1
|
Davenport AM, Morris M, Sabti F, Sabti S, Shakya D, Hynds DL, Cheriyath V. G1P3/IFI6, an interferon stimulated protein, promotes the association of RAB5 + endosomes with mitochondria in breast cancer cells. Cell Biol Int 2023; 47:1868-1879. [PMID: 37598317 DOI: 10.1002/cbin.12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
G1P3/IFI6 is an interferon stimulated gene with antiapoptotic, prometastatic, and antiviral functions. Despite its pleiotropic functions, subcellular localization of G1P3 remains unclear. Using biochemical- and confocal microscopic approaches, this study identified the localization of G1P3 in organelles of the endomembrane system and in the mitochondria of breast cancer cells. In cell fractionation studies, both interferon-induced endogenous- and stably expressed G1P3 cofractionated with affinity-isolated mitochondria. Results of the protease protection assay have suggested that ~24% of mitochondrial G1P3 resides within the mitochondria. Conforming to this, confocal microscopy studies of cells stably expressing epitope-tagged G1P3 (MCF-7/G1P3-FLAG), identified its localization in mitochondria (~38%) as well as in ER, trans-Golgi network (TGN), lysosomes, and in RAB5 positive (RAB5+ ) endosomes. These results suggested the trafficking of G1P3 from TGN into endolysosomes. Both G1P3 and RAB5 were known to confer apoptosis resistance through mitochondrial stabilization. Therefore, the effects of G1P3 on the localization of RAB5 in mitochondria were tested. Compared to vector control, the co-occurrence of RAB5 with the mitochondria was increased by 1.5-fold in MCF-7/G1P3-FLAG expressing cells (p ≤ .005). Taken together, our results demonstrate a role for G1P3 to promote the association of RAB5+ endosomes with mitochondria and provide insight into yet another mechanism of G1P3-induced cancer cell survival.
Collapse
Affiliation(s)
- Anne M Davenport
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
- Department of Biology, Texas Woman's University, Denton, Texas, USA
| | - Madeleine Morris
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Fatima Sabti
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Sarah Sabti
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Diksha Shakya
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - DiAnna L Hynds
- Department of Biology, Texas Woman's University, Denton, Texas, USA
| | - Venugopalan Cheriyath
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| |
Collapse
|
2
|
Pinto MC, Botelho HM, Silva IAL, Railean V, Neumann B, Pepperkok R, Schreiber R, Kunzelmann K, Amaral MD. Systems Approaches to Unravel Molecular Function: High-content siRNA Screen Identifies TMEM16A Traffic Regulators as Potential Drug Targets for Cystic Fibrosis. J Mol Biol 2022; 434:167436. [PMID: 34990652 DOI: 10.1016/j.jmb.2021.167436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022]
Abstract
An attractive approach to treat people with Cystic Fibrosis (CF), a life-shortening disease caused by mutant CFTR, is to compensate for the absence of this chloride/bicarbonate channel by activating alternative (non-CFTR) chloride channels. One obvious target for such "mutation-agnostic" therapeutic approach is TMEM16A (anoctamin-1/ANO1), a calcium-activated chloride channel (CaCC) which is also expressed in the airways of people with CF, albeit at low levels. To find novel TMEM16A regulators of both traffic and function, with the main goal of identifying candidate CF drug targets, we performed a fluorescence cell-based high-throughput siRNA microscopy screen for TMEM16A trafficking using a double-tagged construct expressed in human airway cells. About 700 genes were screened (2 siRNAs per gene) of which 262 were identified as candidate TMEM16A modulators (179 siRNAs enhanced and 83 decreased TMEM16A traffic), being G-protein coupled receptors (GPCRs) enriched on the primary hit list. Among the 179 TMEM16A traffic enhancer siRNAs subjected to secondary screening 20 were functionally validated. Further hit validation revealed that siRNAs targeting two GPCRs - ADRA2C and CXCR3 - increased TMEM16A-mediated chloride secretion in human airway cells, while their overexpression strongly diminished calcium-activated chloride currents in the same cell model. The knockdown, and likely also the inhibition, of these two TMEM16A modulators is therefore an attractive potential therapeutic strategy to increase chloride secretion in CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal. https://twitter.com/madalenacfpinto
| | - Hugo M Botelho
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Iris A L Silva
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Violeta Railean
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Beate Neumann
- Cell Biology/Biophysics Unit, and ALMF, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rainer Pepperkok
- Cell Biology/Biophysics Unit, and ALMF, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rainer Schreiber
- Institut für Physiologie, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
3
|
Tsai CC, Lin CL, Wang TL, Chou AC, Chou MY, Lee CH, Peng IW, Liao JH, Chen YT, Pan CY. Dynasore inhibits rapid endocytosis in bovine chromaffin cells. Am J Physiol Cell Physiol 2009; 297:C397-406. [DOI: 10.1152/ajpcell.00562.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vesicle recycling is vital for maintaining membrane homeostasis and neurotransmitter release. Multiple pathways for retrieving vesicles fused to the plasma membrane have been reported in neuroendocrine cells. Dynasore, a dynamin GTPase inhibitor, has been shown to specifically inhibit endocytosis and vesicle recycling in nerve terminals. To characterize its effects in modulating vesicle recycling and repetitive exocytosis, changes in the whole cell membrane capacitance of bovine chromaffin cells were recorded in the perforated-patch configuration. Constitutive endocytosis was blocked by dynasore treatment, as shown by an increase in membrane capacitance. The membrane capacitance was increased during strong depolarizations and declined within 30 s to a value lower than the prestimulus level. The amplitude, but not the time constant, of the rapid exponential decay was significantly decreased by dynasore treatment. Although the maximal increase in capacitance induced by stimulation was significantly increased by dynasore treatment, the intercepts at time 0 of the curve fitted to the decay phase were all ∼110% of the membrane capacitance before stimulation, regardless of the dynasore concentration used. Membrane depolarization caused clathrin aggregation and F-actin continuity disruption at the cell boundary, whereas dynasore treatment induced clathrin aggregation without affecting F-actin continuity. The number of invagination pits on the surface of the plasma membrane determined using atomic force microscopy was increased and the pore was wider in dynasore-treated cells. Our data indicate that dynamin-mediated endocytosis is the main pathway responsible for rapid compensatory endocytosis.
Collapse
|
4
|
Thomas WG, Thekkumkara TJ, Baker KM. Proceedings of the Symposium ‘Angiotensin AT1 Receptors: From Molecular Physiology to Therapeutics’: MOLECULAR MECHANISMS OF ANGIOTENSIN II (AT1a) RECEPTOR ENDOCYTOSIS. Clin Exp Pharmacol Physiol 2007; 23 Suppl 3:S74-80. [DOI: 10.1111/j.1440-1681.1996.tb02817.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Xiao J, Dai R, Negyessy L, Bergson C. Calcyon, a Novel Partner of Clathrin Light Chain, Stimulates Clathrin-mediated Endocytosis. J Biol Chem 2006; 281:15182-93. [PMID: 16595675 DOI: 10.1074/jbc.m600265200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the central nervous system, clathrin-mediated endocytosis is crucial for efficient synaptic transmission. Clathrin-coated vesicle assembly and disassembly is regulated by some 30 adaptor and accessory proteins, most of which interact with clathrin heavy chain. Using the calcyon cytosolic domain as bait, we isolated clathrin light chain in a yeast two-hybrid screen. The interaction domain was mapped to the heavy chain binding domain and C-terminal regions of light chain. Further, the addition of the calcyon C terminus stimulated clathrin self-assembly in a dose-dependent fashion. Calcyon, which is a single transmembrane protein predominantly expressed in brain, localized to vesicular compartments within pre- and postsynaptic structures. There was a high degree of overlap in the distribution of LC and calcyon in neuronal dendrites, spines, and cell bodies. Co-immunoprecipitation studies further suggested an association of calcyon with the clathrin-mediated endocytic machinery. Compared with controls, HEK293 cells overexpressing calcyon exhibited significantly enhanced transferrin uptake but equivalent levels of recycling. Conversely, transferrin uptake was largely abolished in neocortical neurons obtained from mice homozygous for a calcyon null allele, whereas recycling proceeded at wild type levels. Collectively, these data indicate a role for calcyon in clathrin-mediated endocytosis in brain.
Collapse
Affiliation(s)
- Jiping Xiao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
6
|
Yao PJ, Bushlin I, Petralia RS. Partially overlapping distribution of epsin1 and HIP1 at the synapse: analysis by immunoelectron microscopy. J Comp Neurol 2006; 494:368-79. [PMID: 16320245 DOI: 10.1002/cne.20810] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Synapses of neurons use clathrin-mediated endocytic pathways for recycling of synaptic vesicles and trafficking of neurotransmitter receptors. Epsin 1 and huntingtin-interacting protein 1 (HIP1) are endocytic accessory proteins. Both proteins interact with clathrin and the AP2 adaptor complex and also bind to the phosphoinositide-containing plasma membrane via an epsin/AP180 N-terminal homology (ENTH/ANTH) domain. Epsin1 and HIP1 are found in neurons; however, their precise roles in synapses remain largely unknown. Using immunogold electron microscopy, we examine and compare the synaptic distribution of epsin1 and HIP1 in rat CA1 hippocampal synapse. We find that epsin1 is located across both sides of the synapse, whereas HIP1 displays a preference for the postsynaptic compartment. Within the synaptic compartments, espin1 is distributed similarly throughout, whereas postsynaptic HIP1 is concentrated near the plasma membrane. Our results suggest a dual role for epsin1 and HIP1 in the synapse: as broadly required factors for promoting clathrin assembly and as adaptors for specific endocytic pathways.
