1
|
Hazrati A, Mirarefin SMJ, Malekpour K, Rahimi A, Khosrojerdi A, Rasouli A, Akrami S, Soudi S. Mesenchymal stem cell application in pulmonary disease treatment with emphasis on their interaction with lung-resident immune cells. Front Immunol 2024; 15:1469696. [PMID: 39582867 PMCID: PMC11581898 DOI: 10.3389/fimmu.2024.1469696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
Due to the vital importance of the lungs, lung-related diseases and their control are very important. Severe inflammatory responses mediated by immune cells were among the leading causes of lung tissue pathology and damage during the COVID-19 pandemic. In addition, uncontrolled immune cell responses can lead to lung tissue damage in other infectious and non-infectious diseases. It is essential to control immune responses in a way that leads to homeostasis. Immunosuppressive drugs only suppress inflammatory responses and do not affect the homeostasis of reactions. The therapeutic application of mesenchymal stem cells (MSCs), in addition to restoring immune homeostasis, can promote the regeneration of lung tissue through the production of growth factors and differentiation into lung-related cells. However, the communication between MSCs and immune cells after treatment of pulmonary diseases is essential, and investigating this can help develop a clinical perspective. Different studies in the clinical phase showed that MSCs can reverse fibrosis, increase regeneration, promote airway remodeling, and reduce damage to lung tissue. The proliferation and differentiation potential of MSCs is one of the mechanisms of their therapeutic effects. Furthermore, they can secrete exosomes that affect the function of lung cells and immune cells and change their function. Another important mechanism is that MSCs reduce harmful inflammatory responses through communication with innate and adaptive immune cells, which leads to a shift of the immune system toward regulatory and hemostatic responses.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ashkan Rasouli
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Hanna M, Elnassag SS, Mohamed DH, Elbaset MA, Shaker O, Khowailed EA, Gouda SAA. Melatonin and mesenchymal stem cells co-administration alleviates chronic obstructive pulmonary disease via modulation of angiogenesis at the vascular-alveolar unit. Pflugers Arch 2024; 476:1155-1168. [PMID: 38740599 PMCID: PMC11166745 DOI: 10.1007/s00424-024-02968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is considered a severe disease mitigating lung physiological functions with high mortality outcomes, insufficient therapy, and pathophysiology pathways which is still not fully understood. Mesenchymal stem cells (MSCs) derived from bone marrow play an important role in improving the function of organs suffering inflammation, oxidative stress, and immune reaction. It might also play a role in regenerative medicine, but that is still questionable. Additionally, Melatonin with its known antioxidative and anti-inflammatory impact is attracting attention nowadays as a useful treatment. We hypothesized that Melatonin may augment the effect of MSCs at the level of angiogenesis in COPD. In our study, the COPD model was established using cigarette smoking and lipopolysaccharide. The COPD rats were divided into four groups: COPD group, Melatonin-treated group, MSC-treated group, and combined treated group (Melatonin-MSCs). We found that COPD was accompanied by deterioration of pulmonary function tests in response to expiratory parameter affection more than inspiratory ones. This was associated with increased Hypoxia inducible factor-1α expression and vascular endothelial growth factor level. Consequently, there was increased CD31 expression indicating increased angiogenesis with massive enlargement of airspaces and thinning of alveolar septa with decreased mean radial alveolar count, in addition to, inflammatory cell infiltration and disruption of the bronchiolar epithelial wall with loss of cilia and blood vessel wall thickening. These findings were improved significantly when Melatonin and bone marrow-derived MSCs were used as a combined treatment proving the hypothesized target that Melatonin might augment MSCs aiming at vascular changes.
Collapse
Affiliation(s)
- Mira Hanna
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt.
| | - Sabreen Sayed Elnassag
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Dina Hisham Mohamed
- Department of Histology, Faculty of Medicine, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Olfat Shaker
- Department of Biochemistry, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Effat A Khowailed
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Sarah Ali Abdelhameed Gouda
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| |
Collapse
|
3
|
Guarnier LP, Moro LG, Lívero FADR, de Faria CA, Azevedo MF, Roma BP, Albuquerque ER, Malagutti-Ferreira MJ, Rodrigues AGD, da Silva AA, Sekiya EJ, Ribeiro-Paes JT. Regenerative and translational medicine in COPD: hype and hope. Eur Respir Rev 2023; 32:220223. [PMID: 37495247 PMCID: PMC10369169 DOI: 10.1183/16000617.0223-2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/23/2023] [Indexed: 07/28/2023] Open
Abstract
COPD is a common, preventable and usually progressive disease associated with an enhanced chronic inflammatory response in the airways and lung, generally caused by exposure to noxious particles and gases. It is a treatable disease characterised by persistent respiratory symptoms and airflow limitation due to abnormalities in the airways and/or alveoli. COPD is currently the third leading cause of death worldwide, representing a serious public health problem and a high social and economic burden. Despite significant advances, effective clinical treatments have not yet been achieved. In this scenario, cell-based therapies have emerged as potentially promising therapeutic approaches. However, there are only a few published studies of cell-based therapies in human patients with COPD and a small number of ongoing clinical trials registered on clinicaltrials.gov Despite the advances and interesting results, numerous doubts and questions remain about efficacy, mechanisms of action, culture conditions, doses, timing, route of administration and conditions related to homing and engraftment of the infused cells. This article presents the state of the art of cell-based therapy in COPD. Clinical trials that have already been completed and with published results are discussed in detail. We also discuss the questions that remain unanswered about cell-based regenerative and translational medicine for COPD.
Collapse
Affiliation(s)
- Lucas Pires Guarnier
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- Laboratory of Genetics and Cell Therapy - GenTe Cel, Department of Biotechnology, São Paulo State University (UNESP), Assis, Brazil
| | - Lincoln Gozzi Moro
- Laboratory of Genetics and Cell Therapy - GenTe Cel, Department of Biotechnology, São Paulo State University (UNESP), Assis, Brazil
- Biomedical Sciences Institute, Butantan Institute, Technological Research Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | | | - Mauricio Fogaça Azevedo
- Laboratory of Genetics and Cell Therapy - GenTe Cel, Department of Biotechnology, São Paulo State University (UNESP), Assis, Brazil
| | - Beatriz Pizoni Roma
- Laboratory of Genetics and Cell Therapy - GenTe Cel, Department of Biotechnology, São Paulo State University (UNESP), Assis, Brazil
| | | | - Maria José Malagutti-Ferreira
- Laboratory of Genetics and Cell Therapy - GenTe Cel, Department of Biotechnology, São Paulo State University (UNESP), Assis, Brazil
| | | | - Adelson Alves da Silva
- São Lucas Research and Education Institute (IEP - São Lucas), TechLife, São Paulo, Brazil
| | - Eliseo Joji Sekiya
- São Lucas Research and Education Institute (IEP - São Lucas), TechLife, São Paulo, Brazil
| | - João Tadeu Ribeiro-Paes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
- Laboratory of Genetics and Cell Therapy - GenTe Cel, Department of Biotechnology, São Paulo State University (UNESP), Assis, Brazil
| |
Collapse
|
4
|
Chen Q, Lin J, Deng Z, Qian W. Exosomes derived from human umbilical cord mesenchymal stem cells protect against papain-induced emphysema by preventing apoptosis through activating VEGF-VEGFR2-mediated AKT and MEK/ERK pathways in rats. Regen Ther 2022; 21:216-224. [PMID: 36092502 PMCID: PMC9420880 DOI: 10.1016/j.reth.2022.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a leading cause of high mortality and heavy burden in the world. Unfortunately, emphysema, as an important component of COPD, has no curative treatments currently. Recently, human umbilical cord mesenchymal stem cells-derived exosomes (hUCMSC-Ex) constitute a promising alternative approach for tissue regeneration and repair. However, the roles of hUCMSC-Ex in emphysema and its mechanism are largely unknown. Here, we investigated the effect and the action mechanism of hUCMSC-Ex in repairing emphysema induced by papain in rats. Methods SD rats were used to establish a papain-induced emphysema model and estimate the effect and mechanism of hUCMSC-Ex treatment. H&E staining and mean linear intercept (MLI) were used to evaluate the hUCMSC-Ex effect on emphysema. Western blotting, TUNEL and miRNA-seq were used to investigate the molecular mechanisms of hUCMSC-Ex treatment in models of papain-induced emphysema. Results Papain treatment led to typical emphysema, while hUCMSC-Ex reversed emphysematous changes effectively. Apoptosis of endothelial cells and other types of cells were observed in models, while hUCMSC-Ex effectively prevented their apoptosis. hUCMSC-Ex repressed active caspase-3, activated VEGF-VEGFR2-mediated AKT pathway and MEK/ERK pathway in emphysematous lungs. Notably, several miRNAs, such as hsa-miR-10a-5p and hsa-miR-146a-5p, were target related to the roles of hUCMSC-Ex in papain-induced emphysema through VEGF-VEGFR2-mediated AKT and MEK/ERK pathways. Conclusions hUCMSC-Ex effectively rescued the papain-induced emphysema injury through VEGF-VEGFR2-mediated AKT pathway and MEK/ERK pathway. Exosomes from human umbilical cord mesenchymal stem cells (hUCMSC-Ex) pro protect against papain-injured emphysema in rats. hUCMSC-Ex prevent lung cells apoptosis by activating VEGF-VEGFR2-mediated AKT and MEK/ERK pathways. Several miRNAs, such as hsa-miR-10a-5p, were target related to the roles of hUCMSC-Ex.
Collapse
Affiliation(s)
- Qin Chen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Zhaoqun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Qian
- Department of Otolaryngology-Head and Neck Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
- Corresponding author. Department of Otolaryngology-Head and Neck Surgery, Affiliated People's Hospital of Jiangsu University, Dianli RD. 8, Zhenjiang, Jiangsu Province, 212002, China.
| |
Collapse
|
5
|
Petrosyan A, Martins PN, Solez K, Uygun BE, Gorantla VS, Orlando G. Regenerative medicine applications: An overview of clinical trials. Front Bioeng Biotechnol 2022; 10:942750. [PMID: 36507264 PMCID: PMC9732032 DOI: 10.3389/fbioe.2022.942750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Insights into the use of cellular therapeutics, extracellular vesicles (EVs), and tissue engineering strategies for regenerative medicine applications are continually emerging with a focus on personalized, patient-specific treatments. Multiple pre-clinical and clinical trials have demonstrated the strong potential of cellular therapies, such as stem cells, immune cells, and EVs, to modulate inflammatory immune responses and promote neoangiogenic regeneration in diseased organs, damaged grafts, and inflammatory diseases, including COVID-19. Over 5,000 registered clinical trials on ClinicalTrials.gov involve stem cell therapies across various organs such as lung, kidney, heart, and liver, among other applications. A vast majority of stem cell clinical trials have been focused on these therapies' safety and effectiveness. Advances in our understanding of stem cell heterogeneity, dosage specificity, and ex vivo manipulation of stem cell activity have shed light on the potential benefits of cellular therapies and supported expansion into clinical indications such as optimizing organ preservation before transplantation. Standardization of manufacturing protocols of tissue-engineered grafts is a critical first step towards the ultimate goal of whole organ engineering. Although various challenges and uncertainties are present in applying cellular and tissue engineering therapies, these fields' prospect remains promising for customized patient-specific treatments. Here we will review novel regenerative medicine applications involving cellular therapies, EVs, and tissue-engineered constructs currently investigated in the clinic to mitigate diseases and possible use of cellular therapeutics for solid organ transplantation. We will discuss how these strategies may help advance the therapeutic potential of regenerative and transplant medicine.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Division of Urology, Children’s Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States
| | - Paulo N. Martins
- Department of Surgery, Transplant Division, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, United States
| | - Kim Solez
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Basak E. Uygun
- Massachusetts General Hospital, Shriners Hospitals for Children in Boston and Harvard Medical School, Boston, MA, United States
| | - Vijay S. Gorantla
- Wake Forest Baptist Medical Center and Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Giuseppe Orlando
- Wake Forest Baptist Medical Center and Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| |
Collapse
|
6
|
Laiman V, Lee YL, Hou YW, Fang YT, Chen YY, Lo YC, Heriyanto DS, Lan SC, Chen CL, Chen XY, Lee KY, Chang JH, Chuang HC. Reduction of Emphysema Severity by Human Umbilical Cord-Derived Mesenchymal Stem Cells in Mice. Int J Mol Sci 2022; 23:8906. [PMID: 36012176 PMCID: PMC9408173 DOI: 10.3390/ijms23168906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality in chronic lung disease patients throughout the world. Mesenchymal stem cells (MSCs) have been shown to regulate immunomodulatory, anti-inflammatory, and regenerative responses. However, the effects of human-umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) on the lung pathophysiology of COPD remain unclear. We aimed to investigate the role of hUC-MSCs in emphysema severity and Yes-associated protein (Yap) phosphorylation (p-Yap) in a porcine-pancreatic-elastase (PPE)-induced emphysema model. We observed that the emphysema percentages (normalized to the total lung volume) measured by chest computed tomography (CT) and exercise oxygen desaturation were significantly reduced by hUC-MSCs at 107 cells/kg body weight (BW) via intravenous administration in emphysematous mice (p < 0.05). Consistently, the emphysema index, as assessed by the mean linear intercept (MLI), significantly decreased with hUC-MSC administration at 3 × 106 and 107 cells/kg BW (p < 0.05). Changes in the lymphocytes, monocytes, and splenic cluster of differentiation 4-positive (CD4+) lymphocytes by PPE were significantly reversed by hUC-MSC administration in emphysematous mice (p < 0.05). An increasing neutrophil/lymphocyte ratio was reduced by hUC-MSCs at 3 × 106 and 107 cells/kg BW (p < 0.05). The higher levels of tumor necrosis factor (TNF)-α, keratinocyte chemoattractant (KC), and lactate dehydrogenase (LDH) in bronchoalveolar lavage fluid (BALF) were significantly decreased by hUC-MSC administration (p < 0.05). A decreasing p-Yap/Yap ratio in type II alveolar epithelial cells (AECII) of mice with PPE-induced emphysema was significantly increased by hUC-MSCs (p < 0.05). In conclusion, the administration of hUC-MSCs improved multiple pathophysiological features of mice with PPE-induced emphysema. The effectiveness of the treatment of pulmonary emphysema with hUC-MSCs provides an essential and significant foundation for future clinical studies of MSCs in COPD patients.
