1
|
van Trijp MPH, Rios-Morales M, Logtenberg MJ, Keshtkar S, Afman LA, Witteman B, Bakker B, Reijngoud DJ, Schols H, Hooiveld GJEJ. Detailed Analysis of Prebiotic Fructo- and Galacto-Oligosaccharides in the Human Small Intestine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21152-21165. [PMID: 39282870 PMCID: PMC11440495 DOI: 10.1021/acs.jafc.4c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS) are food ingredients that improve human health, but their degradation throughout the human small intestine is not well understood. We studied the breakdown kinetics of FOS and GOS in the intestines of seven healthy Dutch adults. Subjects were equipped with a catheter in the distal ileum or proximal colon and consumed 5 g of chicory-derived FOS (degree of polymerization (DP) DP2-10), and 5 g of GOS (DP2-6). Postprandially, intestinal content was frequently collected until 350 min and analyzed for mono-, di-, and oligosaccharides. FOS and GOS had recoveries of 96 ± 25% and 76 ± 28%, respectively. FOS DP ≥ 2 and GOS DP ≥ 3 abundances in the distal small intestine or proximal colon matched the consumed doses, while GOS dimers (DP2) had lower recoveries, namely 22.8 ± 11.1% for β-D-gal-(1↔1)-α-D-glc+β-D-gal-(1↔1)-β-D-glc, 19.3 ± 19.1% for β-D-gal-(1 → 2)-D-glc+β-D-gal-(1 → 3)-D-glc, 43.7 ± 24.6% for β-D-gal-(1 → 6)-D-gal, and 68.0 ± 38.5% for β-D-gal-(1 → 4)-D-gal. Lactose was still present in the distal small intestine of all of the participants. To conclude, FOS DP ≥ 2 and GOS DP ≥ 3 were not degraded in the small intestine of healthy adults, while most prebiotic GOS DP2 was hydrolyzed in a structure-dependent manner. We provide evidence on the resistances of GOS with specific β-linkages in the human intestine, supporting the development of GOS prebiotics that resist small intestine digestion.
Collapse
Affiliation(s)
- Mara P H van Trijp
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Melany Rios-Morales
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Madelon J Logtenberg
- Laboratory of Food Chemistry, Wageningen University, Wageningen 6708 WG, The Netherlands
| | - Shohreh Keshtkar
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Ben Witteman
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, The Netherlands
- Department of Gastroenterology and Hepatology, Hospital Gelderse Vallei, Gelderland 6716 RP Ede, The Netherlands
| | - Barbara Bakker
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Henk Schols
- Laboratory of Food Chemistry, Wageningen University, Wageningen 6708 WG, The Netherlands
| | - Guido J E J Hooiveld
- Division of Human Nutrition and Health, Wageningen University, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
2
|
Abdulrazzaq SB, Abu-Samak M, Omar A, Barakat M, Alzaghari LF, Mosleh I, Al-Najjar M, Al-Najjar MAA. The effect of vitamin D3 and omega-3 combination, taken orally, on triglycerides, lining of intestine, and the biodiversity of gut microbiota in healthy rats. J Appl Microbiol 2024; 135:lxae223. [PMID: 39223094 DOI: 10.1093/jambio/lxae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/31/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
AIM The gut microbiota plays a key role in host health. An intake of omega-3 and vitamin D3 in a separate manner is vital for maintaining good health of gut microbiota and controlling some illness manifestations. The aim of this study is to investigate the potential change in biodiversity of the gut microbiome in healthy rats supplemented with vitamin D3, omega-3 alone and their combination and to reflect onto the triglyceride levels in serum and fecal samples. METHODS AND RESULTS Using the 16S rRNA gene Miseq Illumina NGS, and monitoring triglyceride levels in serum and fecal samples coupled with several clinical parameters, we examined the effect of orally taken combination of omega-3 and vitamin D3 alongside the separate intake of supplements on gut microbiota in 24 healthy white Wistar rats for six weeks. The study findings showed that combination treatment encouraged the growth of opportunistic Clostridia class during day 21 and 42 of treatment by 7.7 and 7.4 folds, respectively, exhibited incomplete absorption levels for both supplements when used concomitantly, demonstrated a damaging effect on the gut intestinal lining wall thickness (126 µm) when compared to control group (158 µm), increasing lumen diameter (400 µm), and showed higher triglyceride level in fecal samples. CONCLUSIONS These findings indicate that omega-3 and vitamin D3 supplements as combination intake reveal unfavorable effects, thus, it is advised to conduct further in-depth studies to clarify the presence or absence of any chemical interaction between both supplements' molecules and to investigate based on human model to attain a superior perspective.
Collapse
Affiliation(s)
- Shaymaa B Abdulrazzaq
- Department of Pharmaceutical Science and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Mahmoud Abu-Samak
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Amin Omar
- Department of Pharmaceutical Science and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Muna Barakat
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Lujain F Alzaghari
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Ibrahim Mosleh
- Department of Medical Laboratory Sciences, University of Jordan, Amman 11942, Jordan
| | - Moath Al-Najjar
- Department of Advanced Computing Sciences, Maastricht University, 6211LK, The Netherlands
| | - Mohammad A A Al-Najjar
- Department of Pharmaceutical Science and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| |
Collapse
|
3
|
Trotta RJ, Swanson KC, Klotz JL, Harmon DL. Postruminal Casein Infusion and Exogenous Glucagon-Like Peptide 2 Administration Differentially Stimulate Pancreatic α-Amylase and Small Intestinal α-Glucosidase Activity in Cattle. J Nutr 2023; 153:2854-2867. [PMID: 37573014 DOI: 10.1016/j.tjnut.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Increasing luminal carbohydrate flow decreases pancreatic α-amylase activity but can increase jejunal maltase activity, suggesting that regulation of carbohydrase activity is perhaps uncoordinated in response to luminal carbohydrate flow. Increasing luminal casein flow increases pancreatic α-amylase activity in cattle, and exogenous glucagon-like peptide 2 (GLP-2) has been shown to increase small intestinal α-glucosidase activity in nonruminants. OBJECTIVES The objective was to evaluate the effects of postruminal casein infusion, exogenous GLP-2, or their combination on endogenous pancreatic and small intestinal carbohydrase activity in cattle postruminally infused with starch. METHODS Holstein steers [n = 24; 250 ± 23 kg body weight (BW)] received a continuous abomasal infusion of 3.94 g raw corn starch/kg of BW combined with either 0 or 1.30 g casein/kg of BW. Steers received subcutaneous injections in 2 equal portions daily of excipient (0.5% bovine serum albumin) or 100 μg GLP-2/kg of BW per day. At the end of the 7-d treatment period, steers were slaughtered for tissue collection. Data were analyzed using the MIXED procedure of SAS version 9.4 (SAS Institute Inc.). RESULTS Postruminal casein infusion increased (P ≤ 0.03) pancreatic mass by 12.6%, total pancreatic α-amylase activity by 50%, and postruminal starch disappearance from 96.7% to 99.3%. Exogenous GLP-2 increased (P < 0.01) total small intestinal and mucosal mass by 1.2 kg and 896 g, respectively. Relative to control, GLP-2 and casein + GLP-2 increased (P = 0.04) total small intestinal α-glucosidase activity by 83.5%. Total small intestinal maltase, isomaltase, and glucoamylase activity was 90%, 100%, and 66.7% greater for GLP-2 and casein + GLP-2 steers compared with control. CONCLUSIONS Casein increased pancreatic α-amylase activity, GLP-2 increased small intestinal α-glucosidase activity, and the combination of casein and GLP-2 increased both pancreatic α-amylase activity and small intestinal α-glucosidase activity. This novel approach provides an in vivo model to evaluate effects of increasing endogenous carbohydrase activity on small intestinal starch digestion.
Collapse
Affiliation(s)
- Ronald J Trotta
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Kendall C Swanson
- Department of Animal Science, North Dakota State University, Fargo, ND, United States
| | - James L Klotz
- Forage-Animal Production Research Unit, USDA, ARS, Lexington, KY, United States
| | - David L Harmon
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
4
|
Ok MT, Liu J, Bliton RJ, Hinesley CM, San Pedro EET, Breau KA, Gomez-Martinez I, Burclaff J, Magness ST. A leaky human colon model reveals uncoupled apical/basal cytotoxicity in early Clostridioides difficile toxin exposure. Am J Physiol Gastrointest Liver Physiol 2023; 324:G262-G280. [PMID: 36749911 PMCID: PMC10010926 DOI: 10.1152/ajpgi.00251.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
Clostridioides difficile (C. difficile) toxins A (TcdA) and B (TcdB) cause antibiotic-associated colitis in part by disrupting epithelial barrier function. Accurate in vitro models are necessary to detect early toxicity kinetics, investigate disease etiology, and develop preclinical models for new therapies. Properties of cancer cell lines and organoids inherently limit these efforts. We developed adult stem cell-derived monolayers of differentiated human colonic epithelium (hCE) with barrier function, investigated the impact of toxins on apical/basal aspects of monolayers, and evaluated whether a leaky epithelial barrier enhances toxicity. Single-cell RNA-sequencing (scRNAseq) mapped C. difficile-relevant genes to human lineages. Transcriptomics compared hCE to Caco-2, informed timing of in vitro stem cell differentiation, and revealed transcriptional responses to TcdA. Transepithelial electrical resistance (TEER) and fluorescent permeability assays measured cytotoxicity. Contribution of TcdB toxicity was evaluated in a diclofenac-induced leaky gut model. scRNAseq demonstrated broad and variable toxin receptor expression. Absorptive colonocytes in vivo displayed increased toxin receptor, Rho GTPase, and cell junction gene expression. Advanced TcdA toxicity generally decreased cytokine/chemokine and increased tight junction and death receptor genes. Differentiated Caco-2 cells remained immature whereas hCE monolayers were similar to mature colonocytes in vivo. Basal exposure of TcdA/B caused greater toxicity and apoptosis than apical exposure. Apical exposure to toxins was enhanced by diclofenac. Apical/basal toxicities are uncoupled with more rapid onset and increased magnitude postbasal toxin exposure. Leaky junctions enhance toxicity of apical TcdB exposure. hCE monolayers represent a physiologically relevant and sensitive system to evaluate the impact of microbial toxins on gut epithelium.NEW & NOTEWORTHY Novel human colonocyte monolayer cultures, benchmarked by transcriptomics for physiological relevance, detect early cytopathic impacts of Clostridioides difficile toxins TcdA and TcdB. A fluorescent ZO-1 reporter in primary human colonocytes is used to track epithelial barrier disruption in response to TcdA. Basal TcdA/B exposure generally caused more rapid onset and cytotoxicity than apical exposure. Transcriptomics demonstrate changes in tight junction, chemokine, and cytokine receptor gene expression post-TcdA exposure. Diclofenac-induced leaky epithelium enhanced apical exposure toxicity.