Collapse
Affiliation(s)
- Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | |
Collapse
|
7
|
Westermann M, Steiniger F, Richter W. Belt-like localisation of caveolin in deep caveolae and its re-distribution after cholesterol depletion. Histochem Cell Biol 2005; 123:613-20. [PMID: 15889267 DOI: 10.1007/s00418-004-0750-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2004] [Indexed: 12/12/2022]
Abstract
Caveolae are specialised vesicular microdomains of the plasma membrane. Using freeze-fracture immunogold labelling and stereoscopic imaging, the distribution of labelled caveolin 1 in caveolae of 3T3-L1 mouse fibroblast cells was shown. Immunogold-labelled caveolin structures surrounded the basolateral region of deeply invaginated caveolae like a belt whereas in the apical region distal to the plasma membrane, the caveolin labelling was nearly absent. Shallow caveolar membranes showed a dispersed caveolin labelling. After membrane cholesterol reduction by methyl-beta-cyclodextrin treatment, a dynamic re-distribution of labelled caveolin 1 and a flattening of caveolar structures was found. The highly curved caveolar membrane got totally flat, and the initial belt-like caveolin labelling disintegrated to a ring-like structure and later to a dispersed order. Intramembrane particle-free domains were still observable after cholesterol depletion and caveolin re-distribution. These results indicate that cholesterol interacting with caveolin structures at the basolateral part of caveolae is necessary for the maintenance of the deeply invaginated caveolar membranes.
Collapse
Affiliation(s)
- Martin Westermann
- Elektronenmikroskopisches Zentrum am Klinikum der Friedrich-Schiller-Universität Jena, Ziegelmühlenweg 1, 07740, Jena, Germany.
| | | | | |
Collapse
|
8
|
Deeba F, Tahseen HN, Sharad KS, Ahmad N, Akhtar S, Saleemuddin M, Mohammad O. Phospholipid diversity: Correlation with membrane–membrane fusion events. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1669:170-81. [PMID: 15893520 DOI: 10.1016/j.bbamem.2005.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2004] [Revised: 02/07/2005] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
The transport of various metabolically important substances along the endocytic and secretory pathways involves budding as well as fusion of vesicles with various intracellular compartments and plasma membrane. The membrane-membrane fusion events between various sub-compartments of the cell are believed to be mainly mediated by so-called "fusion proteins". This study shows that beside the proteins, lipid components of membrane may play an equally important role in fusion and budding processes. Inside out (ISO) as well as right side out (RSO) erythrocyte vesicles were evaluated for their fusogenic potential using conventional membrane fusion assay methods. Both fluorescence dequenching as well as content mixing assays revealed fusogenic potential of the erythrocyte vesicles. Among two types of vesicles, ISO were found to be more fusogenic as compared to the RSO vesicles. Interestingly, ISO retained nearly half of their fusogenic properties after removal of the proteins, suggesting the remarkable role of lipids in the fusion process. In another set of experiments, fusogenic properties of the liposomes (subtilosome), prepared from phospholipids isolated from Bacillus subtilis (a lower microbe) were compared with those of erythrocyte vesicles. We have also demonstrated that various types of vesicles upon interaction with macrophages deliver encapsulated materials to the cytosol of the cells. Membrane-membrane fusion was also followed by the study, in which a protein synthesis inhibitor ricin A (that does not cross plasma membrane), when encapsulated in the erythrocyte vesicles or subtilosomes was demonstrated to gain access to the cytosol.
Collapse
Affiliation(s)
- F Deeba
- Inter-disciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 India
| | | | | | | | | | | | | |
Collapse
|
9
|
Masuda T, Ueyama H, Nakamura KI, Jikumaru M, Toyoshima I, Kumamoto T. Skeletal muscle expression of clathrin and mannose 6-phosphate receptor in experimental chloroquine-induced myopathy. Muscle Nerve 2005; 31:495-502. [PMID: 15712280 DOI: 10.1002/mus.20288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous studies suggest that the muscle fiber lysosome system plays a central role in the increased formation of autophagosomes and autolysosomes that occurs in the context of chloroquine-induced myopathy. The goal of this study was to characterize the contribution of receptor-mediated intracellular transport, particularly the endosomal pathway, to the abnormal accumulation of vacuoles in experimental chloroquine myopathy. Expression of the mannose 6-phosphate receptor (M6PR) and clathrin were analyzed in innervated and denervated rat soleus muscles after treatment with either saline or chloroquine. Accumulation of vacuoles was observed only in chloroquine-treated denervated muscles. Further, clathrin immunostaining and M6PR messenger ribonucleic acid (mRNA) were significantly increased in denervated soleus muscle from saline- and chloroquine-treated rats compared to contralateral, innervated muscles. However, there was no difference in clathrin levels when comparing saline- and chloroquine-treated denervated muscles. These data suggest that chloroquine activates the transport of newly synthesized lysosomal enzymes from the secretory pathway via the trans-Golgi network of the Golgi apparatus (an endosomal pathway) as well as autophagosome formation (an autophagic process) in skeletal muscles. Vacuoles may subsequently accumulate secondary to abnormal formation or turnover of autolysosomes at or after fusion of autophagosomes with early endosomes.
Collapse
Affiliation(s)
- Tomoko Masuda
- Department of Neurology and Neuromuscular Disorders, Oita University Faculty of Medicine, Idaigaoka 1-1, Hasama, Oita 879-5593, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Ybe JA, Ruppel N, Mishra S, VanHaaften E. Contribution of cysteines to clathrin trimerization domain stability and mapping of light chain binding. Traffic 2004; 4:850-6. [PMID: 14617348 DOI: 10.1046/j.1600-0854.2003.0139.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The three-legged or triskelion shape of clathrin is critical for the formation of polyhedral lattices around clathrin-coated vesicles. Filamentous legs radiate from a common vertex, with amino acids 1550-1615 contributed by each leg to define the trimerization domain (Liu S-H, Wong ML, Craik CS, Brodsky FM. Cell 1995; 83: 257-267). Within this amino acid stretch there are 3 cysteines at positions 1565, 1569 and 1573 which are completely conserved in higher mammals from humans to C. elegans. The cysteine-to-serine mutation at position 1573 was observed to have the largest impact on clathrin structure and self-assembly. We have also found that Cysteine 1528 located near the boundary between the proximal region and trimerization domain mediated the formation of nonproductive clathrin aggregates when bound light chain subunits were removed. However, when light chains were added back, the ability of this cysteine to form disulfide bridges between individual clathrin molecules was blocked, suggesting bound light chain interacted with Cysteine 1528 to prevent aggregation. This new information serves to map the orientation of the light chain subunit in the vicinity of the trimerization domain and supports previous models that indicate involvement of the trimerization domain in LC binding (Chen C-Y, Reese ML, Hwang PK, Ota N, Agard D, Brodsky FM. EMBO J 2002; 21: 6072-6082; Pishvaee B, Munn A, Payne GS. EMBO J 1997; 16: 2227-2239).
Collapse
Affiliation(s)
- Joel A Ybe
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
11
|
Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 2002; 17:517-68. [PMID: 11687498 DOI: 10.1146/annurev.cellbio.17.1.517] [Citation(s) in RCA: 485] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There has recently been considerable progress in understanding the regulation of clathrin-coated vesicle (CCV) formation and function. These advances are due to the determination of the structure of a number of CCV coat components at molecular resolution and the identification of novel regulatory proteins that control CCV formation in the cell. In addition, pathways of (a) phosphorylation, (b) receptor signaling, and (c) lipid modification that influence CCV formation, as well as the interaction between the cytoskeleton and CCV transport pathways are becoming better defined. It is evident that although clathrin coat assembly drives CCV formation, this fundamental reaction is modified by different regulatory proteins, depending on where CCVs are forming in the cell. This regulatory difference likely reflects the distinct biological roles of CCVs at the plasma membrane and trans-Golgi network, as well as the distinct properties of these membranes themselves. Tissue-specific functions of CCVs require even more-specialized regulation and defects in these pathways can now be correlated with human diseases.
Collapse
Affiliation(s)
- F M Brodsky
- Department of Biopharmaceutical Sciences, University of California, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
12
|
Gauczynski S, Peyrin JM, Haïk S, Leucht C, Hundt C, Rieger R, Krasemann S, Deslys JP, Dormont D, Lasmézas CI, Weiss S. The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 2001; 20:5863-75. [PMID: 11689427 PMCID: PMC125290 DOI: 10.1093/emboj/20.21.5863] [Citation(s) in RCA: 312] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2000] [Revised: 08/09/2001] [Accepted: 09/05/2001] [Indexed: 11/12/2022] Open
Abstract
Recently, we identified the 37-kDa laminin receptor precursor (LRP) as an interactor for the prion protein (PrP). Here, we show the presence of the 37-kDa LRP and its mature 67-kDa form termed high-affinity laminin receptor (LR) in plasma membrane fractions of N2a cells, whereas only the 37-kDa LRP was detected in baby hamster kidney (BHK) cells. PrP co-localizes with LRP/LR on the surface of N2a cells and Semliki Forest virus (SFV) RNA transfected BHK cells. Cell-binding assays reveal the LRP/LR-dependent binding of cellular PrP by neuronal and non-neuronal cells. Hyperexpression of LRP on the surface of BHK cells results in the binding of exogenous PrP. Cell binding is similar in PrP(+/+) and PrP(0/0) primary neurons, demonstrating that PrP does not act as a co-receptor of LRP/LR. LRP/LR-dependent internalization of PrP is blocked at 4 degrees C. Secretion of an LRP mutant lacking the transmembrane domain (aa 86-101) from BHK cells abolishes PrP binding and internalization. Our results show that LRP/LR acts as the receptor for cellular PrP on the surface of mammalian cells.
