1
|
Li Z, Du Y, Lu Y, Ma X, Li F, Zeng P, Zhang T, He Y, Luo P, Wu J. Hypericum perforatum-derived exosomes-like nanovesicles for adipose tissue photodynamic therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155854. [PMID: 39032276 DOI: 10.1016/j.phymed.2024.155854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Recent investigations underscore the capacity of photodynamic therapy (PDT) to induce adipocyte apoptosis, thereby mitigating obesity. Nonetheless, extant synthetic photosensitizers manifest limitations that hinder their clinical viability. PURPOSE In the current study, we used Hypericum perforatum-derived exosomes-like nanovesicles (HPExos) as a novel photosensitizer, and investigated its PDT effects in adipose tissue during obesity. METHOD HPExos-were administered to high fat diet mice via intraperitoneal injection, followed by targeted irradiation with specialized LED lights. Mass spectrometric analysis was analyzed in adipose tissues. CCK8 assay and Oil Red O staining were used to investigate lipid accumulation in 3T3-L1 cells to clarify adipocyte differentiation. The expression levels of related markers associated with adipogenesis and lipogenesis were assessed by RT-PCR. Apoptosis analysis was performed by TUNEL staining of and western blotting. RESULTS HPExos combined with PDT accumulated in visceral white adipose tissues results in a reduced body weight and improved insulin sensitivity. HPExos combined with PDT induced apoptosis by driving high levels of ROS. In addition, HPExos combined with PDT significantly downregulated the expression of transcription factors, PPARγ, C/EBPα, and SREBP and lipogenesis protein FABP4 both in vitro and in vivo, associated with a decreased FFA levels. CONCLUSION These findings suggest that HPExos could act as an effective photosensitizer in regulating glucose hemostasis by inhibiting adipocyte differentiation and lipogenesis, offering a promising approach for obesity treatment.
Collapse
Affiliation(s)
- Ziyu Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, Macau, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yu Du
- Department of Rheumatology and Immunology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Yu Lu
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoyu Ma
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fei Li
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Peiyuan Zeng
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tao Zhang
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuqian He
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pei Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, Macau, China
| | - Jianbo Wu
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
2
|
Nguyen HNA, Sharp L, Lyman E, Saenz JP. Varying the position of phospholipid acyl chain unsaturation modulates hopanoid and sterol ordering. Biophys J 2024; 123:1896-1902. [PMID: 38850024 PMCID: PMC11267422 DOI: 10.1016/j.bpj.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
The cell membrane must balance mechanical stability with fluidity to function as both a barrier and an organizational platform. Key to this balance is the ordering of hydrocarbon chains and the packing of lipids. Many eukaryotes synthesize sterols, which are uniquely capable of modulating the lipid order to decouple membrane stability from fluidity. Ancient sterol analogs known as hopanoids are found in many bacteria and proposed as ancestral ordering lipids. The juxtaposition of sterols and hopanoids in extant organisms prompts us to ask why both pathways persist, especially in light of their convergent ability to order lipids. In this work, simulations, monolayer experiments, and cellular assays show that hopanoids and sterols order unsaturated phospholipids differently based on the position of double bonds in the phospholipid acyl chain. We find that cholesterol and diplopterol's methyl group distributions lead to distinct effects on unsaturated lipids. In Mesoplasma florum, diplopterol's constrained ordering capacity reduces membrane resistance to osmotic stress, unlike cholesterol. These findings suggest that cholesterol's broader lipid-ordering ability may have facilitated the exploration of a more diverse lipidomic landscape in eukaryotic membranes.
Collapse
Affiliation(s)
- Ha Ngoc Anh Nguyen
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany
| | - Liam Sharp
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware; College of Arts and Sciences, Fairfield University, Fairfield, Connecticut
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware; Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware
| | - James P Saenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany; Medical Faculty, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Finkel PL, Carrizo D, Rasmussen KR, Knudsen NAT, Parro V, Sánchez-García L. Lipid-based paleoecological and biogeochemical reconstruction of Store Saltsø, an extreme lacustrine system in SW Greenland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171199. [PMID: 38408664 DOI: 10.1016/j.scitotenv.2024.171199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Polar lakes harbour a unique biogeochemistry that reflects the implications of climatic fluctuations against a susceptible yet extreme environment. In addition to polar, Store Saltsø (Kangerlussuaq, southwestern Greenland) is an endorheic lake with alkaline and oligotrophic waters that host a distinctive ecology adapted to live in such particular physico-chemical and environmental conditions. By exploring the sedimentary record of Store Saltsø at a molecular and compound-specific isotopic level, we were able to understand its ecology and biogeochemical evolution upon climate change. We employed lipid biomarkers to identify biological sources and metabolic traits in different environmental samples (shore terrace, sediment core, and white precipitates at the shore), and their succession over time to reconstruct the lake paleobiology. Different molecular ratios and geochemical proxies provided further insights toward the evolution of environmental conditions in the frame of the deglaciation history of Kangerlussuaq. The relative abundance of terrestrial (i.e., plant derived) biomarkers (odd long-chain n-alkanes, even long-chain n-alkanols, and phytosterols) in the upper half of the shore terrace versus the relatively more present aquatic biomarkers (botryococcenes and long-chain alkenones) in its lower half revealed higher lake water levels in the past. Moreover, the virtual absence of organics in the deepest section of the sediment core (32-29 cm depth) suggested that the lake did not yet exist at the northwestern shore of Store Saltsø ∼5100 years ago. According to the relative abundance of lipid biomarkers detected in the adjacent section above (29-25 cm depth), we hypothesize that the northwestern shore of Store Saltsø formed ∼4900 years ago. By combining the molecular and compound-specific isotopic analysis of lipids in a ∼360 cm sedimentary sequence, we recreated the paleobiology and evolution of an extreme lacustrine environment suitable for the study of the limits of life and the effects of climate warming.
Collapse
Affiliation(s)
- Pablo L Finkel
- Centro de Astrobiología (CAB), CSIC-INTA, Madrid, Spain; Department of Physics and Mathematics, Department of Automatics, University of Alcalá, Madrid, Spain
| | | | | | | | - Victor Parro
- Centro de Astrobiología (CAB), CSIC-INTA, Madrid, Spain
| | | |
Collapse
|
4
|
Cheng Y, Ferdousi F, Foronda BA, Linh TN, Ganbold M, Yada A, Arimura T, Isoda H. A comparative transcriptomics analysis reveals ethylene glycol derivatives of squalene ameliorate excessive lipogenesis and inflammatory response in 3T3-L1 preadipocytes. Heliyon 2024; 10:e26867. [PMID: 38463791 PMCID: PMC10923669 DOI: 10.1016/j.heliyon.2024.e26867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/27/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Squalene (SQ) is a natural compound with anti-inflammatory, anti-cancer, and anti-oxidant effects, but due to its low solubility, its biological properties have been greatly underestimated. This study aims to explore the differences in gene expression patterns of four newly synthesized amphipathic ethylene glycol (EG) derivatives of SQ by whole-genome transcriptomics analysis using DNA microarray to examine the mRNA expression profile of adipocytes differentiated from 3T3-L1 cells treated with SQ and its EG derivatives. Enrichment analyses of the transcriptional data showed that compared with SQ, its EG derivatives exerted different, in most cases desirable, biological responses. EG derivatives showed increased enrichment of mitochondrial functions, lipid and glucose metabolism, and inflammatory response. Mono-, di-, and tetra-SQ showed higher enrichment of the cellular component-ribosome. Histological staining showed EG derivatives prevented excessive lipid accumulation. Additionally, mitochondrial transcription factors showed upregulation in tetra-SQ-treated cells. Notably, EG derivatives showed better anti-inflammatory effects. Further, gene-disease association analysis predicted substantial improvement in the bioactivities of SQ derivatives in metabolic diseases. Cluster analyses revealed di- and tetra-SQ had more functional similarities than others, reflected in their scanning electron microscopy images; both di- and tetra-SQ self-organized into similar sizes and shapes of vesicles, subsequently improving their cation binding activities. Protein-protein interaction networks further revealed that cation binding activity might explain a major part, if not all, of the differences observed in functional analyses. Altogether, the addition of EG derivatives may improve the biological responses of SQ and thus may enhance its health-promoting potential.
Collapse
Affiliation(s)
- Yu Cheng
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan
- Alliance of Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | | | - Tran Ngoc Linh
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Munkhzul Ganbold
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Akira Yada
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Takashi Arimura
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan
- Alliance of Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Okayama A, Hoshino T, Wada K, Takahashi H. Comparison of structural effects of cholesterol, lanosterol, and oxysterol on phospholipid (POPC) bilayers. Chem Phys Lipids 2024; 259:105376. [PMID: 38325710 DOI: 10.1016/j.chemphyslip.2024.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Membrane sterols contribute to the function of biomembranes by regulating the physical properties of the lipid bilayers. Cholesterol, a typical mammalian sterol, is biosynthesized by oxidation of lanosterol. From a molecular evolutionary perspective, lanosterol is considered the ancestral molecule of cholesterol. Here, we studied whether cholesterol is superior to lanosterol in regulating the physical properties of the lipid bilayer in terms of the structural effect on model biomembranes composed of a phospholipid. For comparison, oxysterol, which is formed by oxidation of cholesterol, was also studied. The phospholipid used was 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), which is abundantly found in mammalian biomembranes, and 7β-hydroxycholesterol, which is highly cytotoxic, was used as the oxysterol. The apparent molecular volume was calculated from the mass density determined by the flotation method using H2O and D2O, and the bilayer thickness was determined by reconstructing the electron density distribution from X-ray diffraction data of the POPC/sterol mixtures at a sterol concentration of 30 mol%. The apparent occupied area at the bilayer surface was calculated from the above two structural data. The cholesterol system had the thickest bilayer thickness and the smallest occupied area of the three sterols studied here. This indicates that the POPC/cholesterol bilayer has a better barrier property than the other two systems. Compared to cholesterol, the effects of lanosterol and 7β-hydroxycholesterol on lipid bilayer properties can be interpreted as suboptimal for the function of mammalian biomembranes.
