 10.1016/j.ecoenv.2019.109875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Previous works showed that chronic exposure to Aroclor 1254 disrupted glucose homeostasis and induced insulin resistance in male mice. To further observe the different effects of Aroclor 1254 exposure on the pancreatic α-cells and β-cells, male mice were exposed to Aroclor 1254 (0, 0.5, 5, 50, 500 μg/kg) for 60 days, the pancreas was performed a histological examination. The results showed that the percentage of apoptosis cell (indicated by TUNEL assay) was increased in both α-cells and β-cells, as the Aroclor 1254 dose was increased; the proliferation (indicated by PCNA expression) rate of β-cells was elevated while that of α-cells was not affected, resulting in an increased β-cell mass and a decreased α-cell mass in a dose-depend manner. The number of Pdx-1 positive β-cells was significantly increased whereas that of Arx positive α-cells was markedly decreased, indicating an enhanced β-cell neogenesis and a weakened α-cell neogenesis. The drastically reduction of serum testosterone levels in all the treatments suggested an anti-androgenic potency of Aroclor 1254. The up-regulation of estrogen receptors (ERα and ERβ) and androgen receptor in β-cells might be responsible for the increased β-cell mass and neogenesis.
Collapse
Affiliation(s)
- Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Shiqi Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ang Yu
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, Xiamen University, Xiamen, PR China.
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
21
|
Wang C, Zhai SN, Yuan XG, Zhang DW, Jiang H, Qiu L, Fu YX. Common differentially expressed proteins were found in mouse cleft palate models induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin and retinoic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103270. [PMID: 31586870 DOI: 10.1016/j.etap.2019.103270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 08/20/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Cleft palate(CP) is a widely studied congenital malformation. However, its etiology and pathogenesis still remain unclear. Proteins are fundamental molecules that participate in every biological process within cells. In this study, we established CP mouse models induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and retinoic acid (RA), using proteomics technology isobaric tags for relative and absolute quantitation (iTRAQ) to investigate the key proteins in the formation of CP. Pregnant mice were given a gavage of TCDD 28μg/kg or retinoic acid 80mg/kg of body weight or equivalent corn oil at gestational day 10.5(GD10.5) and sacrificed at GD 17.5. Foetal mice were recorded and collected for further detection. Western blot was performed to verify the iTRAQ results. Eventually, we obtained 18 common differentially expressed proteins in TCDD group and RA group compared with normal control, 17 up-regulated and 1 down-regulated. 14-3-3sigma and Annexin A1 were up-regulated in experimental groups at GD17.5, which was consistent with Western blot. We speculated that the common differentially expressed proteins might be one of the molecular mechanisms in the formation of cleft palate.
Collapse
Affiliation(s)
- Chen Wang
- Department of Burns and Plastic Surgery, Children's hospital of Soochow University, Suzhou 215000 PR China
| | - Sha-Na Zhai
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080 PR China
| | - Xin-Gang Yuan
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, PR China; Department of Burns and Plastic Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014 PR China
| | - Ding-Wen Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, PR China; Department of Burns and Plastic Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014 PR China
| | - Heng Jiang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, PR China; Department of Burns and Plastic Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014 PR China
| | - Lin Qiu
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, PR China; Department of Burns and Plastic Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014 PR China.
| | - Yue-Xian Fu
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, PR China; Department of Burns and Plastic Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014 PR China.
| |
Collapse
|
22
|
Csaba G. Aromatic hydrocarbon receptors in the immune system: Review and hypotheses. Acta Microbiol Immunol Hung 2019; 66:273-287. [PMID: 30803253 DOI: 10.1556/030.66.2019.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ah-receptors (AhRs) recognize and bind foreign environmental molecules as well as some target hormones of other nuclear receptors. As ligands activate transcription factors, they transmit the information on the presence of these molecules by binding to the DNA, which in turn activate xenobiotic metabolism genes. Cross talk with other nuclear receptors or some non-nuclear receptors also activates or inhibits endocrine processes. Immune cells have AhRs by which they are activated for physiological (immunity) or non-physiological (allergy and autoimmunity) processes. They can be imprinted by hormonal or pseudo-hormonal (environmental) factors, which could provoke pathological alterations for life (by faulty perinatal hormonal imprinting). The variety and amount of human-made new environmental molecules (endocrine disruptors) are enormously growing, so the importance of AhR functions is also expanding.
Collapse
Affiliation(s)
- György Csaba
- 1 Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
Villaseñor-Altamirano AB, Watson JD, Prokopec SD, Yao CQ, Boutros PC, Pohjanvirta R, Valdés-Flores J, Elizondo G. 2,3,7,8-Tetrachlorodibenzo-p-dioxin modifies alternative splicing in mouse liver. PLoS One 2019; 14:e0219747. [PMID: 31386671 PMCID: PMC6684058 DOI: 10.1371/journal.pone.0219747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing is a co-transcriptional mechanism that generates protein diversity by including or excluding exons in different combinations, thereby expanding the diversity of protein isoforms of a single gene. Abnormalities in this process can result in deleterious effects to human health, and several xenobiotics are known to interfere with splicing regulation through multiple mechanisms. These changes could lead to human diseases such as cancer, neurological disorders, autoimmune diseases, and developmental disorders. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant generated as a byproduct of various industrial activities. Exposure to this dioxin has been linked to a wide range of pathologies through the alteration of multiple cellular processes. However, the effects of TCDD exposure on alternative splicing have not yet been studied. Here, we investigated whether a single po. dose of 5 μg/kg or 500 μg/kg TCDD influence hepatic alternative splicing in adult male C57BL/6Kou mouse. We identified several genes whose alternative splicing of precursor messenger RNAs was modified following TCDD exposure. In particular, we demonstrated that alternative splicing of Cyp1a1, Ahrr, and Actn1 was significantly altered after TCDD treatment. These findings show that the exposure to TCDD has an impact on alternative-splicing, and suggest a new avenue for understanding TCDD-mediated toxicity and pathogenesis.
