1
|
Long M, Sonne C, Dietz R, Bossi R, Jørgensen N, Olsen TI, Bonefeld-Jørgensen EC. Diet, lifestyle and contaminants in three east Greenland Inuit municipalities. CHEMOSPHERE 2023; 344:140368. [PMID: 37802483 DOI: 10.1016/j.chemosphere.2023.140368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Persistent organic pollutants (POP) are environmental contaminants transported over long distances to the Arctic where they biomagnify in marine mammals subsistence hunted by Inuit and may therefore affect human health. Marine mammals in east Greenland are known to have the highest POP concentrations in the circumpolar Arctic area. Due to high intake of marine mammals, east Greenlandic Inuit likewise have the highest POP body burdens across the Arctic. This cross-sectional study aims to investigate the levels of POP and metals in Inuit with a high intake of top predatory species including killer whales and polar bears. Study participants include 37 men and 21 women from Kulusuk, Tasiilaq and Ittoqqortoormiit during year 2013-2015. Lipophilic POP (11 organochlorine-pesticides, 14 polychlorinated-biphenyls (PCB), 10 polybrominated diphenyl ethers), polyunsaturated fatty acids (PFUA) and cotinine were determined in plasma. Fifteen perfluoroalkylated substances (PFAS) were measured in serum and urine and the renal clearance was estimated. Finally the concentration of 10 metals were measured in whole blood. The median age was 38 years, Ittoqqortoormiit Inuit being the oldest. The smoking rate was around 70%, and Kulusuk participants had the lowest PFUA concentrations. Significant municipality differences were observed for lipophilic POP, serum PFAS, mercury, arsenic and selenium with highest concentrations in Ittoqqortoormiit Inuit. Males had higher blood concentrations of PFAS and lead. The estimated PFAS renal clearance and ratio of urine to serum were significantly higher for females, suggesting a sex difference in excretion via the kidney, maybe partly because men had higher serum PFAS concentrations. We observed that Inuit with intake of >200 g polar bear per week had significantly higher levels of PCB, PFAS, arsenic and selenium. In summary, the level of blood POP and heavy metals seems to relate to sex and the frequency intake of meat from marine mammals.
Collapse
Affiliation(s)
- Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Build. 1260, Bartholin Allé 2, Aarhus University, 8000, Aarhus C, Denmark.
| | - Christian Sonne
- Department of Ecoscience, Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Rune Dietz
- Department of Ecoscience, Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Najannguaq Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Build. 1260, Bartholin Allé 2, Aarhus University, 8000, Aarhus C, Denmark
| | - Taatsiannguaq Inuuteq Olsen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Build. 1260, Bartholin Allé 2, Aarhus University, 8000, Aarhus C, Denmark
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Build. 1260, Bartholin Allé 2, Aarhus University, 8000, Aarhus C, Denmark; Greenland Center for Health Research, University of Greenland, 3905, Nuuk, Greenland
| |
Collapse
|
2
|
Long M, Wielsøe M, Bech BH, Henriksen TB, Bonefeld-Jørgensen EC. Maternal serum dioxin-like activity and gestational age at birth and indices of foetal growth: The Aarhus birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165286. [PMID: 37422229 DOI: 10.1016/j.scitotenv.2023.165286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Human exposure to lipophilic persistent organic pollutants (lipPOP) is ubiquitous and life-long, beginning during foetal development. Exposure to lipPOP elicits a number of species and tissue specific responses including dioxin-like activity which involve the activation of aryl hydrocarbon receptor (AhR). This study aims i) to describe the combined dioxin-like activity in serum from Danish pregnant women collected during 2011-2013; ii) to assess the association between maternal serum dioxin-like activity, gestational age at birth and foetal growth indices. The serum lipPOP fraction was extracted using Solid Phase Extraction and cleaned-up on Supelco multi-layer silica and florisil columns. The combined dioxin-like activity of the extract was determined using the AhR reporter gene bioassay, expressed as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxic equivalent (TEQ) [AhR-TEQ (pg/g lipid)]. The associations of AhR-TEQ and foetal growth indices (birth weight, birth length and head circumference) and gestational age were assessed by linear regression models. We detected AhR-TEQ in 93.9 % of maternal first trimester serum samples, with a median level of 185 pg/g lipid. Each ln-unit increase in AhR-TEQ was associated with an increase in birth weight of 36 g (95 % CI: 5; 68), birth length of 0.2 cm (95 % CI: 0.01; 0.3) and pregnancy duration of 1 day (95 % CI: 0; 1.5). In women who never smoked, higher AhR-TEQ values were associated with higher birth weight and longer duration of gestation, while in smokers the association was the opposite. Mediation analyses suggested that gestational age may mediate the association of AhR-TEQ with foetal growth indices. We conclude that AhR activating substances are present in the bloodstream of almost all pregnant women in Denmark and the AhR-TEQ level was around four times higher than previously reported. The AhR-TEQ was associated with slightly longer gestational duration and thereby higher birth weight and birth length.
Collapse
Affiliation(s)
- Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark.
| | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark.
| | - Bodil Hammer Bech
- Research unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark.
| | - Tine Brink Henriksen
- Perinatal Epidemiology Research Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pediatrics, Aarhus University Hospital, Denmark.
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark; Greenland Center for Health Research, University of Greenland, Nuuk, Greenland.
| |
Collapse
|
3
|
Bonefeld-Jørgensen EC, Boesen SAH, Wielsøe M, Henriksen TB, Bech BH, Halldórsson ÞI, Long M. Exposure to persistent organic pollutants in Danish pregnant women: Hormone levels and fetal growth indices. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104108. [PMID: 36921699 DOI: 10.1016/j.etap.2023.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
This study examines possible associations of maternal Persistent Organic Pollutants (POP) exposure during pregnancy, maternal hormone levels and fetal growth indices (FGI). During 1st trimester, we measured maternal thyroids, androgens and estrogens, lipophilic POP and perfluorinated-alkyl-acid (PFAA) levels in serum from nulliparous women. Adjusted multivariate-linear regression models assessed associations between exposure and outcomes. Maternal characteristics and POP exposures associated with maternal hormone levels. Lipophilic POP elicited inverse association with androgen and estrogen levels but no strong association with thyroids. Higher level of PFAA was associated with higher thyroid and androgen levels. The PFAA did not associate with estrogens. Higher thyroid-peroxidase-antibody (TPO-Ab) and estradiol level associated with higher birth weight and length in sons. For daughters, the TPO-Ab associations were the opposite being inversely associated with birth weight and length, and higher TPO-Ab and estradiol associated with lower gestational age. Mediation analyses suggested that TPO-Ab mediates the association of PFAA with FGI.