Collapse
Affiliation(s)
- Ayumi Okayama
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Tatsuya Hoshino
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Kohei Wada
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
| | - Hiroshi Takahashi
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan.
| |
Collapse
|
6
|
Bolzonello A, Morbiato L, Tundo S, Sella L, Baccelli I, Echeverrigaray S, Musetti R, De Zotti M, Favaron F. Peptide Analogs of a Trichoderma Peptaibol Effectively Control Downy Mildew in the Vineyard. PLANT DISEASE 2023; 107:2643-2652. [PMID: 36724095 DOI: 10.1094/pdis-09-22-2064-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plasmopara viticola, the agent of grapevine downy mildew, causes enormous economic damage, and its control is primarily based on the use of synthetic fungicides. The European Union policies promote reducing reliance on synthetic plant protection products. Biocontrol agents such as Trichoderma spp. constitute a resource for the development of biopesticides. Trichoderma spp. produce secondary metabolites such as peptaibols, but the poor water solubility of peptaibols limits their practical use as agrochemicals. To identify new potential bio-inspired molecules effective against P. viticola, various water-soluble peptide analogs of the peptaibol trichogin were synthesized. In grapevine leaf disk assays, the peptides analogs at a concentration of 50 μM completely prevented P. viticola infection after zoosporangia inoculation. Microscopic observations of one of the most effective peptides showed that it causes membrane lysis and cytoplasmic granulation in both zoosporangia and zoospores. Among the effective peptides, 4r was selected for a 2-year field trial experiment. In the vineyard, the peptide administered at 100 μM (equivalent to 129.3 g/ha) significantly reduced the disease incidence and severity on both leaves and bunches, with protection levels similar to those obtained using a cupric fungicide. In the second-year field trial, reduced dosages of the peptide were also tested, and even at the peptide concentration reduced by 50 or 75%, a significant decrease in the disease incidence and severity was obtained at the end of the trial. The peptide did not show any phytotoxic effect. Previously, peptide 4r had been demonstrated to be active against other fungal pathogens, including the grapevine fungus Botrytis cinerea. Thus, this peptide may be a candidate for a broad-spectrum fungicide whose biological properties deserve further investigation.
Collapse
Affiliation(s)
- Angela Bolzonello
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| | - Laura Morbiato
- Department of Chemistry, University of Padova, Padova I-35131, Italy
| | - Silvio Tundo
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino I-50019, Italy
| | - Sergio Echeverrigaray
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS 95070-560, Brazil
| | - Rita Musetti
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| | - Marta De Zotti
- Department of Chemistry, University of Padova, Padova I-35131, Italy
| | - Francesco Favaron
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Legnaro I-35020, Italy
| |
Collapse
|
7
|
Brocks JJ, Nettersheim BJ, Adam P, Schaeffer P, Jarrett AJM, Güneli N, Liyanage T, van Maldegem LM, Hallmann C, Hope JM. Lost world of complex life and the late rise of the eukaryotic crown. Nature 2023:10.1038/s41586-023-06170-w. [PMID: 37286610 DOI: 10.1038/s41586-023-06170-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/04/2023] [Indexed: 06/09/2023]
Abstract
Eukaryotic life appears to have flourished surprisingly late in the history of our planet. This view is based on the low diversity of diagnostic eukaryotic fossils in marine sediments of mid-Proterozoic age (around 1,600 to 800 million years ago) and an absence of steranes, the molecular fossils of eukaryotic membrane sterols1,2. This scarcity of eukaryotic remains is difficult to reconcile with molecular clocks that suggest that the last eukaryotic common ancestor (LECA) had already emerged between around 1,200 and more than 1,800 million years ago. LECA, in turn, must have been preceded by stem-group eukaryotic forms by several hundred million years3. Here we report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age. These primordial compounds had previously remained unnoticed because their structures represent early intermediates of the modern sterol biosynthetic pathway, as predicted by Konrad Bloch4. The protosteroids reveal an ecologically prominent 'protosterol biota' that was widespread and abundant in aquatic environments from at least 1,640 to around 800 million years ago and that probably comprised ancient protosterol-producing bacteria and deep-branching stem-group eukaryotes. Modern eukaryotes started to appear in the Tonian period (1,000 to 720 million years ago), fuelled by the proliferation of red algae (rhodophytes) by around 800 million years ago. This 'Tonian transformation' emerges as one of the most profound ecological turning points in the Earth's history.
Collapse
Affiliation(s)
- Jochen J Brocks
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Benjamin J Nettersheim
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia.
- MARUM-Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany.
| | - Pierre Adam
- Université de Strasbourg, CNRS, Institut de Chimie de Strasbourg UMR 7177, Strasbourg, France
| | - Philippe Schaeffer
- Université de Strasbourg, CNRS, Institut de Chimie de Strasbourg UMR 7177, Strasbourg, France
| | - Amber J M Jarrett
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
- Northern Territory Geological Survey, Darwin, Northern Territory, Australia
| | - Nur Güneli
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Tharika Liyanage
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lennart M van Maldegem
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Janet M Hope
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
8
|
Lopez C, David-Briand E, Lollier V, Mériadec C, Bizien T, Pérez J, Artzner F. Solubilization of free β-sitosterol in milk sphingomyelin and polar lipid vesicles as carriers: Structural characterization of the membranes and sphingosome morphology. Food Res Int 2023; 165:112496. [PMID: 36869506 DOI: 10.1016/j.foodres.2023.112496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
High consumption of plant sterols reduces the risk of cardiovascular diseases in humans and provides health benefits. Increasing the amount of plant sterols in the diet is therefore necessary to reach the recommended daily dietary intake. However, food supplementation with free plant sterols is challenging because of their low solubility in fats and water. The objectives of this study were to investigate the capacity of milk-sphingomyelin (milk-SM) and milk polar lipids to solubilise β-sitosterol molecules in bilayer membranes organised as vesicles called sphingosomes. The thermal and structural properties of milk-SM containing bilayers composed of various amounts of β-sitosterol were examined by differential scanning calorimetry (DSC) and temperature-controlled X-ray diffraction (XRD), the molecular interactions were studied using the Langmuir film technique, the morphologies of sphingosomes and β-sitosterol crystals were observed by microscopy. We showed that the milk-SM bilayers devoid of β-sitosterol exhibited a gel to fluid Lα phase transition for Tm = 34.5 °C and formed facetted spherical sphingosomes below Tm. The solubilisation of β-sitosterol within milk-SM bilayers induced a liquid-ordered Lo phaseabove 25 %mol (1.7 %wt) β-sitosterol and a softening of the membranes leading to the formation of elongated sphingosomes. Attractive molecular interactions revealed a condensing effect of β-sitosterol on milk-SM Langmuir monolayers. Above 40 %mol (25.7 %wt) β-sitosterol, partitioning occured with the formation of β-sitosterol microcrystals in the aqueous phase. Similar results were obtained with the solubilization of β-sitosterol within milk polar lipid vesicles. For the first time, this study highlighted the efficient solubilization of free β-sitosterol within milk-SM based vesicles, which opens new market opportunities for the formulation of functional foods enriched in non-crystalline free plant sterols.
Collapse
Affiliation(s)
- Christelle Lopez
- INRAE, BIA, F-44316 Nantes, France; INRAE, STLO, F-35000 Rennes, France.
| | | | - Virginie Lollier
- INRAE, BIA, F-44316 Nantes, France; INRAE, PROBE Research Infrastructure, BIBS Facility, F-44316 Nantes, France
| | | | - Thomas Bizien
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin BP48, F-91192 Gif-sur-Yvette, France
| | - Javier Pérez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin BP48, F-91192 Gif-sur-Yvette, France
| | - Franck Artzner
- IPR, UMR 6251, CNRS, University of Rennes 1, F-35042 Rennes, France
| |
Collapse
|
9
|
Duraisamy P, Ravi S, Krishnan M, Livya CM, Manikandan B, Raman T, Munusamy A, Ramar M. Scoparia dulcis and Indigofera tinctoria as potential herbal remedies against 7-ketocholesterol-induced pro-inflammatory mediators of macrophage polarization. J Herb Med 2023. [DOI: 10.1016/j.hermed.2023.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Shrivastava S, Paila YD, Chattopadhyay A. Role of Cholesterol and its Biosynthetic Precursors on Membrane Organization and Dynamics: A Fluorescence Approach. J Membr Biol 2023; 256:189-197. [PMID: 36781437 DOI: 10.1007/s00232-023-00278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Cholesterol is the most representative sterol present in membranes of higher eukaryotes, and is the end product of a long and multistep biosynthetic pathway. Lathosterol and zymosterol are biosynthetic precursors of cholesterol in Kandutsch-Russell and Bloch pathways, respectively. Lathosterol differs with cholesterol merely in the position of the double bond in the sterol ring, whereas zymosterol differs with cholesterol in position and number of double bonds. In this work, we have monitored the effect of cholesterol and its biosynthetic precursors (lathosterol and zymosterol) on membrane organization and dynamics in fluid and gel phase membranes. Toward this goal, we have utilized two fluorescent membrane probes, DPH and its cationic derivative TMA-DPH. Our results using these probes show that cholesterol and its biosynthetic precursors (lathosterol and zymosterol) exhibit similar trend in maintaining membrane organization and dynamics (as reported by fluorescence anisotropy and apparent rotational correlation time), in fluid phase POPC membranes. Notably, although lathosterol and zymosterol show similar trend in maintaining membrane organization and dynamics, the corresponding change for cholesterol is different in gel phase DPPC membranes. These results demonstrate that the position and number of double bonds in sterols is an important determinant in maintaining membrane physical properties. Our results assume significance since accumulation of precursors of cholesterol have been reported to be associated with severe pathological conditions.