Collapse
Affiliation(s)
- Vincent Laiman
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada—Dr. Sardjito Hospital, Yogyakarta 55281, Indonesia
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Wei Hou
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Ting Fang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Chun Lo
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada—Dr. Sardjito Hospital, Yogyakarta 55281, Indonesia
| | - Shu-Chi Lan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Xiao-Yue Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
7
|
Case report of amniotic membrane derived-stem cells treatment for feline chronic obstructive pulmonary disease. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.4.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
8
|
Fujioka N, Kitabatake M, Ouji-Sageshima N, Ibaraki T, Kumamoto M, Fujita Y, Hontsu S, Yamauchi M, Yoshikawa M, Muro S, Ito T. Human Adipose-Derived Mesenchymal Stem Cells Ameliorate Elastase-Induced Emphysema in Mice by Mesenchymal-Epithelial Transition. Int J Chron Obstruct Pulmon Dis 2021; 16:2783-2793. [PMID: 34675503 PMCID: PMC8517419 DOI: 10.2147/copd.s324952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/13/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a worldwide problem because of its high prevalence and mortality. However, there is no fundamental treatment to ameliorate their pathological change in COPD lung. Recently, adipose-derived mesenchymal stem cells (ADSCs) have attracted attention in the field of regenerative medicine to repair damaged organs. Moreover, their utility in treating respiratory diseases has been reported in some animal models. However, the detailed mechanism by which ADSCs improve chronic respiratory diseases, including COPD, remains to be elucidated. We examined whether human ADSCs (hADSCs) ameliorated elastase-induced emphysema and whether hADSCs differentiated into alveolar epithelial cells in a murine model of COPD. Methods Female SCID-beige mice (6 weeks old) were divided into the following four groups according to whether they received an intratracheal injection of phosphate-buffered saline or porcine pancreatic elastase, and whether they received an intravenous injection of saline or hADSCs 3 days after intratracheal injection; Control group, hADSC group, Elastase group, and Elastase-hADSC group. We evaluated the lung function, assessed histological changes, and compared gene expression between hADSCs isolated from the lung of Elastase-hADSC group and naïve hADSCs 28 days after saline or elastase administration. Results hADSCs improved the pathogenesis of COPD, including the mean linear intercept and forced expiratory volume, in an elastase-induced emphysema model in mice. Furthermore, hADSCs were observed in the lungs of elastase-treated mice at 25 days after administration. These cells expressed genes related to mesenchymal–epithelial transition and surface markers of alveolar epithelial cells, such as TTF-1, β-catenin, and E-cadherin. Conclusion hADSCs have the potential to improve the pathogenesis of COPD by differentiating into alveolar epithelial cells by mesenchymal–epithelial transition.
Collapse
Affiliation(s)
- Nobuhiro Fujioka
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | | | | | - Takahiro Ibaraki
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Makiko Kumamoto
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yukio Fujita
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Shigeto Hontsu
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Motoo Yamauchi
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Masanori Yoshikawa
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
9
|
Wang M, Zhou T, Zhang Z, Liu H, Zheng Z, Xie H. Current therapeutic strategies for respiratory diseases using mesenchymal stem cells. MedComm (Beijing) 2021; 2:351-380. [PMID: 34766151 PMCID: PMC8554668 DOI: 10.1002/mco2.74] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have a great potential to proliferate, undergo multi-directional differentiation, and exert immunoregulatory effects. There is already much enthusiasm for their therapeutic potentials for respiratory inflammatory diseases. Although the mechanism of MSCs-based therapy has been well explored, only a few articles have summarized the key advances in this field. We hereby provide a review over the latest progresses made on the MSCs-based therapies for four types of inflammatory respiratory diseases, including idiopathic pulmonary fibrosis, acute respiratory distress syndrome, chronic obstructive pulmonary disease, and asthma, and the uncovery of their underlying mechanisms from the perspective of biological characteristics and functions. Furthermore, we have also discussed the advantages and disadvantages of the MSCs-based therapies and prospects for their optimization.
Collapse
Affiliation(s)
- Ming‐yao Wang
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Ting‐yue Zhou
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Zhi‐dong Zhang
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Hao‐yang Liu
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Zhi‐yao Zheng
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Hui‐qi Xie
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| |
Collapse
|
10
|
Weiss DJ, Segal K, Casaburi R, Hayes J, Tashkin D. Effect of mesenchymal stromal cell infusions on lung function in COPD patients with high CRP levels. Respir Res 2021; 22:142. [PMID: 33964910 PMCID: PMC8106850 DOI: 10.1186/s12931-021-01734-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background We previously reported a Phase 1/2 randomized placebo-controlled trial of systemic administration of bone marrow-derived allogeneic MSCs (remestemcel-L) in COPD. While safety profile was good, no functional efficacy was observed. However, in view of growing recognition of effects of inflammatory environments on MSC actions we conducted a post-hoc analysis with stratification by baseline levels of a circulating inflammatory marker, C-reactive protein (CRP) to determine the effects of MSC administration in COPD patients with varying circulating CRP levels. Methods Time course of lung function, exercise performance, patient reported responses, and exacerbation frequency following four monthly infusions of remestemcel-L vs. placebo were re-assessed in subgroups based on baseline circulating CRP levels. Results In COPD patients with baseline CRP ≥ 4 mg/L, compared to COPD patients receiving placebo (N = 17), those treated with remestemcel-L (N = 12), demonstrated significant improvements from baseline in forced expiratory volume in one second, forced vital capacity, and six minute walk distance at 120 days with treatment differences evident as early as 10 days after the first infusion. Significant although smaller benefits were also detected in those with CRP levels ≥ 2 or ≥ 3 mg/L. These improvements persisted variably over the 2-year observational period. No significant benefits were observed in patient reported responses or number of COPD exacerbations between treatment groups. Conclusion In an inflammatory environment, defined by elevated circulating CRP, remestemcel-L administration yielded at least transient meaningful pulmonary and functional improvements. These findings warrant further investigation of potential MSC-based therapies in COPD and other inflammatory pulmonary diseases. Trial registration: Clinicaltrials.gov NCT00683722.
Collapse
Affiliation(s)
- Daniel J Weiss
- University of Vermont College of Medicine, 226 Health Science Research Facility, Burlington, VT, 05405, USA.
| | | | - Richard Casaburi
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Donald Tashkin
- UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
11
|
Glassberg MK, Csete I, Simonet E, Elliot SJ. Stem Cell Therapy for COPD: Hope and Exploitation. Chest 2021; 160:1271-1281. [PMID: 33894254 DOI: 10.1016/j.chest.2021.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/21/2022] Open
Abstract
COPD is a chronic inflammatory and destructive disease characterized by progressive decline in lung function that can accelerate with aging. Preclinical studies suggest that mesenchymal stem cells (MSCs) may provide a therapeutic option for this incurable disease because of their antiinflammatory, reparative, and immunomodulatory properties. To date, clinical trials using MSCs demonstrate safety in patients with COPD. However, because of the notable absence of large, multicenter randomized trials, no efficacy or evidence exists to support the possibility that MSCs can restore lung function in patients with COPD. Unfortunately, the investigational status of cell-based interventions for lung diseases has not hindered the propagation of commercial businesses, exploitation of the public, and explosion of medical tourism to promote unproven and potentially harmful cell-based interventions for COPD in the United States and worldwide. Patients with COPD constitute the largest group of patients with lung disease flocking to these unregulated clinics. This review highlights the numerous questions and concerns that remain before the establishment of cell-based interventions as safe and efficacious treatments for patients with COPD.
Collapse
Affiliation(s)
- Marilyn K Glassberg
- Division of Pulmonary, Critical Care, and Sleep, Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ.
| | | | | | - Sharon J Elliot
- Division of Pulmonary, Critical Care, and Sleep, Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ; University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
12
|
Markov A, Thangavelu L, Aravindhan S, Zekiy AO, Jarahian M, Chartrand MS, Pathak Y, Marofi F, Shamlou S, Hassanzadeh A. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther 2021; 12:192. [PMID: 33736695 PMCID: PMC7971361 DOI: 10.1186/s13287-021-02265-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Over recent years, mesenchymal stem/stromal cells (MSCs) and their potential biomedical applications have received much attention from the global scientific community in an increasing manner. Firstly, MSCs were successfully isolated from human bone marrow (BM), but in the next steps, they were also extracted from other sources, mostly from the umbilical cord (UC) and adipose tissue (AT). The International Society for Cellular Therapy (ISCT) has suggested minimum criteria to identify and characterize MSCs as follows: plastic adherence, surface expression of CD73, D90, CD105 in the lack of expression of CD14, CD34, CD45, and human leucocyte antigen-DR (HLA-DR), and also the capability to differentiate to multiple cell types including adipocyte, chondrocyte, or osteoblast in vitro depends on culture conditions. However, these distinct properties, including self-renewability, multipotency, and easy accessibility are just one side of the coin; another side is their huge secretome which is comprised of hundreds of mediators, cytokines, and signaling molecules and can effectively modulate the inflammatory responses and control the infiltration process that finally leads to a regulated tissue repair/healing or regeneration process. MSC-mediated immunomodulation is a direct result of a harmonic synergy of MSC-released signaling molecules (i.e., mediators, cytokines, and chemokines), the reaction of immune cells and other target cells to those molecules, and also feedback in the MSC-molecule-target cell axis. These features make MSCs a respectable and eligible therapeutic candidate to be evaluated in immune-mediated disorders, such as graft versus host diseases (GVHD), multiple sclerosis (MS), Crohn's disease (CD), and osteoarthritis (OA), and even in immune-dysregulating infectious diseases such as the novel coronavirus disease 2019 (COVID-19). This paper discussed the therapeutic applications of MSC secretome and its biomedical aspects related to immune-mediated conditions. Sources for MSC extraction, their migration and homing properties, therapeutic molecules released by MSCs, and the pathways and molecular mechanisms possibly involved in the exceptional immunoregulatory competence of MSCs were discussed. Besides, the novel discoveries and recent findings on immunomodulatory plasticity of MSCs, clinical applications, and the methods required for their use as an effective therapeutic option in patients with immune-mediated/immune-dysregulating diseases were highlighted.