Collapse
Affiliation(s)
- Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark; Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland.
| | - Sophie Amalie H Boesen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Tine Brink Henriksen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark; Perinatal Research Unit, Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Bodil Hammer Bech
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| |
Collapse
|
4
|
Dioxin-like Activity in Pregnant Women and Indices of Fetal Growth: The ACCEPT Birth Cohort. TOXICS 2022; 10:toxics10010026. [PMID: 35051068 PMCID: PMC8781564 DOI: 10.3390/toxics10010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023]
Abstract
Exposure to lipophilic persistent organic pollutants (lipPOPs) elicits a number of species- and tissue-specific toxic responses, many of which involve the aryl hydrocarbon receptor (AhR). This study aims to measure the combined serum dioxin-like activity of lipPOPs in Greenlandic Inuit pregnant women and the associations with fetal growth indices. The combined dioxin-like activity of serum lipPOPs extracts was determined using the AhR reporter gene bioassay and expressed as pico-gram (pg) TCDD equivalent (TEQ) per gram serum lipid [AhR-TEQ (pg/g lipid)]. Significant AhR-TEQ was found in >87% of serum samples with the median level of 86.2 pg TEQ/g lipid. The AhR-TEQ level positively correlated with the marine food intake biomarker n-3/n-6 polyunsaturated fatty acids ratio, while negatively correlated with body mass index and parity. Women giving birth to infants with low birth weight (<2500 g) and length (<50 cm) had higher AhR-TEQ level compared to those with normal weight and length infants. For previous smokers, we found significant inverse associations between maternal AhR-TEQ level and fetal growth indices. In conclusion, exposure of Greenlandic Inuit pregnant women to dioxin-like compounds through traditional marine food can adversely influence the fetal growth via induced AhR activity. Smoking might have modifying effects.
Collapse
|
5
|
Prenatal exposure to persistent organic pollutants and metals and problematic child behavior at 3-5 years of age: a Greenlandic cohort study. Sci Rep 2021; 11:22182. [PMID: 34772976 PMCID: PMC8589846 DOI: 10.1038/s41598-021-01580-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
High levels of persistent organic pollutants (POPs) and heavy metals are found in Arctic populations. POP and heavy metals are linked to impaired cognitive development. This study examined associations between prenatal POP and metals exposure and problematic child behavior using the Strength and Difficulties Questionnaire (SDQ). POPs and metals were measured in 102 pregnant Greenlandic women. During follow-up at 3–5 years, parents answered an assisted questionnaire including children’s SDQ scores. Associations were analyzed using linear and logistic regression analyses and adjusted for maternal plasma cotinine, educational level and age at delivery. In the adjusted analyses, the medium tertile of hexachlorobenzene (β = 3.06, p = 0.010), β-hexachlorocyclohexane (β = 3.58, p = 0.004) and trans-nonachlor (β = 2.06, p = 0.082) were positively associated with SDQ scores. The continuous cis-nonachlor (OR = 1.09, p = 0.079), dichloro-diphenyl-dichloroethylene (OR = 1.01, p = 0.077), trans-nonachlor (OR = 1.01, p = 0.091), and sum Organochlorine-Pesticides (OR = 1.00, p = 0.094) were positively associated with abnormal SDQ score and the continuous mirex (OR = 1.28, p = 0.096), oxychlordane (OR = 1.04, p = 0.066), and trans-nonachlor (OR = 1.02, p = 0.071) with abnormal hyperactivity score. We found no consistent evidence of associations between polychlorinated biphenyls, perfluoroalkylated substances and heavy metals and problematic behavior. Prenatal organochlorine pesticide exposure associated significantly with problematic behavior in 3–5 year old children.
Collapse
|
6
|
Vinggaard AM, Bonefeld-Jørgensen EC, Jensen TK, Fernandez MF, Rosenmai AK, Taxvig C, Rodriguez-Carrillo A, Wielsøe M, Long M, Olea N, Antignac JP, Hamers T, Lamoree M. Receptor-based in vitro activities to assess human exposure to chemical mixtures and related health impacts. ENVIRONMENT INTERNATIONAL 2021; 146:106191. [PMID: 33068852 DOI: 10.1016/j.envint.2020.106191] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 05/12/2023]
Abstract
Humans are exposed to a large number of chemicals from sources such as the environment, food, and consumer products. There is growing concern that human exposure to chemical mixtures, especially during critical periods of development, increases the risk of adverse health effects in newborns or later in life. Historically, the one-chemical-at-a-time approach has been applied both for exposure assessment and hazard characterisation, leading to insufficient knowledge about human health effects caused by exposure to mixtures of chemicals that have the same target. To circumvent this challenge researchers can apply in vitro assays to analyse both exposure to and human health effects of chemical mixtures in biological samples. The advantages of using in vitro assays are: (i) that an integrated effect is measured, taking combined mixture effects into account and (ii) that in vitro assays can reduce complexity in identification of Chemicals of Emerging Concern (CECs) in human tissues. We have reviewed the state-of-the-art on the use of receptor-based in vitro assays to assess human exposure to chemical mixtures and related health impacts. A total of 43 studies were identified, in which endpoints for the arylhydrocarbon receptor (AhR), the estrogen receptor (ER), and the androgen receptor (AR) were used. The majority of studies reported biological activities that could be associated with breast cancer incidence, male reproductive health effects, developmental toxicities, human demographic characteristics or lifestyle factors such as dietary patterns. A few studies used the bioactivities to check the coverage of the chemical analyses of the human samples, whereas in vitro assays have so far not regularly been used for identifying CECs in human samples, but rather in environmental matrices or food packaging materials. A huge field of novel applications using receptor-based in vitro assays for mixture toxicity assessment on human samples and effect-directed analysis (EDA) using high resolution mass spectrometry (HRMS) for identification of toxic compounds waits for exploration. In the future this could lead to a paradigm shift in the way we unravel adverse human health effects caused by chemical mixtures.