Collapse
Affiliation(s)
- Sandeep Shrivastava
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Yamuna Devi Paila
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.,Moderna Inc, Cambridge, MA, 02139, USA
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India. .,Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India.
| |
Collapse
|
11
|
Girotti AW, Korytowski W. Trafficking of oxidative stress-generated lipid hydroperoxides: pathophysiological implications. Free Radic Res 2023; 57:130-139. [PMID: 37171212 PMCID: PMC10405667 DOI: 10.1080/10715762.2023.2213817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Lipid hydroperoxides (LOOHs) are reactive intermediates that arise during peroxidation of unsaturated phospholipids, glycolipids and cholesterol in biological membranes and lipoproteins. Non-physiological lipid peroxidation (LPO) typically occurs under oxidative stress conditions associated with pathologies such as atherogenesis, neurodegeneration, and carcinogenesis. As key intermediates in the LPO process, LOOHs are susceptible to one-electron versus two-electron reductive turnover, the former exacerbating membrane or lipoprotein damage/dysfunction and the latter diminishing it. A third possible LOOH fate is translocation to an acceptor membrane/lipoprotein, where one- or two-electron reduction may then ensue. In the case of cholesterol (Ch)-derived hydroperoxides (ChOOHs), translocation can be specifically stimulated by StAR family trafficking proteins, which are normally involved in Ch homeostasis and Ch-mediated steroidogenesis. In this review, we discuss how these processes can be impaired by StAR-mediated ChOOH and Ch co-trafficking to mitochondria of vascular macrophages and steroidogenic cells, respectively. The protective effects of endogenous selenoperoxidase, GPx4, are also discussed. This is the first known example of detrimental ChOOH transfer via a natural Ch trafficking pathway and inhibition thereof by GPx4.
Collapse
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
12
|
Chattopadhyay A, Sharma A. Smith-Lemli-Opitz syndrome: A pathophysiological manifestation of the Bloch hypothesis. Front Mol Biosci 2023; 10:1120373. [PMID: 36714259 PMCID: PMC9878332 DOI: 10.3389/fmolb.2023.1120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The biosynthesis of cholesterol, an essential component of higher eukaryotic membranes, was worked out by Konrad Bloch (and Feodor Lynen) in the 1960s and they received the Nobel Prize around that time in recognition of their pioneering contributions. An elegant consequence of this was a hypothesis proposed by Konrad Bloch (the Bloch hypothesis) which suggests that each subsequent intermediate in the cholesterol biosynthesis pathway is superior in supporting membrane function in higher eukaryotes relative to its precursor. In this review, we discuss an autosomal recessive metabolic disorder, known as Smith-Lemli-Opitz syndrome (SLOS), associated with a defect in the Kandutsch-Russell pathway of cholesterol biosynthesis that results in accumulation of the immediate precursor of cholesterol in its biosynthetic pathway (7-dehydrocholesterol) and an altered cholesterol to total sterol ratio. Patients suffering from SLOS have several developmental, behavioral and cognitive abnormalities for which no drug is available yet. We characterize SLOS as a manifestation of the Bloch hypothesis and review its molecular etiology and current treatment. We further discuss defective Hedgehog signaling in SLOS and focus on the role of the serotonin1A receptor, a representative neurotransmitter receptor belonging to the GPCR family, in SLOS. Notably, ligand binding activity and cellular signaling of serotonin1A receptors are impaired in SLOS-like condition. Importantly, cellular localization and intracellular trafficking of the serotonin1A receptor (which constitute an important determinant of a GPCR cellular function) are compromised in SLOS. We highlight some of the recent developments and emerging concepts in SLOS pathobiology and suggest that novel therapies based on trafficking defects of target receptors could provide new insight into treatment of SLOS.
Collapse
Affiliation(s)
- Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India,*Correspondence: Amitabha Chattopadhyay,
| | - Ashwani Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
13
|
Silva PSE, Guindo AS, Oliveira PHC, de Moraes LFRN, Boleti APDA, Ferreira MA, de Oliveira CFR, Macedo MLR, Rossato L, Simionatto S, Migliolo L. Evaluation of the Synthetic Multifunctional Peptide Hp-MAP3 Derivative of Temporin-PTa. Toxins (Basel) 2023; 15:42. [PMID: 36668862 PMCID: PMC9866994 DOI: 10.3390/toxins15010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 01/06/2023] Open
Abstract
In recent years, antimicrobial peptides isolated from amphibian toxins have gained attention as new multifunctional drugs interacting with different molecular targets. We aimed to rationally design a new peptide from temporin-PTa. Hp-MAP3 (NH2-LLKKVLALLKKVL-COOH), net charge (+4), hydrophobicity (0.69), the content of hydrophobic residues (69%), and hydrophobic moment (0.73). For the construction of the analog peptide, the physicochemical characteristics were reorganized into hydrophilic and hydrophobic residues with the addition of lysines and leucines. The minimum inhibitory concentration was 2.7 to 43 μM against the growth of Gram-negative and positive bacteria, and the potential for biofilm eradication was 173.2 μM. Within 20 min, the peptide Hp-MAP3 (10.8 μM) prompted 100% of the damage to E. coli cells. At 43.3 μM, eliminated 100% of S. aureus within 5 min. The effects against yeast species of the Candida genus ranged from 5.4 to 86.6 μM. Hp-MAP3 presents cytotoxic activity against tumor HeLa at a concentration of 21.6 μM with an IC50 of 10.4 µM. Furthermore, the peptide showed hemolytic activity against murine erythrocytes. Structural studies carried out by circular dichroism showed that Hp-MAP3, while in the presence of 50% trifluoroethanol or SDS, an α-helix secondary structure. Finally, Amphipathic Hp-MAP3 building an important model for the design of new multifunctional molecules.
Collapse
Affiliation(s)
- Patrícia Souza e Silva
- S-Inova Biotech, Postgraduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Alexya Sandim Guindo
- S-Inova Biotech, Postgraduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Pedro Henrique Cardoso Oliveira
- S-Inova Biotech, Postgraduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | | | - Ana Paula de Araújo Boleti
- S-Inova Biotech, Postgraduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Marcos Antonio Ferreira
- S-Inova Biotech, Postgraduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| | - Caio Fernando Ramalho de Oliveira
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Mato Grosso do Sul, Brazil
| | - Maria Ligia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Mato Grosso do Sul, Brazil
| | - Luana Rossato
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados UFGD, Dourados 79825-070, Mato Grosso do Sul, Brazil
| | - Simone Simionatto
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados UFGD, Dourados 79825-070, Mato Grosso do Sul, Brazil
| | - Ludovico Migliolo
- S-Inova Biotech, Postgraduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande 79117-900, Mato Grosso do Sul, Brazil
| |
Collapse
|
14
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
15
|
Zhang X, Shi Z, Yang CQ, Li J, Liu J, Zhang AB. Gut transcriptome analysis of P450 genes and cytochrome P450 reductase in three moth species feeding on gymnosperms or angiosperms. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.948043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450 enzymes (P450s, CYPs) are a superfamily of heme–thiolate proteins involved in the metabolism of endogenous and exogenous substances in insects. In this study, the identification of putative P450 proteins was done and the elimination of the repeated sequences resulted in 57 proteins from Gastropacha populifolia, 63 proteins from Dendrolimus punctatus, and 53 proteins from Dendrolimus tabulaeformis. The putative P450 proteins were aligned together with seven other insect species based on five conserved domains. A total of ten co-orthologous groups were identified. Interestingly, one co-orthologous gene, CYP4g15 in CYP4 clan, was identified and its 3D structure analysis showed that the highly conserved sites of the predicted motifs were close to the active sites of P450. Furthermore, this study revealed that insect CYP4g15 and two bacteria cytochrome P450 were monophyletic. This suggests that insects CYP4g15 are not only functionally conserved but also an ancient gene originating from different bacteria species.
Collapse
|
16
|
Doole FT, Kumarage T, Ashkar R, Brown MF. Cholesterol Stiffening of Lipid Membranes. J Membr Biol 2022; 255:385-405. [PMID: 36219221 PMCID: PMC9552730 DOI: 10.1007/s00232-022-00263-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Biomembrane order, dynamics, and other essential physicochemical parameters are controlled by cholesterol, a major component of mammalian cell membranes. Although cholesterol is well known to exhibit a condensing effect on fluid lipid membranes, the extent of stiffening that occurs with different degrees of lipid acyl chain unsaturation remains an enigma. In this review, we show that cholesterol locally increases the bending rigidity of both unsaturated and saturated lipid membranes, suggesting there may be a length-scale dependence of the bending modulus. We review our published data that address the origin of the mechanical effects of cholesterol on unsaturated and polyunsaturated lipid membranes and their role in biomembrane functions. Through a combination of solid-state deuterium NMR spectroscopy and neutron spin-echo spectroscopy, we show that changes in molecular packing cause the universal effects of cholesterol on the membrane bending rigidity. Our findings have broad implications for the role of cholesterol in lipid–protein interactions as well as raft-like mixtures, drug delivery applications, and the effects of antimicrobial peptides on lipid membranes.
Collapse
Affiliation(s)
- Fathima T Doole
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA
| | - Teshani Kumarage
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA. .,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Michael F Brown
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA. .,Department of Physics, University of Arizona, Tucson, AZ, 85712, USA.
| |
Collapse
|
17
|
Perez-Salas U, Porcar L, Garg S, Ayee MAA, Levitan I. Effective Parameters Controlling Sterol Transfer: A Time-Resolved Small-Angle Neutron Scattering Study. J Membr Biol 2022; 255:423-435. [PMID: 35467109 DOI: 10.1007/s00232-022-00231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/19/2022] [Indexed: 11/29/2022]
Abstract
Though cholesterol is the most prevalent and essential sterol in mammalian cellular membranes, its precursors, post-synthesis cholesterol products, as well as its oxidized derivatives play many other important physiological roles. Using a non-invasive in situ technique, time-resolved small angle neutron scattering, we report on the rate of membrane desorption and corresponding activation energy for this process for a series of sterol precursors and post-synthesis cholesterol products that vary from cholesterol by the number and position of double bonds in B ring of cholesterol's steroid core. In addition, we report on sterols that have oxidation modifications in ring A and ring B of the steroid core. We find that sterols that differ in position or the number of double bonds in ring B have similar time and energy characteristics, while oxysterols have faster transfer rates and lower activation energies than cholesterol in a manner generally consistent with known sterol characteristics, like Log P, the n-octanol/water partitioning coefficient. We find, however, that membrane/water partitioning which is dependent on lipid-sterol interactions is a better predictor, shown by the correlation of the sterols' tilt modulus with both the desorption rates and activation energy.