Collapse
Affiliation(s)
| | - Jean-Michel Peyrin
- Laboratorium für Molekulare Biologie-Genzentrum-Institut für Biochemie der LMU München, Feodor-Lynen Str. 25, D-81377 Munich, Germany and
CEA, Service de Neurovirologie, DRM/DSV, CRSSA, 18, Route du Panorama, BP.6, F-92265, Fontenay-aux-Roses Cedex, France Corresponding authors e-mail: or
S.Gauczynski, J.-M.Peyrin and S.Haïk contributed equally to this work
C.I.Lasmézas and S.Weiss should be considered as the senior authors of this work
| | - Stéphane Haïk
- Laboratorium für Molekulare Biologie-Genzentrum-Institut für Biochemie der LMU München, Feodor-Lynen Str. 25, D-81377 Munich, Germany and
CEA, Service de Neurovirologie, DRM/DSV, CRSSA, 18, Route du Panorama, BP.6, F-92265, Fontenay-aux-Roses Cedex, France Corresponding authors e-mail: or
S.Gauczynski, J.-M.Peyrin and S.Haïk contributed equally to this work
C.I.Lasmézas and S.Weiss should be considered as the senior authors of this work
| | | | | | | | | | - Jean-Philippe Deslys
- Laboratorium für Molekulare Biologie-Genzentrum-Institut für Biochemie der LMU München, Feodor-Lynen Str. 25, D-81377 Munich, Germany and
CEA, Service de Neurovirologie, DRM/DSV, CRSSA, 18, Route du Panorama, BP.6, F-92265, Fontenay-aux-Roses Cedex, France Corresponding authors e-mail: or
S.Gauczynski, J.-M.Peyrin and S.Haïk contributed equally to this work
C.I.Lasmézas and S.Weiss should be considered as the senior authors of this work
| | - Dominique Dormont
- Laboratorium für Molekulare Biologie-Genzentrum-Institut für Biochemie der LMU München, Feodor-Lynen Str. 25, D-81377 Munich, Germany and
CEA, Service de Neurovirologie, DRM/DSV, CRSSA, 18, Route du Panorama, BP.6, F-92265, Fontenay-aux-Roses Cedex, France Corresponding authors e-mail: or
S.Gauczynski, J.-M.Peyrin and S.Haïk contributed equally to this work
C.I.Lasmézas and S.Weiss should be considered as the senior authors of this work
| | - Corinne Ida Lasmézas
- Laboratorium für Molekulare Biologie-Genzentrum-Institut für Biochemie der LMU München, Feodor-Lynen Str. 25, D-81377 Munich, Germany and
CEA, Service de Neurovirologie, DRM/DSV, CRSSA, 18, Route du Panorama, BP.6, F-92265, Fontenay-aux-Roses Cedex, France Corresponding authors e-mail: or
S.Gauczynski, J.-M.Peyrin and S.Haïk contributed equally to this work
C.I.Lasmézas and S.Weiss should be considered as the senior authors of this work
| | - Stefan Weiss
- Laboratorium für Molekulare Biologie-Genzentrum-Institut für Biochemie der LMU München, Feodor-Lynen Str. 25, D-81377 Munich, Germany and
CEA, Service de Neurovirologie, DRM/DSV, CRSSA, 18, Route du Panorama, BP.6, F-92265, Fontenay-aux-Roses Cedex, France Corresponding authors e-mail: or
S.Gauczynski, J.-M.Peyrin and S.Haïk contributed equally to this work
C.I.Lasmézas and S.Weiss should be considered as the senior authors of this work
| |
Collapse
|
13
|
Liu SH, Towler MC, Chen E, Chen CY, Song W, Apodaca G, Brodsky FM. A novel clathrin homolog that co-distributes with cytoskeletal components functions in the trans-Golgi network. EMBO J 2001; 20:272-84. [PMID: 11226177 PMCID: PMC140205 DOI: 10.1093/emboj/20.1.272] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A clathrin homolog encoded on human chromosome 22 (CHC22) displays distinct biochemistry, distribution and function compared with conventional clathrin heavy chain (CHC17), encoded on chromosome 17. CHC22 protein is upregulated during myoblast differentiation into myotubes and is expressed at high levels in muscle and at low levels in non-muscle cells, relative to CHC17. The trimeric CHC22 protein does not interact with clathrin heavy chain subunits nor bind significantly to clathrin light chains. CHC22 associates with the AP1 and AP3 adaptor complexes but not with AP2. In non-muscle cells, CHC22 localizes to perinuclear vesicular structures, the majority of which are not clathrin coated. Treatments that disrupt the actin-myosin cytoskeleton or affect sorting in the trans-Golgi network (TGN) cause CHC22 redistribution. Overexpression of a subdomain of CHC22 induces altered distribution of TGN markers. Together these results implicate CHC22 in TGN membrane traffic involving the cytoskeleton.
Collapse
MESH Headings
- Cells, Cultured
- Chromosome Mapping
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 22
- Clathrin/genetics
- Clathrin/metabolism
- Cytoskeleton/physiology
- Cytoskeleton/ultrastructure
- HeLa Cells
- Humans
- Microscopy, Electron
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Muscle, Skeletal/ultrastructure
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Transport
- Receptor, IGF Type 2/metabolism
- Transfection
- trans-Golgi Network/physiology
- trans-Golgi Network/ultrastructure
Collapse
Affiliation(s)
| | | | | | | | - Wenxia Song
- The G.W.Hooper Foundation, Department of Microbiology and Immunology, and Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0552,
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 and Renal-Electrolyte Division of the Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | - Gerard Apodaca
- The G.W.Hooper Foundation, Department of Microbiology and Immunology, and Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0552,
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 and Renal-Electrolyte Division of the Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | - Frances M. Brodsky
- The G.W.Hooper Foundation, Department of Microbiology and Immunology, and Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0552,
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 and Renal-Electrolyte Division of the Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| |
Collapse
|
14
|
Kumamoto T, Ito T, Horinouchi H, Ueyama H, Toyoshima I, Tsuda T. Increased lysosome-related proteins in the skeletal muscles of distal myopathy with rimmed vacuoles. Muscle Nerve 2000; 23:1686-93. [PMID: 11054746 DOI: 10.1002/1097-4598(200011)23:11<1686::aid-mus3>3.0.co;2-f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Investigators have speculated that the degenerative process in distal myopathy with rimmed vacuoles (DMRV) mainly involves the lysosomal system. To investigate possible protein abnormalities related to intracellular lysosomal proteolytic pathways in DMRV-affected muscles, we performed immunohistochemical analyses of certain proteins in muscle biopsy specimens obtained from patients with various neuromuscular diseases, including DMRV, muscular dystrophy, polymyositis, and amyotrophic lateral sclerosis, and in normal human muscles specimens. Immunohistochemically, most muscle fibers in normal control specimens showed little or no reaction for clathrin and alpha- and gamma-subunits of adaptin-constituted adaptin proteins (AP)-1 and AP-2, respectively. Abnormal increases in these proteins were demonstrated mainly in the cytoplasm of atrophic fibers or in necrotic fibers in all diseased specimens. Particularly in DMRV-affected muscles, alpha- and gamma-adaptins were often observed inside or on the rims of vacuoles and in the cytoplasm of vacuolated fibers. Abnormal increases in Golgi-zone protein were also demonstrated in DMRV muscles. The rims of rimmed vacuoles were negative for kinectin, an endoplasmic reticulum-binding protein. Positive staining for both proteins, however, was sometimes seen inside the vacuoles in DMRV-affected fibers. These results suggest increased endocytosis at the plasma membrane as well as secretion involving transport from the trans-Golgi network of the Golgi apparatus in DMRV. Accumulation of various lysosome-related proteins within the rimmed vacuoles indicates at least some of these vacuoles may be autolysosomes.
Collapse
Affiliation(s)
- T Kumamoto
- Third Department of Internal Medicine, Oita Medical University, Hasama 1-1, Oita 879-5593, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Liu J, Qiao X, Du D, Lee MG. Receptor-mediated endocytosis in the procyclic form of Trypanosoma brucei. J Biol Chem 2000; 275:12032-40. [PMID: 10766835 DOI: 10.1074/jbc.275.16.12032] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Trypanosomatids, endocytosis and exocytosis occur exclusively at the flagellar pocket, a deep invagination of the plasma membrane where the flagellum extends from the cell. Both bloodstream and procyclic trypanosomes are capable of internalizing macromolecules. However, structures resembling coated vesicles were only identified in bloodstream form and not in procyclic form trypanosomes. Due to the apparent absence of coated vesicles in procyclics, the significance of receptor-mediated endocytosis in procyclic trypanosomes has been considered of minimal importance. We show that the flagellar pocket associated cysteine-rich acidic transmembrane protein (CRAM) may function as an high density lipoprotein receptor in the procyclic form trypanosome. Using anti-CRAM IgG we have characterized the process of CRAM-mediated endocytosis in procyclic form trypanosomes. The wild type procyclic trypanosome binds and internalizes anti-CRAM IgG but not the non-immune IgG in a saturable and time-dependent manner; the binding and uptake of (125)I-labeled anti-CRAM IgG are inhibited by excess unlabeled anti-CRAM IgG. Uptake and degradation of anti-CRAM IgG do not occur at 4 degrees C. At 28 degrees C, the internalized anti-CRAM IgG were efficiently degraded through a process that is inhibited by incubation at 4 degrees C and sensitive to the presence of chloroquine. The uptake and degradation of anti-CRAM IgG does not occur in the CRAM null mutant cell line. These results suggested that the uptake of anti-CRAM IgG in the wild type procyclics occurs via receptor-mediated endocytosis of the CRAM protein. Deletion of the cytoplasmic extension of CRAM drastically reduced the degradation but not the binding of anti-CRAM IgG. This result indicated that potential internalization signals may be present in the cytoplasmic extension of CRAM. This is the first time that the importance of receptor-mediated endocytosis in procyclic form trypanosomes has been demonstrated.