Collapse
Affiliation(s)
- Ana B. Villaseñor-Altamirano
- Cell Biology Department, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAN-IPN, Mexico City, Mexico
- International Laboratory for Human Genome Research, National Autonomous University of Mexico, Queretaro, Mexico
| | | | | | - Cindy Q. Yao
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Paul C. Boutros
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Raimo Pohjanvirta
- Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio, Finland
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Jesús Valdés-Flores
- Biochemistry Department, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Guillermo Elizondo
- Cell Biology Department, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAN-IPN, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
24
|
Licata P, Piccione G, Fazio F, Lauriano ER, Calò M. Protective effects of genistein on cytochrome P-450 and vitellogenin expression in liver of zebrafish after PCB-126 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:71-76. [PMID: 31004905 DOI: 10.1016/j.scitotenv.2019.03.467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
The objective of the research is to study the action of Vitellogenin and P-4501A1 following coexposure at different times to genistein and PCB-126 using zebrafish as a model system. Polychlorinated biphenyls are ubiquitous substances in environment. The genistein is a phytoestrogen extracted from soybeans and it's contained in food for humans and animals. For this study, 200 adult zebrafish were used. Our findings show a marked immunoreactivity of Vtg at 12h in liver than the control with only PCB-126. Regarding effects of PCB-126 on Vtg after pretreatment with genistein in fishes, the immunohistochemistry results show a minor increase at 12h. After 24h the immunoreactivity is lower than 12h and then slightly increased at 72h with only PCB-126 and PCB-126 and genistein together. CYP1A1 progressively increases from 12h to 72h in all groups with minor immunoreactivity when we treated fish with genistein and PCB-126. We show a reduction in the estrogenic effect when the fishes were treated with genistein and PCB-126 together at 12h than the group treated with only PCB-126. Moreover, low concentrations of genistein decrease the marked P450 expression induced by PCB-126. This shows that genistein decreases the expression of P450 target genes mediated by AhR.
Collapse
Affiliation(s)
- Patrizia Licata
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy.
| | - Giuseppe Piccione
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Margherita Calò
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| |
Collapse
|
25
|
Filip R, Shaw TA, Nishida A, Pezacki JP. Fungal natural alkaloid schizocommunin activates the aryl hydrocarbon receptor pathway. MEDCHEMCOMM 2019; 10:985-990. [PMID: 31303997 DOI: 10.1039/c9md00138g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/09/2019] [Indexed: 12/25/2022]
Abstract
Fungi, including mushrooms and mycelia, are a rich source for natural products with medicinal properties. In some cases, they can lead to opportunistic infections in humans and other mammals. In 1994, the first case of bronchopulmonary mycosis caused by the Schizophyllum commune fungus was described. Culture of the isolated specimen led to the extraction of an alkaloid compound, schizocommunin, which was more recently synthesised for biological characterization. Herein we describe schizocommunin and one of its analogues as cytotoxic against human hepatoma cells at low micromolar concentrations. Schizocommunin is shown to be a potent activator of the aryl hydrocarbon receptor (AhR) gene battery, more specifically increasing expression of the CYP1A1, CYP1B1 and UGT1A genes in human liver and lung cells. A luciferase reporter assay further confirms induction of transcription by these compounds at the xenobiotic response element. This study improves our understanding of the interaction between this fungal metabolite and xenobiotic detoxifying mechanisms in the body, and points to schizocommunin as a putative mediator of the allergic response and a useful molecule for the study of the AhR pathway.
Collapse
Affiliation(s)
- Roxana Filip
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Canada .
| | - Tyler A Shaw
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Canada .
| | - Atsushi Nishida
- Graduate School of Pharmaceutical Sciences , Chiba University , Chiba , Japan
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Canada .
| |
Collapse
|
26
|
Watson ATD, Nordberg RC, Loboa EG, Kullman SW. Evidence for Aryl hydrocarbon Receptor-Mediated Inhibition of Osteoblast Differentiation in Human Mesenchymal Stem Cells. Toxicol Sci 2019; 167:145-156. [PMID: 30203000 PMCID: PMC6317429 DOI: 10.1093/toxsci/kfy225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) maintain the ability to differentiate into adipogenic, chondrogenic, or osteogenic cell lineages. There is increasing concern that exposure to environmental agents such as aryl hydrocarbon receptor (AhR) ligands, may perturb the osteogenic pathways responsible for normal bone formation. The objective of the current study was to evaluate the potential of the prototypic AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to disrupt osteogenic differentiation of human bone-derived MSCs (hBMSCs) in vitro. Primary hBMSCs from three donors were exposed to 10 nM TCDD and differentiation was interrogated using select histological, biochemical, and transcriptional markers of osteogenesis. Exposure to 10 nM TCDD resulted in an overall consistent attenuation of alkaline phosphatase (ALP) activity and matrix mineralization at terminal stages of differentiation in primary hBMSCs. At the transcriptional level, the transcriptional regulator DLX5 and additional osteogenic markers (ALP, OPN, and IBSP) displayed attenuated expression; conversely, FGF9 and FGF18 were consistently upregulated in each donor. Expression of stem cell potency markers SOX2, NANOG, and SALL4 decreased in the osteogenic controls, whereas expression in TCDD-treated cells resembled that of undifferentiated cells. Coexposure with the AhR antagonist GNF351 blocked TCDD-mediated attenuation of matrix mineralization, and either fully or partially rescued expression of genes associated with osteogenic regulation, extracellular matrix, and/or maintenance of multipotency. Thus, experimental evidence from this study suggests that AhR transactivation likely attenuates osteoblast differentiation in multipotent hBMSCs. This study also underscores the use of primary human MSCs to evaluate osteoinductive or osteotoxic potential of chemical and pharmacologic agents in vitro.