Collapse
Affiliation(s)
- Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Lionel Porcar
- Institut Laue Langevin, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Manuela A A Ayee
- Department of Engineering, Dordt University, Sioux Center, IA, USA
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
18
|
Hargrove TY, Lamb DC, Smith JA, Wawrzak Z, Kelly SL, Lepesheva GI. Unravelling the role of transient redox partner complexes in P450 electron transfer mechanics. Sci Rep 2022; 12:16232. [PMID: 36171457 PMCID: PMC9519919 DOI: 10.1038/s41598-022-20671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/16/2022] [Indexed: 01/05/2023] Open
Abstract
The molecular evolution of cytochromes P450 and associated redox-driven oxidative catalysis remains a mystery in biology. It is widely believed that sterol 14α-demethylase (CYP51), an essential enzyme of sterol biosynthesis, is the ancestor of the whole P450 superfamily given its conservation across species in different biological kingdoms. Herein we have utilized X-ray crystallography, molecular dynamics simulations, phylogenetics and electron transfer measurements to interrogate the nature of P450-redox partner binding using the naturally occurring fusion protein, CYP51-ferredoxin found in the sterol-producing bacterium Methylococcus capsulatus. Our data advocates that the electron transfer mechanics in the M. capsulatus CYP51-ferredoxin fusion protein involves an ensemble of ferredoxin molecules in various orientations and the interactions are transient. Close proximity of ferredoxin, however, is required to complete the substrate-induced large-scale structural switch in the P450 domain that enables proton-coupled electron transfer and subsequent oxygen scission and catalysis. These results have fundamental implications regarding the early evolution of electron transfer proteins and for the redox reactions in the early steps of sterol biosynthesis. They also shed new light on redox protein mechanics and the subsequent diversification of the P450 electron transfer machinery in nature.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - David C Lamb
- Faculty of Medicine, Health and Life Science, Swansea University, Swansea, SA2 8PP, UK
| | - Jarrod A Smith
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, IL, 60439, USA
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Science, Swansea University, Swansea, SA2 8PP, UK
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
19
|
Jeon MJ, Roy NS, Choi BS, Oh JY, Kim YI, Park HY, Um T, Kim NS, Kim S, Choi IY. Identifying Terpenoid Biosynthesis Genes in Euphorbia maculata via Full-Length cDNA Sequencing. Molecules 2022; 27:molecules27144591. [PMID: 35889464 PMCID: PMC9316252 DOI: 10.3390/molecules27144591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
The annual herb Euphorbia maculata L. produces anti-inflammatory and biologically active substances such as triterpenoids, tannins, and polyphenols, and it is used in traditional Chinese medicine. Of these bioactive compounds, terpenoids, also called isoprenoids, are major secondary metabolites in E. maculata. Full-length cDNA sequencing was carried out to characterize the transcripts of terpenoid biosynthesis reference genes and determine the copy numbers of their isoforms using PacBio SMRT sequencing technology. The Illumina short-read sequencing platform was also employed to identify differentially expressed genes (DEGs) in the secondary metabolite pathways from leaves, roots, and stems. PacBio generated 62 million polymerase reads, resulting in 81,433 high-quality reads. From these high-quality reads, we reconstructed a genome of 20,722 genes, in which 20,246 genes (97.8%) did not have paralogs. About 33% of the identified genes had two or more isoforms. DEG analysis revealed that the expression level differed among gene paralogs in the leaf, stem, and root. Whole sets of paralogs and isoforms were identified in the mevalonic acid (MVA), methylerythritol phosphate (MEP), and terpenoid biosynthesis pathways in the E. maculata L. The nucleotide information will be useful for identifying orthologous genes in other terpenoid-producing medicinal plants.
Collapse
Affiliation(s)
- Mi Jin Jeon
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (J.Y.O.)
| | - Neha Samir Roy
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea; (N.S.R.); (T.U.)
| | | | - Ji Yeon Oh
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (J.Y.O.)
| | - Yong-In Kim
- On Biological Resource Research Institute, Chuncheon 24239, Korea;
| | - Hye Yoon Park
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea;
| | - Taeyoung Um
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea; (N.S.R.); (T.U.)
| | - Nam-Soo Kim
- BIT Institute, NBIT Co., Ltd., Chuncheon 24341, Korea;
- Correspondence: (N.-S.K.); (S.K.); (I.-Y.C.); Tel.: +82-10-5522-6472 (N.-S.K.); +82-32-590-7110 (S.K.); +82-33-250-7768 (I.-Y.C.)
| | - Soonok Kim
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (J.Y.O.)
- Correspondence: (N.-S.K.); (S.K.); (I.-Y.C.); Tel.: +82-10-5522-6472 (N.-S.K.); +82-32-590-7110 (S.K.); +82-33-250-7768 (I.-Y.C.)
| | - Ik-Young Choi
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea; (N.S.R.); (T.U.)
- BIT Institute, NBIT Co., Ltd., Chuncheon 24341, Korea;
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (N.-S.K.); (S.K.); (I.-Y.C.); Tel.: +82-10-5522-6472 (N.-S.K.); +82-32-590-7110 (S.K.); +82-33-250-7768 (I.-Y.C.)
| |
Collapse
|
20
|
Sarkar P, Chattopadhyay A. Membrane Dipole Potential: An Emerging Approach to Explore Membrane Organization and Function. J Phys Chem B 2022; 126:4415-4430. [PMID: 35696090 DOI: 10.1021/acs.jpcb.2c02476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological membranes are complex organized molecular assemblies of lipids and proteins that provide cells and membrane-bound intracellular organelles their individual identities by morphological compartmentalization. Membrane dipole potential originates from the electrostatic potential difference within the membrane due to the nonrandom arrangement (orientation) of amphiphile and solvent (water) dipoles at the membrane interface. In this Feature Article, we will focus on the measurement of dipole potential using electrochromic fluorescent probes and highlight interesting applications. In addition, we will focus on ratiometric fluorescence microscopic imaging technique to measure dipole potential in cellular membranes, a technique that can be used to address novel problems in cell biology which are otherwise difficult to address using available approaches. We envision that membrane dipole potential could turn out to be a convenient tool in exploring the complex interplay between membrane lipids and proteins and could provide novel insights in membrane organization and function.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
21
|
Dutta A, Sarkar P, Shrivastava S, Chattopadhyay A. Effect of Hypoxia on the Function of the Human Serotonin 1A Receptor. ACS Chem Neurosci 2022; 13:1456-1466. [PMID: 35467841 DOI: 10.1021/acschemneuro.2c00181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cellular hypoxia causes numerous pathophysiological conditions associated with the disruption of oxygen homeostasis. Under oxygen-deficient conditions, cells adapt by controlling the cellular functions to facilitate the judicious use of available oxygen, such as cessation of cell growth and proliferation. In higher eukaryotes, the process of cholesterol biosynthesis is intimately coupled to the availability of oxygen, where the synthesis of one molecule of cholesterol requires 11 molecules of O2. Cholesterol is an essential component of higher eukaryotic membranes and is crucial for the physiological functions of several membrane proteins and receptors. The serotonin1A receptor, an important neurotransmitter G protein-coupled receptor associated with cognition and memory, has previously been shown to depend on cholesterol for its signaling and function. In this work, in order to explore the interdependence of oxygen levels, cholesterol biosynthesis, and the function of the serotonin1A receptor, we developed a cellular hypoxia model to explore the function of the human serotonin1A receptor heterologously expressed in Chinese hamster ovary cells. We observed cell cycle arrest at G1/S phase and the accumulation of lanosterol in cell membranes under hypoxic conditions, thereby validating our cellular model. Interestingly, we observed a significant reduction in ligand binding and disruption of downstream cAMP signaling of the serotonin1A receptor under hypoxic conditions. To the best of our knowledge, our results represent the first report linking the function of the serotonin1A receptor with hypoxia. From a broader perspective, these results contribute to our overall understanding of the molecular basis underlying neurological conditions often associated with hypoxia-induced brain dysfunction.
Collapse
Affiliation(s)
- Aritri Dutta
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Sandeep Shrivastava
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
22
|
Girotti AW, Korytowski W. Intermembrane Translocation of Photodynamically Generated Lipid Hydroperoxides: Broadcasting of Redox Damage. Photochem Photobiol 2022; 98:591-597. [PMID: 34633674 PMCID: PMC8995396 DOI: 10.1111/php.13537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/02/2021] [Indexed: 12/15/2022]
Abstract
Lipid hydroperoxides (LOOHs), including cholesterol- and phospholipid-derived species, are reactive intermediates that arise during photosensitized peroxidation of unsaturated lipids in biological membranes. These intermediates may appear in cancer cell membranes during anti-tumor photodynamic therapy (PDT). Photodynamically generated LOOHs have several different fates, including (a) iron-catalyzed one-electron reduction to free radical species which trigger damaging chain peroxidation reactions, (b) selenoperoxidase-catalyzed two-electron reduction to redox-inert alcohols (LOHs), and (c) spontaneous or protein-mediated translocation to other lipid membrane compartments where (a) or (b) may take place. These different LOOH fates will be described in this review, but with special attention to category (c), which the authors were the first to describe and characterize. Seminal early findings on cholesterol hydroperoxide (ChOOH) translocation and its potential negative consequences will be discussed. In reviewing this work, we wish to congratulate Jean Cadet, for his many outstanding accomplishments as a photobiologist and P&P editor.
Collapse
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | |
Collapse
|
23
|
Rezende LG, Tasso TT, Candido PHS, Baptista MS. Assessing Photosensitized Membrane Damage: Available Tools and Comprehensive Mechanisms. Photochem Photobiol 2021; 98:572-590. [PMID: 34931324 DOI: 10.1111/php.13582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Lipids are important targets of the photosensitized oxidation reactions, forming important signaling molecules, disorganizing and permeabilizing membranes, and consequently inducing a variety of biological responses. Although the initial steps of the photosensitized oxidative damage in lipids are known to occur by both Type I and Type II mechanisms, the progression of the peroxidation reaction, which leads to important end-point biological responses, is poorly known. There are many experimental tools used to study the products of lipid oxidation, but neither the methods nor their resulting observations were critically compared. In this article, we will review the tools most frequently used and the key concepts raised by them in order to rationalize a comprehensive model for the initiation and the progression steps of the photoinduced lipid oxidation.