Collapse
Affiliation(s)
- J Liu
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
16
|
Yao PJ, Morsch R, Callahan LM, Coleman PD. Changes in synaptic expression of clathrin assembly protein AP180 in Alzheimer's disease analysed by immunohistochemistry. Neuroscience 1999; 94:389-94. [PMID: 10579202 DOI: 10.1016/s0306-4522(99)00360-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Clathrin assembly protein AP180 plays a regulatory role in clathrin-mediated synaptic vesicle recycling in synapses. Previously, using immunoblot analysis, we observed a significant reduction of AP180 protein in Alzheimer's disease neocortex. In this study, we examined immunohistochemically the expression of AP180 in post mortem brains with Alzheimer's disease (n = 5) in comparison with neurologically normal controls (n = 5). Overall, AP180 was revealed as immunoreactive punctate granules located in the neuropil, and around neuronal cell bodies and their processes, consistent with the typical expression of synaptic proteins. Reduced density of AP180 immunoreactive puncta was seen throughout all layers of the superior frontal gyrus in Alzheimer's disease, but the loss of AP180 immunoreactivity was not as prominent in the cerebellum. This regional difference is in agreement with our previous results from immunoblot analyses. In the hippocampus, cell body AP180 immunoreactivity normally seen in the hilus and the CA3 regions of control brains was completely lost in Alzheimer's disease. In addition, AP180 immunoreactivity in the molecular layer of the dentate gyrus showed several changes in Alzheimer's disease. These appeared to be expansion of the inner molecular layer and relative changes in immunoreactivity that resulted in clearer delineation of the inner and outer molecular layers. These results provide anatomical and spatial information on AP180 expression in Alzheimer's disease brains. The variations in altered AP180 immunoreactivity in different brain regions of Alzheimer's disease may underlie the dysfunction of the corresponding synapses.
Collapse
Affiliation(s)
- P J Yao
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, NY 14642, USA.
| | | | | | | |
Collapse
|
17
|
Kim M, Velier J, Chase K, Laforet G, Kalchman MA, Hayden MR, Won L, Heller A, Aronin N, Difiglia M. Forskolin and dopamine D1 receptor activation increase huntingtin's association with endosomes in immortalized neuronal cells of striatal origin. Neuroscience 1999; 89:1159-67. [PMID: 10362304 DOI: 10.1016/s0306-4522(98)00400-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Huntingtin is a cytoplasmic protein of unknown function that associates with vesicle membranes and microtubules. Its protein interactions suggest that huntingtin has a role in endocytosis and organelle transport. In this study we sought to identify factors that regulate the transport of huntingtin in striatal neurons, which are the cells most affected in Huntington's disease. In clonal striatal cells derived from fusions of neuroblastoma and embryonic striatal neurons, huntingtin localization is diffuse and slightly punctate in the cytoplasm. When these neurons were differentiated by treatment with forskolin, huntingtin redistributed to perinuclear regions, discrete puncta along plasma membranes, and branch points and terminal growth cones in neurites. Huntingtin staining overlapped with clathrin, a coat protein involved in endocytosis. Immunoblot analysis of subcellular membrane fractions separated by differential centrifugation confirmed that huntingtin immunoreactivity in differentiated neurons markedly increased in membrane fractions enriched with clathrin and with huntingtin-interacting protein 1. Dopamine treatment altered the subcellular localization of huntingtin and increased its expression in clathrin-enriched membrane fractions. The dopamine-induced changes were blocked by the D1 antagonist SCH 23390 and were absent in a clonal cell line lacking D1 receptors. Results suggest that the transport of huntingtin and its co-expression in clathrin and huntingtin-interacting protein 1-enriched membranes is influenced by activation of adenylyl cyclase and stimulation of dopamine D1 receptors.
Collapse
Affiliation(s)
- M Kim
- Department of Neurology, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Henrich VC, Rybczynski R, Gilbert LI. Peptide hormones, steroid hormones, and puffs: mechanisms and models in insect development. VITAMINS AND HORMONES 1999; 55:73-125. [PMID: 9949680 DOI: 10.1016/s0083-6729(08)60934-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- V C Henrich
- Department of Biology, University of North Carolina, Greensboro 27412-5001, USA
| | | | | |
Collapse
|
19
|
Martin EJ, Kim M, Velier J, Sapp E, Lee HS, Laforet G, Won L, Chase K, Bhide PG, Heller A, Aronin N, Difiglia M. Analysis of huntingtin-associated protein 1 in mouse brain and immortalized striatal neurons. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990125)403:4<421::aid-cne1>3.0.co;2-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Perry DG, Daugherty GL, Martin WJ. Clathrin-Coated Pit-Associated Proteins Are Required for Alveolar Macrophage Phagocytosis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.1.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
During phagocytosis, phagocytic receptors and membrane material must be inserted in the pseudopod membrane as it extends over the phagocytic target. This may require a clathrin-mediated recycling mechanism similar to that postulated for leading edge formation during cell migration. To investigate this possibility, liposomes were used to deliver to intact rat alveolar macrophages (AMs): 1) Abs to clathrin, clathrin adaptor AP-2, and hsc70, and 2) amantadine. Phagocytosis was assayed by fluorometric and colorimetric techniques. Liposome-delivered Abs to clathrin and AP-2 inhibited AM phagocytosis of zymosan-coated, fluorescent liposomes from 16.3 ± 0.3 to 5.8 ± 0.3, and 10.1 ± 0.9 to 4.8 ± 0.2 liposomes/cell (p < 0.01). Similarly, liposome-delivered Ab to clathrin also inhibited AM phagocytosis of IgG-opsonized RBCs from 11.7 ± 1.7 to 3.8 ± 0.7 RBCs/cell (p < 0.01). Amantadine, which blocks the budding of clathrin-coated vesicles, inhibited phagocytosis from 13.8 ± 0.8 to 5.7 ± 0.6 (p < 0.01). Ab blockade of hsc70, which catalyzes clathrin turnover, also inhibited phagocytosis from 9.1 ± 0.5 to 4.3 ± 0.2 (p < 0.01). These findings suggest that clathrin-mediated receptor/membrane recycling is required for phagocytosis.
Collapse
Affiliation(s)
- Douglas G. Perry
- Division of Pulmonary and Critical Care Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gena L. Daugherty
- Division of Pulmonary and Critical Care Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - William J. Martin
- Division of Pulmonary and Critical Care Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
21
|
Alconada A, Bauer U, Sodeik B, Hoflack B. Intracellular traffic of herpes simplex virus glycoprotein gE: characterization of the sorting signals required for its trans-Golgi network localization. J Virol 1999; 73:377-87. [PMID: 9847342 PMCID: PMC103843 DOI: 10.1128/jvi.73.1.377-387.1999] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are two pathogenic human alphaherpesviruses whose intracellular assembly is thought to follow different pathways. VZV presumably acquires its envelope in the trans-Golgi network (TGN), and it has recently been shown that its major envelope glycoprotein, VZV-gE, accumulates in this compartment when expressed alone. In contrast, the envelopment of HSV has been proposed to occur at the inner nuclear membrane, although to which compartment the gE homolog (HSV-gE) is transported is unknown. For this reason, we have studied the intracellular traffic of HSV-gE and have found that this glycoprotein accumulates at steady state in the TGN, both when expressed from cloned cDNA and in HSV-infected cells. In addition, HSV-gE cycles between the TGN and the cell surface and requires a conserved tyrosine-containing motif within its cytoplasmic tail for proper trafficking. These results show that VZV-gE and HSV-gE have similar intracellular trafficking pathways, probably reflecting the presence of similar sorting signals in the cytoplasmic domains of both molecules, and suggest that the respective viruses, VZV and HSV, could use the same subcellular organelle, the TGN, for their envelopment.
Collapse
Affiliation(s)
- A Alconada
- Institut de Biologie, EP CNRS 525, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | | | |
Collapse
|
22
|
Meyer HW, Westermann M, Stumpf M, Richter W, Ulrich AS, Hoischen C. Minimal radius of curvature of lipid bilayers in the gel phase state corresponds to the dimension of biomembrane structures "caveolae". J Struct Biol 1998; 124:77-87. [PMID: 9931276 DOI: 10.1006/jsbi.1998.4042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caveolae are membrane invaginations with a radius of curvature in the range of 40 nm for the bulb; 10-15 nm is the minimal radius for lipid bilayers in the liquid-crystalline Lalpha (liquid-disordered: ld) phase state. A minimal radius of 20-30 nm could be detected for the gel phase state by analysis of convex-concave bilayer deformations. Circular protrusions with a diameter in the range of only about 40 nm are closed by a flat lid, and those with diameters of 60 nm or more are closed by hemispherical caps. These structures are found primarily in phosphatidylcholine/sterol mixtures, where the gel phase state "liquid ordered" (lo) has been introduced. As a further example the mixture of dimyristoylphosphatidylcholine (DMPC) with an unusual sterol (diflucortolon-21-valerat) is presented. In the usual hydration at temperatures above the phase transition the deformation requires an incubation at 4 degrees C for several weeks or months to form. Using a low temperature hydration procedure (at 4 degrees C), surprisingly bilayers of pure DMPC and DPPC (dipalmitoylphosphatidylcholine) are found to deform in the same convex-concave manner, and this takes place within hours and days. The dependence on hydration protocol is also observed for formation of a sponge-like bilayer network with 30-35 nm radius of curvature in brain sphingomyelin and its mixtures with cholesterol. Caveolae are microdomains enriched in cholesterol and sphingomyelin and are simultaneously discussed to be in the lo state. Direct evidence by investigation of bilayers formed by the lipids isolated from caveolae is still lacking, but structures similar to caveolae which are in the gel phase state (very probably the lo state) are also formed by lipids extracted from bacterial membranes. A further analogy exists because both natural lipid mixtures (brain sphingomyelin and bacterial lipids) transform during heating from the curved bilayer structures into microvesicles above the phase transition. Internalization of caveolae is a process of vesicle formation.