Collapse
Affiliation(s)
- Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark.
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark; Greenland's Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Tina Kold Jensen
- Dep of Environmental Medicine, University of Southern Denmark, Denmark
| | - Mariana F Fernandez
- School of Medicine, Center of Biomedical Research, University of Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Anna Kjerstine Rosenmai
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark
| | | | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Nicolas Olea
- School of Medicine, Center of Biomedical Research, University of Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Timo Hamers
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Marja Lamoree
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| |
Collapse
|
7
|
Gea M, Toso A, Schilirò T. Estrogenic activity of biological samples as a biomarker. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140050. [PMID: 32927569 DOI: 10.1016/j.scitotenv.2020.140050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Biological assays can evaluate the cumulative effect of a mixture, considering synergistic/antagonistic interactions and effects of unknown/unconsidered compounds. Therefore, their application could increase in the next years also to analyse biological samples. The aim of this review is to discuss the methodological approach and the application of estrogenic activity assays in human biological samples. 75 research articles were analysed and divided according to whether they used these assays: i) to quantify the level of estrogens and/or as a biomarker of estrogenic status ii) as a biomarker of exposure to endocrine disrupting chemicals (EDCs). For the first purpose, some authors extracted biological samples while others tested them directly without any treatment. The study of these methodologies outlined that the methodology applied influenced the specificity of analysis. The estrogenic activity biomarker was used to analyse physiological variations of estrogens, pediatric diseases, hormone-dependent diseases and estrogen suppression/enhancement after pharmaceutical treatments. For the second purpose, some authors extracted samples while others tested them directly, some authors divided endogenous estrogens from xenoestrogens while others tested samples without separation. The analysis of these methodologies outlined some limitations related to the efficiency of extraction and the incorrect separation of some compounds. The studies which applied this EDC biomarker showed that it was correlated with some EDCs, it varied according to the exposure of the population and it allowed the identification of some relationships between EDC exposure and breast cancer, type 1 diabetes and adverse health effects on children. In conclusion, the estrogenic activity of biological samples can be a useful tool: to quantify low levels of 17β-estradiol, to assess the combined effect of endogenous estrogens and xenoestrogens, to estimate the estrogenic status providing considerable insight into physiological or pathological conditions, to evaluate EDC presence implementing the existing knowledge about EDC exposure and adverse health effects.
Collapse
Affiliation(s)
- Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Anna Toso
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| |
Collapse
|
8
|
Shallis RM, Weiss JJ, Deziel NC, Gore SD. Challenging the concept of de novo acute myeloid leukemia: Environmental and occupational leukemogens hiding in our midst. Blood Rev 2020; 47:100760. [PMID: 32988660 DOI: 10.1016/j.blre.2020.100760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022]
Abstract
Myeloid neoplasms like acute myeloid leukemia (AML) originate from genomic disruption, usually in a multi-step fashion. Hematopoietic stem/progenitor cell acquisition of abnormalities in vital cellular processes, when coupled with intrinsic factors such as germline predisposition or extrinsic factors such as the marrow microenvironment or environmental agents, can lead to requisite pre-leukemic clonal selection, expansion and evolution. Several of these entities have been invoked as "leukemogens." The known leukemogens are numerous and are found in the therapeutic, occupational and ambient environments, however they are often difficult to implicate for individual patients. Patients treated with particular chemotherapeutic agents or radiotherapy accept a calculated risk of therapy-related AML. Occupational exposures to benzene, dioxins, formaldehyde, electromagnetic and particle radiation have been associated with an increased risk of AML. Although regulatory agencies have established acceptable exposure limits in the workplace, accidental exposures and even ambient exposures to leukemogens are possible. It is plausible that inescapable exposure to non-anthropogenic ambient leukemogens may be responsible for many cases of non-inherited de novo AML. In this review, we discuss the current understanding of leukemogens as they relate to AML, assess to what extent the term "de novo" leukemia is meaningful, and describe the potential to identify and characterize new leukemogens.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, USA.
| | - Julian J Weiss
- Section of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Steven D Gore
- Section of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, USA
| |
Collapse
|
9
|
Bjerregaard-Olesen C, Bach CC, Long M, Wielsøe M, Bech BH, Henriksen TB, Olsen J, Bonefeld-Jørgensen EC. Associations of Fetal Growth Outcomes with Measures of the Combined Xenoestrogenic Activity of Maternal Serum Perfluorinated Alkyl Acids in Danish Pregnant Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:17006. [PMID: 30676078 PMCID: PMC6381822 DOI: 10.1289/ehp1884] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Higher concentrations of single perfluorinated alkyl acids (PFAAs) have been associated with lower birth weight (BW), but few studies have examined the combined effects of PFAA mixtures. PFAAs have been reported to induce estrogen receptor (ER) transactivity, and estrogens may influence human fetal growth. We hypothesize that mixtures of PFAAs may affect human fetal growth by disrupting the ER. OBJECTIVES We aimed to study the associations between the combined xenoestrogenic activity of PFAAs in pregnant women's serum and offspring BW, length, and head circumference. METHODS We extracted the actual mixture of PFAAs from the serum of 702 Danish pregnant women (gestational wk 11–13) enrolled in the Aarhus Birth Cohort (ABC) using solid phase extraction, high-performance liquid chromatography (HPLC), and weak anion exchange. PFAA-induced xenoestrogenic receptor transactivation (XER) was determined using the stable transfected MVLN cell line. Associations between XER and measures of fetal growth were estimated using multivariable linear regression with primary adjustment for maternal age, body mass index (BMI), educational level, smoking, and alcohol intake, and sensitivity analyses with additional adjustment for gestational age (GA) (linear and quadratic). RESULTS On average, an interquartile range (IQR) increase in XER was associated with a [Formula: see text] [95% confidence interval (CI): [Formula: see text], [Formula: see text]] decrease in BW and a [Formula: see text] (95% CI: 0.1, 0.5) decrease in birth length. Upon additional adjustment for GA, the estimated mean differences were [Formula: see text] (95% CI: [Formula: see text], 4) and [Formula: see text] (95% CI: [Formula: see text], 0.0), respectively. CONCLUSION Higher-serum PFAA-induced xenoestrogenic activities were associated with lower BW and length in offspring, suggesting that PFAA mixtures may affect fetal growth by disrupting ER function. https://doi.org/10.1289/EHP1884.