Collapse
Affiliation(s)
- Laura G Rezende
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago T Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H S Candido
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| | - Mauricio S Baptista
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
24
|
Mukerjee S, Saeedan AS, Ansari MN, Singh M. Polyunsaturated Fatty Acids Mediated Regulation of Membrane Biochemistry and Tumor Cell Membrane Integrity. MEMBRANES 2021; 11:479. [PMID: 34203433 PMCID: PMC8304949 DOI: 10.3390/membranes11070479] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Particular dramatic macromolecule proteins are responsible for various cellular events in our body system. Lipids have recently recognized a lot more attention of scientists for understanding the relationship between lipid and cellular function and human health However, a biological membrane is formed with a lipid bilayer, which is called a P-L-P design. Our body system is balanced through various communicative signaling pathways derived from biological membrane proteins and lipids. In the case of any fatal disease such as cancer, the biological membrane compositions are altered. To repair the biological membrane composition and prevent cancer, dietary fatty acids, such as omega-3 polyunsaturated fatty acids, are essential in human health but are not directly synthesized in our body system. In this review, we will discuss the alteration of the biological membrane composition in breast cancer. We will highlight the role of dietary fatty acids in altering cellular composition in the P-L-P bilayer. We will also address the importance of omega-3 polyunsaturated fatty acids to regulate the membrane fluidity of cancer cells.
Collapse
Affiliation(s)
- Souvik Mukerjee
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India;
| | - Abdulaziz S. Saeedan
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohd. Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
25
|
Lasunción MA, Martínez-Botas J, Martín-Sánchez C, Busto R, Gómez-Coronado D. Cell cycle dependence on the mevalonate pathway: Role of cholesterol and non-sterol isoprenoids. Biochem Pharmacol 2021; 196:114623. [PMID: 34052188 DOI: 10.1016/j.bcp.2021.114623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
The mevalonate pathway is responsible for the synthesis of isoprenoids, including sterols and other metabolites that are essential for diverse biological functions. Cholesterol, the main sterol in mammals, and non-sterol isoprenoids are in high demand by rapidly dividing cells. As evidence of its importance, many cell signaling pathways converge on the mevalonate pathway and these include those involved in proliferation, tumor-promotion, and tumor-suppression. As well as being a fundamental building block of cell membranes, cholesterol plays a key role in maintaining their lipid organization and biophysical properties, and it is crucial for the function of proteins located in the plasma membrane. Importantly, cholesterol and other mevalonate derivatives are essential for cell cycle progression, and their deficiency blocks different steps in the cycle. Furthermore, the accumulation of non-isoprenoid mevalonate derivatives can cause DNA replication stress. Identification of the mechanisms underlying the effects of cholesterol and other mevalonate derivatives on cell cycle progression may be useful in the search for new inhibitors, or the repurposing of preexisting cholesterol biosynthesis inhibitors to target cancer cell division. In this review, we discuss the dependence of cell division on an active mevalonate pathway and the role of different mevalonate derivatives in cell cycle progression.
Collapse
Affiliation(s)
- Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Covadonga Martín-Sánchez
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
26
|
Almeida CV, de Oliveira CFR, Dos Santos EL, Dos Santos HF, Júnior EC, Marchetto R, da Cruz LA, Ferreira AMT, Gomes VM, Taveira GB, Costa BO, Franco OL, Cardoso MH, Macedo MLR. Differential interactions of the antimicrobial peptide, RQ18, with phospholipids and cholesterol modulate its selectivity for microorganism membranes. Biochim Biophys Acta Gen Subj 2021; 1865:129937. [PMID: 34052310 DOI: 10.1016/j.bbagen.2021.129937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are molecules with potential application for the treatment of microorganism infections. We, herein, describe the structure, activity, and mechanism of action of RQ18, an α-helical AMP that displays antimicrobial activity against Gram-positive and Gram-negative bacteria, and yeasts from the Candida genus. METHODS A physicochemical-guided design assisted by computer tools was used to obtain our lead peptide candidate, named RQ18. This peptide was assayed against Gram-positive and Gram-negative bacteria, yeasts, and mammalian cells to determine its selectivity index. The secondary structure and the mechanism of action of RQ18 were investigated using circular dichroism, large unilamellar vesicles, and molecular dynamic simulations. RESULTS RQ18 was not cytotoxic to human lung fibroblasts, peripheral blood mononuclear cells, red blood cells, or Vero cells at MIC values, exhibiting a high selectivity index. Circular dichroism analysis and molecular dynamic simulations revealed that RQ18 presents varying structural profiles in aqueous solution, TFE/water mixtures, SDS micelles, and lipid bilayers. The peptide was virtually unable to release carboxyfluorescein from large unilamellar vesicles composed of POPC/cholesterol, model that mimics the eukaryotic membrane, indicating that vesicles' net charges and the presence of cholesterol may be related with RQ18 selectivity for bacterial and fungal cell surfaces. CONCLUSIONS RQ18 was characterized as a membrane-active peptide with dual antibacterial and antifungal activities, without compromising mammalian cells viability, thus reinforcing its therapeutic application. GENERAL SIGNIFICANCE These results provide further insight into the complex process of AMPs interaction with biological membranes, in special with systems that mimic prokaryotic and eukaryotic cell surfaces.
Collapse
Affiliation(s)
- Claudiane V Almeida
- Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Caio F R de Oliveira
- Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil; Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil; Oncolytic Anticancer Drugs, Dourados, Mato Grosso do Sul, Brazil
| | - Edson L Dos Santos
- Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Helder F Dos Santos
- Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Edson C Júnior
- Instituto de Química, Departamento de Bioquímica e Química Tecnológica, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Reinaldo Marchetto
- Instituto de Química, Departamento de Bioquímica e Química Tecnológica, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Leticia A da Cruz
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Alda Maria T Ferreira
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Valdirene M Gomes
- Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Gabriel B Taveira
- Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Bruna O Costa
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Marlon H Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Maria Lígia R Macedo
- Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
27
|
Hagenbo A, Piñuela Y, Castaño C, Martínez de Aragón J, de-Miguel S, Alday JG, Bonet JA. Production and turnover of mycorrhizal soil mycelium relate to variation in drought conditions in Mediterranean Pinus pinaster, Pinus sylvestris and Quercus ilex forests. THE NEW PHYTOLOGIST 2021; 230:1609-1622. [PMID: 33091152 DOI: 10.1111/nph.17012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
In forests, ectomycorrhizal mycelium is pivotal for driving soil carbon and nutrient cycles, but how ectomycorrhizal mycelial dynamics vary in ecosystems with drought periods is unknown. We quantified the production and turnover of mycorrhizal mycelium in Mediterranean Pinus pinaster, Pinus sylvestris and Quercus ilex forests and related the estimates to standardised precipitation index (SPI), to study how mycelial dynamics relates to tree species and drought-moisture conditions. Production and turnover of mycelium was estimated between July and February, by quantifying the fungal biomass (ergosterol) in ingrowth mesh bags and using statistical modelling. SPI for time scales of 1-3 months was calculated from precipitation records and precipitation data over the study period. Forests dominated by Pinus trees displayed higher biomass but were seasonally more variable, as opposed to Q. ilex forests where the mycelial biomass remained lower and stable over the season. Production and turnover, respectively, varied between 1.4-5.9 kg ha-1 d-1 and 7.2-9.9 times yr-1 over the different forest types and were positively correlated with 2-month and 3-month SPI over the study period. Our results demonstrated that mycorrhizal mycelial biomass varied with season and tree species and we speculate that production and turnover are related to physiology and plant host performance during drought.
Collapse
Affiliation(s)
- Andreas Hagenbo
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, E-251 98, Spain
- School of Science and Technology, Örebro University, Örebro, SE-701 82, Sweden
- Norwegian Institute of Bioeconomy Research (NIBIO), Box 115, Ås, 1431, Norway
| | - Yasmine Piñuela
- Department of Crop and Forest Sciences, University of Lleida, Lleida, E-251 98, Spain
| | - Carles Castaño
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-750 07, Sweden
| | | | - Sergio de-Miguel
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, E-251 98, Spain
| | - Josu G Alday
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, E-251 98, Spain
| | - José Antonio Bonet
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, E-251 98, Spain
| |
Collapse
|
28
|
Stieger B, Steiger J, Locher KP. Membrane lipids and transporter function. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166079. [PMID: 33476785 DOI: 10.1016/j.bbadis.2021.166079] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/12/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Transport proteins are essential for cells in allowing the exchange of substances between cells and their environment across the lipid bilayer forming a tight barrier. Membrane lipids modulate the function of transmembrane proteins such as transporters in two ways: Lipids are tightly and specifically bound to transport proteins and in addition they modulate from the bulk of the lipid bilayer the function of transport proteins. This overview summarizes currently available information at the ultrastructural level on lipids tightly bound to transport proteins and the impact of altered bulk membrane lipid composition. Human diseases leading to altered lipid homeostasis will lead to altered membrane lipid composition, which in turn affect the function of transporter proteins.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Julia Steiger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kaspar P Locher
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
29
|
Phull MS, Jadav SS, Gundla R, Mainkar PS. A perspective on medicinal chemistry approaches towards adenomatous polyposis coli and Wnt signal based colorectal cancer inhibitors. Eur J Med Chem 2021; 212:113149. [PMID: 33445154 DOI: 10.1016/j.ejmech.2020.113149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of carcinogenic mortality in numbers only after lung and breast cancers. The mutations in adenomatous polyposis coli (APC) gene leads to formation of colorectal polyps in the colonic region and which develop as a malignant tumour upon coalition with patient related risk factors. The protein-protein interaction (PPI) of APC with Asef (A Rac specific guanine nucleotide exchange factor) overwhelms the patient's conditions by rapidly spreading in the entire colorectal region. Most mutations in APC gene occur in mutated cluster region (MCR), where it specifically binds with the cytosolic β-catenin to regulate the Wnt signalling pathway required for CRC cell adhesion, invasion, progression, differentiation and stemness in initial cell cycle phages. The current broad spectrum perspective is attempted to elaborate the sources of identification, development of selective APC inhibitors by targeting emopamil-binding protein (EBP) & dehydrocholesterol reductase-7 & 24 (DHCR-7 & 24); APC-Asef, β-catenin/APC, Wnt/β-catenin, β-catenin/TCF4 PPI inhibitors with other vital Wnt signal cellular proteins and APC/Pol-β interface of colorectal cancer. In this context, this perspective would serve as a platform for design of new medicinal agents by targeting cellular essential components which could accelerate anti-colorectal potential candidates.
