1
|
Stutz C, Fontão APGA, Silva GWDSE, Seito LN, Perdomo RT, Sampaio ALF. Betulinic Acid Acts in Synergism with Imatinib Mesylate, Triggering Apoptosis in MDR Leukemia Cells. PLANTA MEDICA 2025; 91:19-28. [PMID: 39395407 DOI: 10.1055/a-2440-4847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease, characterized by the presence of the oncogene BCR-ABL. Imatinib mesylate (IMA) is the first-line treatment for CML, and some treatment resistance has been reported. Natural products are rich sources of bioactive compounds with biological effects, opening a possibility to alter cell susceptibility to drugs such as imatinib. Herein, we evaluated the interference of betulinic acid and ursolic acid in glycoprotein P (P-gp) activity and the possible synergistic effect when associated with IMA by the Chou-Talalay method. Ursolic acid presented an IC50 of 14.0 µM and 19.6 µM for K562 and Lucena 1, respectively, whilst betulinic acid presented an IC50 of 8.6 µM and 12.5 µM for these cell lines. Evaluation of the combination of terpenoids and imatinib mesylate revealed that ursolic acid or betulinic acid acts in synergism with IMA, as indicated by the combination indexes (CI<1). Analysis of annexin V labeling demonstrated that a combination of IMA with betulinic acid enhances the inhibition on cell proliferation via the apoptosis pathway, with caspases 3/7 activation after 24 hours of treatment and inhibition of the STAT5/survivin pathway, decreasing cell viability. The combination of natural products and IMA on a multidrug-resistant leukemia cell line is a promising strategy for CML treatment.
Collapse
Affiliation(s)
- Claudia Stutz
- Fundação Oswaldo Cruz, Eusébio, CE, Brasil
- Fundação Oswaldo Cruz, Campo Grande, MS, Brasil
| | | | | | - Leonardo Noboru Seito
- Laboratório de Farmacologia Aplicada, Instituto de Tecnologia em Fármacos; Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Renata Trentin Perdomo
- Laboratório de Biologia Molecular e Culturas Celulares, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição; UFMS, Campo Grande, MS, Brasil
| | - André Luiz Franco Sampaio
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos; Fiocruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Hu J, Li Y, Xie X, Song Y, Yan W, Luo Y, Jiang Y. The therapeutic potential of andrographolide in cancer treatment. Biomed Pharmacother 2024; 180:117438. [PMID: 39298908 DOI: 10.1016/j.biopha.2024.117438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Cancer poses a substantial global health challenge, necessitating the widespread use of chemotherapy and radiotherapy. Despite these efforts, issues like resistance development and severe side effects remain. As such, the search for more effective alternatives is critical. Andrographolide, a naturally occurring compound, has recently gained attention for its extensive biological activities. This review explores the role of andrographolide in cancer therapy, especially focusing on the molecular mechanisms that drive its anti-tumor properties. It also examines innovative methods to enhance andrographolide's bioavailability, thus boosting its effectiveness against cancer. Notably, andrographolide has potential for use in combination with various clinical drugs, and both preclinical and clinical studies provide strong evidence supporting its broader anticancer applications. Additionally, this paper proposes future research directions for andrographolide's anti-cancer effects and discusses the challenges in its clinical usage along with current research efforts to address these issues. In summary, this review underscores andrographolide's potential roles and contributes to the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Jiaxuan Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yi Li
- Department of Anesthesiology, Ganzhou Key Laboratory of Anesthesiology, Ganzhou Key Laboratory of Osteoporosis Research, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yunlei Song
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Wenjing Yan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yumao Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
3
|
Xue L, Carreiro B, Mia MS, Paetau-Robinson I, Khoo C, Neto C. Pentacyclic Triterpenoid Content in Cranberry Raw Materials and Products. Foods 2024; 13:3136. [PMID: 39410168 PMCID: PMC11475460 DOI: 10.3390/foods13193136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Cranberry fruit extracts have been shown to inhibit expression of pro-inflammatory cytokines in THP-1 cells and reduce colonic tumor burden and tissue inflammation in a mouse model of colitis. These activities are attributed to both the triterpenoid and polyphenol constituents of the fruit. The pentacyclic triterpenoids ursolic acid (UA), oleanolic acid (OA), corosolic acid (CA), maslinic acid (MA), and esters of UA and OA occur in the waxy layer of cranberry peel, and their content in cranberry products is likely to vary with the fruit source and processing methods. UPLC-MS (ultra performance liquid chromatography-mass spectrometry) was applied to determine the four triterpenoid acids and their esters in cranberry products and raw materials. Cranberry pomace, a side stream in juice production, was a rich source at 64,090 µg total triterpenoids/g DW. Cranberry juice beverages ranged from 0.018 to 0.26 µg/g of product, fruit samples ranged from 6542 to 17,070 µg/g DW, and whole berry products contained up to 2665 µg/g DW. Free UA was the most plentiful triterpenoid in all samples. These analyses illustrate the potential value of an underutilized side stream in cranberry juice production and highlight potential benefits of whole fruit products.