Collapse
Affiliation(s)
- Meryem T Ok
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Jintong Liu
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - R Jarrett Bliton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Caroline M Hinesley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Ekaterina Ellyce T San Pedro
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Keith A Breau
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ismael Gomez-Martinez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
5
|
Luyen ND, Huong LM, Ha NTT, Tra NT, Anh LTT, Tuyen NV, Posta K, Son NT, Pham-The H. Chemical Profile and Biological Activities of Fungal Strains Isolated from Piper nigrum Roots: Experimental and Computational Approaches. Chem Biodivers 2023; 20:e202200456. [PMID: 36564341 DOI: 10.1002/cbdv.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
The current report describes the chemical investigation and biological activity of extracts produced by three fungal strains Fusarium oxysporum, Penicillium simplicissimum, and Fusarium proliferatum isolated from the roots of Piper nigrum L. growing in Vietnam. These fungi were namely determined by morphological and DNA analyses. GC/MS identification revealed that the EtOAc extracts of these fungi were associated with the presence of saturated and unsaturated fatty acids. These EtOAc extracts showed cytotoxicity towards cancer cell lines HepG2, inhibited various microbacterial organisms, especially fungus Aspergillus niger and yeast Candida albicans (the MIC values of 50-100 μg/mL). In α-glucosidase inhibitory assay, they induced the IC50 values of 1.00-2.53 μg/mL were better than positive control acarbose (169.80 μg/mL). The EtOAc extract of F. oxysporum also showed strong anti-inflammatory activity against NO production and PGE-2 level. Four major compounds linoleic acid (37.346 %), oleic acid (27.520 %), palmitic acid (25.547 %), and stearic acid (7.030 %) from the EtOAc extract of F. oxysporum were selective in molecular docking study, by which linoleic and oleic acids showed higher binding affinity towards α-glucosidase than palmitic and stearic acids. In subsequent docking assay with inducible nitric oxide synthase (iNOS), palmitic acid, oleic acid and linoleic acid could be moderate inhibitors.
Collapse
Affiliation(s)
- Nguyen Dinh Luyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Le Mai Huong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Nguyen Thi Thu Ha
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Nguyen Thanh Tra
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Le Thi Tu Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Katalin Posta
- Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, Pater str 1., Godollo, H-2103, Hungary
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Hai Pham-The
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam. or
| |
Collapse
|
6
|
Huang L, He F, Wu B. Mechanism of effects of nickel or nickel compounds on intestinal mucosal barrier. CHEMOSPHERE 2022; 305:135429. [PMID: 35760131 DOI: 10.1016/j.chemosphere.2022.135429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
As an important metal in industry, national defense, and production, nickel widely exists in nature and is also a necessary trace element for human beings and animals. Nickel deficiency will affect the growth and development of animals, the contents of related active substances, enzymes and other essential elements in vivo. However, excessive nickel or longer nickel exposure can induce excessive free radicals (reactive oxygen species and reactive nitrogen) in the body, which can lead to a variety of cell damage, apoptosis and canceration, and ultimately pose negative effects on the health of the body. Among them, the intestinal tract, as the largest interface between the body and the external environment, greatly increases the contact probability between nickel or nickel compounds and the intestinal mucosal barrier, thus, the intestinal structure and function are also more vulnerable to nickel damage, leading to a series of related diseases such as enteritis. Therefore, this paper briefly analyzed the damage mechanism of nickel or its compounds to the intestinal tract from the perspective of four intestinal mucosal barriers: mechanical barrier, immune barrier, microbial barrier and chemical barrier, we hope to make a certain theoretical contribution to the further research and the prevention and treatment of nickel related diseases.
Collapse
Affiliation(s)
- Lijing Huang
- College of Life Sciences, China West Normal University, Nanchong, PR China
| | - Fang He
- College of Life Sciences, China West Normal University, Nanchong, PR China
| | - Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education PR China, Nanchong, PR China; College of Life Sciences, China West Normal University, Nanchong, PR China.
| |
Collapse
|
7
|
Gashghaee M, Azizian H, Adib M, Mohammadi-Khanaposhtani M, Mojtabavi S, Faramarzi MA, Rezaei Y, Biglar M, Larijani B, Rastegar H, Mahdavi M. Synthesis, molecular dynamic, and in silico study of new ethyl 4-arylpyrimido[1,2-b]indazole-2-carboxylate: Potential inhibitors of α-glucosidase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Zhao X, Hui Q, Azevedo P, Nyachoti CM, O K, Yang C. Calcium-sensing receptor is not expressed in the absorptive enterocytes of weaned piglets. J Anim Sci 2022; 100:6549683. [PMID: 35294536 PMCID: PMC9030235 DOI: 10.1093/jas/skac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/12/2022] [Indexed: 11/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a kokumi receptor that plays an essential role in nutrient sensing and animal physiology, growth, and development. Pig CaSR (pCaSR) was identified and characterized in the intestine. However, further research is still needed to confirm the expression of CaSR in the epithelial cells isolated from weaned piglets. In this study, primary enterocytes were isolated and characterized from the ileum of weaned piglets by the Weiser distended intestinal sac technique and fluorescence-activated cell sorting (FACS) based on sucrase-isomaltase (SI) as an enterocyte-specific marker. The expression of CaSR was investigated in both primary enterocytes and the intestinal porcine enterocyte cell line-j2 (IPEC-J2) by droplet digital polymerase chain reaction (ddPCR), immunofluorescence staining, and Western blotting. Results demonstrated that porcine enterocytes could be obtained using FACS with the SI as the enterocyte-specific marker and that pCaSR is not expressed in both porcine ileal enterocytes and IPEC-J2 cells, which specifically identified the expression of pCaSR in ileal enterocytes with sensitive and specific approaches.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Qianru Hui
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Paula Azevedo
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Karmin O
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,CCARM, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Zhang Y, Li D, Qiao J, Ni Y, Liu P, Huang D, Huo J. Structure, degree of polymerization, and starch hydrolase inhibition activities of bird cherry (Prunus padus) proanthocyanidins. Food Chem 2022; 385:132588. [PMID: 35303652 DOI: 10.1016/j.foodchem.2022.132588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 02/25/2022] [Indexed: 11/19/2022]
Abstract
The structure of proanthocyanidins extracted from bird cherry fruits was characterized by HPLC-ESI/MS2 and MALDI-TOF/MS analyses, and their subunits and mean degree of polymerization (mDP) were investigated by thiolysis reaction, and the inhibition activity against starch hydrolases measured using the high-throughput turbidity assay. This is the first mass spectrometric analysis to thoroughly investigate the structure and mDP of proanthocyanidins in bird cherry fruits. Bird cherry proanthocyanidins were categorized as oligomeric proanthocyanidins (mDP = 5.6), which constituted of (epi)gallocatechins and (epi)catechins. The proanthocyanidins increased from a (epi)gallocatechin-[(epi)catechin]3 tetramer to a (epi)gallocatechin-[(epi)catechin]11 dodecamer through the addition of one (epi)catechin with both A-type and B-type linkages. The proanthocyanidins had potent α-amylase and α-glucosidase inhibition activities with IC50 values of 0.19 ± 0.01 µg/mL and 0.18 ± 0.006 µg/mL, comparing favorably to commercial drug acarbose. Bird cherry oligomeric proanthocyanidins are a promising starch hydrolase inhibitor for the application of potential functional food components.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Dalong Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jinli Qiao
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yana Ni
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Pei Liu
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117543, Singapore
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Elferink H, Titulaer WHC, Derks MGN, Veeneman GH, Rutjes FPJT, Boltje TJ. Chloromethyl Glycosides as Versatile Synthons to Prepare Glycosyloxymethyl-Prodrugs. Chemistry 2022; 28:e202103910. [PMID: 35045197 PMCID: PMC9304170 DOI: 10.1002/chem.202103910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/21/2022]
Abstract
This work investigates the addition of monosaccharides to marketed drugs to improve their pharmacokinetic properties for oral absorption. To this end, a set of chloromethyl glycoside synthons were developed to prepare a variety of glycosyloxymethyl-prodrugs derived from 5-fluorouracil, thioguanine, propofol and losartan. Drug release was studied in vitro using β-glucosidase confirming rapid conversion of the monosaccharide prodrugs to release the parent drug, formaldehyde and the monosaccharide. To showcase this prodrug approach, a glucosyloxymethyl conjugate of the tetrazole-containing drug losartan was used for in vivo experiments and showed complete release of the drug in a dog-model.