Collapse
Affiliation(s)
- AtLee T D Watson
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Rachel C Nordberg
- University of North Carolina at Chapel Hill and North Carolina State University Joint Department of Biomedical Engineering, Raleigh, North Carolina 27695 and Chapel Hill, North Carolina 27599
| | - Elizabeth G Loboa
- University of North Carolina at Chapel Hill and North Carolina State University Joint Department of Biomedical Engineering, Raleigh, North Carolina 27695 and Chapel Hill, North Carolina 27599
- College of Engineering, University of Missouri, Columbia, Missouri 65211
| | - Seth W Kullman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
27
|
Alpha-naphthoflavone induces apoptosis through endoplasmic reticulum stress via c-Src-, ROS-, MAPKs-, and arylhydrocarbon receptor-dependent pathways in HT22 hippocampal neuronal cells. Neurotoxicology 2018; 71:39-51. [PMID: 30508555 DOI: 10.1016/j.neuro.2018.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 01/16/2023]
Abstract
α-Naphthoflavone (αNF) is a prototype flavone, also known as a modulator of aryl hydrocarbon receptor (AhR). In the present study, we investigated the molecular mechanisms of αNF-induced cytotoxic effects in HT22 mouse hippocampal neuronal cells. αNF induced apoptotic cell death via activation of caspase-12 and -3 and increased expression of endoplasmic reticulum (ER) stress-associated proteins, including C/EBP homologous protein (CHOP). Inhibition of ER stress by treatment with the ER stress inhibitor, salubrinal, or by CHOP siRNA transfection reduced αNF-induced cell death. αNF activated mitogen-activated protein kinases (MAPKs), such as p38, JNK, and ERK, and inhibition of MAPKs reduced αNF-induced CHOP expression and cell death. αNF also induced accumulation of reactive oxygen species (ROS) and an antioxidant, N-acetylcysteine, reduced αNF-induced MAPK phosphorylation, CHOP expression, and cell death. Furthermore, αNF activated c-Src kinase, and inhibition of c-Src by a kinase inhibitor, SU6656, or siRNA transfection reduced αNF-induced ROS accumulation, MAPK activation, CHOP expression, and cell death. Inhibition of AhR by an AhR antagonist, CH223191, and siRNA transfection of AhR and AhR nuclear translocator reduced αNF-induced AhR-responsive luciferase activity, CHOP expression, and cell death. Finally, we found that inhibition of c-Src and MAPKs reduced αNF-induced transcriptional activity of AhR. Taken together, these findings suggest that αNF induces apoptosis through ER stress via c-Src-, ROS-, MAPKs-, and AhR-dependent pathways in HT22 cells.
Collapse
|
28
|
Udomkun P, Innawong B, Jumrusjumroendee N. Cellulose acetate and adsorbents supported on cellulose fiber extracted from waxy corn husks for improving shelf life of frying oil. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Huang Y, He J, Liang H, Hu K, Jiang S, Yang L, Mei S, Zhu X, Yu J, Kijlstra A, Yang P, Hou S. Aryl Hydrocarbon Receptor Regulates Apoptosis and Inflammation in a Murine Model of Experimental Autoimmune Uveitis. Front Immunol 2018; 9:1713. [PMID: 30090104 PMCID: PMC6068235 DOI: 10.3389/fimmu.2018.01713] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022] Open
Abstract
Uveitis is characterized as a common cause of blindness worldwide. Aryl hydrocarbon receptor (AhR), a ligand-activated nuclear receptor, has been implicated to play a role in human uveitis, although the exact mechanisms remain poorly understood. The purpose of this study was to enhance our knowledge concerning the role of AhR during intraocular inflammation. We immunized wild-type and AhR-knockout C57BL/6J mice with IRBP651–670 to induce experimental autoimmune uveitis (EAU). Disease severity was evaluated with both clinical and histopathological grading. Blood–retinal barrier (BRB) integrity was tested by Evans blue and tight junction proteins qualifications. Apoptosis was measured using TdT-mediated dUTP nick end labeling staining. Macrophage/microglia activation and polarization were studied by immunofluorescence and Western blot. Following EAU induction, AhR−/− mice had more severe clinical and histopathological manifestations of uveitis than AhR+/+ mice. Increased vascular permeability and apoptotic cells were observed in AhR−/− EAU mice when compared with AhR+/+ EAU mice. In addition, AhR−/− EAU mice showed evidence of a significantly increased macrophage/microglia cells and a stronger polarization from the M2 to the M1 phenotype as compared to AhR+/+ EAU mice. The levels of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β were increased in AhR−/− EAU mice, which was associated with the activation of NF-κB and signal transducers and activators of transcription (STAT) pathways. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an agonist of AhR, caused a significant decrease in the clinical and histopathological manifestations, preserved BRB integrity, reduced apoptotic cells, inhibited macrophage/microglia activation, and shifted their polarization from M1 toward M2. Moreover, decreased expression of pro-inflammatory cytokines including TNF-α, IL-6, and IL-1β and inhibition of NF-κB and STAT pathways were found in EAU mice following TCDD treatment. In conclusion, AhR activation with TCDD exhibits an immunomodulatory effect by reducing BRB breakdown, inhibiting retinal cell apoptosis, and reducing pro-inflammatory cytokine expression during EAU. The underlying mechanism may involve the modulation of macrophages/microglia polarization and the downregulation of NF-κB and STAT pathways.
Collapse
Affiliation(s)
- Yike Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| | - Junchi He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| | - Shaoqiu Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| | - Lu Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| | - Suyin Mei
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| | - Xiao Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China
| | - Jing Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, China
| |
Collapse
|
30
|
Yu K, Ma Y, Zhang Z, Fan X, Li T, Li L, Xiao W, Cai Y, Sun L, Xu P, Yu M, Yang H. AhR activation protects intestinal epithelial barrier function through regulation of Par-6. J Mol Histol 2018; 49:449-458. [DOI: 10.1007/s10735-018-9784-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
|
31
|
Schrenk D. What is the meaning of 'A compound is carcinogenic'? Toxicol Rep 2018; 5:504-511. [PMID: 29854622 PMCID: PMC5977538 DOI: 10.1016/j.toxrep.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/14/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Chemical Carcinogens are compounds which can cause cancer in humans and experimental animals. This property is attributed to many chemicals in the public discussion, resulting in a widespread perception of danger and threat. In contrast, a scientific analysis of the wide and non-critical use of the term 'carcinogenic' is warranted. First, it has to be clarified if the compound acts in a genotoxic or non-genotoxic manner. In the latter case, an ineffective (safe) threshold dose without cancer risk can be assumed. In addition, it needs to be investigated if the mode-of-action causing tumors in laboratory animals is relevant at all for humans. In case the compound is clearly directly genotoxic, an ineffective threshold dose cannot be assumed. However, also in this case it is evident that high doses of the compound are generally associated with a high cancer risk, low doses with a lower one. Based on dose-response data from animal experiments, quantification of the cancer risk is carried out by mathematical modeling. If the safety margin between the lowest carcinogenic dose in animals and the relevant level of exposure in humans exceeds 10,000, the degree of concern is classified as low. Cases, where the compound turns out to be genotoxic in one study or one test only but not in others or only in vitro but not in vivo, are particularly difficult to explain and cause controversial discussions. Also for indirectly genotoxic agents, an ineffective (threshold) dose must be assumed. The situation is aggravated by the use of doubtful epidemiological studies in humans such as in the case of glyphosate, where data from mixed exposure to various chemicals were used. If such considerations are mixed with pure hazard classifications such as 'probably carcinogenic in humans' ignoring dose-response behavior and mode-of-action, the misinformation and public confusion are complete. It appears more urgent but also more difficult than ever to return to a scientifically based perception of these issues.