Collapse
Affiliation(s)
- Liang Xue
- Department of Chemistry and Biochemistry and Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA; (L.X.); (B.C.); (M.S.M.)
| | - Bianca Carreiro
- Department of Chemistry and Biochemistry and Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA; (L.X.); (B.C.); (M.S.M.)
| | - Md Sagir Mia
- Department of Chemistry and Biochemistry and Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA; (L.X.); (B.C.); (M.S.M.)
| | | | - Christina Khoo
- Ocean Spray Cranberries, Inc., Lakeville, MA 02349, USA; (I.P.-R.); (C.K.)
| | - Catherine Neto
- Department of Chemistry and Biochemistry and Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA; (L.X.); (B.C.); (M.S.M.)
| |
Collapse
|
4
|
Di Lorenzo R, Maisto M, Ricci L, Piccolo V, Marzocchi A, Greco G, Tenore GC, Laneri S. Annurca Apple Oleolite as Functional Ingredient for the Formulation of Cosmetics with Skin-Antiaging Activity. Int J Mol Sci 2024; 25:1677. [PMID: 38338954 PMCID: PMC10855134 DOI: 10.3390/ijms25031677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The identification of natural remedies for the management of the skin aging process is an increasingly growing issue. In this context, ursolic acid (UA), a ubiquitous molecule, mainly contained in Annurca apple (AA) fruit, has demonstrated valuable cosmetic potential. To this end, in the current study, the AA oleolite (AAO, extract in sunflower oil containing 784.40 ± 7.579 µg/mL of UA) was evaluated to inhibit porcine elastase enzymatic reactions through a validated spectrophotometric method. AAO has shown a valuable capacity to contrast the elastase enzyme with a calculated IC50 of 212.76 mg/mL, in comparison to UA (IC50 of 135.24 μg/mL) pure molecules and quercetin (IC50 of 72.47 μg/mL) which are used as positive controls. In this context and in view of the valuable antioxidant potential of AAO, its topical formulation with 2.5% (w/w) AAO was tested in a placebo-controlled, double-blind, two-arm clinical study on 40 volunteers. Our results indicated that after 28 days of treatment, a significant reduction of the nasolabial fold (-7.2 vs. baseline T0, p < 0.001) and forehead wrinkles (-5.3 vs. baseline T0, p < 0.001) were registered in combination with a valuable improvement of the viscoelastic skin parameters, where skin pliability/firmness (R0) and gross elasticity (R2) were significantly ameliorated (-13% vs. baseline T0, p < 0.001 for R0 and +12% vs. baseline T0, p < 0.001 for R2). Finally, considering the positive correlation between skin elasticity and hydration, the skin moisture was evaluated through the estimation of Trans epidermal water loss (TEWL) and skin conductance.
Collapse
Affiliation(s)
- Ritamaria Di Lorenzo
- RD Cosmetics, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (L.R.); (G.G.); (S.L.)
| | - Maria Maisto
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (A.M.); (G.C.T.)
| | - Lucia Ricci
- RD Cosmetics, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (L.R.); (G.G.); (S.L.)
| | - Vincenzo Piccolo
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (A.M.); (G.C.T.)
| | - Adua Marzocchi
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (A.M.); (G.C.T.)
| | - Giovanni Greco
- RD Cosmetics, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (L.R.); (G.G.); (S.L.)
| | - Gian Carlo Tenore
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (A.M.); (G.C.T.)
| | - Sonia Laneri
- RD Cosmetics, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (L.R.); (G.G.); (S.L.)