Collapse
Affiliation(s)
- Hidde Elferink
- Synthetic Organic Chemistry Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| | - Willem H. C. Titulaer
- Synthetic Organic Chemistry Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| | - Maik G. N. Derks
- Synthetic Organic Chemistry Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| | | | - Floris P. J. T. Rutjes
- Synthetic Organic Chemistry Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| | - Thomas J. Boltje
- Synthetic Organic Chemistry Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJ NijmegenThe Netherlands
| |
Collapse
|
11
|
Proença C, Rufino AT, Ferreira de Oliveira JMP, Freitas M, Fernandes PA, Silva AMS, Fernandes E. Inhibitory activity of flavonoids against human sucrase-isomaltase (α-glucosidase) activity in a Caco-2/TC7 cellular model. Food Funct 2022; 13:1108-1118. [PMID: 35015798 DOI: 10.1039/d1fo02995a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes (T2D) is the most common form of diabetes, and the number of people with this metabolic disease is steadily increasing worldwide. Among the available antidiabetic agents, α-glucosidase inhibitors are the most effective at reducing postprandial hyperglycaemia (PPHG), one of the main characteristics of T2D. However, most of the studies that have been performed have used the more readily available rat intestinal preparations or yeast α-glucosidase as the enzyme source, which despite being useful and cost effective, have a questionable physiological value. The present study evaluates the inhibitory activity of a selected group of flavonoids against human sucrase-isomaltase (SI), the α-glucosidase found in Caco-2/TC7 cells. A microassay using the physiological substrates sucrose and maltose, and a synthetic substrate, p-nitrophenyl-α-D-glucopyranoside (pNPG) was performed. The most active flavonoid was compound 4 (melanoxetin), presenting an IC50 value similar using the two natural substrates. In contrast, the tested flavonoids were not effective at inhibiting SI, when pNPG was used as a substrate. Hydroxylation of flavonoids at C-3 of the C ring, at C-3' and C-4' of the B ring, and at C-7 and C-8 of the A ring were the features that improved the inhibitory activity of flavonoids against human SI. These phenolic compounds deserve further exploration as alternatives to the currently available α-glucosidase inhibitors. The present study also demonstrates that the non-clinical in vitro studies conducted for the evaluation of α-glucosidase activity should use the human source rather than surrogate sources of α-glucosidase.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Artur M S Silva
- QOPNA and LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
12
|
Teixeira AP, Stücheli P, Ausländer S, Ausländer D, Schönenberger P, Hürlemann S, Fussenegger M. CelloSelect - A synthetic cellobiose metabolic pathway for selection of stable transgenic CHO cell lines. Metab Eng 2022; 70:23-30. [PMID: 35007751 DOI: 10.1016/j.ymben.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Current protocols for generating stable transgenic cell lines mostly rely on antibiotic selection or the use of specialized cell lines lacking an essential part of their metabolic machinery, but these approaches require working with either toxic chemicals or knockout cell lines, which can reduce productivity. Since most mammalian cells cannot utilize cellobiose, a disaccharide consisting of two β-1,4-linked glucose molecules, we designed an antibiotic-free selection system, CelloSelect, which consists of a selection cassette encoding Neurospora crassa cellodextrin transporter CDT1 and β-glucosidase GH1-1. When cultivated in glucose-free culture medium containing cellobiose, CelloSelect-transfected cells proliferate by metabolizing cellobiose as a primary energy source, and are protected from glucose starvation. We show that the combination of CelloSelect with a PiggyBac transposase-based integration strategy provides a platform for the swift and efficient generation of stable transgenic cell lines. Growth rate analysis of metabolically engineered cells in cellobiose medium confirmed the expansion of cells stably expressing high levels of a cargo fluorescent marker protein. We further validated this strategy by applying the CelloSelect system for stable integration of sequences encoding two biopharmaceutical proteins, erythropoietin and the monoclonal antibody rituximab, and confirmed that the proteins are efficiently produced in either cellobiose- or glucose-containing medium in suspension-adapted CHO cells cultured in chemically defined media. We believe coupling heterologous metabolic pathways additively to the endogenous metabolism of mammalian cells has the potential to complement or to replace current cell-line selection systems.
Collapse
Affiliation(s)
- Ana P Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Pascal Stücheli
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - David Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Pascal Schönenberger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Samuel Hürlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland.
| |
Collapse
|
13
|
Zhang S, Wang Y, Han L, Fu X, Wang S, Li W, Han W. Targeting N-Terminal Human Maltase-Glucoamylase to Unravel Possible Inhibitors Using Molecular Docking, Molecular Dynamics Simulations, and Adaptive Steered Molecular Dynamics Simulations. Front Chem 2021; 9:711242. [PMID: 34527658 PMCID: PMC8435576 DOI: 10.3389/fchem.2021.711242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 02/04/2023] Open
Abstract
There are multiple drugs for the treatment of type 2 diabetes, including traditional sulfonylureas biguanides, glinides, thiazolidinediones, α-glucosidase inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase IV (DPP-4) inhibitors, and sodium-glucose cotransporter 2 (SGLT2) inhibitors. α-Glucosidase inhibitors have been used to control postprandial glucose levels caused by type 2 diabetes since 1990. α-Glucosidases are rather crucial in the human metabolic system and are principally found in families 13 and 31. Maltase-glucoamylase (MGAM) belongs to glycoside hydrolase family 31. The main function of MGAM is to digest terminal starch products left after the enzymatic action of α-amylase; hence, MGAM becomes an efficient drug target for insulin resistance. In order to explore the conformational changes in the active pocket and unbinding pathway for NtMGAM, molecular dynamics (MD) simulations and adaptive steered molecular dynamics (ASMD) simulations were performed for two NtMGAM-inhibitor [de-O-sulfonated kotalanol (DSK) and acarbose] complexes. MD simulations indicated that DSK bound to NtMGAM may influence two domains (inserted loop 1 and inserted loop 2) by interfering with the spiralization of residue 497–499. The flexibility of inserted loop 1 and inserted loop 2 can influence the volume of the active pocket of NtMGAM, which can affect the binding progress for DSK to NtMGAM. ASMD simulations showed that compared to acarbose, DSK escaped from NtMGAM easily with lower energy. Asp542 is an important residue on the bottleneck of the active pocket of NtMGAM and could generate hydrogen bonds with DSK continuously. Our theoretical results may provide some useful clues for designing new α-glucosidase inhibitors to treat type 2 diabetes.
Collapse
Affiliation(s)
- Shitao Zhang
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Yi Wang
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Lu Han
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Xueqi Fu
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Wannan Li
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Weiwei Han
- School of Life Science, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| |
Collapse
|
14
|
Garcia TM, van Roest M, Vermeulen JLM, Meisner S, Smit WL, Silva J, Koelink PJ, Koster J, Faller WJ, Wildenberg ME, van Elburg RM, Muncan V, Renes IB. Early Life Antibiotics Influence In Vivo and In Vitro Mouse Intestinal Epithelium Maturation and Functioning. Cell Mol Gastroenterol Hepatol 2021; 12:943-981. [PMID: 34102314 PMCID: PMC8346670 DOI: 10.1016/j.jcmgh.2021.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The use of antibiotics (ABs) is a common practice during the first months of life. ABs can perturb the intestinal microbiota, indirectly influencing the intestinal epithelial cells (IECs), but can also directly affect IECs independent of the microbiota. Previous studies have focused mostly on the impact of AB treatment during adulthood. However, the difference between the adult and neonatal intestine warrants careful investigation of AB effects in early life. METHODS Neonatal mice were treated with a combination of amoxicillin, vancomycin, and metronidazole from postnatal day 10 to 20. Intestinal permeability and whole-intestine gene and protein expression were analyzed. IECs were sorted by a fluorescence-activated cell sorter and their genome-wide gene expression was analyzed. Mouse fetal intestinal organoids were treated with the same AB combination and their gene and protein expression and metabolic capacity were determined. RESULTS We found that in vivo treatment of neonatal mice led to decreased intestinal permeability and a reduced number of specialized vacuolated cells, characteristic of the neonatal period and necessary for absorption of milk macromolecules. In addition, the expression of genes typically present in the neonatal intestinal epithelium was lower, whereas the adult gene expression signature was higher. Moreover, we found altered epithelial defense and transepithelial-sensing capacity. In vitro treatment of intestinal fetal organoids with AB showed that part of the consequences observed in vivo is a result of the direct action of the ABs on IECs. Lastly, ABs reduced the metabolic capacity of intestinal fetal organoids. CONCLUSIONS Our results show that early life AB treatment induces direct and indirect effects on IECs, influencing their maturation and functioning.
Collapse
Affiliation(s)
- Tânia Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Manon van Roest
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Jacqueline L M Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Wouter L Smit
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joana Silva
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pim J Koelink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam, the Netherlands
| | - William J Faller
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Ruurd M van Elburg
- Department of Pediatrics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| | - Ingrid B Renes
- Department of Pediatrics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands
| |
Collapse
|
15
|
Kan L, Capuano E, Fogliano V, Verkerk R, Mes JJ, Tomassen MMM, Oliviero T. Inhibition of α-glucosidases by tea polyphenols in rat intestinal extract and Caco-2 cells grown on Transwell. Food Chem 2021; 361:130047. [PMID: 34029903 DOI: 10.1016/j.foodchem.2021.130047] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/19/2023]
Abstract
Inhibition of maltase, sucrase, isomaltase and glucoamylase activity by acarbose, epigallocatechin gallate, epicatechin gallate and four polyphenol-rich tea extract from white, green, oolong, black tea, were investigated by using rat intestinal enzymes and human Caco-2 cells. Regarding rat intestinal enzyme mixture, all four tea extracts were very effective in inhibiting maltase and glucoamylase activity, but only white tea extract inhibited sucrase and isomaltase activity and the inhibition was limited. Mixed-type inhibition on rat maltase activity was observed. Tea extracts in combination with acarbose, produced a synergistic inhibitory effect on rat maltase activity. Caco-2 cells experiments were conducted in Transwells. Green tea extract and epigallocatechin gallate show dose-dependent inhibition on human sucrase activity, but no inhibition on rat sucrase activity. The opposite was observed on maltase activity. The results highlighted the different response in the two investigated model systems and show that tea polyphenols are good inhibitors for α-glucosidase activity.
Collapse
Affiliation(s)
- Lijiao Kan
- Food Quality and Design Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Ruud Verkerk
- Food Quality and Design Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jurriaan J Mes
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Monic M M Tomassen
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Teresa Oliviero
- Food Quality and Design Group, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
16
|
Wang X, Kang J, Liu Q, Tong T, Quan H. Fighting Diabetes Mellitus: Pharmacological and Non-pharmacological Approaches. Curr Pharm Des 2021; 26:4992-5001. [PMID: 32723251 DOI: 10.2174/1381612826666200728144200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The increasing worldwide prevalence of diabetes mellitus confers heavy public health issues and points to a large medical need for effective and novel anti-diabetic approaches with negligible adverse effects. Developing effective and novel anti-diabetic approaches to curb diabetes is one of the most foremost scientific challenges. OBJECTIVES This article aims to provide an overview of current pharmacological and non-pharmacological approaches available for the management of diabetes mellitus. METHODS Research articles that focused on pharmacological and non-pharmacological interventions for diabetes were collected from various search engines such as Science Direct and Scopus, using keywords like diabetes, glucagon-like peptide-1, glucose homeostasis, etc. Results: We review in detail several key pathways and pharmacological targets (e.g., the G protein-coupled receptors- cyclic adenosine monophosphate, 5'-adenosine monophosphate-activated protein kinase, sodium-glucose cotransporters 2, and peroxisome proliferator activated-receptor gamma signaling pathways) that are vital in the regulation of glucose homeostasis. The currently approved diabetes medications, the pharmacological potentials of naturally occurring compounds as promising interventions for diabetes, and the non-pharmacological methods designed to mitigate diabetes are summarized and discussed. CONCLUSION Pharmacological-based approaches such as insulin, metformin, sodium-glucose cotransporters 2 inhibitor, sulfonylureas, glucagon-like peptide-1 receptor agonists, and dipeptidyl peptidase IV inhibitors represent the most important strategies in diabetes management. These approved diabetes medications work via targeting the central signaling pathways related to the etiology of diabetes. Non-pharmacological approaches, including dietary modification, increased physical activity, and microbiota-based therapy are the other cornerstones for diabetes treatment. Pharmacological-based approaches may be incorporated when lifestyle modification alone is insufficient to achieve positive outcomes.