Collapse
|
32
|
Ye M, Zhang Y, Gao H, Xu Y, Jing P, Wu J, Zhang X, Xiong J, Dong C, Yao L, Zhang J, Zhang J. Activation of the Aryl Hydrocarbon Receptor Leads to Resistance to EGFR TKIs in Non-Small Cell Lung Cancer by Activating Src-mediated Bypass Signaling. Clin Cancer Res 2017; 24:1227-1239. [PMID: 29229632 DOI: 10.1158/1078-0432.ccr-17-0396] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/08/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022]
Abstract
Purpose: The aryl hydrocarbon receptor (AhR) has been generally recognized as a ligand-activated transcriptional factor that responds to xenobiotic chemicals. Recent studies have suggested that the expression of AhR varies widely across different cancer types and cancer cell lines, but its significance in cancer treatment has yet to be clarified.Experimental Design: AhR expression in non-small cell lung cancer (NSCLC) was determined by Western blotting and IHC staining. In vitro and in vivo functional experiments were performed to determine the effect of AhR on sensitivity to targeted therapeutics. A panel of biochemical assays was used to elucidate the underlying mechanisms.Results: A high AhR protein level indicated an unfavorable prognosis for lung adenocarcinoma. Inhibition of AhR signaling sensitized EGFR tyrosine kinase inhibitors (TKIs) in NSCLC cells that express high level of endogenous AhR protein. Notably, activation of AhR by pharmacologic and molecular approaches rendered EGFR-mutant cells resistant to TKIs by restoring PI3K/Akt and MEK/Erk signaling through activation of Src. In addition, we found that AhR acts as a protein adaptor to mediate Jak2-Src interaction, which does not require the canonical transcriptional activity of AhR.Conclusions: Our results reveal a transcription-independent function of AhR and indicate that AhR may act as a protein adaptor that recruits kinases bypassing EGFR and drives resistance to TKIs. Accordingly, targeting Src would be a strategy to overcome resistance to EGFR TKIs in AhR-activated NSCLC. Clin Cancer Res; 24(5); 1227-39. ©2017 AACR.
Collapse
Affiliation(s)
- Mingxiang Ye
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
| | - Hongjun Gao
- Department of Pulmonary Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Yan Xu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengyu Jing
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianxiong Wu
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
| | - Xinxin Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
| | - Jie Xiong
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Libo Yao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China.
| |
Collapse
|
33
|
Phalen LJ, Köllner B, Hogan NS, van den Heuvel MR. Transcriptional response in rainbow trout (Oncorhynchus mykiss) B cells and thrombocytes following in vivo exposure to benzo[a]pyrene. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 53:212-218. [PMID: 28662488 DOI: 10.1016/j.etap.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/17/2017] [Indexed: 06/07/2023]
Abstract
Immune toxicity of polycyclic aromatic hydrocarbons (PAHs) in fishes has been frequently reported but the reasons for differential cell toxicity remains unclear. Rainbow trout were exposed in vivo with a single intraperitoneal injection of corn oil or 100mg/kg of the immunotoxic PAH benzo[a]pyrene (B[a]P) in corn oil. Leukocytes were harvested from head kidney, spleen and blood after 14days, the optimal time for B cell depletion found in a previous study. The mRNA expression of five cytochrome P450 (CYP) enzymes, the aryl hydrocarbon receptor (AhR), and an intrinsic pathway apoptosis checkpoint (p53) in B cells and thrombocytes were examined. Transcript levels were measured in immunomagnetically-isolated B cells and thrombocytes from those tissues as well as in liver as B cells had been previously shown to be responsive the BaP whereas thrombocytes were not. There was induction of CYP1A1 in liver, blood B cells, and blood and spleen thrombocytes; CYP1B1 in blood B cells, blood and spleen thrombocytes; CYP1A3 in liver, blood and spleen B cells, and blood thrombocytes; CYP1C1 in liver; and AhR in liver and spleen thrombocytes. There was no change in CYP1C2, or p53 mRNA levels across tissues or cell type. Induction in mRNA was observed 14 d after exposure, indicating a prolonged physiological effect of a single B[a]P injection. CYP1A1 and CYP1A3 were the most abundantly expressed CYP genes and CYP1B1 was generally least abundant. B[a]P-induced thrombocytes had a significantly different pattern of CYP expression than either liver or B cells. Given the importance of metabolites in the toxicity of PAHs, differences in CYP expression between tissues may explain differences in toxicity previously observed between B cells and thrombocytes.
Collapse
Affiliation(s)
- Laura J Phalen
- Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, Charlottetown, Canada
| | | | - Natacha S Hogan
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - Michael R van den Heuvel
- Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, Charlottetown, Canada.
| |
Collapse
|
34
|
Parks CG, de Souza Espindola Santos A, Barbhaiya M, Costenbader KH. Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best Pract Res Clin Rheumatol 2017; 31:306-320. [PMID: 29224673 PMCID: PMC5729939 DOI: 10.1016/j.berh.2017.09.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/16/2017] [Accepted: 09/03/2017] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem disease with a complex etiology. Its risk is higher among women, racial and ethnic minorities, and individuals with a family history of SLE or related autoimmune diseases. It is believed that genetic factors interact with environmental exposures throughout the lifespan to influence susceptibility to developing SLE. The strongest epidemiologic evidence exists for increased risk of SLE associated with exposure to crystalline silica, current cigarette smoking, use of oral contraceptives, and postmenopausal hormone replacement therapy, while there is an inverse association with alcohol use. Emerging research results suggest possible associations of SLE risk with exposure to solvents, residential and agricultural pesticides, heavy metals, and air pollution. Ultraviolet light, certain infections, and vaccinations have also been hypothesized to be related to SLE risk. Mechanisms linking environmental exposures and SLE include epigenetic modifications resulting from exposures, increased oxidative stress, systemic inflammation and inflammatory cytokine upregulation, and hormonal effects. Research needs to include new studies of environmental risk factors for SLE in general, with a focus on lifetime exposure assessment. In addition, studies in susceptible subgroups, such as family members, studies based on genetic risk profiles, and studies in individuals with evidence of pre-clinical autoimmunity based on the detection of specific auto-antibodies are also required. Understanding the role of environmental exposures in the development of SLE may help identify modifiable risk factors and potential etiological mechanisms.