Collapse
Affiliation(s)
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), 69120 Heidelberg, Germany
| | | | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL USA
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Shamlou
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Ischemia-reperfusion Injury in the Transplanted Lung: A Literature Review. Transplant Direct 2021; 7:e652. [PMID: 33437867 PMCID: PMC7793349 DOI: 10.1097/txd.0000000000001104] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) and primary graft dysfunction are leading causes of morbidity and mortality among lung transplant recipients. Although extensive research endeavors have been undertaken, few preventative and therapeutic treatments have emerged for clinical use. Novel strategies are still needed to improve outcomes after lung transplantation. In this review, we discuss the underlying mechanisms of transplanted LIRI, potential modifiable targets, current practices, and areas of ongoing investigation to reduce LIRI and primary graft dysfunction in lung transplant recipients.
Collapse
|
14
|
Easter M, Bollenbecker S, Barnes JW, Krick S. Targeting Aging Pathways in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:E6924. [PMID: 32967225 PMCID: PMC7555616 DOI: 10.3390/ijms21186924] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has become a global epidemic and is the third leading cause of death worldwide. COPD is characterized by chronic airway inflammation, loss of alveolar-capillary units, and progressive decline in lung function. Major risk factors for COPD are cigarette smoking and aging. COPD-associated pathomechanisms include multiple aging pathways such as telomere attrition, epigenetic alterations, altered nutrient sensing, mitochondrial dysfunction, cell senescence, stem cell exhaustion and chronic inflammation. In this review, we will highlight the current literature that focuses on the role of age and aging-associated signaling pathways as well as their impact on current treatment strategies in the pathogenesis of COPD. Furthermore, we will discuss established and experimental COPD treatments including senolytic and anti-aging therapies and their potential use as novel treatment strategies in COPD.
Collapse
Affiliation(s)
- Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
15
|
Yen BL, Yen ML, Wang LT, Liu KJ, Sytwu HK. Current status of mesenchymal stem cell therapy for immune/inflammatory lung disorders: Gleaning insights for possible use in COVID-19. Stem Cells Transl Med 2020; 9:1163-1173. [PMID: 32526079 PMCID: PMC7300965 DOI: 10.1002/sctm.20-0186] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 01/08/2023] Open
Abstract
The broad immunomodulatory properties of human mesenchymal stem cells (MSCs) have allowed for wide application in regenerative medicine as well as immune/inflammatory diseases, including unmatched allogeneic use. The novel coronavirus disease COVID‐19 has unleashed a pandemic in record time accompanied by an alarming mortality rate mainly due to pulmonary injury and acute respiratory distress syndrome. Because there are no effective preventive or curative therapies currently, MSC therapy (MSCT) has emerged as a possible candidate despite the lack of preclinical data of MSCs for COVID‐19. Interestingly, MSCT preclinical data specifically on immune/inflammatory disorders of the lungs were among the earliest to be reported in 2003, with the first clinical use of MSCT for graft‐vs‐host disease reported in 2004. Since these first reports, preclinical data showing beneficial effects of MSC immunomodulation have accumulated substantially, and as a consequence, over a third of MSCT clinical trials now target immune/inflammatory diseases. There is much preclinical evidence for MSCT in noninfectious—including chronic obstructive pulmonary disease, asthma, and idiopathic pulmonary fibrosis—as well as infectious bacterial immune/inflammatory lung disorders, with data generally demonstrating therapeutic effects; however, for infectious viral pulmonary conditions, the preclinical evidence is more scarce with some inconsistent outcomes. In this article, we review the mechanistic evidence for clinical use of MSCs in pulmonary immune/inflammatory disorders, and survey the ongoing clinical trials—including for COVID‐19—of MSCT for these diseases, with some perspectives and comment on MSCT for COVID‐19.
Collapse
Affiliation(s)
- B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| | - Li-Tzu Wang
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, NHRI, Tainan, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan, Taiwan.,Department & Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
16
|
Behnke J, Kremer S, Shahzad T, Chao CM, Böttcher-Friebertshäuser E, Morty RE, Bellusci S, Ehrhardt H. MSC Based Therapies-New Perspectives for the Injured Lung. J Clin Med 2020; 9:jcm9030682. [PMID: 32138309 PMCID: PMC7141210 DOI: 10.3390/jcm9030682] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic lung diseases pose a tremendous global burden. At least one in four people suffer from severe pulmonary sequelae over the course of a lifetime. Despite substantial improvements in therapeutic interventions, persistent alleviation of clinical symptoms cannot be offered to most patients affected to date. Despite broad discrepancies in origins and pathomechanisms, the important disease entities all have in common the pulmonary inflammatory response which is central to lung injury and structural abnormalities. Mesenchymal stem cells (MSC) attract particular attention due to their broadly acting anti-inflammatory and regenerative properties. Plenty of preclinical studies provided congruent and convincing evidence that MSC have the therapeutic potential to alleviate lung injuries across ages. These include the disease entities bronchopulmonary dysplasia, asthma and the different forms of acute lung injury and chronic pulmonary diseases in adulthood. While clinical trials are so far restricted to pioneering trials on safety and feasibility, preclinical results point out possibilities to boost the therapeutic efficacy of MSC application and to take advantage of the MSC secretome. The presented review summarizes the most recent advances and highlights joint mechanisms of MSC action across disease entities which provide the basis to timely tackle this global disease burden.
Collapse
Affiliation(s)
- Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Sarah Kremer
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Cho-Ming Chao
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany;
| | | | - Rory E. Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Ludwigstrasse 43, 61231 Bad Nauheim, Germany;
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany;
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
- Correspondence: ; Tel.: +49-985-43400; Fax: +49-985-43419
| |
Collapse
|
17
|
Gülhan PY, Ekici MS, Niyaz M, Gülhan M, Erçin ME, Ekici A, Aksoy N. Therapeutic Treatment with Abdominal Adipose Mesenchymal Cells Does Not Prevent Elastase-Induced Emphysema in Rats. Turk Thorac J 2020; 21:14-20. [PMID: 32163359 PMCID: PMC7020897 DOI: 10.5152/turkthoracj.2019.180136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/06/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Emphysema and chronic bronchitis have different pathophysiologies but both are significant components of chronic obstructive lung disease (COPD). The levels of Matrix metalloproteinase (MMP)-9 in the bronchoalveloar lavage fluid (BALF) and in serum indicate the presence of emphysema. Intratracheal administration of elastase has been used to create a rat model of emphysema. Adipose tissue-derived mesenchymal stem cells (MSC) have been postulated to prevent or reverse emphysema, however, this has not been examined in the rat model of elastase-induced emphysema. MATERIALS AND METHODS In this study, 31 Wistar albino rats aged 6-8 weeks and weighing 250-300 g were assessed. On day 1, the animals were treated intratracheally with 0.5 mL saline (control group, n=10), i.e., 0.5 mL saline solution containing 0.1 IU porcine pancreatic elastase (PPE) (Elastase group, n=12) or PPE plus MSC (Elastase-MSC group, n=9) was adminstered per animal. MSCs suspended in serum were injected via the caudal vein on day 21. At least 106 cells were injected. All animals were sacrificed on day 42 and the emphysema index (EI) was calculated, along with measuring the BALF and serum MMP-9 concentrations. RESULTS Porcine pancreatic elastase induced a significant degree of emphysema in the PPE groups as compared to the control group, which was determined by the EI index (p=0.008). This was not reversed by MSC treatment. The EI remained significantly low in comprison with the controls (p=0.001) and measured no different from the Elastase-treated animals. There was no statistically significant difference between the BALF and serum MMP-9 levels between the control and treatment groups. CONCLUSION Our findings suggest that therapeutic treatment with adipose tissue-derived MSC in rats has no effect on emphysema or on MMP9 expression, which is a known marker of emphysema.
Collapse
Affiliation(s)
- Pınar Yıldız Gülhan
- Department of Chest Diseases, Düzce University School of Medicine, Düzce, Turkey
| | - Mehmet Savaş Ekici
- Department of Chest Diseases, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Mehmet Niyaz
- Clinic of Cardiovascular Surgery, Bartın State Hospital, Bartın, Turkey
| | - Muhammet Gülhan
- Clinic of Infectious Diseases and Clinical Microbiology, Tosya State Hospital, Kastamonu, Turkey
| | - Mustafa Emre Erçin
- Department of Pathology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Aydanur Ekici
- Department of Chest Diseases, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Nurkan Aksoy
- Clinic of Biochemistry, Yenimahalle State Hospital, Ankara, Turkey
| |
Collapse
|
18
|
Abstract
As the prevalence and impact of lung diseases continue to increase worldwide, new therapeutic strategies are desperately needed. Advances in lung-regenerative medicine, a broad field encompassing stem cells, cell-based therapies, and a range of bioengineering approaches, offer new insights into and new techniques for studying lung physiology and pathophysiology. This provides a platform for the development of novel therapeutic approaches. Applicability to chronic obstructive pulmonary disease of recent advances and applications in cell-based therapies, predominantly those with mesenchymal stromal cell-based approaches, and bioengineering approaches for lung diseases are reviewed.
Collapse
|
19
|
Chen M, Huang Z, Bi H, Pan X, He J, He L, He X, Du J, Zhou K, Wang L, Wang Q, Guo X, Jin Z. Effects of bone marrow‑derived mesenchymal stem cell transplantation on chronic obstructive pulmonary disease/obstructive sleep apnea overlap syndrome in rats. Mol Med Rep 2019; 20:4665-4673. [PMID: 31702032 PMCID: PMC6797936 DOI: 10.3892/mmr.2019.10714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) possess potential therapeutic properties for treating patients with chronic obstructive pulmonary disease (COPD), which is characterized by emphysema and obstructive sleep apnea (OSA). However, their effects on overlap syndrome (OS) remain unclear. We investigated the potential therapeutic effects and possible mechanisms of BMSC transplantation in OS rats. To generate the OS model in rats, the animals underwent daily exposure to cigarette smoke and intermittent hypoxia. BMSCs were intravenously injected into rats. At 4 weeks post-transplantation, the severity of emphysema was assessed by lung hematoxylin and eosin (H&E) staining. The levels of oxidative stress and the malondialdehyde (MDA) and superoxide dismutase (SOD) contents in serum and lung were detected. The apoptosis of alveolar septal cells was also detected by TUNEL assay. Finally, we determined the expression of CD31 and VWF in lung tissues by an immunohistochemical (IHC) assay. It was found that BMSCs were able to migrate to the injured lung and aorta tissues. In lung tissues, transplanted BMSCs, some of which had differentiated into endotheliocytes, were found in the alveolar walls. The mean linear intercept (MLI) and pathological scores were higher and the mean alveolar number (MAN) was lower in the OS group than these parameters in the control group. These values were significantly reduced in the OS+BMSC group compared to those in the OS group. The MDA content was decreased and SOD activity was increased in the OS+BMSC group compared to those in the OS group. The apoptotic index of alveolar wall cells in the OS group was higher than that in the OS+BMSC group. The expression levels of CD31 and VWF in alveolar wall cells in the OS group were lower than those in the OS+BMSC group. These results indicate that BMSCs may inhibit the progression of emphysema in the OS model by differentiating into endotheliocytes and suppressing the apoptosis of endotheliocytes and oxidative stress. There is a possibility that the release of growth factors and structural support may be a determinant for the regenerative effects observed following treatment with BMSCs.
Collapse
Affiliation(s)
- Min Chen
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Zhaoming Huang
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Hong Bi
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Xinghua Pan
- Medical Innovation Research Center, 920 Hospital of PLA Joint Logistics Support Force, Kunming, Yunnan 650032, P.R. China
| | - Jian He
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Lewei He
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Xu He
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Junyi Du
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Kaihua Zhou
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Liyan Wang
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Qing Wang
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Xiang Guo
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| | - Zhixian Jin
- Department of Pneumology, The First People's Hospital‑Calmette Hospital of Kunming, Kunming, Yunnan 650224, P.R. China
| |
Collapse
|
20
|
Mesenchymal stem cells for inflammatory airway disorders: promises and challenges. Biosci Rep 2019; 39:BSR20182160. [PMID: 30610158 PMCID: PMC6356012 DOI: 10.1042/bsr20182160] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023] Open
Abstract
The regenerative and immunomodulatory characteristics of mesenchymal stem cells (MSCs) make them attractive in the treatment of many diseases. Although they have shown promising preclinical studies of immunomodulation and paracrine effects in inflammatory airway disorders and other lung diseases, there are still challenges that have to be overcome before MSCs can be safely, effectively, and routinely applied in the clinical setting. A good understanding of the roles and mechanisms of the MSC immunomodulatory effects will benefit the application of MSC-based clinical therapy. In this review, we summarize the promises and challenges of the preclinical and clinical trials of MSC therapies, aiming to better understand the role that MSCs play in attempt to treat inflammatory airway disorders.