Collapse
Affiliation(s)
- Christian Bjerregaard-Olesen
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Cathrine Carlsen Bach
- Perinatal Epidemiology Research Unit, Aarhus University Hospital, Skejby, Denmark
- Department of Pediatrics, Aarhus University Hospital, Skejby, Denmark
| | - Manhai Long
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Maria Wielsøe
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Bodil Hammer Bech
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Tine Brink Henriksen
- Perinatal Epidemiology Research Unit, Aarhus University Hospital, Skejby, Denmark
- Department of Pediatrics, Aarhus University Hospital, Skejby, Denmark
| | - Jørn Olsen
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Greenland Centre for Health Research, Institute of Nursing and Health Sciences, University of Greenland, Nuuk, Greenland
| |
Collapse
|
10
|
Carlsson P, Breivik K, Brorström-Lundén E, Cousins I, Christensen J, Grimalt JO, Halsall C, Kallenborn R, Abass K, Lammel G, Munthe J, MacLeod M, Odland JØ, Pawlak J, Rautio A, Reiersen LO, Schlabach M, Stemmler I, Wilson S, Wöhrnschimmel H. Polychlorinated biphenyls (PCBs) as sentinels for the elucidation of Arctic environmental change processes: a comprehensive review combined with ArcRisk project results. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22499-22528. [PMID: 29956262 PMCID: PMC6096556 DOI: 10.1007/s11356-018-2625-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/20/2018] [Indexed: 05/18/2023]
Abstract
Polychlorinated biphenyls (PCBs) can be used as chemical sentinels for the assessment of anthropogenic influences on Arctic environmental change. We present an overview of studies on PCBs in the Arctic and combine these with the findings from ArcRisk-a major European Union-funded project aimed at examining the effects of climate change on the transport of contaminants to and their behaviour of in the Arctic-to provide a case study on the behaviour and impact of PCBs over time in the Arctic. PCBs in the Arctic have shown declining trends in the environment over the last few decades. Atmospheric long-range transport from secondary and primary sources is the major input of PCBs to the Arctic region. Modelling of the atmospheric PCB composition and behaviour showed some increases in environmental concentrations in a warmer Arctic, but the general decline in PCB levels is still the most prominent feature. 'Within-Arctic' processing of PCBs will be affected by climate change-related processes such as changing wet deposition. These in turn will influence biological exposure and uptake of PCBs. The pan-Arctic rivers draining large Arctic/sub-Arctic catchments provide a significant source of PCBs to the Arctic Ocean, although changes in hydrology/sediment transport combined with a changing marine environment remain areas of uncertainty with regard to PCB fate. Indirect effects of climate change on human exposure, such as a changing diet will influence and possibly reduce PCB exposure for indigenous peoples. Body burdens of PCBs have declined since the 1980s and are predicted to decline further.
Collapse
Affiliation(s)
| | - Knut Breivik
- NILU-Norwegian Institute for Air Research, 2027, Kjeller, Norway
| | | | - Ian Cousins
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 11418, Stockholm, Sweden
| | - Jesper Christensen
- Department of Bioscience, Arctic Research Centre, Aarhus University, 4000, Roskilde, Denmark
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDÆA), Spanish Council for Scientific Research (CSIC), 0834, Barcelona, Spain
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), Christian Magnus Falsen Veg 1, 1432, Ås, Norway
- Department of Arctic Technology (AT), University Centre in Svalbard (UNIS), 9171, Longyearbyen, Svalbard, Norway
| | - Khaled Abass
- Department of Pesticides, Menoufia University, P.O. Box 32511, Shebeen El-Kom, Egypt
- Arctic Health, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
| | - Gerhard Lammel
- Max Planck Institute for Chemistry, 55128, Mainz, Germany
- Research Centre for Toxic Compounds in the Environment, Masaryk University, 62500, Brno, Czech Republic
| | - John Munthe
- IVL Swedish Environment Research Institute, 411 33, Göteborg, Sweden
| | - Matthew MacLeod
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 11418, Stockholm, Sweden
| | - Jon Øyvind Odland
- Department of Community Medicine, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Janet Pawlak
- Arctic Monitoring and Assessment Programme (AMAP), AMAP Secretariat, Gaustadalléen 21, 0349, Oslo, Norway
| | - Arja Rautio
- Arctic Health, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
| | - Lars-Otto Reiersen
- Arctic Monitoring and Assessment Programme (AMAP), AMAP Secretariat, Gaustadalléen 21, 0349, Oslo, Norway
| | - Martin Schlabach
- NILU-Norwegian Institute for Air Research, 2027, Kjeller, Norway
| | - Irene Stemmler
- Max Planck Institute for Chemistry, 55128, Mainz, Germany
- Max Planck Institute for Meteorology, 20146, Hamburg, Germany
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP), AMAP Secretariat, Gaustadalléen 21, 0349, Oslo, Norway
| | - Henry Wöhrnschimmel
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zürich, 8092, Zürich, Switzerland
- Swiss Federal Office for the Environment, Worblentalstrasse 68, 3063, Ittigen, Switzerland
| |
Collapse
|
11
|
Rothhammer V, Borucki DM, Kenison JE, Hewson P, Wang Z, Bakshi R, Sherr DH, Quintana FJ. Detection of aryl hydrocarbon receptor agonists in human samples. Sci Rep 2018; 8:4970. [PMID: 29563571 PMCID: PMC5862868 DOI: 10.1038/s41598-018-23323-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/09/2018] [Indexed: 11/09/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor with important functions in the immune response and cancer. AHR agonists are provided by the environment, the commensal flora and the metabolism. Considering AHR physiological functions, AHR agonists may have important effects on health and disease. Thus, the quantification of AHR agonists in biological samples is of scientific and clinical relevance. We compared different reporter systems for the detection of AHR agonists in serum samples of Multiple Sclerosis (MS) patients, and assessed the influence of transfection methods and cell lines in a reporter-based in vitro assay. While the use of stable or transient reporters did not influence the measurement of AHR agonistic activity, the species of the cell lines used in these reporter assays had important effects on the reporter readings. These observations suggest that cell-specific factors influence AHR activation and signaling. Thus, based on the reported species selectivity of AHR ligands and the cell species-of-origin effects that we describe in this manuscript, the use of human cell lines is encouraged for the analysis of AHR agonistic activity in human samples. These findings may be relevant for the analysis of AHR agonists in human samples in the context of inflammatory and neoplastic disorders.