Collapse
Affiliation(s)
- H W Meyer
- Institut für Ultrastrukturforschung des Klinikums, Friedrich-Schiller-Universität Jena, Jena, D-07740, Germany
| | | | | | | | | | | |
Collapse
|
23
|
VanRenterghem B, Morin M, Czech MP, Heller-Harrison RA. Interaction of insulin receptor substrate-1 with the sigma3A subunit of the adaptor protein complex-3 in cultured adipocytes. J Biol Chem 1998; 273:29942-9. [PMID: 9792713 DOI: 10.1074/jbc.273.45.29942] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling through the insulin receptor tyrosine kinase involves its autophosphorylation in response to insulin and the subsequent tyrosine phosphorylation of substrate proteins such as insulin receptor substrate-1 (IRS-1). In basal 3T3-L1 adipocytes, IRS-1 is predominantly membrane-bound, and this localization may be important in targeting downstream signaling elements that mediate insulin action. Since IRS-1 localization to membranes may occur through its association with specific membrane proteins, a 3T3-F442A adipocyte cDNA expression library was screened with non-tyrosine-phosphorylated, baculovirus-expressed IRS-1 in order to identify potential IRS-1 receptors. A cDNA clone that encodes sigma3A, a small subunit of the AP-3 adaptor protein complex, was demonstrated to bind IRS-1 utilizing this cloning strategy. The specific interaction between IRS-1 and sigma3A was further verified by in vitro binding studies employing baculovirus-expressed IRS-1 and a glutathione S-transferase (GST)-sigma3A fusion protein. IRS-1 and sigma3A were found to co-fractionate in a detergent-resistant population of low density membranes isolated from basal 3T3-L1 adipocytes. Importantly, the addition of exogenous purified GST-sigma3A to low density membranes caused the release of virtually all of the IRS-1 bound to these membranes, while GST alone had no effect. These results are consistent with the hypothesis that sigma3A serves as an IRS-1 receptor that may dictate the subcellular localization and the signaling functions of IRS-1.
Collapse
Affiliation(s)
- B VanRenterghem
- Program in Molecular Medicine and the Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
24
|
Abstract
We have established a system that reconstitutes the biogenesis of synaptic-like microvesicles (SLMVs) in perforated cells of the rat neuroendocrine cell line PC12. The system is based on the biotinylation of synaptophysin, a marker of synaptic vesicles and SLMVs. Biotinylation is performed at 18 degrees C, a temperature at which formation of SLMVs is blocked and biotinylated synaptophysin accumulates in the SLMV donor compartment. The biotinylated PC12 cells are then perforated by scraping and incubated at 37 degrees C in the presence of ATP and cytosolic proteins, conditions required for SLMV biogenesis. After the perforated-cell reaction, the newly formed SLMVs are isolated by differential centrifugation followed by either glycerol gradient centrifugation or a simple single-glycerol-step centrifugation. The latter allows the analysis of many perforated-cell reactions in parallel and, hence, the dissection of the molecular machinery mediating SLMV biogenesis. Using this system, we have found that clathrin, dynamin, phosphatidylinositol transfer protein, and SH3P4 are involved in SLMV biogenesis.
Collapse
Affiliation(s)
- A Schmidt
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, Heidelberg, D-69120, Germany
| | | |
Collapse
|
25
|
Profit AA, Chen J, Gu QM, Chaudhary A, Prasad K, Lafer EM, Prestwich GD. Probing the phosphoinositide binding site of the clathrin assembly protein AP-2 with photoaffinity labels. Arch Biochem Biophys 1998; 357:85-94. [PMID: 9721186 DOI: 10.1006/abbi.1998.0796] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relative binding specificities of the subunitsof bovine assembly protein AP-2 for the phosphatidylinositol polyphosphates (PtdInsPn) and inositol polyphosphates (InsPn) were determined by photoaffinitylabeling. Three types of benzophenone-containing photoprobes were employed: (i) the water-solubleP-1- or P-2-tethered p-benzoyldihydrocinnamoyl-InsPn (BZDC-InsPn) analogs, (ii) P-1-linked phosphotriester PtdInsPn analogs that sampled the interface between the water and lipid phases, and (iii) sn-1-O-acyl-linked PtdInsPn analogs that interacted with proteins penetrating the bilayer. The InsPn and PtdInsPn probes bind with highest selectivity and affinity to the two alpha subunit isoforms, with certain probes and conditions resulting in strong labeling of the 50-kDa mu subunit. Three main conclusions were reached: (i) head group recognition predominated over acyl chain recognition, (ii) the PtdInsPn binding site of alpha-AP-2 prefers more highly phosphorylated species, and (iii) the protein-acyl chain interactions showed high capacity but low selectivity.
Collapse
Affiliation(s)
- A A Profit
- Department of Chemistry, University at Stony Brook, Stony Brook, New York 11794-3400, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Velier J, Kim M, Schwarz C, Kim TW, Sapp E, Chase K, Aronin N, DiFiglia M. Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp Neurol 1998; 152:34-40. [PMID: 9682010 DOI: 10.1006/exnr.1998.6832] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Huntingtin is a cytoplasmic protein that is found in neurons and somatic cells. In patients with Huntington's disease (HD), the NH2-terminal region of huntingtin has an expanded polyglutamine tract. An abnormal protein interaction by mutant huntingtin has been proposed as a mechanism for HD pathogenesis. Huntingtin associates with vesicle membranes and interacts with proteins involved in vesicle trafficking. It is unclear where along vesicle transport pathways wild-type and mutant huntingtins are found and whether polyglutamine expansion affects this localization. To distinguish wild-type and mutant huntingtin, fibroblasts from normals and HD patients with two mutant alleles (homozygotes) were examined. Immunofluorescence confocal microscopy showed that mutant huntingtin localized with clathrin in membranes of the trans Golgi network and in clathrin-coated and noncoated endosomal vesicles in the cytoplasm and along plasma membranes. Separation of organelles in Nycodenz gradients showed that in normal and HD homozygote patient cells, huntingtin was present in membrane fractions enriched in clathrin. Similar results were obtained in fibroblasts from heterozyote juvenile HD patients who had a highly expanded polyglutamine tract in the HD allele. Western blot analysis of membrane fractions from rat brain showed that wild-type huntingtin was present in fractions that contained purified clathrin-coated membranes or a mixture of clathrin-coated and noncoated membranes. Electron microscopy of huntingtin immunoreactivity in rat brain revealed labeling along dendritic plasma membranes in association with clathrin-coated pits and clusters of noncoated endosomal vesicles 40-60 nm in diameter. These data suggest that wild-type and mutant huntingtin can influence vesicle transport in the secretory and endocytic pathways through associations with clathrin-coated vesicles.
Collapse
Affiliation(s)
- J Velier
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kumamoto T, Nagao SI, Sugihara R, Abe T, Ueyama H, Tsuda T. Effect of chloroquine-induced myopathy on rat soleus muscle sarcoplasm and expression of clathrin. Muscle Nerve 1998; 21:665-8. [PMID: 9572252 DOI: 10.1002/(sici)1097-4598(199805)21:5<665::aid-mus19>3.0.co;2-u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clathrin-coated vesicles are involved in receptor-mediated intracellular transport pathways related to lysosomal proteolysis. Clathrin levels were significantly elevated in denervated soleus muscles from chloroquine- and saline-treated rats as compared with their contralateral, innervated muscles. No difference was found in the clathrin levels of the denervated muscles in both groups. The accumulation of autophagic vacuoles was marked only in chloroquine-treated muscles after denervation. These findings suggest that chloroquine does not inhibit intracellular trafficking of clathrin-coated vesicles during the overdevelopment of autophagic vacuoles.
Collapse
Affiliation(s)
- T Kumamoto
- Third Department of Internal Medicine, Oita Medical University, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Bursztajn S, Vincent S, Brodsky F, Benes F, Morris S. A novel AP180-related protein in vesicles that concentrate at acetylcholine receptor clusters. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980315)68:4<457::aid-jcb6>3.0.co;2-p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Liu SH, Marks MS, Brodsky FM. A dominant-negative clathrin mutant differentially affects trafficking of molecules with distinct sorting motifs in the class II major histocompatibility complex (MHC) pathway. J Cell Biol 1998; 140:1023-37. [PMID: 9490717 PMCID: PMC2132696 DOI: 10.1083/jcb.140.5.1023] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/1997] [Revised: 01/06/1998] [Indexed: 02/06/2023] Open
Abstract
The role of clathrin in intracellular sorting was investigated by expression of a dominant-negative mutant form of clathrin, termed the hub fragment. Hub inhibition of clathrin-mediated membrane transport was established by demonstrating a block of transferrin internalization and an alteration in the intracellular distribution of the cation-independent mannose-6-phosphate receptor. Hubs had no effect on uptake of FITC-dextran, adaptor distribution, organelle integrity in the secretory pathway, or cell surface expression of constitutively secreted molecules. Hub expression blocked lysosomal delivery of chimeric molecules containing either the tyrosine-based sorting signal of H2M or the dileucine-based sorting signal of CD3gamma, confirming a role for clathrin-coated vesicles (CCVs) in recognizing these signals and sorting them to the endocytic pathway. Hub expression was then used to probe the role of CCVs in targeting native molecules bearing these sorting signals in the context of HLA-DM and the invariant chain (I chain) complexed to HLA-DR. The distribution of these molecules was differentially affected. Accumulation of hubs before expression of the DM dimer blocked DM export from the TGN, whereas hubs had no effect on direct targeting of the DR-I chain complex from the TGN to the endocytic pathway. However, concurrent expression of hubs, such that hubs were building to inhibitory concentrations during DM or DR-I chain expression, caused cell surface accumulation of both complexes. These observations suggest that both DM and DR-I chain are directly transported to the endocytic pathway from the TGN, DM in CCVs, and DR-I chain independent of CCVs. Subsequently, both complexes can appear at the cell surface from where they are both internalized by CCVs. Differential packaging in CCVs in the TGN, mediated by tyrosine- and dileucine-based sorting signals, could be a mechanism for functional segregation of DM from DR-I chain until their intended rendezvous in late endocytic compartments.