Collapse
Affiliation(s)
- Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, USA
| | - Aline de Souza Espindola Santos
- Occupational and Environmental Health Branch, Public Health Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Medha Barbhaiya
- Department of Medicine, Division of Rheumatology, Hospital for Special Surgery, Weill-Cornell Medical School, New York, NY, USA
| | - Karen H Costenbader
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Calò M, Licata P, Bitto A, Lo Cascio P, Giarratana F, Altavilla D. Effects of PCB-126 on aryl hydrocarbon receptor, ubiquitin and p53 expression levels in Sparus aurata. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2017:S0940-2993(16)30221-4. [PMID: 28552628 DOI: 10.1016/j.etp.2017.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
The aim of the present study is to determine if Ahr ligands as PCB-126, a dioxin-like, might contribute to inhibition of the tumor suppressor p53 by promoting its degradation through proteasome-ubiquitin system (UPS). The findings show, in the presence of PCB-126, a significant increase of p53 immunoreactivity in fish compared to the control. Subsequently, there is a decrease of p53 immunoreactivity at 24h which is maintained even at 72h. At the same time there is a slight decrease of ubiquitin immunoreactivity to 12h compared to the control and a marked decrease to 24 and 72h. The induction of ubiquitin expression is resulted very marked in the control and preserved at 12h. It's very important to underline as in our study we demonstrate a marked decrease of ubiquitin and p53 immunoreactivity at 24h and 72h. AHR activation, by ligands as PCB-126, increases p53 ubiquitation inhibiting its expression, in addition it decreases the free ubiquitin promoting disruption of Ub homeostasis; this is the first report that establishes a relationship between AhR, increases p53 ubiquitation, and reduction of free ubiquitin. Our result emphasize the need to deeply the role of this receptor in UPS regulation as potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- M Calò
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy.
| | - P Licata
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - A Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Torre Biologica, 5th Floor, AOU Policlinico "G. Martino", Via C. Valeria Gazzi, 98125, Messina, Italy
| | - P Lo Cascio
- Department of Biological and Environmental Sciences, University of Messina, Salita Sperone 31, S. Agata, Messina, 98166, Italy
| | - F Giarratana
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - D Altavilla
- Department of Clinical and Experimental Medicine, University of Messina, Torre Biologica, 5th Floor, AOU Policlinico "G. Martino", Via C. Valeria Gazzi, 98125, Messina, Italy
| |
Collapse
|
36
|
Calò M, Bitto A, Lo Cascio P, Giarratana F, Altavilla D, Gervasi T, Campone L, Cicero N, Licata P. PCB-126 effects on aryl hydrocarbon receptor, ubiquitin and p53 expression levels in a fish product (Sparus aurata L.). Nat Prod Res 2017; 32:1136-1144. [DOI: 10.1080/14786419.2017.1320794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Margherita Calò
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Luca Campone
- Department of Pharmacy, University of Salerno, Fisciano SA, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Science4Life, Spin Off Company, University of Messina, Messina, Italy
| | - Patrizia Licata
- Department of Veterinary Science, University of Messina, Messina, Italy
| |
Collapse
|
37
|
Prisciandaro M, Piemonte V, di Celso GM, Ronconi S, Capocelli M. Thermodynamic features of dioxins' adsorption. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:645-652. [PMID: 27866764 DOI: 10.1016/j.jhazmat.2016.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/30/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
In this paper, the six more poisonous species among all congeners of dioxin group are taken into account, and the P-T diagram for each of them is developed. Starting from the knowledge of vapour tensions and thermodynamic parameters, the theoretical adsorption isotherms are calculated according to the Langmuir's model. In particular, the Langmuir isotherm parameters (K and wmax) have been validated through the estimation of the adsorption heat (ΔHads), which varies in the range 20-24kJ/mol, in agreement with literature values. This result will allow to put the thermodynamical basis for a rational design of different process units devoted to dioxins removal.
Collapse
Affiliation(s)
- Marina Prisciandaro
- Department of Industrial and Information Engineering and of Economics, University of L'Aquila, Viale Giovanni Gronchi 18, L'Aquila 67100, Italy
| | - Vincenzo Piemonte
- Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128, Italy.