Collapse
Affiliation(s)
- Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Davis M Borucki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick Hewson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhongyan Wang
- Dept. of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Rohit Bakshi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David H Sherr
- Dept. of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
Wielsøe M, Bjerregaard-Olesen C, Kern P, Bonefeld-Jørgensen EC. Receptor activities of persistent pollutant serum mixtures and breast cancer risk. Endocr Relat Cancer 2018; 25:201-215. [PMID: 29237712 DOI: 10.1530/erc-17-0366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 11/08/2022]
Abstract
Studies on associations between persistent organic pollutants (POPs) and breast cancer risk are inconclusive. The majority of studies have evaluated the effect of single compounds, without considering multiple exposures to and interactions between different POPs. The present study aimed at evaluating breast cancer risk related to combined effects of serum POP mixtures on cellular receptor functions. Data on breast cancer cases (n = 77) and controls (n = 84) were collected among Greenlandic Inuit women. Serum mixtures of lipophilic POPs (lipPOPs), perfluoroalkyl acids (PFAAs) and dioxin-like POPs were extracted. The effect of the mixture extracts on the estrogen receptor (ER), androgen receptor (AR) and aryl hydrocarbon receptor (AhR) was determined using cell culture reporter gene assays. The serum mixtures were analyzed alone and upon co-exposure with natural receptor ligands to determine agonistic and antagonistic/competitive activity. We found that the frequency of lipPOP mixtures eliciting no, decreasing, or agonizing xenoandrogenic effect differed by breast cancer status. Using lipPOP mixtures with no effect on AR as reference, the mixtures with decreasing effects reduced breast cancer risk (OR: 0.30 (0.12; 0.76)). The AhR-toxic equivalent of serum mixtures was significantly lower in cases than in controls, and a reduced breast cancer risk was found when comparing the third tertile to the first (OR: 0.34 (0.14; 0.83)). We found no association between the xenoestrogenic activities of lipPOPs or PFAAs and breast cancer risk. Serum lipPOP mixtures are hormone disruptive and may influence breast cancer risk, whereas PFAAs seem to influence breast cancer risk through other pathways.
Collapse
Affiliation(s)
- Maria Wielsøe
- Centre for Arctic Health & Molecular EpidemiologyDepartment of Public Health, Aarhus University, Aarhus, Denmark
| | - Christian Bjerregaard-Olesen
- Centre for Arctic Health & Molecular EpidemiologyDepartment of Public Health, Aarhus University, Aarhus, Denmark
| | - Peder Kern
- Department of Gynecology and ObstetricsDronning Ingrid's Hospital, Nuuk, Greenland
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular EpidemiologyDepartment of Public Health, Aarhus University, Aarhus, Denmark
- Institute for Nursing and Health ScienceUniversity of Greenland, Nuuk, Greenland
| |
Collapse
|
13
|
Weihe P, Debes F, Halling J, Petersen MS, Muckle G, Odland JØ, Dudarev A, Ayotte P, Dewailly É, Grandjean P, Bonefeld-Jørgensen E. Health effects associated with measured levels of contaminants in the Arctic. Int J Circumpolar Health 2016; 75:33805. [PMID: 27974137 PMCID: PMC5156856 DOI: 10.3402/ijch.v75.33805] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Human Health Assessment Group has over the past decade recommended that effect studies be conducted in the circumpolar area. Such studies examine the association between contaminant exposure in the Arctic populations and health effects. Because foetuses and young children are the most vulnerable, effect studies are often prospective child cohort studies. The emphasis in this article is on a description of the effects associated with contaminant exposure in the Arctic. The main topics addressed are neurobehavioural, immunological, reproductive, cardiovascular, endocrine and carcinogenic effect. For each topic, the association between exposure and effects is described, and some results are reported for similar studies outside the Arctic.