Collapse
Affiliation(s)
- Xin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinhong Kang
- College of Pharmacy, Korea University, Sejong 30019, Korea
| | - Qing Liu
- Jilin Green Food Engineering Research Institute, Changchun, 130022, China
| | - Tao Tong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Helong Quan
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| |
Collapse
|
17
|
Zhang B, Xu Y, Lv H, Pang W, Wang J, Ma H, Wang S. Intestinal pharmacokinetics of resveratrol and regulatory effects of resveratrol metabolites on gut barrier and gut microbiota. Food Chem 2021; 357:129532. [PMID: 33878586 DOI: 10.1016/j.foodchem.2021.129532] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
Resveratrol, a dietary polyphenol, has a variety of intestinal bioactivities. However, its material basis remains unknown. This study examined the intestinal pharmacokinetics of resveratrol using HPLC-MS/MS. After oral ingestion in mice, resveratrol and its sulfation metabolites were identified in copious amount in the entire intestinal tract and feces. The glucuronidation metabolites were found in major quantity only in the small intestine. The amount of resveratrol and its metabolites in the total intestine peaked at 4 h, with a concentration of 200 ± 74.8 μM, which corresponded to 14.0% of the administrated dose. During in vitro fermentation, resveratrol-3-O-sulfate, but not resveratrol, significantly promoted the growth of Lactobacillus reuteri (10-fold higher). During the incubation with Caco-2 cells, resveratrol-3-O-sulfate significantly up-regulated the mRNA expressions of tight junction and mucin-related proteins. In conclusion, the intestinal concentration of resveratrol could partially support its intestinal bioactivities, which may be mediated through the actions of its metabolites.
Collapse
Affiliation(s)
- Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yingchuan Xu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Wenwen Pang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Hui Ma
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
Trotta RJ, Swanson KC. Prenatal and Postnatal Nutrition Influence Pancreatic and Intestinal Carbohydrase Activities of Ruminants. Animals (Basel) 2021; 11:171. [PMID: 33450809 PMCID: PMC7828265 DOI: 10.3390/ani11010171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 11/17/2022] Open
Abstract
In ruminant livestock species, nutrition can play an important role in the long-term programming of gastrointestinal function. Pancreatic and small intestinal digestive enzymes are important for postruminal digestion of carbohydrates and protein. Carbohydrases have been shown to respond to changes in the level of feed intake and the dietary inclusion of specific nutrients, including arginine, butyrate, folic acid, fructose, and leucine. Understanding how diet influences enzyme development and activity during prenatal and postnatal life could lead to the development of dietary strategies to optimize offspring growth and development to increase digestive efficiency of ruminant livestock species. More research is needed to understand how changes in fetal or neonatal carbohydrase activities in response to nutrition influence long-term growth performance and efficiency in ruminant livestock species to optimize nutritional strategies.
Collapse
Affiliation(s)
- Ronald J. Trotta
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA;
| | - Kendall C. Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
19
|
Elferink H, Bruekers JPJ, Veeneman GH, Boltje TJ. A comprehensive overview of substrate specificity of glycoside hydrolases and transporters in the small intestine : "A gut feeling". Cell Mol Life Sci 2020; 77:4799-4826. [PMID: 32506169 PMCID: PMC7658089 DOI: 10.1007/s00018-020-03564-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
The human body is able to process and transport a complex variety of carbohydrates, unlocking their nutritional value as energy source or as important building block. The endogenous glycosyl hydrolases (glycosidases) and glycosyl transporter proteins located in the enterocytes of the small intestine play a crucial role in this process and digest and/or transport nutritional sugars based on their structural features. It is for these reasons that glycosidases and glycosyl transporters are interesting therapeutic targets to combat sugar related diseases (such as diabetes) or to improve drug delivery. In this review we provide a detailed overview focused on the molecular structure of the substrates involved as a solid base to start from and to fuel research in the area of therapeutics and diagnostics.
Collapse
Affiliation(s)
- Hidde Elferink
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands
| | - Jeroen P J Bruekers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands
| | | | - Thomas J Boltje
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Anguita-Ruiz A, Aguilera CM, Gil Á. Genetics of Lactose Intolerance: An Updated Review and Online Interactive World Maps of Phenotype and Genotype Frequencies. Nutrients 2020; 12:nu12092689. [PMID: 32899182 PMCID: PMC7551416 DOI: 10.3390/nu12092689] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 01/15/2023] Open
Abstract
In humans the ability to digest milk lactose is conferred by a β-galactosidase enzyme called lactase-phlorizin hydrolase (LPH). While in some humans (approximately two-thirds of humankind) the levels of this enzyme decline drastically after the weaning phase (a trait known as lactase non-persistence (LNP)), some other individuals are capable of maintaining high levels of LPH lifelong (lactase persistence (LP)), thus being able to digest milk during adulthood. Both lactase phenotypes in humans present a complex genetic basis and have been widely investigated during the last decades. The distribution of lactase phenotypes and their associated single nucleotide polymorphisms (SNPs) across human populations has also been extensively studied, though not recently reviewed. All available information has always been presented in the form of static world maps or large dimension tables, so that it would benefit from the newly available visualization tools, such as interactive world maps. Taking all this into consideration, the aims of the present review were: (1) to gather and summarize all available information on LNP and LP genetic mechanisms and evolutionary adaptation theories, and (2) to create online interactive world maps, including all LP phenotype and genotype frequency data reported to date. As a result, we have created two online interactive resources, which constitute an upgrade over previously published static world maps, and allow users a personalized data exploration, while at the same time accessing complete reports by population or ethnicity.
Collapse
Affiliation(s)
- Augusto Anguita-Ruiz
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain; (A.A.-R.); (C.M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition Network CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Concepción M. Aguilera
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain; (A.A.-R.); (C.M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition Network CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain; (A.A.-R.); (C.M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition Network CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-958241000 (ext. 20307)
| |
Collapse
|
21
|
Dong YS, Yu N, Li X, Zhang B, Xing Y, Zhuang C, Xiu ZL. Dietary 5,6,7-Trihydroxy-flavonoid Aglycones and 1-Deoxynojirimycin Synergistically Inhibit the Recombinant Maltase-Glucoamylase Subunit of α-Glucosidase and Lower Postprandial Blood Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8774-8787. [PMID: 32806121 DOI: 10.1021/acs.jafc.0c01668] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
1-Deoxynojirimycin (1-DNJ) is the major effective component of mulberry leaves, exhibiting inhibitory activity against α-glucosidase. However, due to the low content of 1-DNJ in mulberry products, its level cannot meet the lowest dose to exhibit its activity. In this study, a combination of dietary 5,6,7-trihydroxy-flavonoid aglycones with 1-DNJ showed synergistic inhibitory activity against maltase of mice α-glucosidase and recombinant C- and N-termini of maltase-glucoamylase (MGAM) and baicalein with 1-DNJ exhibited the strongest synergistic effect. The synergistic effect of the combination was also confirmed by the maltose tolerance test in vivo. Enzyme kinetics, molecular docking, fluorescence spectrum, and circular dichroism spectrometry studies indicated that the major mechanism of the synergism is that baicalein was a positive allosteric inhibitor and bound to the noncompetitive site of MGAM, causing an increase of the binding affinity of 1-DNJ to MGAM. Our results might provide a theoretical basis for the design of dietary supplements containing mulberry products.
Collapse
Affiliation(s)
- Yue-Sheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Na Yu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xia Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Yan Xing
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Zhi-Long Xiu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
22
|
A bioactive polypeptide from sugarcane selectively inhibits intestinal sucrase. Int J Biol Macromol 2020; 156:938-948. [DOI: 10.1016/j.ijbiomac.2020.03.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022]
|
23
|
Nguyen NH, Vo VG, Phan HVT, Ngo TT, Sichaem J, Nguyen TP, Nguyen HH, Pham DD, Nguyen TC, Nguyen VK, Duong TH. Design, modification of phyllanthone derivatives as anti-diabetic and cytotoxic agents. Nat Prod Res 2020; 36:371-378. [PMID: 32608266 DOI: 10.1080/14786419.2020.1788023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Twelve benzylidene derivatives, one Baeyer-Villiger oxidative, six imine derivatives were successfully designed and synthesised from phyllanthone. In the search for potential new anti-diabetic agents, phyllanthone along with its benzylidene and oxidation analogues were evaluated for enzyme inhibition against α-glucosidase. In the benzylidene series, most analogues displayed stronger activity than the mother compound. Compound 1c revealed the strongest activity, outperforming the acarbose positive control with an IC50 value of 19.59 µM. Phyllanthone and its derivatives were then tested for cytotoxic activity against the K562 cell line. The imine analogues displayed the most powerful cytotoxic activity with 3cand 3d having IC50 values of 57.55 and 68.02 µM, respectively.