Collapse
Affiliation(s)
- S H Liu
- The G.W. Hooper Foundation, Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0552, USA
| | | | | |
Collapse
|
30
|
Abstract
Whether afferents exert their morphogenetic influence on spindles through release of trophic factors at intrafusal fiber junctions or via participation in proprioceptive pathways which modulate the motor activity to muscles was investigated by comparing myosin heavy chain (MHC) expression in intrafusal fibers after ablation of afferents (deafferentation, or DA) to the extensor digitorum longus (EDL) of adult rats or after ablation of the corresponding central processes of afferents to the spinal cord (central-process ablation, or CPA). DA and CPA elicited an exaggerated pedal plantarflexion, and hypertrophy of the EDL concomitant with atrophy of the soleus in the affected hindlimb. Frequencies and patterns of expression of seven MHCs expressed by intrafusal fibers in CPA muscles were indistinguishable from normal rats. However, frequencies and patterns of expression of several MHCs were abnormal following DA. Thus factors transported anterogradely from afferents to intrafusal fibers may regulate MHC expression in intrafusal fibers.
Collapse
Affiliation(s)
- J M Walro
- Department of Anatomy, Northeastern Ohio Universities College of Medicine, Rootstown 44272-0095, USA
| | | | | |
Collapse
|
31
|
Riddelle-Spencer KS, O'Halloran TJ. Purification of clathrin heavy and light chain from Dictyostelium discoideum. Protein Expr Purif 1997; 11:250-6. [PMID: 9425628 DOI: 10.1006/prep.1997.0793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Clathrin, a protein important for endocytosis, is a hexamer composed of three heavy chains and three light chains. We report here the purification scheme used to isolate the clathrin protein from the simple eukaryote, Dictyostelium discoideum. Using a combination of differential centrifugation and column chromatography, we isolated approximately 2 mg of clathrin triskelions from 150-200 g of Dictyostelium cells. One additional step purified the 30-kDa clathrin light chain to homogeneity. Glycerol gradient centrifugation was used to determine an S value of 7.9 for purified clathrin. Rotary shadowed images of Dictyostelium clathrin revealed trimeric molecules with extended legs measuring 48 +/- 5 nm, similar in length to the legs of mammalian and yeast clathrin triskelions. The single clathrin light chain proved resistant to heat treatment, a property also similar to light chains from other species. The conservation of these physical properties in Dictyostelium clathrin demonstrates the potential of this model organism for the study of clathrin structure and function.
Collapse
Affiliation(s)
- K S Riddelle-Spencer
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
32
|
Abstract
Recent studies of mutations of Drosophila proteins implicated in synaptic transmission have yielded new insights into the roles of these proteins and the pathways in which they function. Analysis of mutant embryos lacking syntaxin or synaptobrevin suggests that these proteins perform distinct functions after vesicle docking with the presynaptic membrane. In addition, characterization of Drosophila endocytotic mutants provides in vivo evidence for the presence of different endocytotic pathways at a single synapse.
Collapse
Affiliation(s)
- M N Wu
- Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
33
|
Abstract
1. Exocytosis and endocytosis are the continuous outward and inward vesicular transports in a cell that occur constantly for intra- and inter-cellular communications. These events are accomplished with the release and uptake of chemical messages fundamental in a variety of cellular functions, such as neurotransmitter release, hormone secretion and receptor internalization. 2. Although the mechanisms underlying these events have not been fully established, it is widely accepted that they are largely mediated and controlled by a number of effector proteins. These proteins can operate individually and in concert to produce specialized machineries in the sequential steps of exocytotic and endocytic transports. 3. Protein phosphorylation, the most common covalent modification of proteins in cells, has been implicated as playing an important role in the regulation of exocytosis and endocytosis. Many proteins involved in these processes have been identified to be phosphorylated under certain conditions. 4. For instance, synapsin I, myristoylated alanine-rich C kinase substrate and dynamin I undergo dynamic phosphorylation and dephosphorylation cycles during exocytosis and endocytosis, implying that protein phosphorylation regulates the functions of these proteins and, thus, exocytosis and endocytosis.
Collapse
Affiliation(s)
- J P Liu
- Baker Medical Research Institute, Prahran, Victoria, Australia.
| |
Collapse
|
34
|
Abstract
Clathrin-coated vesicles are responsible for the sorting transport of membrane proteins within cells. Their co of the self-assembling protein clathrin, and adaptor r. interact with the vesicle cargo and localize clathrin tc Recently, novel clathrin-like and adaptor-like proteins identified. Here, Frances Brodsky discusses various in these findings, including the possibility that the novel expanded functions beyond the conventional roles of the in coated-vesicle formation. In this context, the mech which coats influence vesicle formation is reconsidere.
Collapse
|
35
|
Kokoza VA, Raikhel AS. Ovarian- and somatic-specific transcripts of the mosquito clathrin heavy chain gene generated by alternative 5'-exon splicing and polyadenylation. J Biol Chem 1997; 272:1164-70. [PMID: 8995417 DOI: 10.1074/jbc.272.2.1164] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Insect oocytes are extraordinarily specialized for receptor-mediated endocytosis of yolk protein precursors. The clathrin heavy chain (CHC) is the major structural protein of coated vesicles, the principal organelles of receptor-mediated endocytosis. To understand the role of clathrin in the development of the oocyte's powerful endocytotic machinery we determined the structure of the mosquito chc gene. The gene spans approximately 45 kilobases and its coding region is divided into seven exons, five of which encode the protein. Three distinct mature transcripts of this gene were identified in mosquito tissues. Two of them code isoforms of the CHC polypeptide differing in their NH2-terminal sequences, and are specifically expressed in female germ-line cells. The third transcript has a 3'-untranslated region about 1 kilobase longer than the other variants, and is found only in the somatic cells. Tissue-specific 5'-exon splicing and alternative polyadenylation of the primary transcript combine to give rise to these mRNAs. We identified two alternative promoters, distal and proximal, separated by approximately 10 kilobases involved in tissue-specific regulation of mosquito chc gene expression. Our data provide the first molecular evidence for complex structure and regulation of a chc gene, in this case occurring at both the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- V A Kokoza
- Department of Entomology, Michigan State University, East Lansing 48824-1115, USA
| | | |
Collapse
|
36
|
Abstract
Clathrin-coated vesicles were the first discovered and remain the most extensively characterized transport vesicles. They mediate endocytosis of transmembrane receptors and transport of newly synthesized lysosomal hydrolases from the trans-Golgi network to the lysosome. Cell-free assays for coat assembly, membrane binding, and coated vesicle budding have provided detailed functional and structural information about how the major coat constituents, clathrin and the adaptor protein complexes, interact with each other, with membranes, and with the sorting signals found on cargo molecules. Coat constituents not only serve to shape the budding vesicle, but also play a direct role in the packaging of cargo, suggesting that protein sorting and vesicle budding are functionally integrated. The functional interplay between the coated vesicle machinery and its cargo could ensure sorting fidelity and packaging efficiency and might enable modulation of vesicular trafficking in response to demand.
Collapse
Affiliation(s)
- S L Schmid
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
37
|
Grady EF, Gamp PD, Jones E, Baluk P, McDonald DM, Payan DG, Bunnett NW. Endocytosis and recycling of neurokinin 1 receptors in enteric neurons. Neuroscience 1996; 75:1239-54. [PMID: 8938757 DOI: 10.1016/0306-4522(96)00357-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurotransmission depends on the availability of transmitter and on the presence of functional, high-affinity receptors at the plasma membrane that are capable of binding ligand. The pathway, mechanism and function of endocytosis and recycling of the substance P or neurokinin 1 receptor in enteric neurons were studied using fluorescent substance P, receptor antibodies and confocal microscopy. In both the soma and neurites, substance P induced rapid, clathrin-mediated internalization of the neurokinin 1 receptor into early endosomes, which also contained the transferrin receptor. After 4-8 h, there was a return in surface neurokinin 1 receptor immunoreactivity in the soma, which was not prevented by cycloheximide, and was thus independent of new protein synthesis. This return was prevented by acidotropic agents, therefore required endosomal acidification. This suggests that the neurokinin 1 receptor recycles in the soma. In contrast, in neurites, substance P and the neurokinin 1 receptor remained in endosomes and recycling was not detected. Neurons of the myenteric plexus were heavily innervated by substance P-containing nerve fibers, and K(+)-stimulated release of endogenous substance P from cultured neurons induced internalization of the neurokinin 1-receptor. Therefore, endogenous substance P may induce endocytosis of the neurokinin 1 receptor. In the soma, endocytosis and recycling correlated with loss and recovery of functional binding sites for substance P. suggesting that this process contributes to the regulation of peptidergic neurotransmission. Thus, ligand-induced endocytosis of the neurokinin 1 receptor in myenteric neurons is associated with a loss of surface receptors and functional binding sites. Since release of endogenous substance P induces neurokinin 1 receptor internalization, and neurokinin 1 receptor neurons are innervated by substance P-containing fibers, endocytosis of neuropeptide receptors may regulate neurotransmission.