Collapse
Affiliation(s)
- Pál Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Torshavn, Faroe Islands;
| | - Fróði Debes
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Torshavn, Faroe Islands
| | - Jónrit Halling
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Torshavn, Faroe Islands
| | - Maria Skaalum Petersen
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Torshavn, Faroe Islands
| | - Gina Muckle
- École de psychologie, Université Laval and Centre de recherche du CHU de Québec, Québec, City, QC, Canada
| | - Jon Øyvind Odland
- Department of Community Medicine, UiT The Arctic University of Norway, Tromso, Norway
| | - Alexey Dudarev
- Northwest Public Health Research Center, St. Petersburg, Russia
| | | | | | - Philippe Grandjean
- Department of Environmental Medicine, Univerisity of Southern Denmark, Odense, Denmark
| | - Eva Bonefeld-Jørgensen
- Centre for Arctic Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Borowska S, Brzóska MM. Chokeberries (Aronia melanocarpa
) and Their Products as a Possible Means for the Prevention and Treatment of Noncommunicable Diseases and Unfavorable Health Effects Due to Exposure to Xenobiotics. Compr Rev Food Sci Food Saf 2016; 15:982-1017. [DOI: 10.1111/1541-4337.12221] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Sylwia Borowska
- Borowska and Brzóska are with Dept. of Toxicology; Medical Univ. of Bialystok; Bialystok Poland
| | - Malgorzata M. Brzóska
- Borowska and Brzóska are with Dept. of Toxicology; Medical Univ. of Bialystok; Bialystok Poland
| |
Collapse
|
15
|
Bjerregaard-Olesen C, Ghisari M, Kjeldsen LS, Wielsøe M, Bonefeld-Jørgensen EC. Estrone sulfate and dehydroepiandrosterone sulfate: Transactivation of the estrogen and androgen receptor. Steroids 2016; 105:50-8. [PMID: 26666359 DOI: 10.1016/j.steroids.2015.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/15/2015] [Accepted: 11/27/2015] [Indexed: 01/17/2023]
Abstract
Dehydroepiandrosterone sulfate (DHEAS) and estrone sulfate (E1S) are two of the most abundant steroids in the human circulation. The enzyme steroid sulfatase (STS) cleaves the sulfate group of DHEAS and E1S leading to biosynthesis of endogenous hormones such as testosterone and estrone. In the current study we aimed at determining the effect of E1S and DHEAS on estrogen receptor (ER) and androgen receptor (AR) transactivation. Using luciferase reporter gene assays, the ER and AR transactivities of E1S and DHEAS were determined by direct cell exposure; as well as upon extraction from human serum using a method to extract perfluorinated alkyl acids (PFAAs). By direct cell exposure, both E1S and DHEAS transactivated the ER and the AR in dose-dependent manners. The DHEAS-induced AR transactivity could be abolished by the STS inhibitor STX64. Immunoassay analysis confirmed the presence of E1S and DHEAS in the serum PFAA extracts with mean recoveries below 2.5%. For the PFAA extracts of human male and female serum, only the AR was significantly transactivated. The AR transactivity of the sulfated steroids in the extracts was abolished by STX64 to obtain the net PFAA induced xenohormone transactivity, but further cleanup might be needed at high concentrations of E1S.
Collapse
Affiliation(s)
- Christian Bjerregaard-Olesen
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Bartholins Allé 2, Build. 1260, DK-8000 Aarhus C, Denmark.
| | - Mandana Ghisari
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Bartholins Allé 2, Build. 1260, DK-8000 Aarhus C, Denmark
| | - Lisbeth S Kjeldsen
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Bartholins Allé 2, Build. 1260, DK-8000 Aarhus C, Denmark
| | - Maria Wielsøe
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Bartholins Allé 2, Build. 1260, DK-8000 Aarhus C, Denmark
| | - Eva C Bonefeld-Jørgensen
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Bartholins Allé 2, Build. 1260, DK-8000 Aarhus C, Denmark
| |
Collapse
|
16
|
Artacho-Cordón F, Fernández-Rodríguez M, Garde C, Salamanca E, Iribarne-Durán LM, Torné P, Expósito J, Papay-Ramírez L, Fernández MF, Olea N, Arrebola JP. Serum and adipose tissue as matrices for assessment of exposure to persistent organic pollutants in breast cancer patients. ENVIRONMENTAL RESEARCH 2015; 142:633-643. [PMID: 26318258 DOI: 10.1016/j.envres.2015.08.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to assess differences between two biological matrices (serum and breast adipose tissue) in the evaluation of persistent organic pollutant (POP) exposure in breast cancer patients. The study population consisted of 103 women undergoing surgery for newly diagnosed breast carcinoma in a public hospital in Granada, Southern Spain. Independent variables were gathered from questionnaires and clinical records. POP concentrations were quantified in breast adipose tissue and serum samples. Spearman correlation tests were performed between pairs of POP concentrations and stepwise multivariable linear regression analyses were conducted to assess predictors of concentrations in the two matrices. p,p'- Dichlorodiphenyldichloroethylene (p,p'-DDE) showed the the highest median concentration in both matrices (194.34 and 173.84 ng/g lipid in adipose tissue and serum, respectively). Median wet-basis adipose tissue:serum ratios ranged from 109.34 to 651.62, while lipid-basis ratios ranged from 0.88 to 4.34. In general, we found significant positive correlation coefficients between pairs of POPs in adipose tissue and in serum, which were always higher in adipose tissue. We found positive and statistically significant correlations between serum and adipose tissue concentrations of p,p'-DDE and hexachlorobenzene (HCB) but not of polychlorinated biphenyls (PCBs). Age was positively associated with most POPs in adipose tissue and serum, while the body mass index was positively associated with adipose tissue HCB concentrations and negatively associated with serum PCB-153 and PCB-138 concentrations. Recent weight loss was inversely associated with POP residues in adipose tissue and positively associated with POP residues in serum. Serum HCB and PCB-180 concentrations were lower in patients who had received preoperative chemotherapy. According to our results, serum and adipose tissue POP concentrations in breast cancer patients may be differentially affected by external predictors. Taken together, these findings indicate the need to take account of the individual POP(s) under study and the biological matrix used when relating internal POP exposure to breast cancer disease and to make a careful selection of covariates for adjusting the model.