| | | | - Silvia Ronconi
- Arta Abruzzo, Department of L'Aquila, Bazzano (AQ), 67100 L'Aquila, Italy
| | - Mauro Capocelli
- Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128, Italy
| |
Collapse
|
38
|
AhR-dependent 2,3,7,8-tetrachlorodibenzo- p -dioxin toxicity in human neuronal cell line SHSY5Y. Neurotoxicology 2016; 56:55-63. [DOI: 10.1016/j.neuro.2016.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 11/21/2022]
|
39
|
Fromme H, Hilger B, Albrecht M, Gries W, Leng G, Völkel W. Occurrence of chlorinated and brominated dioxins/furans, PCBs, and brominated flame retardants in blood of German adults. Int J Hyg Environ Health 2016; 219:380-8. [DOI: 10.1016/j.ijheh.2016.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
|
40
|
Mitro SD, Birnbaum LS, Needham BL, Zota AR. Cross-sectional Associations between Exposure to Persistent Organic Pollutants and Leukocyte Telomere Length among U.S. Adults in NHANES, 2001-2002. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:651-8. [PMID: 26452299 PMCID: PMC4858394 DOI: 10.1289/ehp.1510187] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/05/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Exposure to persistent organic pollutants (POPs) such as dioxins, furans, and polychlorinated biphenyls (PCBs) may influence leukocyte telomere length (LTL), a biomarker associated with chronic disease. In vitro research suggests dioxins may bind to the aryl hydrocarbon receptor (AhR) and induce telomerase activity, which elongates LTL. However, few epidemiologic studies have investigated associations between POPs and LTL. OBJECTIVES We examined the association between 18 PCBs, 7 dioxins, and 9 furans and LTL among 1,330 U.S. adults from NHANES 2001-2002. METHODS We created three summed POP metrics based on toxic equivalency factor (TEF), a potency measure including affinity for the AhR: a) non-dioxin-like PCBs (composed of 10 non-dioxin-like PCBs; no AhR affinity and no TEF); b) non-ortho PCBs (composed of 2 non-ortho-substituted PCBs with high TEFs); and c) toxic equivalency (TEQ) (composed of 7 dioxins, 9 furans, 2 non-ortho-substituted PCBs, and 6 mono-ortho-substituted PCBs; weighted by TEF). We tested the association between each metric and LTL using linear regression, adjusting for demographics, blood cell count and distribution, and another metric with a different TEF (i.e., non-ortho PCBs and TEQ adjusted for non-dioxin-like PCBs; non-dioxin-like PCBs adjusted for non-ortho PCBs). RESULTS In adjusted models, each doubling of serum concentrations of non-ortho PCBs and TEQ was associated with 3.74% (95% CI: 2.10, 5.40) and 5.29% (95% CI: 1.66, 9.05) longer LTLs, respectively. Compared with the lowest quartile, the highest quartile of exposure was associated with 9.16% (95% CI: 2.96, 15.73) and 7.84% (95% CI: -0.53, 16.92) longer LTLs, respectively. Non-dioxin-like PCBs were not associated with LTL. CONCLUSIONS POPs with high TEFs and AhR affinity were associated with longer LTL. Because many dioxin-associated cancers are also associated with longer LTL, these results may provide insight into the mechanisms underlying PCB- and dioxin-related carcinogenesis. CITATION Mitro SD, Birnbaum LS, Needham BL, Zota AR. 2016. Cross-sectional associations between exposure to persistent organic pollutants and leukocyte telomere length among U.S. adults in NHANES, 2001-2002. Environ Health Perspect 124:651-658; http://dx.doi.org/10.1289/ehp.1510187.
Collapse
Affiliation(s)
- Susanna D. Mitro
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington DC, USA
| | - Linda S. Birnbaum
- National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Belinda L. Needham
- Department of Epidemiology, School of Public Health, University of Michigan Ann Arbor, Ann Arbor, Michigan, USA
| | - Ami R. Zota
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington DC, USA
- Address correspondence to A.R. Zota, Milken Institute School of Public Health, Department of Environmental and Occupational Health, 950 New Hampshire Ave. NW, Suite 414, Washington, DC 20052 USA. Telephone: (202) 994-9289. E-mail:
| |
Collapse
|
41
|
Lehnert K, Ronnenberg K, Weijs L, Covaci A, Das K, Hellwig V, Siebert U. Xenobiotic and Immune-Relevant Molecular Biomarkers in Harbor Seals as Proxies for Pollutant Burden and Effects. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:106-120. [PMID: 26296438 DOI: 10.1007/s00244-015-0202-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
Harbor seals are exposed to increasing pressure caused by anthropogenic activities in their marine environment. Persistent organic pollutants (POPs) and trace elements are hazardous contaminants that accumulate in tissues of harbor seals. POPs and trace elements can negatively affect the immune-system and have been reported, e.g., to increase susceptibility to viral infections in seals. Biomarkers of the xenobiotic metabolism, cytokines, and heat-shock protein as cell mediators of the immune-system were established to evaluate the impact of environmental stressors on harbor seals. Harbor seals (n = 54) were captured on sandbanks in the North Sea during 2009-2012. Health assessments, including hematology, were performed, and RNAlater blood samples were taken and analyzed using quantitative polymerase chain reaction. Normalized transcript copy numbers were correlated to hematology and POP concentration in blood and trace metals in blood and fur. A significant correlation between xenobiotic markers and contaminant burden was found. Significant interrelationships between markers and POP compounds, as well as with season, weight, and hematology values, indicate that biomarkers reflect pollutant exposure and effects. A significant relationship between cortisol levels and heat-shock protein expression was observed indicating stress experienced during restraint of the seals. Interleukin-10 transcription showed significant correlations with trace elements in fur pointing toward immune regulatory effects of metal exposure. The molecular markers prove to be an important noninvasive tool that reflects contaminant exposure and the impact of anthropogenic stressors in seal species. The connection between interleukin-2, xenobiotic markers, and pollutants may indicate immune suppression in animals exposed to contaminants with subsequent susceptibility to inflammatory disease.
Collapse
Affiliation(s)
- Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany.
- Institute for Coastal Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research, 21502, Geesthacht, Germany.
| | - Katrin Ronnenberg
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| | - Liesbeth Weijs
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- National Research Centre for Environmental Toxicology (ENTOX), The University of Queensland, 39 Kessels Road, Coopers Plains, QLD, 4108, Australia
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Krishna Das
- Laboratory of Oceanology-MARE Centre, University of Liege, 4000, Liege, Belgium
| | - Veronika Hellwig
- Institute for Coastal Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research, 21502, Geesthacht, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| |
Collapse
|
42
|
Jackson DP, Joshi AD, Elferink CJ. Ah Receptor Pathway Intricacies; Signaling Through Diverse Protein Partners and DNA-Motifs. Toxicol Res (Camb) 2015; 4:1143-1158. [PMID: 26783425 PMCID: PMC4714567 DOI: 10.1039/c4tx00236a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Ah receptor is a transcription factor that modulates gene expression via interactions with multiple protein partners; these are reviewed, including the novel NC-XRE pathway involving KLF6.