Collapse
Affiliation(s)
- Ngoc-Hong Nguyen
- CirTech Institute, Ho Chi Minh City University of Technology (HUTECH), Ho ChiMinh City, Vietnam
| | - Van-Giau Vo
- Department of BionanoTechnology, Gachon Medical Research Institute, Gachon University, Seongnam, Korea
| | | | - Thanh-The Ngo
- Department of Chemistry, University of Education, Ho Chi Minh City, Vietnam
| | - Jirapast Sichaem
- Research Unit in Natural Products Chemistry and Bioactivities, Faculty of Science and Technology, Thammasat University Lampang Campus, Lampang, Thailand
| | - Thi-Phuong Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Huu-Hung Nguyen
- Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Duc-Dung Pham
- Department of Chemistry, University of Education, Ho Chi Minh City, Vietnam
| | - Tien-Cong Nguyen
- Department of Chemistry, University of Education, Ho Chi Minh City, Vietnam
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Thuc-Huy Duong
- Department of Chemistry, University of Education, Ho Chi Minh City, Vietnam
| |
Collapse
|
24
|
Van Noten N, Van Liefferinge E, Degroote J, De Smet S, Desmet T, Michiels J. Weaning affects the glycosidase activity towards phenolic glycosides in the gut of piglets. J Anim Physiol Anim Nutr (Berl) 2020; 104:1432-1443. [PMID: 32333473 DOI: 10.1111/jpn.13368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Phenolic compounds in pig diets, originating either from feed ingredients or additives, may occur as glycosides, that is conjugated to sugar moieties. Upon ingestion, their bioavailability and functionality depend on hydrolysis of the glycosidic bond by endogenous or microbial glycosidases. Hence, it is essential to map the glycosidase activities towards phenolic glycosides present along gut. Therefore, the activity of three key glycosidases, that is α-glucosidase (αGLU), β-glucosidase (βGLU) and β-galactosidase (βGAL), was quantified in small intestinal mucosa and digesta of piglets at different gastrointestinal sites (stomach, three parts of small intestine, caecum and colon) and at different ages around weaning (10 days before and 0, 2, 5, 14 and 28 days after weaning). Activity assays were performed with p-nitrophenyl glycosides at neutral pH. The αGLU activities in mucosa and digesta were low (overall means 1.4 and 60 U respectively) as compared to βGLU (15.2 and 199 U) and βGAL (23.4 and 298 U; p < .001). Moreover, αGLU activity in mucosa was unaffected by age. Conversely, βGLU and βGAL activities dropped significantly after weaning. Minimal levels, ranging between 18% and 54% of the pre-weaning values, were reached at 5 days post-weaning. Similarly, in small intestinal digesta, reductions from 60% up to 90% were observed for the three enzyme activities on day five post-weaning as compared to pre-weaning levels. In caecal contents, activities were lowest at 14 days post-weaning, while in stomach and colon no clear weaning-induced effects were observed. Our data suggest that weaning affects the glycosidase activity in mucosa (mainly endogenous origin) and digesta (primarily bacterial origin) with the most pronounced effects occurring 5 days post-weaning. Moreover, differences in activities exist between different glycosidases and between gut locations. These insights can facilitate the prediction of the fate of existing and newly synthetized glycosides after oral ingestion in piglets.
Collapse
Affiliation(s)
- Noémie Van Noten
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | | | - Jeroen Degroote
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Stefaan De Smet
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Tom Desmet
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Joris Michiels
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
The in silico characterization of neutral alpha-glucosidase C (GANC) and its evolution from GANAB. Gene X 2020; 726:144192. [DOI: 10.1016/j.gene.2019.144192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 07/26/2019] [Accepted: 10/20/2019] [Indexed: 11/21/2022] Open
|
26
|
Li Q, Wang C, Liu F, Hu T, Shen W, Li E, Liao S, Zou Y. Mulberry leaf polyphenols attenuated postprandial glucose absorption via inhibition of disaccharidases activity and glucose transport in Caco-2 cells. Food Funct 2020; 11:1835-1844. [DOI: 10.1039/c9fo01345h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present study attempted to evaluate the mechanism of action and bioactivity of mulberry leaf polyphenols (MLPs) in type-2 diabetes prevention via inhibition of disaccharidase and glucose transport.
Collapse
Affiliation(s)
- Qian Li
- Guangdong Academy of Agricultural Sciences
- Sericultural & Agri-Food Research Institute /Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Chen Wang
- Guangdong Academy of Agricultural Sciences
- Sericultural & Agri-Food Research Institute /Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Fan Liu
- Guangdong Academy of Agricultural Sciences
- Sericultural & Agri-Food Research Institute /Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Tenggen Hu
- Guangdong Academy of Agricultural Sciences
- Sericultural & Agri-Food Research Institute /Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Weizhi Shen
- Guangdong Academy of Agricultural Sciences
- Sericultural & Agri-Food Research Institute /Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Erna Li
- Guangdong Academy of Agricultural Sciences
- Sericultural & Agri-Food Research Institute /Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Sentai Liao
- Guangdong Academy of Agricultural Sciences
- Sericultural & Agri-Food Research Institute /Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Yuxiao Zou
- Guangdong Academy of Agricultural Sciences
- Sericultural & Agri-Food Research Institute /Key Laboratory of Functional Foods
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| |
Collapse
|
27
|
Trotta RJ, Vasquez-Hidalgo MA, Vonnahme KA, Swanson KC. Effects of Nutrient Restriction During Midgestation to Late Gestation on Maternal and Fetal Postruminal Carbohydrase Activities in Sheep. J Anim Sci 2020; 98:skz393. [PMID: 31879771 PMCID: PMC6986434 DOI: 10.1093/jas/skz393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
To examine the effects of nutrient restriction during midgestation to late gestation on maternal and fetal digestive enzyme activities, 41 singleton ewes (48.3 ± 0.6 kg of BW) were randomly assigned to dietary treatments: 100% (control; CON; n = 20) or 60% of nutrient requirements (restricted; RES; n = 21) from day 50 until day 90 (midgestation). At day 90, 14 ewes (CON, n = 7; RES, n = 7) were euthanized. The remaining ewes were subjected to treatments of nutrient restriction or remained on a control diet from day 90 until day 130 (late gestation): CON-CON (n = 6), CON-RES (n = 7), RES-CON (n = 7), and RES-RES (n = 7) and were euthanized on day 130. The fetal and maternal pancreas and small intestines were weighed, subsampled, and assayed for digestive enzyme activity. One unit (U) of enzyme activity is equal to 1 µmol of product produced per minute for amylase, glucoamylase, lactase, and trypsin and 0.5 µmol of product produced per minute for maltase and isomaltase. Nutrient restriction during midgestation and late gestation decreased (P < 0.05) maternal pancreatic and small intestinal mass but did not affect fetal pancreatic or small intestinal mass. Maternal nutrient restriction during late gestation decreased (P = 0.03) fetal pancreatic trypsin content (U/pancreas) and tended to decrease (P < 0.08) fetal pancreatic trypsin concentration (U/g), specific activity (U/g protein), and content relative to BW (U/kg of BW). Nutrient restriction of gestating ewes decreased the total content of α-amylase (P = 0.04) and tended to decrease total content of trypsin (P = 0.06) and protein (P = 0.06) in the maternal pancreas on day 90. Nutrient restriction during midgestation on day 90 and during late gestation on day 130 decreased (P = 0.04) maternal pancreatic α-amylase-specific activity. Sucrase activity was undetected in the fetal and maternal small intestine. Nutrient restriction during late gestation increased (P = 0.01) maternal small intestinal maltase and lactase concentration and tended to increase (P = 0.06) isomaltase concentration. Realimentation during late gestation after nutrient restriction during midgestation increased lactase concentration (P = 0.04) and specific activity (P = 0.05) in the fetal small intestine. Fetal small intestinal maltase, isomaltase, and glucoamylase did not respond to maternal nutrient restriction. These data indicate that some maternal and fetal digestive enzyme activities may change in response to maternal nutrient restriction.
Collapse
Affiliation(s)
- Ronald J Trotta
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | | | - Kendall C Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
28
|
Parfenov АI, Belostotsky NI, Khomeriki SG, Akhmadullina OV, Bykova SV, Sabelnikova EA, Dbar SR. Rebamipide increases the disaccharidases activity in patients with enteropathy with impaired membrane digestion. Pilot study. TERAPEVT ARKH 2019; 91:25-31. [PMID: 31094168 DOI: 10.26442/00403660.2019.02.000123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM To evaluate the effectiveness of enteroprotector Rebamipide in the treatment of enteropathy with impaired membrane digestion (EIMD). MATERIALS AND METHODS We examined 102 patients aged 18 to 50 years (41 men and 61 women) with clinical signs of irritable bowel syndrome (n=65), functional diarrhea (n=33), and functional constipation (n=4) according to Rome IV criteria (2016). The activities of glucoamylase (GA), maltase, sucrase and lactase were determined by Dahlquist-Trinder method in duodenal biopsies obtained during esophagogastroduodenoscopy. The control group consisted of 20 healthy people aged 23-47. They showed following average enzyme activity: lactase - 42±13 ng glucose on 1 mg of tissue per minute, GA - 509±176, maltase - 1735±446, sucrase - 136±35 ng glucose on 1 mg of tissue per minute. These numbers were taken as the norm. RESULTS The activity of the disaccharidases was reduced in 89.2% out of 102 patients, and they were diagnosed with EIMD. Thirteen patients with EIMD were recommended to maintain the FODMAP diet and take enteroprotector Rebamipide 100 mg 3 times a day for 12 weeks. After 3 months 11 patients reported decreased or no flatulence, abdominal pain, stool disorder; 2 patients reported no change. The activity of GA increased to an average of 149±82 (by 78%, p=0.016), maltase - to 864±472 (by 131%, p=0.0019), sucrase - 63±35 (by 95%, p=0.0041) and lactase - 10±8 ng glucose on 1 mg of tissue per minute. The activity of lactase did not change. CONCLUSION We discovered a previously unknown phenomenon of the disaccharidases activity increase in duodenal mucosa and improved carbohydrates tolerance in the patients with EIMD taking Rebamipide in the dose 300 mg/day for 12 weeks.
Collapse
Affiliation(s)
- А I Parfenov
- A.S. Loginov Moscow Clinical Research and Practical Center of the Department of Health of Moscow, Moscow, Russia
| | - N I Belostotsky
- A.S. Loginov Moscow Clinical Research and Practical Center of the Department of Health of Moscow, Moscow, Russia
| | - S G Khomeriki
- A.S. Loginov Moscow Clinical Research and Practical Center of the Department of Health of Moscow, Moscow, Russia
| | - O V Akhmadullina
- A.S. Loginov Moscow Clinical Research and Practical Center of the Department of Health of Moscow, Moscow, Russia
| | - S V Bykova
- A.S. Loginov Moscow Clinical Research and Practical Center of the Department of Health of Moscow, Moscow, Russia
| | - E A Sabelnikova
- A.S. Loginov Moscow Clinical Research and Practical Center of the Department of Health of Moscow, Moscow, Russia
| | - S R Dbar
- A.S. Loginov Moscow Clinical Research and Practical Center of the Department of Health of Moscow, Moscow, Russia
| |
Collapse
|
29
|
Congenital Lactase Deficiency: Mutations, Functional and Biochemical Implications, and Future Perspectives. Nutrients 2019; 11:nu11020461. [PMID: 30813293 PMCID: PMC6412902 DOI: 10.3390/nu11020461] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022] Open
Abstract
Congenital lactase deficiency (CLD) is a severe autosomal recessive genetic disorder that affects the functional capacity of the intestinal protein lactase-phlorizin hydrolase (LPH). This disorder is diagnosed already during the first few days of the newborn’s life due to the inability to digest lactose, the main carbohydrate in mammalian milk. The symptoms are similar to those in other carbohydrate malabsorption disorders, such as congenital sucrase-isomaltase deficiency, and include severe osmotic watery diarrhea. CLD is associated with mutations in the translated region of the LPH gene that elicit loss-of-function of LPH. The mutations occur in a homozygote or compound heterozygote pattern of inheritance and comprise missense mutations as well as mutations that lead to complete or partial truncations of crucial domains in LPH, such as those linked to the folding and transport-competence of LPH and to the catalytic domains. Nevertheless, the identification of the mutations in CLD is not paralleled by detailed genotype/protein phenotype analyses that would help unravel potential pathomechanisms underlying this severe disease. Here, we review the current knowledge of CLD mutations and discuss their potential impact on the structural and biosynthetic features of LPH. We also address the question of whether heterozygote carriers can be symptomatic for CLD and whether genetic testing is needed in view of the severity of the disease.