Collapse
Affiliation(s)
- F Artacho-Cordón
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, Spain; Radiology and Physical Medicine Department, University of Granada, Spain
| | - M Fernández-Rodríguez
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, Spain; Radiology and Physical Medicine Department, University of Granada, Spain
| | - C Garde
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, Spain
| | - E Salamanca
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, Spain; Radiology and Physical Medicine Department, University of Granada, Spain
| | - L M Iribarne-Durán
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, Spain; Radiology and Physical Medicine Department, University of Granada, Spain
| | - P Torné
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, Spain
| | - J Expósito
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, Spain; Radiation Oncology Department, Virgen de las Nieves University Hospital, Granada, Spain
| | - L Papay-Ramírez
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, Spain
| | - M F Fernández
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, Spain; Radiology and Physical Medicine Department, University of Granada, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - N Olea
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, Spain; Radiology and Physical Medicine Department, University of Granada, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - J P Arrebola
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada, Spain; Radiation Oncology Department, Virgen de las Nieves University Hospital, Granada, Spain; Radiology and Physical Medicine Department, University of Granada, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
17
|
Bjerregaard-Olesen C, Bossi R, Bech BH, Bonefeld-Jørgensen EC. Extraction of perfluorinated alkyl acids from human serum for determination of the combined xenoestrogenic transactivity: a method development. CHEMOSPHERE 2015; 129:232-8. [PMID: 25234096 DOI: 10.1016/j.chemosphere.2014.08.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 05/20/2023]
Abstract
Humans are exposed to perfluorinated alkyl acids (PFAAs) through food, drinking water, consumer products, dust, etc. The human metabolism and excretion of the long-chain PFAAs is slow with half-lives up to 8.8years. Studies suggest that the PFAAs are potential endocrine-disrupting compounds that might affect human health. We developed a method for extraction of PFAAs from human serum with simultaneous removal of endogenous sex hormones. The developed method includes solid phase extraction, liquid/liquid extraction, HPLC fractionation and weak anion exchange. The method was validated by extraction of seven persistent PFAAs spiked to human male serum obtaining mean recoveries between 49.6% and 78.6%. Using an estrogen receptor (ER) transactivation luciferase reporter gene assay, analysis of the extracted PFAA serum fraction from three pregnant women showed the ER-active endogenous hormones were removed. The developed method was further documented by extraction of the PFAAs from the serum of 18 Danish pregnant women. The PFAA fraction from three of the 18 samples significantly induced the ER-transactivity. Upon co-exposure with the natural ER-ligand 17β-estradiol (E2), 17 of the 18 PFAA fractions caused a significant further increase of the E2 induced ER-transactivity. In conclusion, we developed a method to extract PFAAs from human serum, and the method documentation suggested that PFAAs at the levels found in human serum can transactivate the ER.
Collapse
Affiliation(s)
- Christian Bjerregaard-Olesen
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Bartholins Allé 2, Build. 1260, DK-8000 Aarhus C, Denmark
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Bodil Hammer Bech
- Section for Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, Build. 1260, DK-8000 Aarhus C, Denmark
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Bartholins Allé 2, Build. 1260, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
18
|
Singh K, Bjerregaard P, Chan HM. Association between environmental contaminants and health outcomes in indigenous populations of the Circumpolar North. Int J Circumpolar Health 2014; 73:25808. [PMID: 25491153 PMCID: PMC4261238 DOI: 10.3402/ijch.v73.25808] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/21/2014] [Accepted: 10/26/2014] [Indexed: 12/02/2022] Open
Abstract
Background Since the 1990s, research has been carried out to monitor environmental contaminants and their effects on human health in the Arctic. Although evidence shows that Arctic indigenous peoples are exposed to higher levels of contaminants and do worse on several dimensions of health compared with other populations, the contribution of such exposures on adverse outcomes is unclear. Objective The purpose of this review is to provide a synopsis of the published epidemiological literature that has examined association between environmental contaminants and health outcomes in Arctic indigenous populations. Design A literature search was conducted in OVID Medline (1946-January 2014) using search terms that combined concepts of contaminant and indigenous populations in the Arctic. No language or date restrictions were applied. The reference lists of review articles were hand-searched. Results Of 559 citations, 60 studies were relevant. The studies fell under the following categories: paediatric (n=18), reproductive health (n=18), obstetrics and gynaecology (n=9), cardiology (n=7), bone health (n=2), oncology (n=2), endocrinology (n=2) and other (n=2). All studies, except one from Arctic Finland, were either from Nunavik or Greenland. Most studies assessed polychlorinated biphenyls (n=43) and organochlorine pesticides (n=29). Fewer studies examined heavy metals, perfluorinated compounds, or polybrominated diphenyl ethers. Details of study results for each health category are provided. Conclusions It is difficult to make conclusive statements about the effects of environmental contaminants on health due to mixed results, small number of studies and studies being restricted to a small number of regions. Meta-analytical synthesis of the evidence should be considered for priority contaminants and health outcomes. The following research gaps should be addressed in future studies: association of contaminants and health in other Arctic regions (i.e. Inuvialuit Settlement Region, Nunavut, Nunatsiavut, Alaska, European North and Russian North); assessment of contaminants on chronic diseases; inclusion of clinical endpoints in assessments; and assessment of the emerging contaminants of perfluorinated compounds and polybrominated diphenyl ethers.
Collapse
Affiliation(s)
- Kavita Singh
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Peter Bjerregaard
- Department of Health, Centre for Health Research in Greenland, Greenland Government and University of Greenland, Nuuk, Greenland
| | - Hing Man Chan
- Canada Research Chair in Toxicology and Environmental Health, Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, Canada;
| |
Collapse
|
19
|
Bonefeld-Jørgensen EC, Ghisari M, Wielsøe M, Bjerregaard-Olesen C, Kjeldsen LS, Long M. Biomonitoring and hormone-disrupting effect biomarkers of persistent organic pollutants in vitro and ex vivo. Basic Clin Pharmacol Toxicol 2014; 115:118-28. [PMID: 24797035 PMCID: PMC4270256 DOI: 10.1111/bcpt.12263] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/28/2014] [Indexed: 11/30/2022]
Abstract
Persistent organic pollutants (POPs) include lipophilic legacy POPs and the amphiphilic perfluorinated alkyl acids (PFAAs). They have long half-lives and bioaccumulate in the environment, animals and human beings. POPs possess toxic, carcinogenic and endocrine-disrupting potentials. Endocrine-disrupting chemicals (EDCs) are compounds that either mimic or block endogenous hormones and thus disrupt the normal hormone homeostasis. Biomonitoring assesses the internal doses of a person to provide information about chemical exposures. Effect biomarkers assess chemicals potential to affect cellular functions in vivo/ex vivo. Human beings are exposed to complex mixtures of chemicals, having individually very different biological potentials and effects. Therefore, the assessment of the combined, integrated biological effect of the actual chemical mixture in human blood is important. In vitro and ex vivo cell systems have been introduced for the assessment of the integrated level of xenobiotic cellular effects in human beings. Ex vivo studies have shown geographical differences in bioaccumulated POP serum levels, being reflected by the combined biomarker effects of the complex mixture extracted from human serum. Xenohormone receptor transactivities can be used as an ex vivo integrated biomarker of POP exposure and effects. Epidemiological and in vitro/ex vivo studies have supported the potential impact of the combined effect of serum POPs on the activity of hormone and/or dioxin receptors as a risk factor for human health. With focus on hormone disruption, this MiniReview will give an update on recent POP-related endocrine-disrupting effects in vitro/ex vivo/in vivo and some related genetic data.