Collapse
Affiliation(s)
- E F Grady
- Department of Surgery, University of California, San Francisco 94143-0660, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Bauerfeind R, Galli T, De Camilli P. Molecular mechanisms in synaptic vesicle recycling. JOURNAL OF NEUROCYTOLOGY 1996; 25:701-15. [PMID: 9023719 DOI: 10.1007/bf02284836] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R Bauerfeind
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | |
Collapse
|
39
|
Abstract
Dynamin is a neuronal phosphoprotein and a GTPase enzyme which mediates late stages of endocytosis in both neural and non-neural cells. Current knowledge about dynamin is reviewed with particular emphasis on its structure and regulation with respect to phosphorylation, protein-protein interactions and phospholipid binding. The major themes are the biochemical regulation of dynamin, its effects on dynamin's GTPase activity and how this might relate to assembling the 'fission ring' that brings about vesicle retrieval. Dynamin I is an isoform of the enzyme primarily located in the central and peripheral nervous systems, where it is enriched in areas of abundant synaptic contacts. Dynamin I undergoes protein-protein interactions via its proline-rich domain at the C-terminus and these can elevate its N-terminal GTPase activity. Dynamin I interacts with multiple proteins in the nerve terminal, including SH3 domain-containing proteins such as amphiphysin and potentially with other proteins such as betagamma subunits. These regulate its role in endocytosis by targeting dynamin I to specific subcellular locations of retrieval. Dynamin I is phosphorylated in vivo by PKC and dephosphorylated on depolarization and calcium influx into nerve terminals in parallel with the coupled events of exocytosis and endocytosis. In late stages of synaptic vesicle retrieval dynamin I undergoes stimulated assembly into a collar, or fission ring, that surrounds the neck of recycling synaptic vesicles. Activation of GTP hydrolysis probably then generates the free synaptic vesicle, which can be refilled with neurotransmitters. This targeting and assembly may involve sequential steps including recruitment of AP-2 to synaptotagmin on the synaptic vesicle, and recruitment of amphiphysin, dynamin I, and synaptojanin. In addition to synaptic vesicle retrieval, dynamin has been associated with intracellular events mediated by growth factor receptors, insulin receptors and the beta-adrenergic receptor. This is likely to reflect targeting of these receptors for endocytosis soon after their activation. However, does it also suggest a broader role for dynamin in other aspects of intracellular signalling pathways?
Collapse
Affiliation(s)
- S J McClure
- Endocrine Unit, John Hunter Hospital, Hunter Region Mail Centre,NSW, Australia
| | | |
Collapse
|
40
|
Drucker M, Happel N, Robinson DG. Localization and properties of kinases in clathrin-coated vesicles from zucchini hypocotyls. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:570-5. [PMID: 8856056 DOI: 10.1111/j.1432-1033.1996.0570h.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Five major polypeptides of 70, 50, 47, 19 and 17 kDa and four minor polypeptides (100, 65, 45 and 39 kDa) become phosphorylated when clathrin-coated vesicles (CCV) from zucchini hypocotyls are incubated in [gamma 32P]Mg-ATP. After dissociation with 0.5 M Tris/HCl the CCV coat polypeptides were subjected to gel filtration in order to separate clathrin triskelions from beta-adaptin-containing fractions. Only the latter bore kinase activities, with phosphorylated polypeptides of 39 kDa in addition to the 50, 19-kDa and 17-kDa polypeptides just mentioned. Heparin, an inhibitor of casein kinase II, permitted the phosphorylation of only the 19-kDa and 17-kDa polypeptides. Staurosporine, an inhibitor of protein kinase c-like activities, prevented the phosporylation of the 70-kDa polypeptide. When recombined with the triskelions the beta-adaptin fractions achieved the phosphorylation of the 45-kDa and 70-kDa polypeptides. Because of its heat stability and calcium-binding properties we interpret the 45-kDa polypeptide as being a clathrin light chain. Antibodies raised against the 70-kDa group of heat-shock proteins (Hsp70) recognize a 70-kDa polypeptide in the beta-adaptin-containing fractions. Because this polypeptide only phosphorylates in the presence of triskelions we consider it to be the uncoating ATPase, which is known to aggregate upon dissociation of the CCV coat. Our results therefore indicate that zucchini CCV contain a number of phosphorylable polypeptides equivalent to the beta, mu and sigma adaptins of bovine brain. Just as in bovine brain CCV a casein-kinase-II-like activity is associated with the zucchini CCV 50/47-kDa polypeptides, further pointing to their identity as plant mu2/mu1 adaptin equivalents.
Collapse
Affiliation(s)
- M Drucker
- Pflanzenphysiologisches Institut, Universität Göttingen, Germany
| | | | | |
Collapse
|
41
|
Gaidarov I, Chen Q, Falck JR, Reddy KK, Keen JH. A functional phosphatidylinositol 3,4,5-trisphosphate/phosphoinositide binding domain in the clathrin adaptor AP-2 alpha subunit. Implications for the endocytic pathway. J Biol Chem 1996; 271:20922-9. [PMID: 8702850 DOI: 10.1074/jbc.271.34.20922] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Clathrin-coated pits are sites of concentration of ligand-bound signaling receptors. Several such receptors are known to recruit, bind, and activate the heterodimeric phosphatidylinositol-3-kinase, resulting in the generation of phosphatidylinositol 3,4, 5-trisphosphate. We report here that dioctanoyl-phosphatidylinositol-3,4,5-P3 binds specifically and saturably to soluble AP-2 and with greater affinity to AP-2 within assembled coat structures. Soluble -myo-inositol hexakisphosphate shows converse behavior. Binding to bovine brain clathrin-coated vesicles is evident only after detergent extraction. These observations and evidence for recognition of the diacylglyceryl backbone as well as the inositol phosphate headgroup are consistent with AP-2 interaction with membrane phosphoinositides in coated vesicles and with soluble inositol phosphates in cytoplasm. A discrete binding domain is identified near the N terminus of the AP-2 alpha subunit, and an expressed fusion protein containing this sequence exhibits specific, high affinity binding that is virtually identical to the parent protein. This region of the AP-2 alpha sequence also shows the greatest conservation between a Caenorhabditis elegans homolog and mammalian alpha, consistent with a function in recognition of an evolutionarily unchanging low molecular weight ligand. Binding of phosphatidylinositol 3,4, 5-trisphosphate to AP-2 inhibits the protein's clathrin binding and assembly activities. These findings are discussed in the context of the potential roles of phosphoinositides and AP-2 in the internalization and trafficking of cell surface receptors.
Collapse
Affiliation(s)
- I Gaidarov
- Department of Pharmacology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
42
|
Dreyling MH, Martinez-Climent JA, Zheng M, Mao J, Rowley JD, Bohlander SK. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc Natl Acad Sci U S A 1996; 93:4804-9. [PMID: 8643484 PMCID: PMC39360 DOI: 10.1073/pnas.93.10.4804] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The translocation t(10;11)(p13;q14) is a recurring chromosomal abnormality that has been observed in patients with acute lymphoblastic leukemia as well as acute myeloid leukemia. We have recently reported that the monocytic cell line U937 has a t(10;11)(p13;q14) translocation. Using a combination of positional cloning and candidate gene approach, we cloned the breakpoint and were able to show that AF10 is fused to a novel gene that we named CALM (Clathrin Assembly Lymphoid Myeloid leukemia gene) located at 11q14. AF10, a putative transcription factor, had recently been cloned as one of the fusion partners of MLL. CALM has a very high homology in its N-terminal third to the murine ap-3 gene which is one of the clathrin assembly proteins. The N-terminal region of ap-3 has been shown to bind to clathrin and to have a high-affinity binding site for phosphoinositols. The identification of the CALM/AF10 fusion gene in the widely used U937 cell line will contribute to our understanding of the malignant phenotype of this line.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Chromosomes, Human, Pair 10/genetics
- Chromosomes, Human, Pair 11/genetics
- Cloning, Molecular
- DNA Primers/genetics
- DNA, Complementary/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Myeloid, Acute/genetics
- Mice
- Molecular Sequence Data
- Monocytes/ultrastructure
- Monomeric Clathrin Assembly Proteins
- Nerve Tissue Proteins/genetics
- Phosphoproteins/genetics
- Sequence Homology, Amino Acid
- Transcription Factors/genetics
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M H Dreyling
- Section of Hematology/Oncology, University of Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
43
|
Edwards DA, Gooch KJ, Zhang I, McKinley GH, Langer R. The nucleation of receptor-mediated endocytosis. Proc Natl Acad Sci U S A 1996; 93:1786-91. [PMID: 8700836 PMCID: PMC39859 DOI: 10.1073/pnas.93.5.1786] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A theory of the mechanical origins of receptor-mediated endocytosis shows that a spontaneous membrane complex formation can provide the stimulus for a local membrane motion toward the cytosol. This motion is identified with a nucleation stage of receptor-mediated endocytosis. When membrane complexes cluster, membrane deformation is predicted to be most rapid. The rate of growth of membrane depressions depends upon the relative rates of approach of aqueous cytosolic and extracellular fluids toward the cell membrane. With cytosolic and extracellular media characterized by apparent viscosities, the rate of growth of membrane depressions is predicted to increase as the extracellular viscosity nears the apparent viscosity of the cytosol and then to decrease when the extracellular viscosity exceeds that of the cytosol. To determine whether these trends would be apparent in the overall endocytosis rate constant, an experimental study of transferrin-mediated endocytosis in two different cell lines was conducted. The experimental results reveal the same dependence of internalization rate on extracellular viscosity as predicted by the theory. These and other comparisons with experimental data suggest that the nucleation stage of receptor-mediated endocytosis is important in the overall endocytosis process.