Collapse
|
21
|
Clinical Application of Stem/Stromal Cells in COPD. STEM CELL-BASED THERAPY FOR LUNG DISEASE 2019. [PMCID: PMC7121219 DOI: 10.1007/978-3-030-29403-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive life-threatening disease that is significantly increasing in prevalence and is predicted to become the third leading cause of death worldwide by 2030. At present, there are no true curative treatments that can stop the progression of the disease, and new therapeutic strategies are desperately needed. Advances in cell-based therapies provide a platform for the development of new therapeutic approaches in severe lung diseases such as COPD. At present, a lot of focus is on mesenchymal stem (stromal) cell (MSC)-based therapies, mainly due to their immunomodulatory properties. Despite increasing number of preclinical studies demonstrating that systemic MSC administration can prevent or treat experimental COPD and emphysema, clinical studies have not been able to reproduce the preclinical results and to date no efficacy or significantly improved lung function or quality of life has been observed in COPD patients. Importantly, the completed appropriately conducted clinical trials uniformly demonstrate that MSC treatment in COPD patients is well tolerated and no toxicities have been observed. All clinical trials performed so far, have been phase I/II studies, underpowered for the detection of potential efficacy. There are several challenges ahead for this field such as standardized isolation and culture procedures to obtain a cell product with high quality and reproducibility, administration strategies, improvement of methods to measure outcomes, and development of potency assays. Moreover, COPD is a complex pathology with a diverse spectrum of clinical phenotypes, and therefore it is essential to develop methods to select the subpopulation of patients that is most likely to potentially respond to MSC administration. In this chapter, we will discuss the current state of the art of MSC-based cell therapy for COPD and the hurdles that need to be overcome.
Collapse
|
22
|
Sun Y, An N, Li J, Xia J, Tian Y, Zhao P, Liu X, Huang H, Gao J, Zhang X. miRNA-206 regulates human pulmonary microvascular endothelial cell apoptosis via targeting in chronic obstructive pulmonary disease. J Cell Biochem 2018; 120:6223-6236. [PMID: 30335896 DOI: 10.1002/jcb.27910] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death due to tis high morbidity and mortality. microRNAs have emerged as new biomarkers for the prognosis and diagnosis of patients with COPD. In this study, we aimed to investigate the expression of microRNA-206 (miR-206) in lung tissues from COPD patients and to explore the regulatory role of miR-206 in the human pulmonary microvascular endothelial cells (HPMECs). Our results showed that cigarette smoke extract (CSE) promoted cell apoptosis, increased caspase-3 activity, and upregulated the expression of miR-206 in HPMECs, which was significantly reversed by the miR-206 knockdown. Transfection with miR-206 mimics led to cell apoptosis and was closely related to changes in the protein expression levels of caspase-3, caspase-9, and Bcl-2 in HPMECs. Further bioinformatics prediction analysis revealed that the 3'-untranslated region (3'UTR) of Notch3 and vascular endothelial growth factor-A (VEGFA) harbored miR-206-binding sites, and overexpression of miR-206 repressed the luciferase activity of the vectors containing Notch3 and VEGFA 3'UTR. Overexpression of either Notch3 or VEGFA attenuated miR-206-induced cell apoptosis in HPMECs. More importantly, miR-206 expression was upregulated in the lung tissues from COPD patients and was positively corrected with forced expiratory volume 1% predicted in COPD patients, while Notch3 and VEGFA mRNA levels were downregulated and were negatively correlated with the expression level of miR-206 in the lung tissues from COPD patients. In conclusion, our results showed that miR-206 was upregulated in COPD patients and CSE-treated HPMECs, promoted cell apoptosis via directly targeting Notch3 and VEGFA in HPMECs.
Collapse
Affiliation(s)
- Ying Sun
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Na An
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinchan Xia
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xuefang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Haiying Huang
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianfeng Gao
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoli Zhang
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
23
|
Kruk DMLW, Heijink IH, Slebos DJ, Timens W, Ten Hacken NH. Mesenchymal Stromal Cells to Regenerate Emphysema: On the Horizon? Respiration 2018; 96:148-158. [PMID: 29719298 DOI: 10.1159/000488149] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/02/2018] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are multipotent cells that play a pivotal role in various phases of lung development and lung homeostasis, and potentially also lung regeneration. MSCs do not only self-renew and differentiate into renew tissues, but also have anti-inflammatory and paracrine properties to reduce damage and to support tissue regeneration, constituting a promising cell-based treatment strategy for the repair of damaged alveolar tissue in emphysema. This review discusses the current state of the art regarding the potential of MSCs for the treatment of emphysema. The optimism regarding this treatment strategy is supported by promising results from animal models. Still, there are considerable challenges before effective stem cell treatment can be realized in emphysema patients. It is difficult to draw definitive conclusions from the available animal studies, as different models, dosage protocols, administration routes, and sources of MSCs have been used with different measures of effectiveness. Moreover, the regrowth potential of differentiated tissues and organs differs between species. Essential questions about MSC engraftment, retention, and survival have not been sufficiently addressed in a systematic manner. Few human studies have investigated MSC treatment for chronic obstructive pulmonary disease, demonstrating short-term safety but no convincing benefits on clinical outcomes. Possible explanations for the lack of beneficial effects on clinical outcomes could be the source (bone marrow), route, dosage, frequency of administration, and delivery (lack of a bioactive scaffold). This review will provide a comprehensive overview of the (pre)clinical studies on MSC effects in emphysema and discuss the current challenges regarding the optimal use of MSCs for cell-based therapies.
Collapse
Affiliation(s)
- Dennis M L W Kruk
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Irene H Heijink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Dirk-Jan Slebos
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nick H Ten Hacken
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
24
|
Broekman W, Khedoe PPSJ, Schepers K, Roelofs H, Stolk J, Hiemstra PS. Mesenchymal stromal cells: a novel therapy for the treatment of chronic obstructive pulmonary disease? Thorax 2018; 73:565-574. [PMID: 29653970 PMCID: PMC5969341 DOI: 10.1136/thoraxjnl-2017-210672] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 03/18/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
COPD is characterised by tissue destruction and inflammation. Given the lack of curative treatments and the progressive nature of the disease, new treatments for COPD are highly relevant. In vitro cell culture and animal studies have demonstrated that mesenchymal stromal cells (MSCs) have the capacity to modify immune responses and to enhance tissue repair. These properties of MSCs provided a rationale to investigate their potential for treatment of a variety of diseases, including COPD. Preclinical models support the hypothesis that MSCs may have clinical efficacy in COPD. However, although clinical trials have demonstrated the safety of MSC treatment, thus far they have not provided evidence for MSC efficacy in the treatment of COPD. In this review, we discuss the rationale for MSC-based cell therapy in COPD, the main findings from in vitro and in vivo preclinical COPD model studies, clinical trials in patients with COPD and directions for further research.
Collapse
Affiliation(s)
- Winifred Broekman
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Padmini P S J Khedoe
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen Schepers
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Helene Roelofs
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Machado MN, Mazzoli-Rocha F, Casquilho NV, Maron-Gutierrez T, Ortenzi VH, Morales MM, Fortunato RS, Zin WA. Bone Marrow-Derived Mononuclear Cell Therapy in Papain-Induced Experimental Pulmonary Emphysema. Front Physiol 2018. [PMID: 29515461 PMCID: PMC5826278 DOI: 10.3389/fphys.2018.00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Murine papain-induced emphysema is a model that reproduces many of the features found in patients. Bone marrow-derived mononuclear cells (BMMC) have already been used to repair the alveolar epithelium in respiratory diseases, but not in the papain model. Thus, we hypothesized that BMMC could prevent the pathophysiological processes in papain-induced experimental emphysema. Female BALB/c mice received intratracheal instillation of 50 μL of saline (S groups) or papain (P groups, 10 IU/50 μl of saline) on days 1 and 7 of the experimental protocol. On the 14th day, 2 × 106 BMMC of male BALB/c mice (SC21 and PC21) or saline (SS21 and PS21) were injected by the jugular vein. Analyses were done on days 14 (S14 and P14) and 21 (SS21, PS21, SC21, and PC21) of the protocol. qPCR evaluated the presence of the Y chromosome in the lungs of BMMC recipient animals. Functional residual capacity (FRC), alveolar diameter, cellularity, elastic fiber content, concentrations of TNF-α, IL-1β, IL-6, MIP-2, KC, IFN-γ, apoptosis, mRNA expression of the dual oxidase (DUOX1 and DUOX2), production of H2O2 and DUOX activity were evaluated in lung tissue. We did not detect the Y chromosome in recipients' lungs. FRC, alveolar diameter, polymorphonuclear cells (PMN) and levels of KC, MIP-2, and IFN-γ increased in P14 and PS21 groups; the changes in the latter were reverted by BMMC. TNF-α, IL-1β e IL-6 were similar in all groups. The amount of elastic fibers was smaller in P14 and PS21 than in other groups, and BMMC did not increase it in PC21 mice. PS21 animals showed increased DUOX activity and mRNA expression for DUOX1 and 2. Cell therapy reverted the activity of DUOX and mRNA expression of DUOX1. BMMC reduced mRNA expression of DUOX2. Apoptosis index was elevated in PS21 mice, which was reduced by cell therapy in PC21. Static compliance, viscoelastic component of elastance and pressure to overcome viscoelasticity were increased in P14 and PS21 groups. These changes and the high resistive pressure found on day 21 were reverted by BMMC. In conclusion, BMMC showed potent anti-inflammatory, antiapoptotic, antioxidant, and restorative roles in papain-triggered pulmonary emphysema.
Collapse
Affiliation(s)
- Mariana N Machado
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Mazzoli-Rocha
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália V Casquilho
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Victor H Ortenzi
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter A Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Antoniou KM, Karagiannis K, Tsitoura E, Bibaki E, Lasithiotaki I, Proklou A, Spandidos DA, Tzanakis N. Clinical applications of mesenchymal stem cells in chronic lung diseases. Biomed Rep 2018; 8:314-318. [PMID: 29556380 PMCID: PMC5844081 DOI: 10.3892/br.2018.1067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem (stromal) cells (MSCs) are multipotent stromal cells that have the ability to modulate immune response to tissue injury and promote repair in vivo. The therapeutic potential of ex vivo expanded MSCs are currently under investigation for a variety of chronic and acute lung diseases. This review summarizes the encouraging results regarding the safety of MSCs administration from recent and current clinical trials for idiopathic pulmonary fibrosis, acute respiratory distress syndrome, and chronic obstructive pulmonary disease. It also reviews the early preliminary data extracted by the same trials regarding the efficacy of MSCs in the aforementioned lung diseases.