Collapse
|
30
|
Rabbit SLC15A1, SLC7A1 and SLC1A1 genes are affected by site of digestion, stage of development and dietary protein content. Animal 2019; 13:326-332. [DOI: 10.1017/s1751731118001404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
31
|
Navis M, Martins Garcia T, Renes IB, Vermeulen JL, Meisner S, Wildenberg ME, van den Brink GR, van Elburg RM, Muncan V. Mouse fetal intestinal organoids: new model to study epithelial maturation from suckling to weaning. EMBO Rep 2018; 20:embr.201846221. [PMID: 30530633 PMCID: PMC6362357 DOI: 10.15252/embr.201846221] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 11/09/2022] Open
Abstract
During the suckling-to-weaning transition, the intestinal epithelium matures, allowing digestion of solid food. Transplantation experiments with rodent fetal epithelium into subcutaneous tissue of adult animals suggest that this transition is intrinsically programmed and occurs in the absence of dietary or hormonal signals. Here, we show that organoids derived from mouse primary fetal intestinal epithelial cells express markers of late fetal and neonatal development. In a stable culture medium, these fetal epithelium-derived organoids lose all markers of neonatal epithelium and start expressing hallmarks of adult epithelium in a time frame that mirrors epithelial maturation in vivo In vitro postnatal development of the fetal-derived organoids accelerates by dexamethasone, a drug used to accelerate intestinal maturation in vivo Together, our data show that organoids derived from fetal epithelium undergo suckling-to-weaning transition, that the speed of maturation can be modulated, and that fetal organoids can be used to model the molecular mechanisms of postnatal epithelial maturation.
Collapse
Affiliation(s)
- Marit Navis
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Tânia Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingrid B Renes
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Jacqueline Lm Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| | - Gijs R van den Brink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands.,GlaxoSmithKline, Medicines Research Center, London, UK
| | - Ruurd M van Elburg
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Danone Nutricia Research, Utrecht, The Netherlands
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, AG&M, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Sakayanathan P, Loganathan C, Iruthayaraj A, Periyasamy P, Poomani K, Periasamy V, Thayumanavan P. Biological interaction of newly synthesized astaxanthin-s-allyl cysteine biconjugate with Saccharomyces cerevisiae and mammalian α-glucosidase: In vitro kinetics and in silico docking analysis. Int J Biol Macromol 2018; 118:252-262. [DOI: 10.1016/j.ijbiomac.2018.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/12/2023]
|
33
|
Santos CMM, Freitas M, Fernandes E. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur J Med Chem 2018; 157:1460-1479. [PMID: 30282319 DOI: 10.1016/j.ejmech.2018.07.073] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022]
Abstract
α-Glucosidase plays an important role in carbohydrate metabolism and is therefore an attractive therapeutic target for the treatment of diabetes, obesity and other related complications. In the last two decades, considerable interest has been given to natural and synthetic xanthone derivatives in this field of research. Herein, a comprehensive review of the literature on xanthones as inhibitors of α-glucosidase activity, their mechanism of action, experimental procedures and structure-activity relationships have been reviewed for more than 280 analogs. With this overview we intend to motivate and challenge researchers (e.g. chemistry, biology, pharmaceutical and medicinal areas) for the design of novel xanthones as multipotent drugs and exploit the properties of this class of compounds in the management of diabetic complications.
Collapse
Affiliation(s)
- Clementina M M Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Department of Chemistry, QOPNA &University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
34
|
Adib M, Peytam F, Rahmanian-Jazi M, Mahernia S, Bijanzadeh HR, Jahani M, Mohammadi-Khanaposhtani M, Imanparast S, Faramarzi MA, Mahdavi M, Larijani B. New 6-amino-pyrido[2,3-d]pyrimidine-2,4-diones as novel agents to treat type 2 diabetes: A simple and efficient synthesis, α-glucosidase inhibition, molecular modeling and kinetic study. Eur J Med Chem 2018; 155:353-363. [DOI: 10.1016/j.ejmech.2018.05.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/11/2018] [Accepted: 05/28/2018] [Indexed: 12/01/2022]
|
35
|
Differences in DNA Methylation and Functional Expression in Lactase Persistent and Non-persistent Individuals. Sci Rep 2018; 8:5649. [PMID: 29618745 PMCID: PMC5884863 DOI: 10.1038/s41598-018-23957-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
In humans the expression of lactase changes during post-natal development, leading to phenotypes known as lactase persistence and non-persistence. Polymorphisms within the lactase gene (LCT) enhancer, in particular the −13910C > T, but also others, are linked to these phenotypes. We were interested in identifying dynamic mediators of LCT regulation, beyond the genotype at −13910C > T. To this end, we investigated two levels of lactase regulation in human intestinal samples obtained from New England children and adolescents of mixed European ancestry: differential expression of transcriptional regulators of LCT, and variations in DNA methylation, and their relation to phenotype. Variations in expression of CDX2, POU2F1, GATA4, GATA6, and HNF1α did not correlate with phenotype. However, an epigenome-wide approach using the Illumina Infinium HM450 bead chip identified a differentially methylated position in the LCT promoter where methylation levels are associated with the genotype at −13910C > T, the persistence/non-persistence phenotype and lactase enzymatic activity. DNA methylation levels at this promoter site and CpGs in the LCT enhancer are associated with genotype. Indeed, taken together they have a higher power to predict lactase phenotypes than the genotype alone.
Collapse
|
36
|
Brake DW, Swanson KC. RUMINANT NUTRITION SYMPOSIUM: Effects of postruminal flows of protein and amino acids on small intestinal starch digestion in beef cattle. J Anim Sci 2018; 96:739-750. [PMID: 29385466 PMCID: PMC6140845 DOI: 10.1093/jas/skx058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Many nutritionists adopt feeding strategies designed to increase ruminal starch fermentation because ruminal capacity for starch degradation often exceeds amounts of starch able to be digested in the small intestine of cattle. However, increases in fermentable energy supply are positively correlated with increased instances of metabolic disorders and reductions in DMI, and energy derived by cattle subsequent to fermentation is less than that derived when glucose is intestinally absorbed. Small intestinal starch digestion (SISD) appears to be limited by α-glycohydrolase secretions and a precise understanding of digestion of carbohydrates in the small intestine remains equivocal. Interestingly, small intestinal α-glycohydrolase secretions are responsive to luminal appearance of milk-specific protein (i.e., casein) in the small intestine of cattle, and SISD is increased by greater postruminal flows of individual AA (i.e., Glu). Greater flows of casein and Glu appear to augment SISD, but by apparently different mechanisms. Greater small intestinal absorption of glucose has been associated with increased omental fat accretion even though SISD can increase NE from starch by more than 42% compared to ruminal starch degradation. Nonetheless, in vitro data suggest that greater glucogenicity of diets can allow for greater intramuscular fat accretion, and if greater small intestinal absorption of glucose does not mitigate hepatic gluconeogenesis then increases in SISD may provide opportunity to increase synthesis of intramuscular fat. If duodenal metabolizable AA flow can be altered to allow for improved SISD in cattle, then diet modification may allow for large improvements in feed efficiency and beef quality. Few data are available on direct effects of increases in SISD in response to greater casein or metabolizable Glu flow. An improved understanding of effects of increased SISD in response to greater postruminal flow of Glu and casein on improvements in NE and fates of luminally assimilated glucose could allow for increased efficiency of energy use from corn and improvements in conversion of corn grain to beef. New knowledge related to effects of greater postruminal flow of Glu and casein on starch utilization by cattle will allow nutritionists to more correctly match dietary nutrients to cattle requirements, thereby allowing large improvements in nutrient utilization and efficiency of gain among cattle fed starch-based diets.
Collapse
Affiliation(s)
- D W Brake
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - K C Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
37
|
Palmer M, Steenkamp ET, Coetzee MPA, Blom J, Venter SN. Genome-Based Characterization of Biological Processes That Differentiate Closely Related Bacteria. Front Microbiol 2018; 9:113. [PMID: 29467735 PMCID: PMC5808187 DOI: 10.3389/fmicb.2018.00113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/17/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteriologists have strived toward attaining a natural classification system based on evolutionary relationships for nearly 100 years. In the early twentieth century it was accepted that a phylogeny-based system would be the most appropriate, but in the absence of molecular data, this approach proved exceedingly difficult. Subsequent technical advances and the increasing availability of genome sequencing have allowed for the generation of robust phylogenies at all taxonomic levels. In this study, we explored the possibility of linking biological characters to higher-level taxonomic groups in bacteria by making use of whole genome sequence information. For this purpose, we specifically targeted the genus Pantoea and its four main lineages. The shared gene sets were determined for Pantoea, the four lineages within the genus, as well as its sister-genus Tatumella. This was followed by functional characterization of the gene sets using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In comparison to Tatumella, various traits involved in nutrient cycling were identified within Pantoea, providing evidence for increased efficacy in recycling of metabolites within the genus. Additionally, a number of traits associated with pathogenicity were identified within species often associated with opportunistic infections, with some support for adaptation toward overcoming host defenses. Some traits were also only conserved within specific lineages, potentially acquired in an ancestor to the lineage and subsequently maintained. It was also observed that the species isolated from the most diverse sources were generally the most versatile in their carbon metabolism. By investigating evolution, based on the more variable genomic regions, it may be possible to detect biologically relevant differences associated with the course of evolution and speciation.