Collapse
Affiliation(s)
- D A Edwards
- Department of Chemical Engineering, Pennsylvania State University, University Park, 16802, USA
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- P De Camilli
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
45
|
Dittie AS, Hajibagheri N, Tooze SA. The AP-1 adaptor complex binds to immature secretory granules from PC12 cells, and is regulated by ADP-ribosylation factor. J Cell Biol 1996; 132:523-36. [PMID: 8647885 PMCID: PMC2199873 DOI: 10.1083/jcb.132.4.523] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Immature secretory granules (ISGs) in endocrine and neuroendocrine cells have been shown by morphological techniques to be partially clathrin coated (Orci, L., M. Ravazzola, M. Amherdt, D. Lonvard, A. Perrelet. 1985a. Proc. Natl. Acad. Sci. USA. 82:5385-5389; Tooze, J., and S. A. Tooze. 1986. J. Cell Biol. 103:839-850). The function, and composition, of this clathrin coat has remained an enigma. Here we demonstrate using three independent techniques that immature secretory granules isolated from the rat neuroendocrine cell line PC12 have clathrin coat components associated with their membrane. To study the nature of the coat association we have developed an assay whereby the binding of the AP-1 subunit gamma-adaptin to ISGs was reconstituted by addition of rat or bovine brain cytosol. The amount of gamma-adaptin bound to the ISGs was ATP independent and was increased fourfold by the addition of GTPgammaS. The level of exogenous gamma-adaptin recruited to the ISG was similar to the level of gamma-adaptin present on the ISG after isolation. Addition of myristoylated ARF1 peptide stimulated binding. Reconstitution of the assay using AP-1 adaptor complex and recombinant ARF1 provided further evidence that ARF is involved in gamma-adaptin binding to ISGs; BFA inhibited this binding. Trypsin treatment and Trisstripping of the ISGs suggest that additional soluble and membrane-associated components are required for gamma-adaptin binding.
Collapse
Affiliation(s)
- A S Dittie
- Imperial Cancer Research Fund, London, England
| | | | | |
Collapse
|
46
|
Mendgen K, Bachem U, Stark-Urnau M, Xu H. Secretion and endocytosis at the interface of plants and fungi. ACTA ACUST UNITED AC 1995. [DOI: 10.1139/b95-306] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secretion products and the uptake of material from the outside of the protoplasts of plants and microbes may influence the mutual interaction in host–parasite systems. Organelles involved in secretion by rust fungi have been characterized using immuno-electron microscopy. Proteins with the C-terminal histidine – aspartic acid – glutamic acid – leucine tetrapeptide (HDEL) signal sequence accumulated in tubular vesicular complexes of the ER in the parasitic phase of the fungi. The tubular complexes were differentiated from smooth cisternae that probably correspond to the Golgi equivalent. In the plant, material was secreted into the papilla and at the same time, endocytosis of 1, 3-β-glucans by clathrin-coated vesicles occurred at the penetration site of the monokaryotic appressorium. During further development of monokaryotic haustoria, different wall layers were produced around these haustoria. Components of those layers were plant cell wall constituents most of which were also detected in the Golgi apparatus. One layer was rich in callose, which is supposed to be synthesized at the plasma membrane. Obviously, endo- and exo-cytosis occur permanently by host and parasite during fungal development within the plant. Key words: Uromyces, Golgi, secretion, endocytosis, high-pressure freezing, Saccharomyces, Vigna sinensis, Vicia faba.
Collapse
|
47
|
Liu SH, Wong ML, Craik CS, Brodsky FM. Regulation of clathrin assembly and trimerization defined using recombinant triskelion hubs. Cell 1995; 83:257-67. [PMID: 7585943 DOI: 10.1016/0092-8674(95)90167-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Clathrin polymerization into a polyhedral vesicle coat drives receptor sorting at cellular membranes during endocytosis and organelle biogenesis. To study clathrin self-assembly, we expressed the C-terminal third of the clathrin heavy chain in bacteria. The recombinant fragment trimerized, bound clathrin light chains, and morphologically resembled the hub domain of the triskelion-shaped clathrin molecule. Self-assembly of recombinant hubs demonstrated a regulatory role for clathrin light chains and for the distal portions of triskelion legs in clathrin coat formation. Deletion mutagenesis of the hub localized a domain mediating light chain binding and clathrin self-assembly and mapped a transferable trimerization domain. These studies define molecular interactions controlling clathrin self-assembly and establish a recombinant system for future analysis.
Collapse
Affiliation(s)
- S H Liu
- Department of Pharmacy, School of Pharmacy, University of California, San Francisco 94143-0552, USA
| | | | | | | |
Collapse
|
48
|
Golding H, Dimitrov DS, Manischewitz J, Broder CC, Robinson J, Fabian S, Littman DR, Lapham CK. Phorbol ester-induced down modulation of tailless CD4 receptors requires prior binding of gp120 and suggests a role for accessory molecules. J Virol 1995; 69:6140-8. [PMID: 7545243 PMCID: PMC189511 DOI: 10.1128/jvi.69.10.6140-6148.1995] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The entry of human immunodeficiency virus type 1 into cells proceeds via a fusion mechanism that is initiated by binding of the viral glycoprotein gp120-gp41 to its cellular receptor CD4. Species- and tissue-specific restrictions to viral entry suggested the participation of additional membrane components in the postbinding fusion events. In a previous study (H. Golding, J. Manischewitz, L. Vujcic, R. Blumenthal, and D. Dimitrov, J. Virol. 68:1962-1968, 1994), it was found that phorbol myristate acetate (PMA) inhibits human immunodeficiency virus type 1 envelope-mediated cell fusion by inducing down modulation of an accessory component(s) in the CD4-expressing cells. The fusion inhibition was seen in a variety of cells, including T-cell transfectants expressing engineered CD4 receptors (CD4.401 and CD4.CD8) which are not susceptible to down modulation by PMA treatment. In the current study, it was found that preincubation of A2.01.CD4.401 cells with soluble monomeric gp120 for 1 h at 37 degrees C primed them for PMA-induced down modulation (up to 70%) of the tailless CD4 receptors. The gp120-priming effect was temperature dependent, and the down modulation may have occurred via clathrin-coated pits. Importantly, nonhuman cell lines expressing tailless CD4 molecules did not down modulate their CD4 receptors under the same conditions. The gp120-dependent PMA-induced down modulation of tailless CD4 receptors could be efficiently blocked by the human monoclonal antibodies 48D and 17B, which bind with increased avidity to gp120 that was previously bound to CD4 (M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski, J. Virol. 67:3978-3988, 1993). These findings suggest that gp120 binding to cellular CD4 receptors induces conformational changes leading to association of the gp120-CD4 complexes with accessory transmembrane molecules that are susceptible to PMA-induced down modulation and can target the virions to clathrin-coated pits.
Collapse
Affiliation(s)
- H Golding
- Division of Viral Products, CBER, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Thomas WG, Baker KM, Motel TJ, Thekkumkara TJ. Angiotensin II receptor endocytosis involves two distinct regions of the cytoplasmic tail. A role for residues on the hydrophobic face of a putative amphipathic helix. J Biol Chem 1995; 270:22153-9. [PMID: 7673193 DOI: 10.1074/jbc.270.38.22153] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Following agonist stimulation, many receptors are rapidly internalized from the plasma membrane via a mechanism which presumably involves recognition motifs within the cytoplasmic domains of the receptor. We have previously demonstrated (Thomas, W. G., Thekkumkara, T. J., Motel, T. J., and Baker, K. M. (1995) J. Biol. Chem. 270, 207-213) that truncation of the angiotensin II (AT1A) receptor, to remove 45 amino acids from the cytoplasmic tail, markedly reduced agonist stimulated receptor endocytosis. In the present study, we have stably and transiently expressed wild type and carboxyl terminus mutated AT1A receptors in Chinese hamster ovary cells to identify regions and specific amino acids important for this process. Wild type AT1A receptors rapidly internalized (t1/2 = 2.5 min; Ymax = 76.4%) after AII stimulation. Using AT1A receptor mutants, truncated and deleted at the carboxyl terminus, two distinct regions important for internalization were identified: one membrane proximal site between residues 315-329 and another distal to Lys333, within the terminal 26 amino acids. Point mutations (Y302A, Y312A, L316F, Y319A, and K325A) were performed to identify residues contributing to the membrane proximal site. Mutation of Y302A, Y312A, and K325A had little effect on the rate (t1/2 = 4.3, 2.8, and 2.8 min) and maximal amount (Ymax = 81.7, 67.8, and 73.5%) of AII induced internalization. In contrast, L316F and Y319A mutations displayed an approximately 2.5-fold reduction in rate (t1/2 = 6.1 and 6.2 min) and L316F a decreased maximal level (Ymax = 38.1 and 71.4%, respectively) compared to wild type. Interestingly, Leu316 and Tyr319 are closely aligned within the hydrophobic aspect of a putative amphipathic helix, possibly representing an internalization motif for the AT1A receptor. We conclude that the AT1A receptor does not use NPXXY (NPLFY302) motif, first described for the beta 2-adrenergic receptor, to mediate agonist stimulated endocytosis. Rather, two distinct regions of the carboxyl terminus are utilized: one involving hydrophobic and aromatic residues on a putative alpha-helix and another serine/threonine-rich domain.
Collapse
Affiliation(s)
- W G Thomas
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822, USA
| | | | | | | |
Collapse
|
50
|
Newman LS, McKeever MO, Okano HJ, Darnell RB. Beta-NAP, a cerebellar degeneration antigen, is a neuron-specific vesicle coat protein. Cell 1995; 82:773-83. [PMID: 7671305 DOI: 10.1016/0092-8674(95)90474-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have identified a target antigen in autoimmune cerebellar degeneration, beta-NAP, that is closely related to the beta-adaptin and beta-COP coat proteins. Beta-NAP is a nonclathrin-associated phosphoprotein expressed exclusively in neurons, from E12 through adulthood. Beta-NAP is present in the neuronal soma and nerve terminal as soluble and membrane-bound pools and is associated with a discrete set of nerve-terminal vesicles. These results establish beta-NAP as a neuron-specific vesicle coat protein. We propose a model in which beta-NAP mediates vesicle transport between the soma and the axon terminus and suggest that beta-NAP may represent a general class of coat proteins that mediates apical transport in polarized cells.
Collapse
Affiliation(s)
- L S Newman
- Laboratory of Neuro-Oncology, Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|