Collapse
Affiliation(s)
- Katerina M Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion 71110, Crete, Greece.,Department of Thoracic Medicine, Interstitial Lung Disease Unit, University Hospital, University of Crete, Heraklion 71110, Crete, Greece
| | - Konstantinos Karagiannis
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion 71110, Crete, Greece.,Department of Thoracic Medicine, Interstitial Lung Disease Unit, University Hospital, University of Crete, Heraklion 71110, Crete, Greece
| | - Eliza Tsitoura
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion 71110, Crete, Greece
| | - Eleni Bibaki
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion 71110, Crete, Greece.,Department of Thoracic Medicine, Interstitial Lung Disease Unit, University Hospital, University of Crete, Heraklion 71110, Crete, Greece
| | - Ismini Lasithiotaki
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion 71110, Crete, Greece.,Department of Thoracic Medicine, Interstitial Lung Disease Unit, University Hospital, University of Crete, Heraklion 71110, Crete, Greece
| | - Athanasia Proklou
- Laboratory of Molecular and Cellular Pneumonology, Medical School, University of Crete, Heraklion 71110, Crete, Greece.,Department of Thoracic Medicine, Interstitial Lung Disease Unit, University Hospital, University of Crete, Heraklion 71110, Crete, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Voutes, Heraklion 71003, Crete, Greece
| | - Nikos Tzanakis
- Department of Thoracic Medicine, Interstitial Lung Disease Unit, University Hospital, University of Crete, Heraklion 71110, Crete, Greece
| |
Collapse
|
27
|
Amann EM, Rojewski MT, Rodi S, Fürst D, Fiedler J, Palmer A, Braumüller S, Huber-Lang M, Schrezenmeier H, Brenner RE. Systemic recovery and therapeutic effects of transplanted allogenic and xenogenic mesenchymal stromal cells in a rat blunt chest trauma model. Cytotherapy 2017; 20:218-231. [PMID: 29223534 DOI: 10.1016/j.jcyt.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/22/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Effective therapy of Acute Lung Injury (ALI) is still a major scientific and clinical problem. To define novel therapeutic strategies for sequelae of blunt chest trauma (TxT) like ALI/Acute Respiratory Distress Syndrome, we have investigated the immunomodulatory and regenerative effects of a single dose of ex vivo expanded human or rat mesenchymal stromal cells (hMSCs/rMSCs) with or without priming, immediately after the induction of TxT in Wistar rats. METHODS We analyzed the histological score of lung injury, the cell count of the broncho alveolar lavage fluid (BAL), the change in local and systemic cytokine level and the recovery of the administered cells 24 h and 5 days post trauma. RESULTS The treatment with hMSCs reduced the injury score 24 h after trauma by at least 50% compared with TxT rats without MSCs. In general, TxT rats treated with hMSCs exhibited a lower level of pro-inflammatory cytokines (interleukin [IL]-1B, IL-6) and chemokines (C-X-C motif chemokine ligand 1 [CXCL1], C-C motif chemokine ligand 2 [CCL2]), but a higher tumor necrosis factor alpha induced protein 6 (TNFAIP6) level in the BAL compared with TxT rats after 24 h. Five days after trauma, cytokine levels and the distribution of inflammatory cells were similar to sham rats. In contrast, the treatment with rMSCs did not reveal such therapeutic effects on the injury score and cytokine levels, except for TNFAIP6 level. CONCLUSION TxT represents a suitable model to study effects of MSCs as an acute treatment strategy after trauma. However, the source of MSCs has to be carefully considered in the design of future studies.
Collapse
Affiliation(s)
- Elisa Maria Amann
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Markus Thomas Rojewski
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Sinja Rodi
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Jörg Fiedler
- Orthopedic Department, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
| | - Annette Palmer
- Institute for Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Sonja Braumüller
- Institute for Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.
| | - Rolf Erwin Brenner
- Orthopedic Department, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
| |
Collapse
|
28
|
Schnapper A, Christmann A, Knudsen L, Rahmanian P, Choi YH, Zeriouh M, Karavidic S, Neef K, Sterner-Kock A, Guschlbauer M, Hofmaier F, Maul AC, Wittwer T, Wahlers T, Mühlfeld C, Ochs M. Stereological assessment of the blood-air barrier and the surfactant system after mesenchymal stem cell pretreatment in a porcine non-heart-beating donor model for lung transplantation. J Anat 2017; 232:283-295. [PMID: 29193065 DOI: 10.1111/joa.12747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 01/09/2023] Open
Abstract
More frequent utilization of non-heart-beating donor (NHBD) organs for lung transplantation has the potential to relieve the shortage of donor organs. In particular with respect to uncontrolled NHBD, concerns exist regarding the risk of ischaemia/reperfusion (IR) injury-related graft damage or dysfunction. Due to their immunomodulating and tissue-remodelling properties, bone-marrow-derived mesenchymal stem cells (MSCs) have been suspected of playing a beneficial role regarding short- and long-term survival and function of the allograft. Thus, MSC administration might represent a promising pretreatment strategy for NHBD organs. To study the initial effects of warm ischaemia and MSC application, a large animal lung transplantation model was generated, and the structural organ composition of the transplanted lungs was analysed stereologically with particular respect to the blood-gas barrier and the surfactant system. In this study, porcine lungs (n = 5/group) were analysed. Group 1 was the sham-operated control group. In pigs of groups 2-4, cardiac arrest was induced, followed by a period of 3 h of ventilated ischaemia at room temperature. In groups 3 and 4, 50 × 106 MSCs were administered intravascularly via the pulmonary artery and endobronchially, respectively, during the last 10 min of ischaemia. The left lungs were transplanted, followed by a reperfusion period of 4 h. Then, lungs were perfusion-fixed and processed for light and electron microscopy. Samples were analysed stereologically for IR injury-related structural parameters, including volume densities and absolute volumes of parenchyma components, alveolar septum components, intra-alveolar oedema, and the intracellular and intra-alveolar surfactant pool. Additionally, the volume-weighted mean volume of lamellar bodies (lbs) and their profile size distribution were determined. Three hours of ventilated warm ischaemia was tolerated without eliciting histological or ultrastructural signs of IR injury, as revealed by qualitative and quantitative assessment. However, warm ischaemia influenced the surfactant system. The volume-weighted mean volume of lbs was reduced significantly (P = 0.024) in groups subjected to ischaemia (group medians of groups 2-4: 0.180-0.373 μm³) compared with the sham control group (median 0.814 μm³). This was due to a lower number of large lb profiles (size classes 5-15). In contrast, the intra-alveolar surfactant system was not altered significantly. No significant differences were encountered comparing ischaemia alone (group 2) or ischaemia plus application of MSCs (groups 3 and 4) in this short-term model.
Collapse
Affiliation(s)
- Anke Schnapper
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany
| | - Astrid Christmann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany
| | - Parwis Rahmanian
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Yeong-Hoon Choi
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | - Mohamed Zeriouh
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Samira Karavidic
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Klaus Neef
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | - Anja Sterner-Kock
- Center for Experimental Medicine, University of Cologne, Cologne, Germany
| | - Maria Guschlbauer
- Center for Experimental Medicine, University of Cologne, Cologne, Germany.,Decentral Animal Facility, University of Cologne, Cologne, Germany
| | - Florian Hofmaier
- Center for Experimental Medicine, University of Cologne, Cologne, Germany
| | - Alexandra C Maul
- Center for Experimental Medicine, University of Cologne, Cologne, Germany
| | - Thorsten Wittwer
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany.,Center of Molecular Medicine, University of Cologne, Cologne, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH (From Regenerative Biology to Reconstructive Therapy), Cluster of Excellence, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
29
|
Janczewski AM, Wojtkiewicz J, Malinowska E, Doboszyńska A. Can Youthful Mesenchymal Stem Cells from Wharton's Jelly Bring a Breath of Fresh Air for COPD? Int J Mol Sci 2017; 18:ijms18112449. [PMID: 29156550 PMCID: PMC5713416 DOI: 10.3390/ijms18112449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major global cause of morbidity and mortality, projected to become the 3rd cause of disease mortality worldwide by 2020. COPD is characterized by persistent and not fully reversible airflow limitation that is usually progressive and is associated with an abnormal chronic inflammatory response of the lung to noxious agents including cigarette smoke. Currently available therapeutic strategies aim to ease COPD symptoms but cannot prevent its progress or regenerate physiological lung structure or function. The urgently needed new approaches for the treatment of COPD include stem cell therapies among which transplantation of mesenchymal stem cells derived from Wharton’s jelly (WJ-MSCs) emerges as a promising therapeutic strategy because of the unique properties of these cells. The present review discusses the main biological properties of WJ-MSCs pertinent to their potential application for the treatment of COPD in the context of COPD pathomechanisms with emphasis on chronic immune inflammatory processes that play key roles in the development and progression of COPD.
Collapse
Affiliation(s)
- Andrzej M Janczewski
- Department of Pulmonology, Faculty of Heath Sciences, University of Warmia and Mazury in Olsztyn, Jagiellońska 78, 10-357 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
- Laboratory for Regenerative Medicine, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
- Foundation for the Nerve Cells Regeneration, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Ewa Malinowska
- Department of Pulmonology, Faculty of Heath Sciences, University of Warmia and Mazury in Olsztyn, Jagiellońska 78, 10-357 Olsztyn, Poland.
| | - Anna Doboszyńska
- Department of Pulmonology, Faculty of Heath Sciences, University of Warmia and Mazury in Olsztyn, Jagiellońska 78, 10-357 Olsztyn, Poland.
| |
Collapse
|
30
|
Antunes MA, Lapa E Silva JR, Rocco PR. Mesenchymal stromal cell therapy in COPD: from bench to bedside. Int J Chron Obstruct Pulmon Dis 2017; 12:3017-3027. [PMID: 29081655 PMCID: PMC5652911 DOI: 10.2147/copd.s146671] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
COPD is the most frequent chronic respiratory disease and a leading cause of morbidity and mortality. The major risk factor for COPD development is cigarette smoke, and the most efficient treatment for COPD is smoking cessation. However, even after smoking cessation, inflammation, apoptosis, and oxidative stress may persist and continue contributing to disease progression. Although current therapies for COPD (primarily based on anti-inflammatory agents) contribute to the reduction of airway obstruction and minimize COPD exacerbations, none can avoid disease progression or reduce mortality. Within this context, recent advances in mesenchymal stromal cell (MSC) therapy have made this approach a strong candidate for clinical use in the treatment of several pulmonary diseases. MSCs can be readily harvested from diverse tissues and expanded with high efficiency, and have strong immunosuppressive properties. Preclinical studies have demonstrated encouraging outcomes of MSCs therapy for lung disorders, including emphysema. These findings instigated research groups to assess the impact of MSCs in human COPD/emphysema, but clinical results have fallen short of expectations. However, MSCs have demonstrated a good adjuvant role in the clinical scenario. Trials that used MSCs combined with another, primary treatment (eg, endobronchial valves) found that patients derived greater benefit in pulmonary function tests and/or quality of life reports, as well as reductions in systemic markers of inflammation. The present review summarizes and describes the more recent preclinical studies that have been published about MSC therapy for COPD/emphysema and discusses what has already been applied about MSCs treatment in COPD patients in the clinical setting.
Collapse
Affiliation(s)
- Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro (UFRJ), RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - José Roberto Lapa E Silva
- Institute of Thoracic Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro (UFRJ), RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
31
|
Khedoe PPSJ, de Kleijn S, van Oeveren-Rietdijk AM, Plomp JJ, de Boer HC, van Pel M, Rensen PCN, Berbée JFP, Hiemstra PS. Acute and chronic effects of treatment with mesenchymal stromal cells on LPS-induced pulmonary inflammation, emphysema and atherosclerosis development. PLoS One 2017; 12:e0183741. [PMID: 28910300 PMCID: PMC5598950 DOI: 10.1371/journal.pone.0183741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND COPD is a pulmonary disorder often accompanied by cardiovascular disease (CVD), and current treatment of this comorbidity is suboptimal. Systemic inflammation in COPD triggered by smoke and microbial exposure is suggested to link COPD and CVD. Mesenchymal stromal cells (MSC) possess anti-inflammatory capacities and MSC treatment is considered an attractive treatment option for various chronic inflammatory diseases. Therefore, we investigated the immunomodulatory properties of MSC in an acute and chronic model of lipopolysaccharide (LPS)-induced inflammation, emphysema and atherosclerosis development in APOE*3-Leiden (E3L) mice. METHODS Hyperlipidemic E3L mice were intranasally instilled with 10 μg LPS or vehicle twice in an acute 4-day study, or twice weekly during 20 weeks Western-type diet feeding in a chronic study. Mice received 0.5x106 MSC or vehicle intravenously twice after the first LPS instillation (acute study) or in week 14, 16, 18 and 20 (chronic study). Inflammatory parameters were measured in bronchoalveolar lavage (BAL) and lung tissue. Emphysema, pulmonary inflammation and atherosclerosis were assessed in the chronic study. RESULTS In the acute study, intranasal LPS administration induced a marked systemic IL-6 response on day 3, which was inhibited after MSC treatment. Furthermore, MSC treatment reduced LPS-induced total cell count in BAL due to reduced neutrophil numbers. In the chronic study, LPS increased emphysema but did not aggravate atherosclerosis. Emphysema and atherosclerosis development were unaffected after MSC treatment. CONCLUSION These data show that MSC inhibit LPS-induced pulmonary and systemic inflammation in the acute study, whereas MSC treatment had no effect on inflammation, emphysema and atherosclerosis development in the chronic study.