Collapse
|
43
|
Harrill JA, Layko D, Nyska A, Hukkanen RR, Manno RA, Grassetti A, Lawson M, Martin G, Budinsky RA, Rowlands JC, Thomas RS. Aryl hydrocarbon receptor knockout rats are insensitive to the pathological effects of repeated oral exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Appl Toxicol 2015; 36:802-14. [PMID: 26278112 DOI: 10.1002/jat.3211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/24/2015] [Accepted: 06/14/2015] [Indexed: 12/31/2022]
Abstract
Sustained activation of the aryl hydrocarbon receptor (AHR) is believed to be the initial key event in AHR receptor-mediated tumorigenesis in the rat liver. The role of AHR in mediating pathological changes in the liver prior to tumor formation was investigated in a 4-week, repeated-dose study using adult female wild-type (WT) and AHR knockout (AHR-KO) rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Beginning at 8 weeks of age, AHR-KO and WT rats were dosed by oral gavage with varying concentrations of TCDD (0, 3, 22, 100, 300 and 1000 ng kg(-1) day(-1) ). Lung, liver and thymus histopathology, hematology, serum chemistry and the distribution of TCDD in liver and adipose tissue were examined. Treatment-related increases in the severity of liver and thymus pathology were observed in WT, but not AHR-KO rats. In the liver, these included hepatocellular hypertrophy, bile duct hyperplasia, multinucleated hepatocytes and inflammatory cell foci. A loss of cellularity in the thymic cortex and thymic atrophy was observed. Treatment-related changes in serum chemistry parameters were also observed in WT, but not AHR-KO rats. Finally, dose-dependent accumulation of TCDD was observed primarily in the liver of WT rats and primarily in the adipose tissue of AHR-KO rats. The results suggest that AHR activation is the initial key event underlying the progression of histological effects leading to liver tumorigenesis following TCDD treatment. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Joshua A Harrill
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| | - Debra Layko
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| | - Abraham Nyska
- Consultant in Toxicologic Pathology, Sackler School of Medicine, Tel Aviv University, Timrat, 36576, Israel
| | | | | | | | - Marie Lawson
- The Dow Chemical Company, Midland, MI, 48640, USA
| | - Greg Martin
- The Dow Chemical Company, Midland, MI, 48640, USA
| | | | | | - Russell S Thomas
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
44
|
Becker RA, Patlewicz G, Simon TW, Rowlands JC, Budinsky RA. The adverse outcome pathway for rodent liver tumor promotion by sustained activation of the aryl hydrocarbon receptor. Regul Toxicol Pharmacol 2015; 73:172-90. [PMID: 26145830 DOI: 10.1016/j.yrtph.2015.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
An Adverse Outcome Pathway (AOP) represents the existing knowledge of a biological pathway leading from initial molecular interactions of a toxicant and progressing through a series of key events (KEs), culminating with an apical adverse outcome (AO) that has to be of regulatory relevance. An AOP based on the mode of action (MOA) of rodent liver tumor promotion by dioxin-like compounds (DLCs) has been developed and the weight of evidence (WoE) of key event relationships (KERs) evaluated using evolved Bradford Hill considerations. Dioxins and DLCs are potent aryl hydrocarbon receptor (AHR) ligands that cause a range of species-specific adverse outcomes. The occurrence of KEs is necessary for inducing downstream biological responses and KEs may occur at the molecular, cellular, tissue and organ levels. The common convention is that an AOP begins with the toxicant interaction with a biological response element; for this AOP, this initial event is binding of a DLC ligand to the AHR. Data from mechanistic studies, lifetime bioassays and approximately thirty initiation-promotion studies have established dioxin and DLCs as rat liver tumor promoters. Such studies clearly show that sustained AHR activation, weeks or months in duration, is necessary to induce rodent liver tumor promotion--hence, sustained AHR activation is deemed the molecular initiating event (MIE). After this MIE, subsequent KEs are 1) changes in cellular growth homeostasis likely associated with expression changes in a number of genes and observed as development of hepatic foci and decreases in apoptosis within foci; 2) extensive liver toxicity observed as the constellation of effects called toxic hepatopathy; 3) cellular proliferation and hyperplasia in several hepatic cell types. This progression of KEs culminates in the AO, the development of hepatocellular adenomas and carcinomas and cholangiolar carcinomas. A rich data set provides both qualitative and quantitative knowledge of the progression of this AOP through KEs and the KERs. Thus, the WoE for this AOP is judged to be strong. Species-specific effects of dioxins and DLCs are well known--humans are less responsive than rodents and rodent species differ in sensitivity between strains. Consequently, application of this AOP to evaluate potential human health risks must take these differences into account.
Collapse
Affiliation(s)
- Richard A Becker
- Regulatory and Technical Affairs Department, American Chemistry Council (ACC), Washington, DC 20002, USA.
| | - Grace Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE 19711, USA
| | - Ted W Simon
- Ted Simon LLC, 4184 Johnston Road, Winston, GA 30187, USA
| | - J Craig Rowlands
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| | - Robert A Budinsky
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| |
Collapse
|
45
|
The aryl hydrocarbon receptor-dependent disruption of contact inhibition in rat liver WB-F344 epithelial cells is linked with induction of survivin, but not with inhibition of apoptosis. Toxicology 2015; 333:37-44. [DOI: 10.1016/j.tox.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/23/2022]
|
46
|
Bekki K, Vogel H, Li W, Ito T, Sweeney C, Haarmann-Stemmann T, Matsumura F, Vogel CFA. The aryl hydrocarbon receptor (AhR) mediates resistance to apoptosis induced in breast cancer cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 120:5-13. [PMID: 25987214 PMCID: PMC4438266 DOI: 10.1016/j.pestbp.2014.12.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 05/26/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is well known as a ligand binding transcription factor regulating various biological effects. Previously we have shown that long-term exposure to estrogen in breast cancer cells caused not only down regulation of estrogen receptor (ER) but also overexpression of AhR. The AhR interacts with several cell signaling pathways associated with induction of tyrosine kinases, cytokines and growth factors which may support the survival roles of AhR escaping from apoptosis elicited by a variety of apoptosis inducing agents in breast cancer. In this study, we studied the anti-apoptotic role of AhR in different breast cancer cells when apoptosis was induced by exposure to UV light and chemotherapeutic agents. Activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in AhR overexpressing breast cancer cells effectively suppressed the apoptotic response induced by UV-irradiation, doxorubicin, lapatinib and paclitaxel. The anti-apoptotic response of TCDD was uniformly antagonized by the treatment with 3'methoxy-4'nitroflavone (MNF), a specific antagonist of AhR. TCDD's survival action of apoptosis was accompanied with the induction of well-known inflammatory genes, such as cyclooxygenase-2 (COX-2) and NF-κB subunit RelB. Moreover, TCDD increased the activity of the immunosuppressive enzyme indoleamine 2, 3-dioxygenase (IDO), which metabolizes tryptophan to kynurenine (Kyn) and mediates tumor immunity. Kyn also acts as an AhR ligand like TCDD, and kyn induced an anti-apoptotic response in breast cancer cells. Accordingly, our present study suggests that AhR plays a pivotal role in the development of breast cancer via the suppression of apoptosis, and provides an idea that the use of AhR antagonists with chemotherapeutic agents may effectively synergize the elimination of breast cancer cells.