Collapse
Affiliation(s)
- Manjinder Singh Phull
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
| | - Surender Singh Jadav
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
| | - Prathama S Mainkar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Utter Pradesh, India.
| |
Collapse
|
30
|
Berwal M, Haldhar S, Ram C, Gora J, Singh D, Samadia DK. GC-MS/MS-based phytochemical screening of therapeutic potential of Calligonum polygonoides L. flower bud against chronic diseases. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_390_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Gusliakova O, Verkhovskii R, Abalymov A, Lengert E, Kozlova A, Atkin V, Nechaeva O, Morrison A, Tuchin V, Svenskaya Y. Transdermal platform for the delivery of the antifungal drug naftifine hydrochloride based on porous vaterite particles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111428. [PMID: 33321579 DOI: 10.1016/j.msec.2020.111428] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
Development of a skin-targeted particulate delivery system providing an extended or sustained release of the payload and a localized therapeutic effect is one of the main challenges in the treatment of fungal skin infections. In the topical administration of antifungals, the drug should penetrate into the stratum corneum and lower layers of the skin in effective concentrations. Here, we introduce biodegradable calcium carbonate carriers containing 4.9% (w/w) of naftifine hydrochloride antimycotic allowing the efficient accumulation into the skin appendages. The proposed particulate formulation ensures the enhancement of the local drug concentration, prolongation of the payload release, and control over its rate. Furthermore, it provides a highly efficient cellular uptake and excellent bioavailability in vitro and enables a deep penetration during transfollicular delivery in vivo. The enhanced fungi growth inhibition efficiency of naftifine-loaded calcium carbonate carriers compared to naftifine solution makes them a promising alternative to creams and gels currently existing on the market.
Collapse
Affiliation(s)
- Olga Gusliakova
- Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia
| | - Roman Verkhovskii
- Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia
| | | | - Ekaterina Lengert
- Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia
| | - Anastasiia Kozlova
- Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia
| | - Vsevolod Atkin
- Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia
| | - Olga Nechaeva
- Yuri Gagarin State Technical University of Saratov, Politekhnicheskaya str. 77, 410054 Saratov, Russia
| | - Anna Morrison
- Saratov State Medical University, Bolshaya Kazachaya str. 112, 410012 Saratov, Russia
| | - Valery Tuchin
- Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia; Institute of Precision Mechanics and Control of the RAS, Rabochaya str. 24, 410028 Saratov, Russia; National Research Tomsk State University, Lenin Ave. 36, 634050 Tomsk, Russia
| | - Yulia Svenskaya
- Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia.
| |
Collapse
|
32
|
Zhang T, Liu R, Chang M, Jin Q, Zhang H, Wang X. Health benefits of 4,4-dimethyl phytosterols: an exploration beyond 4-desmethyl phytosterols. Food Funct 2020; 11:93-110. [PMID: 31804642 DOI: 10.1039/c9fo01205b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
4,4-Dimethyl phytosterols possess two methyl groups at the carbon-4 atom of the aliphatic A-ring. The methyl groups are crucial for the molecular recognition of endogenous and exogenous bioactive compounds. Phytosterols have received worldwide attention owing to their recognized health benefits. However, 4,4-dimethyl phytosterols are less appreciated. Recent research studies revealed that 4,4-dimethyl phytosterols exert numerous beneficial effects on disease prevention, and are particularly involved in the endogenous cannabinoid system (ECS). The purpose of this review is to summarize and highlight the currently available information regarding the structures and sources of 4,4-dimethyl phytosterols, and to provide detailed preclinical studies performed to evaluate their potential for treating various diseases. Future research on 4,4-dimethyl phytosterols is warranted to confirm their relationship with the ECS, and to elucidate the mechanism directly toward clinical trials.
Collapse
Affiliation(s)
- Tao Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.
| | | | | | | | | | | |
Collapse
|
33
|
Ozolina NV, Nesterkina IS, Gurina VV, Nurminsky VN. Non-detergent Isolation of Membrane Structures from Beet Plasmalemma and Tonoplast Having Lipid Composition Characteristic of Rafts. J Membr Biol 2020; 253:479-489. [PMID: 32954443 DOI: 10.1007/s00232-020-00137-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
Vacuolar and plasma membranes were isolated by a detergent-free method from beet roots (Beta vulgaris L.), and were fractionated in a sucrose density gradient of 15-60% by high-speed centrifugation at 200,000×g during 18 h. The membrane material distributed over the sucrose density gradient was analyzed for the presence of lipids characteristic of raft structures in different zones of the gradient. The quantitative and qualitative content of lipids and sterols, and the composition of fatty acids were analyzed. Some membrane structures differing in their biochemical characteristics were revealed to be located in different zones of the sucrose gradient. The results of the analysis allowed us to identify three zones in the sucrose gradient after the vacuolar membrane fractionation and two zones in the plasma membrane where membrane structures, which may be defined as rafts for their lipid composition, were presented.
Collapse
Affiliation(s)
- Natalia V Ozolina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov st., Irkutsk, 664033, Russia
| | - Irina S Nesterkina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov st., Irkutsk, 664033, Russia
| | - Veronika V Gurina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov st., Irkutsk, 664033, Russia
| | - Vadim N Nurminsky
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov st., Irkutsk, 664033, Russia.
| |
Collapse
|
34
|
Structural Stringency and Optimal Nature of Cholesterol Requirement in the Function of the Serotonin1A Receptor. J Membr Biol 2020; 253:445-457. [DOI: 10.1007/s00232-020-00138-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
|
35
|
Sarkar P, Rao BD, Chattopadhyay A. Cell Cycle Dependent Modulation of Membrane Dipole Potential and Neurotransmitter Receptor Activity: Role of Membrane Cholesterol. ACS Chem Neurosci 2020; 11:2890-2899. [PMID: 32786305 DOI: 10.1021/acschemneuro.0c00499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cell cycle is a sequential multistep process essential for growth and proliferation of cells that make up multicellular organisms. A number of nuclear and cytoplasmic proteins are known to modulate the cell cycle. Yet, the role of lipids, membrane organization, and physical properties in cell cycle progression remains largely elusive. Membrane dipole potential is an important physicochemical property and originates due to the electrostatic potential difference within the membrane because of nonrandom arrangement of amphiphile dipoles and water molecules at the membrane interface. In this work, we explored the modulation of membrane dipole potential in various stages of the cell cycle in CHO-K1 cells. Our results show that membrane dipole potential is highest in the G1 phase relative to S and G2/M phases. This was accompanied by regulation of membrane cholesterol content in the cell cycle. The highest cholesterol content was found in the G1 phase with a considerable reduction in cholesterol in S and G2/M phases. Interestingly, we noted a similarity in the dependence of membrane dipole potential and cholesterol with progress of the cell cycle. In addition, we observed an increase in neutral lipid (which contains esterified cholesterol) content as cells progressed from the G1 to G2/M phase via the S phase of the cell cycle. Importantly, we further observed a cell cycle dependent reduction in ligand binding activity of serotonin1A receptors expressed in CHO-K1 cells. To the best of our knowledge, these results constitute the first report of cell cycle dependent modulation of membrane dipole potential and activity of a neurotransmitter receptor belonging to the G protein-coupled receptor family. We envision that understanding the basis of cell cycle events from a biophysical perspective would result in a deeper appreciation of the cell cycle and its regulation in relation to cellular function.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Bhagyashree D. Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
36
|
Protein Transport Studied by a Model Asymmetric Membrane Army Arranged in a Dimple Chip. Methods Mol Biol 2020. [PMID: 32918740 DOI: 10.1007/978-1-0716-0806-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Reconstituted model membrane systems are powerful platforms to tackle interesting problems existing in membrane biology. One of the barriers to efficient drug delivery, as therapeutics to disease, is the physical membrane barrier of the cell. Small molecule can typically diffuse through the membrane; however, biomolecules such as proteins or nucleic acids cannot passively diffuse the bilayer and thus much research has been geared to engineering protein and/or nucleic acids delivery methods. One delivery method uses cell penetrating peptides (CPPs). In this chapter, we introduce the model "membrane army" arranged in dimple chip to study the delivery of β-galactosidase by a CPP known as Pep-1. This method uses droplet interface bilayer technology (DIB). It accelerates the speed to screen through the working conditions in CPP-assisted protein translocations because each chip provides dimples that can accommodate 36 pairs of droplets or 18 model bilayers. We will use one of the successful translocation conditions of β-galactosidase delivery as the example to illustrate how the model "membrane army" is built and utilized.
Collapse
|
37
|
Molecular evolution of a collage of cholesterol interaction motifs in transmembrane helix V of the serotonin 1A receptor. Chem Phys Lipids 2020; 232:104955. [PMID: 32846149 DOI: 10.1016/j.chemphyslip.2020.104955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/08/2020] [Accepted: 08/16/2020] [Indexed: 12/20/2022]
Abstract
The human serotonin1A receptor is a representative member of the superfamily of G protein-coupled receptors (GPCRs) and an important drug target for neurological disorders. Using a combination of biochemical, biophysical and molecular dynamics simulation approaches, we and others have shown that membrane cholesterol modulates the organization, dynamics and function of vertebrate serotonin1A receptors. Previous studies have shown that the cytoplasmic portion of transmembrane helix V (TM V) and the extramembraneous intracellular loop 3 are critical for G-protein coupling, phosphorylation and desensitization of the receptor. We have recently resolved a collage of putative cholesterol interaction motifs from the amino acid sequence overlapping this region. In this paper, we explore the sequence plasticity of this fragment that may have adapted to altered membrane lipidome, after vertebrates evolved from primordial invertebrates. Since invertebrates have lower levels of membrane cholesterol relative to vertebrates, we compared TM V sequence fragments from invertebrate serotonin1 receptors with vertebrate orthologs to infer the sequence plasticity in TM V. We report that the average number of cholesterol interaction motifs in TM V for diverse phyla represents an increasing trend that could mirror vertebrate evolution from primordial invertebrates. By statistical modeling, we propose that the collage of cholesterol interaction motifs in TM V of the human serotonin1A receptor may have evolved from rudimentary collages, reminiscent of primordial invertebrate orthologs. Taken together, we propose that a repertoire of cholesterol-philic nonsynonymous substitutions may have enhanced collage complexity in TM V during vertebrate evolution.