Collapse
Affiliation(s)
- P. Padmini S. J. Khedoe
- Dept. of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
- Dept. of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stan de Kleijn
- Dept. of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemarie M. van Oeveren-Rietdijk
- Dept. of Medicine, Div. of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap J. Plomp
- Dept. of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hetty C. de Boer
- Dept. of Medicine, Div. of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Melissa van Pel
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C. N. Rensen
- Dept. of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jimmy F. P. Berbée
- Dept. of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S. Hiemstra
- Dept. of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
32
|
Mesenchymal Stem Cell Administration in Patients with Chronic Obstructive Pulmonary Disease: State of the Science. Stem Cells Int 2017; 2017:8916570. [PMID: 28303154 PMCID: PMC5337878 DOI: 10.1155/2017/8916570] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/22/2017] [Indexed: 01/10/2023] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) have chronic, irreversible airway inflammation; currently, there is no effective or curative treatment and the main goals of COPD management are to mitigate symptoms and improve patients' quality of life. Stem cell based therapy offers a promising therapeutic approach that has shown potential in diverse degenerative lung diseases. Preclinical studies have demonstrated encouraging outcomes of mesenchymal stem/stromal cells (MSCs) therapy for lung disorders including emphysema, bronchopulmonary dysplasia, fibrosis, and acute respiratory distress syndrome. This review summarizes available data on 15 studies currently registered by the ClinicalTrials.gov repository, which used different stem cell therapy protocols for COPD; these included bone marrow mononuclear cells (BMMCs), bone marrow-derived MSCs, adipose-derived stem/stromal cells (ADSCs), and adipose-derived MSCs. Published results of three trials indicate that administering BMMCs or MSCs in the setting of degenerative lung disease is safe and may improve patients' condition and quality of life; however, larger-scale studies are needed to evaluate efficacy. Results of another completed trial (NCT01872624) are not yet published, and eleven other studies are ongoing; these include MSCs therapy in emphysema, several studies of ADSCs in COPD, another in idiopathic pulmonary fibrosis, and plerixafor mobilization of CD117 stem cells to peripheral blood.
Collapse
|
33
|
Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway. Exp Mol Med 2017; 49:e284. [PMID: 28082743 PMCID: PMC5291836 DOI: 10.1038/emm.2016.127] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 12/23/2022] Open
Abstract
Cell therapy using stem cells has produced therapeutic benefits in animal models of COPD. Secretory mediators are proposed as one mechanism for stem cell effects because very few stem cells engraft after injection into recipient animals. Recently, nanovesicles that overcome the disadvantages of natural exosomes have been generated artificially from cells. We generated artificial nanovesicles from adipose-derived stem cells (ASCs) using sequential penetration through polycarbonate membranes. ASC-derived artificial nanovesicles displayed a 100 nm-sized spherical shape similar to ASC-derived natural exosomes and expressed both exosomal and stem cell markers. The proliferation rate of lung epithelial cells was increased in cells treated with ASC-derived artificial nanovesicles compared with cells treated with ASC-derived natural exosomes. The lower dose of ASC-derived artificial nanovesicles had similar regenerative capacity compared with a higher dose of ASCs and ASC-derived natural exosomes. In addition, FGF2 levels in the lungs of mice treated with ASC-derived artificial nanovesicles were increased. The uptake of ASC-derived artificial nanovesicles was inhibited by heparin, which is a competitive inhibitor of heparan sulfate proteoglycan that is associated with FGF2 signaling. Taken together, the data indicate that lower doses of ASC-derived artificial nanovesicles may have beneficial effects similar to higher doses of ASCs or ASC-derived natural exosomes in an animal model with emphysema, suggesting that artificial nanovesicles may have economic advantages that warrant future clinical studies.
Collapse
|
34
|
Urbanek K, De Angelis A, Spaziano G, Piegari E, Matteis M, Cappetta D, Esposito G, Russo R, Tartaglione G, De Palma R, Rossi F, D’Agostino B. Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model. PLoS One 2016; 11:e0158746. [PMID: 27434719 PMCID: PMC4951036 DOI: 10.1371/journal.pone.0158746] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/21/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The need for new options for chronic lung diseases promotes the research on stem cells for lung repair. Bone marrow-derived mesenchymal stem cells (MSCs) can modulate lung inflammation, but the data on cellular processes involved in early airway remodeling and the potential involvement of neuropeptides are scarce. OBJECTIVES To elucidate the mechanisms by which local administration of MSCs interferes with pathophysiological features of airway hyperresponsiveness in an animal model. METHODS GFP-tagged mouse MSCs were intratracheally delivered in the ovalbumin mouse model with subsequent functional tests, the analysis of cytokine levels, neuropeptide expression and histological evaluation of MSCs fate and airway pathology. Additionally, MSCs were exposed to pro-inflammatory factors in vitro. RESULTS Functional improvement was observed after MSC administration. Although MSCs did not adopt lung cell phenotypes, cell therapy positively affected airway remodeling reducing the hyperplastic phase of the gain in bronchial smooth muscle mass, decreasing the proliferation of epithelium in which mucus metaplasia was also lowered. Decrease of interleukin-4, interleukin-5, interleukin-13 and increase of interleukin-10 in bronchoalveolar lavage was also observed. Exposed to pro-inflammatory cytokines, MSCs upregulated indoleamine 2,3-dioxygenase. Moreover, asthma-related in vivo upregulation of pro-inflammatory neurokinin 1 and neurokinin 2 receptors was counteracted by MSCs that also determined a partial restoration of VIP, a neuropeptide with anti-inflammatory properties. CONCLUSION Intratracheally administered MSCs positively modulate airway remodeling, reduce inflammation and improve function, demonstrating their ability to promote tissue homeostasis in the course of experimental allergic asthma. Because of a limited tissue retention, the functional impact of MSCs may be attributed to their immunomodulatory response combined with the interference of neuropeptide system activation and tissue remodeling.
Collapse
MESH Headings
- Animals
- Bronchoalveolar Lavage Fluid/chemistry
- Bronchoalveolar Lavage Fluid/immunology
- Gene Expression
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Interleukin-10/genetics
- Interleukin-10/immunology
- Interleukin-13/genetics
- Interleukin-13/immunology
- Interleukin-4/genetics
- Interleukin-4/immunology
- Interleukin-5/genetics
- Interleukin-5/immunology
- Intubation, Intratracheal
- Lung/immunology
- Lung/pathology
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/immunology
- Mice
- Mice, Inbred BALB C
- Ovalbumin
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/immunology
- Receptors, Neurokinin-2/genetics
- Receptors, Neurokinin-2/immunology
- Respiratory Hypersensitivity/chemically induced
- Respiratory Hypersensitivity/immunology
- Respiratory Hypersensitivity/pathology
- Respiratory Hypersensitivity/therapy
Collapse
Affiliation(s)
- Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
- * E-mail: (AA); (BA)
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Elena Piegari
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Maria Matteis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Grazia Esposito
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Rosa Russo
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Gioia Tartaglione
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Raffaele De Palma
- Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Bruno D’Agostino
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
- * E-mail: (AA); (BA)
| |
Collapse
|
35
|
Liu X, Fang Q, Kim H. Preclinical Studies of Mesenchymal Stem Cell (MSC) Administration in Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0157099. [PMID: 27280283 PMCID: PMC4900582 DOI: 10.1371/journal.pone.0157099] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In the last two decades, mesenchymal stem cells (MSCs) have been pre-clinically utilized in the treatment of a variety of kinds of diseases including chronic obstructive pulmonary disease (COPD). The aim of the current study was to systematically review and conduct a meta-analysis on the published pre-clinical studies of MSC administration in the treatment of COPD in animal models. METHODS AND RESULTS A systematic search of electronic databases was performed. Statistical analysis was performed using the Comprehensive Meta-Analysis software (Version 3). The pooled Hedges's g with 95% confidence intervals (95% CIs) was adopted to assess the effect size. Random effect model was used due to the heterogeneity between the studies. A total of 20 eligible studies were included in the current systematic review. The overall meta-analysis showed that MSC administration was significantly in favor of attenuating acute lung injury (Hedges's g = -2.325 ± 0.145 with 95% CI: -2.609 ~ -2.040, P < 0.001 for mean linear intercept, MLI; Hedges's g = -3.488 ± 0.504 with 95% CI: -4.476 ~ -2.501, P < 0.001 for TUNEL staining), stimulating lung tissue repair (Hedges's g = 3.249 ± 0.586 with 95% CI: 2.103~ 4.394, P < 0.001) and improving lung function (Hedges's g = 2.053 ± 0.408 with 95% CI: 1.253 ~ 2.854, P< 0.001). The mechanism of MSC therapy in COPD is through ameliorating airway inflammation (Hedges's g = -2.956 ± 0.371 with 95% CI: -3.683 ~ -2.229, P< 0.001) and stimulating cytokine synthesis that involves lung tissue repair (Hedges's g = 3.103 ± 0.734 with 95% CI: 1.664 ~ 4.541, P< 0.001). CONCLUSION This systematic review and meta-analysis suggest a promising role for MSCs in COPD treatment. Although the COPD models may not truly mimic COPD patients, these pre-clinical studies demonstrate that MSC hold promise in the treatment of chronic lung diseases including COPD. The mechanisms of MSCs role in preclinical COPD treatment may be associated with attenuating airway inflammation as well as stimulating lung tissue repair.
Collapse
Affiliation(s)
- Xiangde Liu
- Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Qiuhong Fang
- Department of Pulmonary and Critical Care, Beijing Chaoyang Hospital, The Capital Medical University, Beijing, China
| | - Huijung Kim
- Pulmonary and Critical Care Division, WonKwang University, Sanbon Medical Center, Seoul, Korea
- * E-mail:
| |
Collapse
|
36
|
Lazaar AL, Yang L, Boardley RL, Goyal NS, Robertson J, Baldwin SJ, Newby DE, Wilkinson IB, Tal‐Singer R, Mayer RJ, Cheriyan J. Pharmacokinetics, pharmacodynamics and adverse event profile of GSK2256294, a novel soluble epoxide hydrolase inhibitor. Br J Clin Pharmacol 2016; 81:971-9. [PMID: 26620151 PMCID: PMC4834590 DOI: 10.1111/bcp.12855] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/25/2022] Open
Abstract
AIMS Endothelial-derived epoxyeicosatrienoic acids may regulate vascular tone and are metabolized by soluble epoxide hydrolase enzymes (sEH). GSK2256294 is a potent and selective sEH inhibitor that was tested in two phase I studies. METHODS Single escalating doses of GSK2256294 2-20 mg or placebo were administered in a randomized crossover design to healthy male subjects or obese smokers. Once daily doses of 6 or 18 mg or placebo were administered for 14 days to obese smokers. Data were collected on safety, pharmacokinetics, sEH enzyme inhibition and blood biomarkers. Single doses of GSK2256294 10 mg were also administered to healthy younger males or healthy elderly males and females with and without food. Data on safety, pharmacokinetics and biliary metabolites were collected. RESULTS GSK2256294 was well-tolerated with no serious adverse events (AEs) attributable to the drug. The most frequent AEs were headache and contact dermatitis. Plasma concentrations of GSK2256294 increased with single doses, with a half-life averaging 25-43 h. There was no significant effect of age, food or gender on pharmacokinetic parameters. Inhibition of sEH enzyme activity was dose-dependent, from an average of 41.9% on 2 mg (95% confidence interval [CI] -51.8, 77.7) to 99.8% on 20 mg (95% CI 99.3, 100.0) and sustained for up to 24 h. There were no significant changes in serum VEGF or plasma fibrinogen. CONCLUSIONS GSK2256294 was well-tolerated and demonstrated sustained inhibition of sEH enzyme activity. These data support further investigation in patients with endothelial dysfunction or abnormal tissue repair, such as diabetes, wound healing or COPD.