Collapse
Affiliation(s)
- Eva C Bonefeld-Jørgensen
- Department of Public Health, Centre for Arctic Health & Cellular and Molecular Toxicology, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
20
|
Sonne C, Gustavson K, Rigét FF, Dietz R, Krüger T, Bonefeld-Jørgensen EC. Physiologically based pharmacokinetic modeling of POPs in Greenlanders. ENVIRONMENT INTERNATIONAL 2014; 64:91-97. [PMID: 24382481 DOI: 10.1016/j.envint.2013.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/06/2013] [Accepted: 12/08/2013] [Indexed: 06/03/2023]
Abstract
Human exposure to persistent organic pollutants (POPs) and the potential health impact in the Arctic far from the emission sources have been highlighted in numerous studies. As a supplement to human POP biomonitoring studies, a physiologically based pharmacokinetic (PBPK) model was set up to estimate the fate of POPs in Greenlandic Inuit's liver, blood, muscle and adipose tissue following long-term exposure to traditional Greenlandic diet. The PBPK model described metabolism, excretion and POP accumulation on the basis of their physicochemical properties and metabolic rates in the organisms. Basic correlations between chemically analyzed blood POP concentrations and calculated daily POP intake from food questionnaire of 118 middle age (18-35years) Greenlandic Inuits from four cities in West Greenland (Qaanaaq: n=40; Qeqertarsuaq: n=36; Nuuk: n=20; Narsaq: n=22) taken during 2003 to 2006 were analyzed. The dietary items included were polar bear, caribou, musk oxen, several marine species such as whales, seals, bird and fish as well as imported food. The contaminant concentrations of the dietary items as well as their chemical properties, uptake, biotransformation and excretion allowed us to estimate the POP concentration in liver, blood, muscle and adipose tissue following long-term exposure to the traditional Greenlandic diet using the PBPK model. Significant correlations were found between chemically analyzed POP blood concentrations and calculated daily intake of POPs for Qeqertarsuaq, Nuuk and Narsaq Inuit but not for the northernmost settlement Qaanaaq, probably because the highest blood POP level was found in this district which might mask the interview-based POP calculations. Despite the large variation in circulating blood POP concentrations, the PBPK model predicted blood concentrations of a factor 2-3 within the actual measured values. Moreover, the PBPK model showed that estimated blood POP concentration increased significantly after consumption of meals. For individuals who had a high internal burden of POPs accumulated over years, the estimated blood levels were less influenced by recent meal intake. The model results also indicated that of the POPs accumulated in the body the concentrations were highest for CB-153 (oxychlordane: 0.6%; DDE and CB-99: 2.9%; HCB: 4.4%; CB-153: 34.5%). Furthermore, the model also estimated a significant internal body POP burden even several years after the mentioned dietetic shift and that contaminant accumulation was 2-6 folds faster than the decay after a shift to a diet low in contaminants. Using the PBPK model approach, we seek to improve the knowledge on contaminant body burden in humans of the Arctic. However, it should be noted that calculations of daily POP intake may be subject to considerable uncertainty due to imprecise information from the dietary interview. Based on these results we suggest that PBPK modeling is implemented as a tool in future human health exposure and effect assessments in Greenland.
Collapse
Affiliation(s)
- Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Denmark.
| | - Kim Gustavson
- Department of Bioscience, Arctic Research Centre, Aarhus University, Denmark
| | - Frank F Rigét
- Department of Bioscience, Arctic Research Centre, Aarhus University, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Denmark
| | - Tanja Krüger
- Department of Public Health, Centre for Arctic Health, Aarhus University, Denmark
| | | |
Collapse
|
21
|
Long M, Bonefeld-Jørgensen EC. Dioxin-like activity in environmental and human samples from Greenland and Denmark. CHEMOSPHERE 2012; 89:919-28. [PMID: 22858370 DOI: 10.1016/j.chemosphere.2012.06.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/03/2012] [Accepted: 06/30/2012] [Indexed: 05/20/2023]
Abstract
Dioxins and dioxin-like (DL) compounds are some of the most toxic chemicals being highly persistent in the environment. The toxicological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR). Compounds of diverse structure and lipophility can bind and activate AhR. The AhR transactivation bioassay is utilized in an array of projects to study the AhR-mediated activities of individual chemicals and mixtures and for epidemiological purposes. This review summarizes a series of studies regarding the DL-activity of single compounds and complex compound mixtures in the environment and humans. We found that some pesticides, plasticizers and phytoestrogens can activate the AhR, and the combined effect of compounds with no or weak AhR potency cannot be ignored. The significant DL-activity in the wastewater effluent indicates the treatment is not sufficient to prevent contamination of surface waters with dioxins. Our results from human studies suggest that the serum DL-activity reflect the complex mixture of persistent organic pollutants (POPs). Greenlandic Inuit had lower serum DL-activity level compared to Europeans, probably due to long distance from the dioxin sources and UV degradation of the high potent dioxin and/or the inhibitory effect of the high level of non-DL POPs. Selective bioaccumulation of PCBs in the food chain may contribute to the negative correlation between serum POPs and DL-activity observed in Greenlandic Inuit. Hence the AhR transactivation bioassay provides a cost-effective and integrated screening tool for measurement of the DL-activity in human, environmental and commercial samples.
Collapse
Affiliation(s)
- Manhai Long
- Cellular & Molecular Toxicology, Centre of Arctic Health, Department of public Health, Arhus University, 8000 Aarhus C, Denmark.
| | | |
Collapse
|