Collapse
|
38
|
Shrivastava S, Paila YD, Kombrabail M, Krishnamoorthy G, Chattopadhyay A. Role of Cholesterol and Its Immediate Biosynthetic Precursors in Membrane Dynamics and Heterogeneity: Implications for Health and Disease. J Phys Chem B 2020; 124:6312-6320. [DOI: 10.1021/acs.jpcb.0c04338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sandeep Shrivastava
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Yamuna Devi Paila
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Mamata Kombrabail
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - G. Krishnamoorthy
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | | |
Collapse
|
39
|
Tinoush B, Shirdel I, Wink M. Phytochemicals: Potential Lead Molecules for MDR Reversal. Front Pharmacol 2020; 11:832. [PMID: 32636741 PMCID: PMC7317022 DOI: 10.3389/fphar.2020.00832] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance (MDR) is one of the main impediments in the treatment of cancers. MDR cancer cells are resistant to multiple anticancer drugs. One of the major mechanisms of MDR is the efflux of anticancer drugs by ABC transporters. Increased activity and overexpression of these transporters are important causes of drug efflux and, therefore, resistance to cancer chemotherapy. Overcoming MDR is a fundamental prerequisite for developing an efficient treatment of cancer. To date, various types of ABC transporter inhibitors have been employed but no effective anticancer drug is available at present, which can completely overcome MDR. Phytochemicals can reverse MDR in cancer cells via affecting the expression or activity of ABC transporters, and also through exerting synergistic interactions with anticancer drugs by addressing additional molecular targets. We have listed numerous phytochemicals which can affect the expression and activity of ABC transporters in MDR cancer cell lines. Phytochemicals in the groups of flavonoids, alkaloids, terpenes, carotenoids, stilbenoids, lignans, polyketides, and curcuminoids have been examined for MDR-reversing activity. The use of MDR-reversing phytochemicals with low toxicity to human in combination with effective anticancer agents may result in successful treatment of chemotherapy-resistant cancer. In this review, we summarize and discuss published evidence for natural products with MDR modulation abilities.
Collapse
Affiliation(s)
- Boshra Tinoush
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
40
|
Chen IW, Grebenok RJ, Schaller H, Zhu-Salzman K, Behmer ST. Aphid growth and reproduction on plants with altered sterol profiles: Novel insights using Arabidopsis mutant and overexpression lines. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104054. [PMID: 32275907 DOI: 10.1016/j.jinsphys.2020.104054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Sterols are essential membrane components and are critical for many physiological processes in all eukaryotes. Insects and other arthropods are sterol auxotrophs that typically rely on a dietary source of sterols. Herbivorous insects generally obtain sterols from plants and then metabolize them into cholesterol, the dominant sterol in most insects. However, there is significant variation in phytosterol structure, and not all phytosterols are equally suitable for insects. In the current study, we used seven Arabidopsis thaliana lines that display altered sterol profiles due to mutations in the sterol biosynthetic pathway or to overexpression of key enzymes of the pathway, and investigated how plant sterol profiles affected green peach aphid (Myzus persicae) growth and reproduction. We also characterized the sterol profile of aphids reared on these Arabidopsis genotypes. Aphids on two mutant lines (14R/fk and ste1-1) that accumulated biosynthetic sterol intermediates (Δ8,14-sterols, and Δ7-sterols, respectively) all showed significantly reduced growth and reproduction. Aphids on SMT2COSUP plants (which have decreased β-sitosterol but increased campesterol) also displayed significantly reduced growth and reproduction. However, aphids on SMT2OE plants (which have increased β-sitosterol but decreased campesterol) performed similarly to aphids on wild-type plants. Finally, Arabidopsis plants that had an overproduction of sterols (CD-HMGROE) or decreased sterol esters (psat1-2) had no impact on aphid performance. Two noteworthy results come from the aphid sterol profile study. First, β-sitosterol, cholesterol and stigmasterol were recovered in all aphids. Second, we did not detect Δ8,14-sterols in aphids reared on 14R/fk plants. We discuss the implications of our findings, including how aphid sterol content does not appear to reflect plant leaf sterol profiles. We also discuss the potential of modifying plant sterol profiles to control insect herbivore pests, including aphids.
Collapse
Affiliation(s)
- Ivy W Chen
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, United States
| | | | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States; Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, United States.
| | - Spencer T Behmer
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States; Ecology and Evolutionary Biology Doctoral Program, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
41
|
Mahakizadeh S, Mokhtari T, Navaee F, Poorhassan M, Tajik A, Hassanzadeh G. Effects of chronic hypoxia on the expression of seladin-1/Tuj1 and the number of dark neurons of hippocampus. J Chem Neuroanat 2020; 104:101744. [PMID: 31926979 DOI: 10.1016/j.jchemneu.2020.101744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND There are evidences showing the relation between chronic hypoxia and Alzheimer's disease (AD) as a metabolic neurodegenerative disease. This study was designed to evaluate the effects of chronic hypoxia on factors which characterized in AD to introduce a new model of AD-dementia. METHODS AND MATERIALS Twenty-four male rats were randomly divided in three groups: Control group (Co), Sham group (Sh), Hypoxia induction group (Hx, exposed to hypoxic chamber [oxygen 8% and nitrogen 92%] for 30 days, 4 h/day). Spatial learning and memory were analyzed using the Morris water maze task. At day 30 after hypoxia period, animals were sacrificed and serum was gathered for pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor) measurements and brains were used for molecular and histopathological investigations. RESULTS According to behavioral studies, a significant impairment was seen in Hx group (P < 0.05). TNF-α and IL-1β showed a significant enhanced in Hx group comparing with Co group and Sh group (P < 0.05). As well, the gene expression of seladin-1, Tuj1 and the number of seladin-1+, Tuj1+neurons significantly decreased and also the mean number of dark neurons significantly increased in CA1 and CA3 regions of hippocampus. CONCLUSIONS In this study, a new model of AD was developed which showed the underlying mechanisms of AD and its relations with chronic hypoxia. Hypoxia for 30 days decreased seladin-1, Tuj1 expression, increased the number of dark neurons, and also induced memory impairment. These results indicated that chronic hypoxia mediated the dementia underlying AD and AD-related pathogenesis in rat.
Collapse
Affiliation(s)
- Simin Mahakizadeh
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fatemeh Navaee
- Department of Anatomy, School of Medicine, Shahidbeheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Poorhassan
- Department of Anatomy, School of Medicine, Shahidbeheshti University of Medical Sciences, Tehran, Iran
| | - Armin Tajik
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Luchini A, Delhom R, Cristiglio V, Knecht W, Wacklin-Knecht H, Fragneto G. Effect of ergosterol on the interlamellar spacing of deuterated yeast phospholipid multilayers. Chem Phys Lipids 2020; 227:104873. [PMID: 31926858 DOI: 10.1016/j.chemphyslip.2020.104873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/14/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
Sterols regulate several physico-chemical properties of biological membranes that are considered to be linked to function. Ergosterol is the main sterol molecule found in the cell membranes of yeasts and other fungi. Like the cholesterol found in mammalian cells, ergosterol has been proposed to have an ordering and condensing effect on saturated phospholipid membranes. The effects of cholesterol have been investigated extensively and result in an increase in the membrane thickness and the lipid acyl chain order. Less information is available on the effects of ergosterol on phospholipid membranes. Neutron Diffraction (ND) was used to characterize the effect of ergosterol on lipid multilayers prepared with deuterated natural phospholipids extracted from the yeast Pichia pastoris. The data show that the effect of ergosterol on membranes prepared from the natural phospholipid extract rich in unsaturated acyl chains, differs from what has been observed previously in membranes rich in saturated phospholipids. In contrast to cholesterol in synthetic phospholipid membranes, the presence of ergosterol up to 30 mol % in yeast phospholipid membranes only slightly altered the multilayer structure. In particular, only a small decrease in the multilayer d-spacing was observed as function of increasing ergosterol concentrations. This result highlights the need for further investigation to elucidate the effects of ergosterol in biological lipid mixtures.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, UniversiteTsparken 5, 2100 Copenhagen, Denmark.
| | - Robin Delhom
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | | | - Wolfgang Knecht
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden; Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Hanna Wacklin-Knecht
- European Spallation Source ERIC, P.O. Box 176, 22100 Lund, Sweden; Division of Physical Chemistry, Lund University, P.O.Box 124, 22100 Lund, Sweden
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue Des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
43
|
Mangiarotti A, Genovese DM, Naumann CA, Monti MR, Wilke N. Hopanoids, like sterols, modulate dynamics, compaction, phase segregation and permeability of membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183060. [DOI: 10.1016/j.bbamem.2019.183060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
|
44
|
Inês C, Corbacho J, Paredes MA, Labrador J, Cordeiro AM, Gomez-Jimenez MC. Regulation of sterol content and biosynthetic gene expression during flower opening and early fruit development in olive. PHYSIOLOGIA PLANTARUM 2019; 167:526-539. [PMID: 30912149 DOI: 10.1111/ppl.12969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Phytosterols are lipophilic membrane components essential not only for diverse cellular functions but also are biosynthetic precursors of the plant hormone, brassinosteroid (BR). However, the interaction between phytosterol and BR during early fleshy-fruit growth remains largely uncharacterized. In olive, phytosterols are important lipids because they affect oil quality, but phytosterol composition during flowering and early fruit development has not been explored. Here, we first investigated the temporal changes in phytosterol composition, and biosynthetic gene expression that occurred during olive flower opening and early fruit growth. Next, we analyzed the interrelationship between phytosterol and BR, whose levels we manipulated through the application of exogenous BRs (24-epibrassinolide, EBR) or a BR biosynthesis inhibitor (brassinazole, Brz). In this report, the profiling of phytosterol measurement revealed that β-sitosterol is the most abundant in olive reproductive organs. Our data demonstrate that both OeCYP51 and OeSMT2 genes are upregulated during floral anthesis in good agreement with the rise in cholesterol and β-sitosterol contents in olive flower. By contrast, the OeCYP51 and OeSMT2 genes displayed different expression patterns during early olive-fruit development. Furthermore, our data show that exogenous EBR enhanced the early olive-fruit growth, as well as the OeSMT2 transcript and β-sitosterol levels, but decreased the OeCYP51 transcript, squalene, campesterol and cholesterol levels, whereas the Brz treatment exerted the opposite effect. Overall, our findings indicate an up-regulation of β-sitosterol biosynthesis by BR at the transcriptional level during early olive-fruit growth, providing a valuable tool to unravel the physiological function of SMT2 in future studies.