Collapse
Affiliation(s)
- Marike Palmer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Martin P A Coetzee
- Department of Genetic, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stephanus N Venter
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
38
|
Knudsen IMB, Hedberg C, Ladefoged LK, Ide D, Brinkø A, Eikeland EZ, Kato A, Jensen HH. Divergent synthesis of new α-glucosidase inhibitors obtained through a vinyl Grignard-mediated carbocyclisation. Org Biomol Chem 2018; 16:6250-6261. [DOI: 10.1039/c8ob01433g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Four new α-glucosidase inhibitors have been synthesised through 5–8 synthetic steps from a common synthetic intermediate obtained through a recently developed carbocyclisation.
Collapse
Affiliation(s)
| | | | - Lucy Kate Ladefoged
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
- Interdisciplinary Nanoscience Center (iNANO)
| | - Daisuke Ide
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | - Anne Brinkø
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Espen Z. Eikeland
- Center for Materials Crystallography
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | | |
Collapse
|
39
|
Amiri M, Naim HY. Characterization of Mucosal Disaccharidases from Human Intestine. Nutrients 2017; 9:nu9101106. [PMID: 28994704 PMCID: PMC5691722 DOI: 10.3390/nu9101106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 09/30/2017] [Accepted: 10/07/2017] [Indexed: 11/16/2022] Open
Abstract
In this study, we used a brush border membrane (BBM) preparation from human small intestine to analyze the proportion and the activity of major intestinal disaccharidases, including sucrase-isomaltase (SI), maltase-glucoamylase (MGAM) and lactase-phlorizin hydrolase (LPH). SI, MGAM and LPH respectively constituted 8.2%, 2.7% and 1.4% of total BBM protein. The activity of SI and LPH decreased threefold after purification from the brush border membrane, which highlights the effect of membrane microdomains on the functional capacity of these enzymes. All of the disaccharidases showed optimal activity at pH 6, over 50% residual activity between pH 5 to pH 7, and increasing activity with rising temperatures up to 45 °C, along with a stable functional structure. Therefore the enzymes can withstand mild intraluminal pH alterations with adequate function, and are able to increase their activity with elevated core body temperature. Our data provide a functional measure for characterization of intestinal disaccharidases under different physiological and pathological conditions.
Collapse
Affiliation(s)
- Mahdi Amiri
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover D-30559, Germany.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover D-30559, Germany.
| |
Collapse
|
40
|
Pyner A, Nyambe-Silavwe H, Williamson G. Inhibition of Human and Rat Sucrase and Maltase Activities To Assess Antiglycemic Potential: Optimization of the Assay Using Acarbose and Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8643-8651. [PMID: 28914528 DOI: 10.1021/acs.jafc.7b03678] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
UNLABELLED We optimized the assays used to measure inhibition of rat and human α-glucosidases (sucrase and maltase activities), intestinal enzymes which catalyze the final steps of carbohydrate digestion. Cell-free extracts from fully differentiated intestinal Caco-2/TC7 monolayers were shown to be a suitable source of sucrase-isomaltase, with the same sequence as human small intestine, and were compared to a rat intestinal extract. The kinetic conditions of the assay were optimized, including comparison of enzymatic and chromatographic methods to detect the monosaccharide products. Human sucrase activity was more susceptible than the rat enzyme to inhibition by acarbose (IC50 (concentration required for 50% inhibition) = 2.5 ± 0.5 and 12.3 ± 0.6 μM, respectively), by a polyphenol-rich green tea extract, and by pure (-)-epigallocatechin gallate (EGCG) (IC50 = 657 ± 150 and 950 ± 86 μM respectively). In contrast, the reverse was observed when assessing maltase activity (e.g. , EGCG IC50 = 677 ± 241 and 14.0 ± 2.0 μM for human and rat maltase, respectively). 5-Caffeoylquinic acid did not significantly inhibit maltase and was only a very weak inhibitor of sucrase. The data show that for sucrase and maltase activities, inhibition patterns of rat and human enzymes are generally qualitatively similar but can be quantitatively different.
Collapse
Affiliation(s)
- Alison Pyner
- School of Food Science and Nutrition, University of Leeds , Woodhouse Lane, Leeds, Yorkshire LS2 9JT, U.K
| | - Hilda Nyambe-Silavwe
- School of Food Science and Nutrition, University of Leeds , Woodhouse Lane, Leeds, Yorkshire LS2 9JT, U.K
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds , Woodhouse Lane, Leeds, Yorkshire LS2 9JT, U.K
| |
Collapse
|
41
|
Bagri P, Chester K, Khan W, Ahmad S. Aspects of extraction and biological evaluation of naturally occurring sugar-mimicking sulfonium-ion and their synthetic analogues as potent α-glucosidase inhibitors from Salacia: a review. RSC Adv 2017. [DOI: 10.1039/c7ra02955a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A review of the selective inhibitory activities of sulfonium compounds ofSalaciaagainst intestinal α-glucosidases, structural features important for effective inhibition and the toggling approach for controlling starch digestion and glucose release.
Collapse
Affiliation(s)
- Priyanka Bagri
- School of Pharmaceutical Education and Research
- Bioactive Natural Product Laboratory
- Department of Pharmacognosy and Phytochemistry
- Jamia Hamdard
- New Delhi
| | | | - Washim Khan
- School of Pharmaceutical Education and Research
- Bioactive Natural Product Laboratory
- Department of Pharmacognosy and Phytochemistry
- Jamia Hamdard
- New Delhi
| | - Sayeed Ahmad
- School of Pharmaceutical Education and Research
- Bioactive Natural Product Laboratory
- Department of Pharmacognosy and Phytochemistry
- Jamia Hamdard
- New Delhi
| |
Collapse
|
42
|
Satoh T, Toshimori T, Noda M, Uchiyama S, Kato K. Interaction mode between catalytic and regulatory subunits in glucosidase II involved in ER glycoprotein quality control. Protein Sci 2016; 25:2095-2101. [PMID: 27576940 DOI: 10.1002/pro.3031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
Abstract
The glycoside hydrolase family 31 (GH31) α-glucosidases play vital roles in catabolic and regulated degradation, including the α-subunit of glucosidase II (GIIα), which catalyzes trimming of the terminal glucose residues of N-glycan in glycoprotein processing coupled with quality control in the endoplasmic reticulum (ER). Among the known GH31 enzymes, only GIIα functions with its binding partner, regulatory β-subunit (GIIβ), which harbors a lectin domain for substrate recognition. Although the structural data have been reported for GIIα and the GIIβ lectin domain, the interaction mode between GIIα and GIIβ remains unknown. Here, we determined the structure of a complex formed between GIIα and the GIIα-binding domain of GIIβ, thereby providing a structural basis underlying the functional extension of this unique GH31 enzyme.
Collapse
Affiliation(s)
- Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan. .,JST, PRESTO, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Takayasu Toshimori
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masanori Noda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.,Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan. .,Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
43
|
Pamunuwa G, Karunaratne DN, Waisundara VY. Antidiabetic Properties, Bioactive Constituents, and Other Therapeutic Effects of Scoparia dulcis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:8243215. [PMID: 27594892 PMCID: PMC4995349 DOI: 10.1155/2016/8243215] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023]
Abstract
This review discusses the antidiabetic activities of Scoparia dulcis as well as its antioxidant and anti-inflammatory properties in relation to the diabetes and its complications. Ethnomedical applications of the herb have been identified as treatment for jaundice, stomach problems, skin disease, fever, and kidney stones, reproductory issues, and piles. Evidence has been demonstrated through scientific studies as to the antidiabetic effects of crude extracts of S. dulcis as well as its bioactive constituents. The primary mechanisms of action of antidiabetic activity of the plant and its bioactive constituents are through α-glucosidase inhibition, curbing of PPAR-γ and increased secretion of insulin. Scoparic acid A, scoparic acid D, scutellarein, apigenin, luteolin, coixol, and glutinol are some of the compounds which have been identified as responsible for these mechanisms of action. S. dulcis has also been shown to exhibit analgesic, antimalarial, hepatoprotective, sedative, hypnotic, antiulcer, antisickling, and antimicrobial activities. Given this evidence, it may be concluded that S. dulcis could be promoted among the masses as an alternative and complementary therapy for diabetes, provided further scientific studies on the toxicological and pharmacological aspects are carried out through either in vivo or clinical means.
Collapse
Affiliation(s)
- Geethi Pamunuwa
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri Lanka
| | - D. Nedra Karunaratne
- Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Viduranga Y. Waisundara
- Functional Food Product Development Project, National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
| |
Collapse
|
44
|
Vanhoecke B, Bateman E, Mayo B, Vanlancker E, Stringer A, Thorpe D, Keefe D. Dark Agouti rat model of chemotherapy-induced mucositis: establishment and current state of the art. Exp Biol Med (Maywood) 2015; 240:725-41. [PMID: 25966981 PMCID: PMC4935219 DOI: 10.1177/1535370215581309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mucositis is a major oncological problem. The entire gastrointestinal and genitourinary tract and also other mucosal surfaces can be affected in recipients of radiotherapy, and/or chemotherapy. Major progress has been made in recent years in understanding the mechanisms of oral and small intestinal mucositis, which appears to be more prominent than colonic damage. This progress is largely due to the development of representative laboratory animal models of mucositis. This review focuses on the development and establishment of the Dark Agouti rat mammary adenocarcinoma model by the Mucositis Research Group of the University of Adelaide over the past 20 years to characterize the mechanisms underlying methotrexate-, 5-fluorouracil-, and irinotecan-induced mucositis. It also aims to summarize the results from studies using different animal model systems to identify new molecular and cellular markers of mucositis.