Collapse
Affiliation(s)
| | - Lucy Yang
- Experimental Medicine & Immunotherapeutics, Department of MedicineUniversity of Cambridge, and Cambridge Clinical Trials UnitCambridge
| | | | | | | | | | - David E. Newby
- University Centre for Cardiovascular Science, University of EdinburghEdinburghUK
| | - Ian B. Wilkinson
- Experimental Medicine & Immunotherapeutics, Department of MedicineUniversity of Cambridge, and Cambridge Clinical Trials UnitCambridge
| | | | | | - Joseph Cheriyan
- Experimental Medicine & Immunotherapeutics, Department of MedicineUniversity of Cambridge, and Cambridge Clinical Trials UnitCambridge
- GSK R&DStevenageCambridge and Ware
- Cambridge University Hospitals NHS Foundation TrustCambridge and
| |
Collapse
|
37
|
Pirzad Jahromi G, Shabanzadeh Pirsaraei A, Sadr SS, Kaka G, Jafari M, Seidi S, Charish J. Multipotent bone marrow stromal cell therapy promotes endogenous cell proliferation following ischemic stroke. Clin Exp Pharmacol Physiol 2016. [PMID: 26218989 DOI: 10.1111/1440-1681.12466] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite extensive research over the years, there still exists some debate as to what constitutes the optimal therapeutic strategy to promote recovery following stroke. Due to the complexity of injured brain pathophysiology, treatment approaches should ideally address numerous factors, ultimately aiming to promote tissue protection, axonal regrowth and functional recovery. This study extends the understanding of the effects of bone marrow stromal cell (BMSC) treatment following experimentally induced ischemic stroke in rats. Focal ischemic brain injury was experimentally induced in rats by placing a preformed clot into the middle cerebral artery. Animals were injected intravenously with BMSCs at 24 h after stroke and were killed 7 days post injury. When administered BMSCs following stroke, the neurological outcome was significantly improved relative to controls. There was an increase in the number of BMSCs labelled with BrdU present in the injured hemisphere of the brain compared to the non-injured side. Furthermore, administration of BMSCs also led to increases in astrocytosis, vascularization and endogenous proliferation. These findings provide insight into the mechanisms of action of BMSC treatment and further argue for the therapeutic potential of BMSCs as an effective treatment following cerebral stroke.
Collapse
Affiliation(s)
- Gila Pirzad Jahromi
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shabanzadeh Pirsaraei
- Electrophysiology Research Centre, Neuroscience Institute, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Genetics and Development Division, Toronto Western Research Institute, Toronto, ON, Canada
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Centre, Neuroscience Institute, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Golamreza Kaka
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahvash Jafari
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Seidi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jason Charish
- Genetics and Development Division, Toronto Western Research Institute, Toronto, ON, Canada
| |
Collapse
|
38
|
Hua J, Qian DH, Song ZS. Mesenchymal stem cell transplantation for treatment of digestive diseases. Shijie Huaren Xiaohua Zazhi 2015; 23:5263-5268. [DOI: 10.11569/wcjd.v23.i33.5263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Treatment of diseases using mesenchymal stem cells (MSCs) has gained great breakthrough with the discovery of properties of MSCs since 1990s. So far, MSC transplantation in the treatment of digestive tract diseases is mainly focused on hepatic cirrhosis, liver failure, acute or chronic pancreatitis, inflammatory bowel disease and digestive tumors. In the current editorial, we rely primarily on the existing evidence to gain a comprehensive perspective toward this area.
Collapse
|
39
|
Reactive Oxygen Species in Mesenchymal Stem Cell Aging: Implication to Lung Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:486263. [PMID: 26273422 PMCID: PMC4529978 DOI: 10.1155/2015/486263] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/15/2015] [Accepted: 05/01/2015] [Indexed: 12/13/2022]
Abstract
MSCs have become an emerging cell source with their immune modulation, high proliferation rate, and differentiation potential; indeed, they have been challenged in clinical trials. Recently, it has shown that ROS play a dual role as both deleterious and beneficial species depending on their concentration in MSCs. Various environmental stresses-induced excessive production of ROS triggers cellular senescence and abnormal differentiation on MSCs. Moreover, MSCs have been suggested to participate in the treatment of ALI/ARDS and COPD as a major cause of high morbidity and mortality. Therapeutic mechanisms of MSCs in the treatment of ARDS/COPD were focused on cell engraftment and paracrine action. However, ROS-mediated therapeutic mechanisms of MSCs still remain largely unknown. Here, we review the key factors associated with cell cycle and chromatin remodeling to accelerate or delay the MSC aging process. In addition, the enhanced ROS production and its associated pathophysiological pathways will be discussed along with the MSC senescence process. Furthermore, the present review highlights how the excessive amount of ROS-mediated oxidative stress might interfere with homeostasis of lungs and residual lung cells in the pathogenesis of ALI/ARDS and COPD.
Collapse
|
40
|
Jin Z, Pan X, Zhou K, Bi H, Wang L, Yu L, Wang Q. Biological effects and mechanisms of action of mesenchymal stem cell therapy in chronic obstructive pulmonary disease. J Int Med Res 2015; 43:303-10. [PMID: 25834280 DOI: 10.1177/0300060514568733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the most frequent chronic respiratory disease and a leading cause of morbidity and mortality, worldwide. Given that the foremost risk factor leading to the development of COPD is cigarette smoke, the initial treatment for COPD is smoking cessation. Even after smoking cessation, inflammation, apoptosis and oxidative stress can persist and continue to contribute to COPD. Although current therapies for COPD (which are primarily based on anti-inflammatory drugs such as corticosteroids, theophylline and bronchodilators) reduce airway obstruction, limit COPD exacerbation and improve the patient's health-related quality-of-life, none can prevent disease progression or reduce mortality. Recent advances in stem cell research have provided novel insight into the potential of bone marrow mesenchymal stem cells (MSCs) in the treatment of several pulmonary diseases. This review article discusses the biological effects and mechanisms of action of MSC transplantation in COPD, and highlights the foundation that MSCs provide for novel therapeutic approaches in COPD.
Collapse
Affiliation(s)
- Zhixian Jin
- Second Department of Respiratory Medicine, The First People's Hospital of Kunming, Kunming, Yunnan Province, China
| | - Xinghua Pan
- Stem Cell Engineering Laboratory of Yunnan Province, Department of Clinical Research, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Kaihua Zhou
- Second Department of Respiratory Medicine, The First People's Hospital of Kunming, Kunming, Yunnan Province, China
| | - Hong Bi
- Second Department of Respiratory Medicine, The First People's Hospital of Kunming, Kunming, Yunnan Province, China
| | - Liyan Wang
- Second Department of Respiratory Medicine, The First People's Hospital of Kunming, Kunming, Yunnan Province, China
| | - Lu Yu
- Department of Pathology, The First People's Hospital of Kunming, Kunming, Yunnan Province, China
| | - Qing Wang
- Second Department of Respiratory Medicine, The First People's Hospital of Kunming, Kunming, Yunnan Province, China
| |
Collapse
|
41
|
Microencapsulated human mesenchymal stem cells decrease liver fibrosis in mice. J Hepatol 2015; 62:634-41. [PMID: 25450712 DOI: 10.1016/j.jhep.2014.10.030] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Mesenchymal stem cell (MSC) transplantation was shown to be effective for the treatment of liver fibrosis, but the mechanisms of action are not yet fully understood. We transplanted encapsulated human MSCs in two mouse models of liver fibrosis to determine the mechanisms behind the protective effect. METHODS Human bone marrow-derived MSCs were microencapsulated in novel alginate-polyethylene glycol microspheres. In vitro, we analyzed the effect of MSC-conditioned medium on the activation of hepatic stellate cells and the viability, proliferation, cytokine secretion, and differentiation capacity of encapsulated MSCs. The level of fibrosis induced by bile duct ligation (BDL) or carbon tetrachloride (CCl4) was assessed after intraperitoneal transplantation of encapsulated MSCs, encapsulated human fibroblasts, and empty microspheres. RESULTS MSC-conditioned medium inhibited hepatic stellate cell activation and release of MSC secreted anti-apoptotic (IL-6, IGFBP-2) and anti-inflammatory (IL-1Ra) cytokines. Viability, proliferation, and cytokine secretion of microencapsulated MSCs were similar to those of non-encapsulated MSCs. Within the microspheres, MSCs maintained their capacity to differentiate into adipocytes, chondrocytes, and osteocytes. 23% (5/22) of the MSC clones were able to produce anti-inflammatory IL-1Ra in vitro. Microencapsulated MSCs significantly delayed the development of BDL- and CCl4-induced liver fibrosis. Fibroblasts had an intermediate effect against CCl4-induced fibrosis. Mice transplanted with encapsulated MSCs showed lower mRNA levels of collagen type I, whereas levels of matrix metalloproteinase 9 were significantly higher. Human IL-1Ra was detected in the serum of 36% (4/11) of the mice transplanted with microencapsulated MSCs. CONCLUSIONS MSC-derived soluble molecules are responsible for an anti-fibrotic effect in experimental liver fibrosis.
Collapse
|
42
|
Antunes MA, Laffey JG, Pelosi P, Rocco PRM. Mesenchymal stem cell trials for pulmonary diseases. J Cell Biochem 2014; 115:1023-32. [PMID: 24515922 DOI: 10.1002/jcb.24783] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/06/2014] [Indexed: 01/12/2023]
Abstract
All adult tissues, including the lung, have some capacity to self-repair or regenerate through the replication and differentiation of stem cells resident within these organs. While lung resident stem cells are an obvious candidate cell therapy for lung diseases, limitations exist regarding our knowledge of the biology of these cells. In contrast, there is considerable interest in the therapeutic potential of exogenous cells, particularly mesenchymal stem/stromal cells (MSCs), for lung diseases. Bone marrow derived-MSCs are the most studied cell therapy for these diseases. Preclinical studies demonstrate promising results using MSCs for diverse lung disorders, including emphysema, bronchopulmonary dysplasia, fibrosis, and acute respiratory distress syndrome. This mini-review will summarize ongoing clinical trials using MSCs in lung diseases, critically examine the data supporting their use for this purpose, and discuss the next steps in the translational pathway for MSC therapy of lung diseases.
Collapse
Affiliation(s)
- Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
43
|
Lipsi R, Rogliani P, Calzetta L, Segreti A, Cazzola M. The clinical use of regenerative therapy in COPD. Int J Chron Obstruct Pulmon Dis 2014; 9:1389-96. [PMID: 25548520 PMCID: PMC4271722 DOI: 10.2147/copd.s49519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regenerative or stem cell therapy is an emerging field of treatment based on stimulation of endogenous resident stem cells or administration of exogenous stem cells to treat diseases or injury and to replace malfunctioning or damaged tissues. Current evidence suggests that in the lung, these cells may participate in tissue homeostasis and regeneration after injury. Animal and human studies have demonstrated that tissue-specific stem cells and bone marrow-derived cells contribute to lung tissue regeneration and protection, and thus administration of exogenous stem/progenitor cells or humoral factors responsible for the activation of endogenous stem/progenitor cells may be a potent next-generation therapy for chronic obstructive pulmonary disease. The use of bone marrow-derived stem cells could allow repairing and regenerate the damaged tissue present in chronic obstructive pulmonary disease by means of their engraftment into the lung. Another approach could be the stimulation of resident stem cells by means of humoral factors or photobiostimulation.
Collapse
Affiliation(s)
- Roberto Lipsi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luigino Calzetta
- Department of Pulmonary Rehabilitation, San Raffaele Pisana Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Segreti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Cazzola
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
44
|
Li Y, Gu C, Xu W, Yan J, Xia Y, Ma Y, Chen C, He X, Tao H. Therapeutic effects of amniotic fluid-derived mesenchymal stromal cells on lung injury in rats with emphysema. Respir Res 2014; 15:120. [PMID: 25319435 PMCID: PMC4201761 DOI: 10.1186/s12931-014-0120-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/30/2014] [Indexed: 11/15/2022] Open
Abstract
Background In chronic obstructive pulmonary disease (COPD), two major pathological changes that occur are the loss of alveolar structure and airspace enlargement. To treat COPD, it is crucial to repair damaged lung tissue and regenerate the lost alveoli. Type II alveolar epithelial cells (AECII) play a vital role in maintaining lung tissue repair, and amniotic fluid-derived mesenchymal stromal cells (AFMSCs) possess the characteristics of regular mesenchymal stromal cells. However, it remains untested whether transplantation of rat AFMSCs (rAFMSCs) might alleviate lung injury caused by emphysema by increasing the expression of surfactant protein (SP)A and SPC and inhibiting AECII apoptosis. Methods We analyzed the phenotypic characteristics, differentiation potential, and karyotype of rAFMSCs, which were isolated from pregnant Sprague–Dawley rats. Moreover, we examined the lung morphology and the expression levels of SPA and SPC in rats with emphysema after cigarette-smoke exposure and intratracheal lipopolysaccharide instillation and rAFMSC transplantation. The ability of rAFMSCs to differentiate was measured, and the apoptosis of AECII was evaluated. Results In rAFMSCs, the surface antigens CD29, CD44, CD73, CD90, CD105, and CD166 were expressed, but CD14, CD19, CD34, and CD45 were not detected; rAFMSCs also strongly expressed the mRNA of octamer-binding transcription factor 4, and the cells could be induced to differentiate into adipocytes and osteocytes. Furthermore, rAFMSC treatment up-regulated the levels of SPA, SPC, and thyroid transcription factor 1 and inhibited AECII apoptosis, and rAFMSCs appeared to be capable of differentiating into AECII-like cells. Lung injury caused by emphysema was alleviated after rAFMSC treatment. Conclusions rAFMSCs might differentiate into AECII-like cells or induce local regeneration of the lung alveolar epithelium in vivo after transplantation and thus could be used in COPD treatment and lung regenerative therapy.