Collapse
Affiliation(s)
- Kanae Bekki
- Center for Health and the Environment, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Helena Vogel
- Center for Health and the Environment, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Wen Li
- Center for Health and the Environment, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Tomohiro Ito
- Center for Health and the Environment, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Colleen Sweeney
- Cancer Research Center, Basic Science Research, Medical School, University of California, Davis, CA 95817, USA
| | - Thomas Haarmann-Stemmann
- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | - Fumio Matsumura
- Center for Health and the Environment, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Environmental Toxicology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christoph F A Vogel
- Center for Health and the Environment, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Environmental Toxicology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
47
|
Joshi AD, Carter DE, Harper TA, Elferink CJ. Aryl hydrocarbon receptor-dependent stanniocalcin 2 induction by cinnabarinic acid provides cytoprotection against endoplasmic reticulum and oxidative stress. J Pharmacol Exp Ther 2015; 353:201-12. [PMID: 25672339 PMCID: PMC11047083 DOI: 10.1124/jpet.114.222265] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/10/2015] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic ligand-activated transcription factor historically known for its role in xenobiotic metabolism. Although AhR activity has previously been shown to play a cytoprotective role against intrinsic apoptotic stimuli, the underlying mechanism by which AhR confers cytoprotection against apoptosis is largely unknown. Here, we demonstrate that activation of AhR by the tryptophan catabolite cinnabarinic acid (CA) directly upregulates expression of stanniocalcin 2 (Stc2) to elicit cytoprotection against apoptosis induced by endoplasmic reticulum stress and oxidative stress. Chromatin immunoprecipitation studies demonstrated that CA treatment induces direct AhR binding to a region of the Stc2 promoter containing multiple xenobiotic response elements. Using isolated primary hepatocytes from AhR wild-type (AhR floxed) and liver-specific AhR conditional knockout mice, we showed that pretreatment with CA conferred cytoprotection against hydrogen peroxide (H(2)O(2))-, thapsigargin-, and ethanol-induced apoptosis in an AhR-dependent manner. Furthermore, suppressing Stc2 expression using RNA interference confirmed that the cytoprotective properties of CA against H(2)O(2), thapsigargin, and ethanol injury were absolutely dependent on Stc2. Immunochemistry revealed the presence of Stc2 in the endoplasmic reticulum and on the cell surface, consistent with Stc2 secretion and autocrine and/or paracrine signaling. Finally, in vivo data using a mouse model of acute alcohol hepatotoxicity demonstrated that CA provided cytoprotection against ethanol-induced apoptosis, hepatic microvesicular steatosis, and liver injury. Collectively, our data uncovered a novel mechanism for AhR-mediated cytoprotection in the liver that is dependent on CA-induced Stc2 activity.
Collapse
Affiliation(s)
- Aditya D Joshi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (A.D.J., D.E.C., C.J.E.); and Linus Pauling Institute, Oregon State University, Corvallis, Oregon (T.A.H.)
| | - Dwayne E Carter
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (A.D.J., D.E.C., C.J.E.); and Linus Pauling Institute, Oregon State University, Corvallis, Oregon (T.A.H.)
| | - Tod A Harper
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (A.D.J., D.E.C., C.J.E.); and Linus Pauling Institute, Oregon State University, Corvallis, Oregon (T.A.H.)
| | - Cornelis J Elferink
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (A.D.J., D.E.C., C.J.E.); and Linus Pauling Institute, Oregon State University, Corvallis, Oregon (T.A.H.)
| |
Collapse
|
48
|
Patlewicz G, Simon TW, Rowlands JC, Budinsky RA, Becker RA. Proposing a scientific confidence framework to help support the application of adverse outcome pathways for regulatory purposes. Regul Toxicol Pharmacol 2015; 71:463-77. [PMID: 25707856 DOI: 10.1016/j.yrtph.2015.02.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
An adverse outcome pathway (AOP) describes the causal linkage between initial molecular events and an adverse outcome at individual or population levels. Whilst there has been considerable momentum in AOP development, far less attention has been paid to how AOPs might be practically applied for different regulatory purposes. This paper proposes a scientific confidence framework (SCF) for evaluating and applying a given AOP for different regulatory purposes ranging from prioritizing chemicals for further evaluation, to hazard prediction, and ultimately, risk assessment. The framework is illustrated using three different AOPs for several typical regulatory applications. The AOPs chosen are ones that have been recently developed and/or published, namely those for estrogenic effects, skin sensitisation, and rodent liver tumor promotion. The examples confirm how critical the data-richness of an AOP is for driving its practical application. In terms of performing risk assessment, human dosimetry methods are necessary to inform meaningful comparisons with human exposures; dosimetry is applied to effect levels based on non-testing approaches and in vitro data. Such a comparison is presented in the form of an exposure:activity ratio (EAR) to interpret biological activity in the context of exposure and to provide a basis for product stewardship and regulatory decision making.
Collapse
Affiliation(s)
- Grace Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, DE 19711, USA.
| | - Ted W Simon
- Ted Simon LLC, 4184 Johnston Road, Winston, GA 30187, USA
| | - J Craig Rowlands
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| | - Robert A Budinsky
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| | - Richard A Becker
- Regulatory and Technical Affairs Department, American Chemistry Council (ACC), Washington, DC 20002, USA
| |
Collapse
|
49
|
Sura R, Settivari RS, LeBaron MJ, Craig Rowlands J, Carney EW, Bhaskar Gollapudi B. A critical assessment of the methodologies to investigate the role of inhibition of apoptosis in rodent hepatocarcinogenesis. Toxicol Mech Methods 2015; 25:192-200. [DOI: 10.3109/15376516.2015.1007541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
50
|
Fromme H, Albrecht M, Appel M, Hilger B, Völkel W, Liebl B, Roscher E. PCBs, PCDD/Fs, and PBDEs in blood samples of a rural population in South Germany. Int J Hyg Environ Health 2015; 218:41-6. [DOI: 10.1016/j.ijheh.2014.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 01/22/2023]
|