Collapse
Affiliation(s)
- Barbara Vanhoecke
- Mucositis Research Group, Centre for Personalised Cancer Medicine (CPCM), Centre for Clinical Research Excellence (CCRE) in Oral Health, Faculty of Health Sciences, University of Adelaide, Adelaide, 5005 South Australia, Australia Laboratory of Microbial Ecology and Technology, University of Ghent, 9000 Ghent, Belgium
| | - Emma Bateman
- Mucositis Research Group, Centre for Personalised Cancer Medicine (CPCM), Centre for Clinical Research Excellence (CCRE) in Oral Health, Faculty of Health Sciences, University of Adelaide, Adelaide, 5005 South Australia, Australia
| | - Bronwen Mayo
- Mucositis Research Group, Centre for Personalised Cancer Medicine (CPCM), Centre for Clinical Research Excellence (CCRE) in Oral Health, Faculty of Health Sciences, University of Adelaide, Adelaide, 5005 South Australia, Australia Sansom Institute for Health Research, University of South Australia, Adelaide, 5001 South Australia, Australia
| | - Eline Vanlancker
- Laboratory of Microbial Ecology and Technology, University of Ghent, 9000 Ghent, Belgium
| | - Andrea Stringer
- Sansom Institute for Health Research, University of South Australia, Adelaide, 5001 South Australia, Australia
| | - Daniel Thorpe
- Sansom Institute for Health Research, University of South Australia, Adelaide, 5001 South Australia, Australia
| | - Dorothy Keefe
- Mucositis Research Group, Centre for Personalised Cancer Medicine (CPCM), Centre for Clinical Research Excellence (CCRE) in Oral Health, Faculty of Health Sciences, University of Adelaide, Adelaide, 5005 South Australia, Australia Director, SA Cancer Service, Royal Adelaide Hospital, Adelaide, 5005 South Australia, Australia
| |
Collapse
|
45
|
Kato A, Zhang ZL, Wang HY, Jia YM, Yu CY, Kinami K, Hirokami Y, Tsuji Y, Adachi I, Nash RJ, Fleet GWJ, Koseki J, Nakagome I, Hirono S. Design and Synthesis of Labystegines, Hybrid Iminosugars from LAB and Calystegine, as Inhibitors of Intestinal α-Glucosidases: Binding Conformation and Interaction for ntSI. J Org Chem 2015; 80:4501-15. [DOI: 10.1021/acs.joc.5b00342] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Zhao-Lan Zhang
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Yao Wang
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue-Mei Jia
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chu-Yi Yu
- Beijing
National Laboratory of Molecular Science (BNLMS), CAS Key Laboratory
of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kyoko Kinami
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Yuki Hirokami
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Yutaro Tsuji
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Robert J. Nash
- Institute
of Biological, Environmental and Rural Sciences, Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | - George W. J. Fleet
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, PR China
| | - Jun Koseki
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Izumi Nakagome
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Shuichi Hirono
- School of
Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
46
|
Functional significance of single nucleotide polymorphisms in the lactase gene in diverse US patients and evidence for a novel lactase persistence allele at -13909 in those of European ancestry. J Pediatr Gastroenterol Nutr 2015; 60:182-91. [PMID: 25625576 PMCID: PMC4308731 DOI: 10.1097/mpg.0000000000000595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Recent data from mainly homogeneous European and African populations implicate a 140-bp region 5' to the transcriptional start site of LCT (the lactase gene) as a regulatory site for lactase persistence and nonpersistence. Because there are no studies of US nonhomogeneous populations, we performed genotype/phenotype analysis of the -13910 and -22018 LCT single nucleotide polymorphisms (SNPs) in New England children, mostly of European ancestry. METHODS Duodenal biopsies were processed for disaccharidase activities, RNA quantification by reverse transcription polymerase chain reaction (RT-PCR), allelic expression ratios by PCR, and genotyping and SNP analysis. Results were compared with clinical information. RESULTS Lactase activity and mRNA levels, and sucrase-to-lactase ratios of enzyme activity and mRNA, showed robust correlations with genotype. None of the other LCT SNPs showed as strong a correlation with enzyme or mRNA levels as did -13910. Data were consistent, with the -13910 being the causal sequence variant instead of -22018. Four individuals heterozygous for -13910T/C had allelic expression patterns similar to individuals with -13910C/C genotypes; of these, 2 showed equal LCT expression from the 2 alleles and a novel variant (-13909C>A) associated with lactase persistence. CONCLUSIONS The identification of -13910C/C genotype is likely to predict lactase nonpersistence, consistent with prior published studies. A -13910T/T genotype will frequently, but not perfectly, predict lactase persistence in this mixed European-ancestry population; a -13910T/C genotype will not predict the phenotype. A long, rare haplotype in 2 individuals with -13910T/C genotype but equal allele-specific expression contains a novel lactase persistence allele present at -13909.
Collapse
|
47
|
The Secretion and Action of Brush Border Enzymes in the Mammalian Small Intestine. Rev Physiol Biochem Pharmacol 2015; 168:59-118. [PMID: 26345415 DOI: 10.1007/112_2015_24] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Microvilli are conventionally regarded as an extension of the small intestinal absorptive surface, but they are also, as latterly discovered, a launching pad for brush border digestive enzymes. Recent work has demonstrated that motor elements of the microvillus cytoskeleton operate to displace the apical membrane toward the apex of the microvillus, where it vesiculates and is shed into the periapical space. Catalytically active brush border digestive enzymes remain incorporated within the membranes of these vesicles, which shifts the site of BB digestion from the surface of the enterocyte to the periapical space. This process enables nutrient hydrolysis to occur adjacent to the membrane in a pre-absorptive step. The characterization of BB digestive enzymes is influenced by the way in which these enzymes are anchored to the apical membranes of microvilli, their subsequent shedding in membrane vesicles, and their differing susceptibilities to cleavage from the component membranes. In addition, the presence of active intracellular components of these enzymes complicates their quantitative assay and the elucidation of their dynamics. This review summarizes the ontogeny and regulation of BB digestive enzymes and what is known of their kinetics and their action in the peripheral and axial regions of the small intestinal lumen.
Collapse
|
48
|
Branch pattern of starch internal structure influences the glucogenesis by mucosal Nt-maltase-glucoamylase. Carbohydr Polym 2014; 111:33-40. [DOI: 10.1016/j.carbpol.2014.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/10/2014] [Accepted: 04/09/2014] [Indexed: 11/21/2022]
|
49
|
Tsuji A, Nishiyama N, Ohshima M, Maniwa S, Kuwamura S, Shiraishi M, Yuasa K. Comprehensive enzymatic analysis of the amylolytic system in the digestive fluid of the sea hare, Aplysia kurodai: Unique properties of two α-amylases and two α-glucosidases. FEBS Open Bio 2014; 4:560-70. [PMID: 25161866 PMCID: PMC4141080 DOI: 10.1016/j.fob.2014.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/21/2022] Open
Abstract
The amylolytic system of the digestive fluid of sea hare (Aplysia kurodai) was studied. Two α-amylases and two α-glucosidases were purified from the digestive fluid. Sea hare efficiently digests sea lettuce to glucose by a combination of these enzymes. Starch in sea lettuce is a predominant glucose source for sea hare.
Sea lettuce (Ulva pertusa) is a nuisance species of green algae that is found all over the world. East-Asian species of the marine gastropod, the sea hare Aplysia kurodai, shows a clear feeding preference for sea lettuce. Compared with cellulose, sea lettuce contains a higher amount of starch as a storage polysaccharide. However, the entire amylolytic system in the digestive fluid of A. kurodai has not been studied in detail. We purified α-amylases and α-glucosidases from the digestive fluid of A. kurodai and investigated the synergistic action of these enzymes on sea lettuce. A. kurodai contain two α-amylases (59 and 80 kDa) and two α-glucosidases (74 and 86 kDa). The 59-kDa α-amylase, but not the 80-kDa α-amylase, was markedly activated by Ca2+ or Cl−. Both α-amylases degraded starch and maltoheptaose, producing maltotriose, maltose, and glucose. Glucose production from starch was higher with 80-kDa α-amylase than with 59-kDa α-amylase. Kinetic analysis indicated that 74-kDa α-glucosidase prefers short α-1,4-linked oligosaccharide, whereas 86-kDa α-glucosidase prefers large α-1,6 and α-1,4-linked polysaccharides such as glycogen. When sea lettuce was used as a substrate, a 2-fold greater amount of glucose was released by treatment with 59-kDa α-amylase and 74-kDa α-glucosidase than by treatment with 45-kDa cellulase and 210-kDa β-glucosidase of A. kurodai. Unlike mammals, sea hares efficiently digest sea lettuce to glucose by a combination of two α-amylases and two α-glucosidases in the digestive fluids without membrane-bound maltase–glucoamylase and sucrase–isomaltase complexes.
Collapse
Affiliation(s)
- Akihiko Tsuji
- Corresponding author. Tel.: +81 88 656 7526; fax: +81 88 655 3161.
| | | | | | | | | | | | | |
Collapse
|
50
|
Su S, Miska KB, Fetterer RH, Jenkins MC, Wong EA. Expression of digestive enzymes and nutrient transporters in Eimeria acervulina-challenged layers and broilers. Poult Sci 2014; 93:1217-26. [PMID: 24795315 DOI: 10.3382/ps.2013-03807] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Avian coccidiosis is a disease caused by intestinal protozoa in the genus Eimeria. Clinical signs of coccidiosis include intestinal lesions and reduced feed efficiency and BW gain. This growth reduction may be due to changes in expression of digestive enzymes and nutrient transporters in the intestine. The objective of this study was to examine the differential expression of digestive enzymes, transporters of amino acids, peptides, sugars, and minerals, and an antimicrobial peptide in the small intestine of Eimeria acervulina-infected broilers and layers. Uninfected broilers and layers, in general, expressed these genes at comparable levels. Some differences included 3-fold and 2-fold greater expression of the peptide transporter PepT1 and the antimicrobial peptide LEAP2 (liver expressed antimicrobial peptide 2), respectively, in the jejunum of layers compared with broilers and 17-fold greater expression of LEAP2 in the duodenum of broilers compared with layers. In the duodenum of Eimeria-infected broilers and layers, there was downregulation of aminopeptidase N; sucrase-isomaltase; the neutral, cationic, and anionic amino acid transporters b(o,+)AT/rBAT, B(o)AT, CAT2, and EAAT3; the sugar transporter GLUT2; the zinc transporter ZnT1; and LEAP2. In the jejunum of infected layers there was downregulation of many of the same genes as in the duodenum plus downregulation of PepT1, b(o,+)AT/rBAT, and the y(+) L system amino acid transporters y(+) LAT1 and y(+) LAT2. In the ileum of infected layers there was downregulation of CAT2, y(+)LAT1, the L type amino acid transporter LAT1, and the sugar transporter GLUT1, and upregulation of APN, PepT1, the sodium glucose transporter SGLT4, and LEAP2. In E. acervulina-infected broilers, there were no gene expression changes in the jejunum and ileum. These changes in intestinal digestive enzyme and nutrient transporter gene expression may result in a decrease in the efficiency of protein digestion, uptake of important amino acids and sugars, and disruption of mineral balance that may affect intestinal cell metabolism and Eimeria replication.
Collapse
Affiliation(s)
- S Su
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24061
| | | | | | | | | |
Collapse
|