Collapse
Affiliation(s)
- Yaqing Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, No, 158, Shangtang Road, Hangzhou 310014, Zhejiang, P,R, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Infusion of bone marrow mononuclear cells reduces lung fibrosis but not inflammation in the late stages of murine silicosis. PLoS One 2014; 9:e109982. [PMID: 25299237 PMCID: PMC4192548 DOI: 10.1371/journal.pone.0109982] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/15/2014] [Indexed: 01/11/2023] Open
Abstract
We hypothesized that infusion of bone marrow mononuclear cells (BMMCs) in the late stages of silica-induced damage would reduce the remodelling process in a murine model of silicosis. C57BL/6 mice were assigned to 2 groups. In the SIL group, mice were instilled with a silica particle suspension intratracheally. Control (C) mice received saline under the same protocol. On the 40th day, some of the animals from both groups were killed. The others were treated with either saline or BMMCs (1×106cells) intravenously (C+BMMC and SIL+BMMC), and the mice were killed 70 days after the start of the protocol. In the mice in the SIL+BMMC group, collagen deposition, the presence of silica particles inside nodules, the presence of macrophages and cells reactive for inducible nitric oxide synthase were reduced. Lung parameters also improved. Beyond that, the total and differential cellularity of bronchoalveolar lavage fluid, immunoexpression of transforming growth factor-β, the number of T regulatory cells and apoptosis were increased. However, the presence of male donor cells in lung tissue was not observed using GFP+ cells (40d) or Y chromosome DNA (70d). Therefore, BMMC therapy in the late stages of experimental silicosis improved lung function by diminishing fibrosis but inflammatory cells persisted, which could be related to expansion of T regulatory cells, responsible for the beneficial effects of cell therapy.
Collapse
|
46
|
Antunes MA, Abreu SC, Cruz FF, Teixeira AC, Lopes-Pacheco M, Bandeira E, Olsen PC, Diaz BL, Takyia CM, Freitas IPRG, Rocha NN, Capelozzi VL, Xisto DG, Weiss DJ, Morales MM, Rocco PRM. Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respir Res 2014; 15:118. [PMID: 25272959 PMCID: PMC4189723 DOI: 10.1186/s12931-014-0118-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/25/2014] [Indexed: 12/26/2022] Open
Abstract
We sought to assess whether the effects of mesenchymal stromal cells (MSC) on lung inflammation and remodeling in experimental emphysema would differ according to MSC source and administration route. Emphysema was induced in C57BL/6 mice by intratracheal (IT) administration of porcine pancreatic elastase (0.1 UI) weekly for 1 month. After the last elastase instillation, saline or MSCs (1×105), isolated from either mouse bone marrow (BM), adipose tissue (AD) or lung tissue (L), were administered intravenously (IV) or IT. After 1 week, mice were euthanized. Regardless of administration route, MSCs from each source yielded: 1) decreased mean linear intercept, neutrophil infiltration, and cell apoptosis; 2) increased elastic fiber content; 3) reduced alveolar epithelial and endothelial cell damage; and 4) decreased keratinocyte-derived chemokine (KC, a mouse analog of interleukin-8) and transforming growth factor-β levels in lung tissue. In contrast with IV, IT MSC administration further reduced alveolar hyperinflation (BM-MSC) and collagen fiber content (BM-MSC and L-MSC). Intravenous administration of BM- and AD-MSCs reduced the number of M1 macrophages and pulmonary hypertension on echocardiography, while increasing vascular endothelial growth factor. Only BM-MSCs (IV > IT) increased the number of M2 macrophages. In conclusion, different MSC sources and administration routes variably reduced elastase-induced lung damage, but IV administration of BM-MSCs resulted in better cardiovascular function and change of the macrophage phenotype from M1 to M2.
Collapse
Affiliation(s)
- Mariana A Antunes
- />Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão – 21941-902, Rio de Janeiro, RJ Brazil
| | - Soraia C Abreu
- />Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão – 21941-902, Rio de Janeiro, RJ Brazil
| | - Fernanda F Cruz
- />Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão – 21941-902, Rio de Janeiro, RJ Brazil
| | - Ana Clara Teixeira
- />Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão – 21941-902, Rio de Janeiro, RJ Brazil
| | - Miquéias Lopes-Pacheco
- />Laboratory of Cellular and Molecular Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elga Bandeira
- />Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão – 21941-902, Rio de Janeiro, RJ Brazil
- />Laboratory of Cellular and Molecular Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscilla C Olsen
- />Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão – 21941-902, Rio de Janeiro, RJ Brazil
| | - Bruno L Diaz
- />Laboratory of Inflammation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina M Takyia
- />Laboratory of Cellular Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isalira PRG Freitas
- />Laboratory of Cellular and Molecular Cardiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Vera L Capelozzi
- />Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Débora G Xisto
- />Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão – 21941-902, Rio de Janeiro, RJ Brazil
- />Laboratory of Cellular and Molecular Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel J Weiss
- />Department of Medicine, University of Vermont, Vermont, USA
| | - Marcelo M Morales
- />Laboratory of Cellular and Molecular Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia RM Rocco
- />Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão – 21941-902, Rio de Janeiro, RJ Brazil
| |
Collapse
|
47
|
Li B, Zhang H, Zeng M, He W, Li M, Huang X, Deng DYB, Wu J. Bone marrow mesenchymal stem cells protect alveolar macrophages from lipopolysaccharide-induced apoptosis partially by inhibiting the Wnt/β-catenin pathway. Cell Biol Int 2014; 39:192-200. [PMID: 25229877 DOI: 10.1002/cbin.10359] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/01/2014] [Indexed: 12/30/2022]
Abstract
Apoptosis of alveolar macrophages (AMs) plays a pathogenic role in acute lung injury (ALI) and its severe type, acute respiratory distress syndrome (ARDS). Mesenchymal stem cells (MSCs) are promising therapeutic cells for preventing apoptosis and eliminating cellular injury. We investigated the effects of rat bone marrow mesenchymal stem cells (BMSCs) on lipopolysaccharide (LPS)-induced apoptosis in AMs using transwell experiments, and examined the underlying mechanisms LPS induced AMs apoptosis in a dose- and time-dependent fashion, whereas BMSCs reduced AMs apoptosis when co-cultured at appropriate ratios. BMSCs decreased expression of cleaved caspase-3 and the pro-apoptotic protein, Bax, whilst increased levels of the anti-apoptotic protein, Bcl-2, prolonging the lifespan of AMs in vitro. Promotion of AMs survival by BMSCs required down-regulation of p-GSK-3β and β-catenin in AMs. The anti-apoptosis action of BMSCs was reversed by SB216763, a specific inhibitor of GSK-3β that also activates Wnt/β-catenin signaling. In conclusion, BMSCs can attenuate AM apoptosis partially by suppressing the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Bin Li
- Department of MICU, The First Affiliated Hospital, Sun Yat-Sen University, 58# Zhongshan 2nd Road, Guangzhou, 510080, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wittwer T, Rahmanian P, Choi YH, Zeriouh M, Karavidic S, Neef K, Christmann A, Piatkowski T, Schnapper A, Ochs M, Mühlfeld C, Wahlers T. Mesenchymal stem cell pretreatment of non-heart-beating-donors in experimental lung transplantation. J Cardiothorac Surg 2014; 9:151. [PMID: 25179441 PMCID: PMC4169637 DOI: 10.1186/s13019-014-0151-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/18/2014] [Indexed: 12/30/2022] Open
Abstract
Background Lung transplantation (LTx) is still limited by organ shortage. To expand the donor pool, lung retrieval from non-heart-beating donors (NHBD) was introduced into clinical practice recently. However, primary graft dysfunction with inactivation of endogenous surfactant due to ischemia/reperfusion-injury is a major cause of early mortality. Furthermore, donor-derived human mesenchymal stem cell (hMSC) expansion and fibrotic differentiation in the allograft results in bronchiolitis obliterans syndrome (BOS), a leading cause of post-LTx long-term mortality. Therefore, pretreatment of NHBD with recipient-specific bone-marrow-(BM)-derived hMSC might have the potential to both improve the postischemic allograft function and influence the long-term development of BOS by the numerous paracrine, immunomodulating and tissue-remodeling properties especially on type-II-pneumocytes of hMSC. Methods Asystolic pigs (n = 5/group) were ventilated for 3 h of warm ischemia (groups 2–4). 50x106 mesenchymal-stem-cells (MSC) were administered in the pulmonary artery (group 3) or nebulized endobronchially (group 4) before lung preservation. Following left-lung-transplantation, grafts were reperfused, pulmonary-vascular-resistance (PVR), oxygenation and dynamic-lung-compliance (DLC) were monitored and compared to control-lungs (group 2) and sham-controls (group 1). To prove and localize hMSC in the lung, cryosections were counter-stained. Intra-alveolar edema was determined stereologically. Statistics comprised ANOVA with repeated measurements. Results Oxygenation (p = 0.001) and PVR (p = 0.009) following endovascular application of hMSC were significantly inferior compared to Sham controls, whereas DLC was significantly higher in endobronchially pretreated lungs (p = 0.045) with overall sham-comparable outcome regarding oxygenation and PVR. Stereology revealed low intrapulmonary edema in all groups (p > 0.05). In cryosections of both unreperfused and reperfused grafts, hMSC were localized in vessels of alveolar septa (endovascular application) and alveolar lumen (endobronchial application), respectively. Conclusions Preischemic deposition of hMSC in donor lungs is feasible and effective, and endobronchial application is associated with significantly better DLC as compared to sham controls. In contrast, transvascular hMSC delivery results in inferior oxygenation and PVR. In the long term perspective, due to immunomodulatory, paracrine and tissue-remodeling effects on epithelial and endothelial restitution, an endobronchial NHBD allograft-pretreatment with autologous mesenchymal-stem-cells to attenuate limiting bronchiolitis-obliterans-syndrome in the long-term perspective might be promising in clinical lung transplantation. Subsequent work with chronic experiments is initiated to further elucidate this important field. Electronic supplementary material The online version of this article (doi:10.1186/s13019-014-0151-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thorsten Wittwer
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Kerpener Strasse 61, Cologne, 50924, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Song L, Guan XJ, Chen X, Cui ZL, Han FF, Guo XJ, Xu WG. Mesenchymal stem cells reduce cigarette smoke-induced inflammation and airflow obstruction in rats via TGF-β1 signaling. COPD 2014; 11:582-90. [PMID: 24766333 DOI: 10.3109/15412555.2014.898032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cigarette smoke has been shown to cause chronic inflammation of the lungs, eventually leading to chronic obstructive pulmonary disease (COPD). Additionally, recent studies have suggested that mesenchymal stem cells (MSCs) can mediate local inflammatory responses in the lungs. Thus, the aim of the present study was to test the effects of rat MSCs (rMSCs) on inflammation of the lungs and destructive pulmonary function induced by cigarette smoke in rats. Rats were exposed to cigarette smoke for 7 weeks. rMSCs were cultured in vitro and infused intratracheally into cigarette smoke-exposed rats. The total and differential cell counts in the bronchoalveolar lavage fluid (BALF), histological changes, pro-inflammatory cytokines, transforming growth factor-β1 (TGF-β1) expression, and pulmonary function were evaluated. Additionally, human peripheral blood mononuclear cells and human MSCs were cocultured in vitro to detect cytokines and TGF-β1 levels. We found that rMSC administration resulted in downregulation of pro-inflammatory cytokines in the lungs while increasing TGF-β1 expression, reducing total inflammatory cell numbers in the BALF, and improving pulmonary histopathology and airflow obstruction. Coculture revealed that human MSCs mediated an anti-inflammatory effect partly via upregulation of TGF-β1. These findings suggested that MSCs may have therapeutic potential in cigarette smoke-induced inflammation and airflow obstruction, partly via upregulation of TGF-β1.
Collapse
Affiliation(s)
- Lin Song
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200092 , China
| | | | | | | | | | | | | |
Collapse
|
50
|
|