Collapse
Affiliation(s)
- Carla Inês
- Plant Physiology, Faculty of Science, University of Extremadura, Badajoz, 06006, Spain
| | - Jorge Corbacho
- Plant Physiology, Faculty of Science, University of Extremadura, Badajoz, 06006, Spain
| | - Miguel A Paredes
- Plant Physiology, Faculty of Science, University of Extremadura, Badajoz, 06006, Spain
| | - Juana Labrador
- Plant Physiology, Faculty of Science, University of Extremadura, Badajoz, 06006, Spain
| | - António M Cordeiro
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., UEIS Biotecnologia e Recursos Genéticos, Elvas, 7351-901, Portugal
| | - Maria C Gomez-Jimenez
- Plant Physiology, Faculty of Science, University of Extremadura, Badajoz, 06006, Spain
| |
Collapse
|
45
|
Kelicen-Ugur P, Cincioğlu-Palabıyık M, Çelik H, Karahan H. Interactions of Aromatase and Seladin-1: A Neurosteroidogenic and Gender Perspective. Transl Neurosci 2019; 10:264-279. [PMID: 31737354 PMCID: PMC6843488 DOI: 10.1515/tnsci-2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022] Open
Abstract
Aromatase and seladin-1 are enzymes that have major roles in estrogen synthesis and are important in both brain physiology and pathology. Aromatase is the key enzyme that catalyzes estrogen biosynthesis from androgen precursors and regulates the brain’s neurosteroidogenic activity. Seladin-1 is the enzyme that catalyzes the last step in the biosynthesis of cholesterol, the precursor of all hormones, from desmosterol. Studies indicated that seladin-1 is a downstream mediator of the neuroprotective activity of estrogen. Recently, we also showed that there is an interaction between aromatase and seladin-1 in the brain. Therefore, the expression of local brain aromatase and seladin-1 is important, as they produce neuroactive steroids in the brain for the protection of neuronal damage. Increasing steroid biosynthesis specifically in the central nervous system (CNS) without affecting peripheral hormone levels may be possible by manipulating brain-specific promoters of steroidogenic enzymes. This review emphasizes that local estrogen, rather than plasma estrogen, may be responsible for estrogens’ protective effects in the brain. Therefore, the roles of aromatase and seladin-1 and their interactions in neurodegenerative events such as Alzheimer’s disease (AD), ischemia/reperfusion injury (stroke), and epilepsy are also discussed in this review.
Collapse
Affiliation(s)
- Pelin Kelicen-Ugur
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Mehtap Cincioğlu-Palabıyık
- Turkish Medicines and Medical Devices Agency (TITCK), Department of Regulatory Affairs, Division of Pharmacological Assessment, Ankara, Turkey
| | - Hande Çelik
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
46
|
Zhou W, Fisher PM, Vanderloop BH, Shen Y, Shi H, Maldonado AJ, Leaver DJ, Nes WD. A nematode sterol C4α-methyltransferase catalyzes a new methylation reaction responsible for sterol diversity. J Lipid Res 2019; 61:192-204. [PMID: 31548366 PMCID: PMC6997595 DOI: 10.1194/jlr.ra119000317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/22/2019] [Indexed: 11/28/2022] Open
Abstract
Primitive sterol evolution plays an important role in fossil record interpretation and offers potential therapeutic avenues for human disease resulting from nematode infections. Recognizing that C4-methyl stenol products [8(14)-lophenol] can be synthesized in bacteria while C4-methyl stanol products (dinosterol) can be synthesized in dinoflagellates and preserved as sterane biomarkers in ancient sedimentary rock is key to eukaryotic sterol evolution. In this regard, nematodes have been proposed to convert dietary cholesterol to 8(14)-lophenol by a secondary metabolism pathway that could involve sterol C4 methylation analogous to the C2 methylation of hopanoids (radicle-type mechanism) or C24 methylation of sterols (carbocation-type mechanism). Here, we characterized dichotomous cholesterol metabolic pathways in Caenorhabditis elegans that generate 3-oxo sterol intermediates in separate paths to lophanol (4-methyl stanol) and 8(14)-lophenol (4-methyl stenol). We uncovered alternate C3-sterol oxidation and Δ7 desaturation steps that regulate sterol flux from which branching metabolite networks arise, while lophanol/8(14)-lophenol formation is shown to be dependent on a sterol C4α-methyltransferse (4-SMT) that requires 3-oxo sterol substrates and catalyzes a newly discovered 3-keto-enol tautomerism mechanism linked to S-adenosyl-l-methionine-dependent methylation. Alignment-specific substrate-binding domains similarly conserved in 4-SMT and 24-SMT enzymes, despite minimal amino acid sequence identity, suggests divergence from a common, primordial ancestor in the evolution of methyl sterols. The combination of these results provides evolutionary leads to sterol diversity and points to cryptic C4-methyl steroidogenic pathways of targeted convergence that mediate lineage-specific adaptations.
Collapse
Affiliation(s)
- Wenxu Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Paxtyn M Fisher
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Boden H Vanderloop
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Yun Shen
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Adrian J Maldonado
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX
| | - David J Leaver
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX.,Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| |
Collapse
|
47
|
Salvador-Castell M, Tourte M, Oger PM. In Search for the Membrane Regulators of Archaea. Int J Mol Sci 2019; 20:E4434. [PMID: 31505830 PMCID: PMC6770870 DOI: 10.3390/ijms20184434] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 11/23/2022] Open
Abstract
Membrane regulators such as sterols and hopanoids play a major role in the physiological and physicochemical adaptation of the different plasmic membranes in Eukarya and Bacteria. They are key to the functionalization and the spatialization of the membrane, and therefore indispensable for the cell cycle. No archaeon has been found to be able to synthesize sterols or hopanoids to date. They also lack homologs of the genes responsible for the synthesis of these membrane regulators. Due to their divergent membrane lipid composition, the question whether archaea require membrane regulators, and if so, what is their nature, remains open. In this review, we review evidence for the existence of membrane regulators in Archaea, and propose tentative location and biological functions. It is likely that no membrane regulator is shared by all archaea, but that they may use different polyterpenes, such as carotenoids, polyprenols, quinones and apolar polyisoprenoids, in response to specific stressors or physiological needs.
Collapse
Affiliation(s)
- Marta Salvador-Castell
- Université de Lyon, CNRS, UMR 5240, F-69621 Villeurbanne, France.
- Université de Lyon, INSA de Lyon, UMR 5240, F-69621 Villeurbanne, France.
| | - Maxime Tourte
- Université de Lyon, CNRS, UMR 5240, F-69621 Villeurbanne, France.
- Université de Lyon, INSA de Lyon, UMR 5240, F-69621 Villeurbanne, France.
| | - Philippe M Oger
- Université de Lyon, CNRS, UMR 5240, F-69621 Villeurbanne, France.
- Université de Lyon, INSA de Lyon, UMR 5240, F-69621 Villeurbanne, France.
| |
Collapse
|
48
|
Bui TT, Suga K, Umakoshi H. Ergosterol-Induced Ordered Phase in Ternary Lipid Mixture Systems of Unsaturated and Saturated Phospholipid Membranes. J Phys Chem B 2019; 123:6161-6168. [DOI: 10.1021/acs.jpcb.9b03413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tham Thi Bui
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
49
|
Lipophilic Metabolites and Anatomical Acclimatization of Cleome amblyocarpa in the Drought and Extra-Water Areas of the Arid Desert of UAE. PLANTS 2019; 8:plants8050132. [PMID: 31100925 PMCID: PMC6572330 DOI: 10.3390/plants8050132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/20/2019] [Accepted: 05/14/2019] [Indexed: 01/13/2023]
Abstract
Plants adapt to different environmental conditions by developing structural and metabolic mechanisms. In this study, anatomical features and lipophilic metabolites were investigated in Cleome amblyocarpa Barr. & Murb., Cleomaceae plants growing in the arid desert of United Arab Emirates (UAE) in either low-water or extra-water areas, which were caused by the surrounding road run-off. The plant showed the presence of shaggy-like trichomes. The plant also developed special mechanisms to ensure its survival via release of lipophilic metabolites. The lipophilic metabolites, stained red with Sudan III, were apparently released by glandular trichomes and idioblasts of the shoot and roots, respectively. The identified lipophilic metabolites included those required for drought tolerance, protection against pathogens invasion, and detoxification. Plants growing in the low-water area caused an increase in the production of lipophilic metabolites-in particular, hydrocarbons and terpenoids. The lipophilic metabolites are known to provide the plant with unique waxy surfaces that reduce water loss and avoid penetration by pathogens. The release of lipid metabolites and the presence of shaggy-like trichomes represented unique features of the species that have never been reported. The provided chemical ecology information can be extended for several plant-related applications, particularly including drought tolerance.
Collapse
|
50
|
Olchawa M, Krzysztynska-Kuleta O, Duda M, Pawlak A, Pabisz P, Czuba-Pelech B, Sarna T. In vitro phototoxicity of rhodopsin photobleaching products in the retinal pigment epithelium (RPE). Free Radic Res 2019; 53:456-471. [DOI: 10.1080/10715762.2019.1603377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Magdalena Olchawa
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Olga Krzysztynska-Kuleta
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
- Laboratory of Imaging and Atomic Force Spectroscopy, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mariusz Duda
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
- Laboratory of Imaging and Atomic Force Spectroscopy, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Pawlak
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Pawel Pabisz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Barbara Czuba-Pelech
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Tadeusz Sarna
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| |
Collapse
|