| |
Collapse
|
5
|
Ejaz S, Nasim FUH, Abdullah I, Rashid S, Ashraf M. Analysis of antibacterial and cytotoxic potential of medicinal plants from Cholistan desert, Pakistan. Saudi J Biol Sci 2023; 30:103750. [PMID: 37583872 PMCID: PMC10424204 DOI: 10.1016/j.sjbs.2023.103750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/17/2023] Open
Abstract
This study aimed to investigate the antibacterial and cytotoxic activity of 03 medicinal plants, Calligonum polygonides, Farsetia hamiltonii, and Pulcaria crispa, from Cholistan desert, Pakistan. The active constituents of plants species were extracted in 05 different solvents and the extracts were tested against various bacterial strains and brine shrimps. Although all Calligonum polygonides's extracts except chloroform were active against Staphylococcus aureus the most active was the acetone extract (21 ± 0.00 mm at 200 μg/disc) and activity was better than Caricef (p-value 0.03). While its water extract was more potent (18 ± 1.45 mm at 200 μg/disc) than Augmentin and Caricef (p-value < 0.005). The methanol extract's activity (15 ± 0.39 mm in 200 μg/disc) was comparable to Fucidin against Proteus vulgaris (p-value > 0.99) and activity of diethyl ether extract against Escherichia coli (10 ± 1.16 mm in 200 μg/disc) was same as of Urixin (p-value 0.91). Farsetia hamiltonii's acetone extract against Pseudomonas aeruginosa (10 ± 0.15 mm in 1 μg/disc) was more active than Augmentin Caricef and Cefotax (p-value < 0.02) and against Staphylococcus aureus (15 ± 1.15 mm in 200 μg/disc) activity was higher than Caricef (p-value 0.03). All Pulicaria crispa's extracts except water extract were found active against Staphylococcus aureus. However, the diethyl ether extract was most effective (25 + 0.00 mm at 150 μg /disc) and activity was more than Augmentin, Oxy-tetracycline, Fucidin, Urixin, Ceftriaxone (p-value < 0.05). Although all extracts were exhibited cytotoxic activity, the Calligonum polygonides's acetone extract (100%), Farsetia hamiltonii's diethyl ether extract (90%) and Pulicaria crispa's methanol extract (100%) were most active at 1000 μg/ml concentration. This study validated the medicinal significance of the studied plants and thus opens the way for their therapeutic applications.
Collapse
Affiliation(s)
- Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Faiz-ul-Hassan Nasim
- Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), The Islamia University of Bahawalpur, 63100, Pakistan
| | - Iqra Abdullah
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), The Islamia University of Bahawalpur, 63100, Pakistan
| | - Samia Rashid
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Ashraf
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100, Pakistan
| |
Collapse
|
6
|
Chen C, Ai Q, Shi A, Wang N, Wang L, Wei Y. Oleanolic acid and ursolic acid: therapeutic potential in neurodegenerative diseases, neuropsychiatric diseases and other brain disorders. Nutr Neurosci 2023; 26:414-428. [PMID: 35311613 DOI: 10.1080/1028415x.2022.2051957] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brain disorders such as neurodegenerative diseases and neuropsychiatric diseases have become serious threatens to human health and quality of life. Oleanolic acid (OA) and ursolic acid (UA) are pentacyclic triterpenoid isomers widely distributed in various plant foods and Chinese herbal medicines. Accumulating evidence indicates that OA and UA exhibit neuroprotective effects on multiple brain disorders. Therefore, this paper reviews researches of OA and UA on neurodegenerative diseases, neuropsychiatric diseases and other brain disorders including ischemic stroke, epilepsy, etc, as well as the potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, People's Republic of China
| | - Axi Shi
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Nan Wang
- Department of General medicine, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Lina Wang
- Department of Pediatric surgery, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuhui Wei
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
7
|
Stitou M, Toufik H, Akabli T, Lamchouri F. Virtual screening of PEBP1 inhibitors by combining 2D/3D-QSAR analysis, hologram QSAR, homology modeling, molecular docking analysis, and molecular dynamic simulations. J Mol Model 2022; 28:145. [PMID: 35545728 DOI: 10.1007/s00894-022-05143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/19/2022] [Indexed: 12/24/2022]
Abstract
Human phosphatidylethanolamine binding protein 1 (hPEBP1) is a novel target affecting many cellular signaling pathways involved in the formation of metastases. It can be used in the treatment of many cases of cancer. For these reasons, pharmaceutical companies use computational approaches, including multi-QSAR (2D, 3D, and hologram QSAR) analysis, homology modeling, molecular docking analysis, and molecular dynamic simulations, to speed up the drug discovery process. In this paper, QSAR modeling was conducted using two quantum chemistry optimization methods (AM1 and DFT levels). As per PLS results, we found that the DFT/B3LYP method presents high predictability according to 2D-QSAR, CoMFA, CoMSIA, and hologram QSAR studies, with Q2 of 0.81, 0.67, 0.79, and 0.67, and external power with R2pred of 0.78, 0.58, 0.66, and 0.56, respectively. This result has been validated by CoMFA/CoMSIA graphics, which suggests that electrostatic fields combined with hydrogen bond donor/acceptor fields are beneficial to the antiproliferative activity. While the hologram QSAR models show the contributions of each fragment in improving the activity. The results from QSAR analyses revealed that ursolic acids with heterocyclic rings could improve the activities. Ramachandran plot validated the modeled PEBP1 protein. Molecular docking and MD simulations revealed that the hydrophobic and hydrogen bond interactions are dominant in the PEBP1's pocket. These results were used to predict in silico structures of three new compounds with potential anticancer activity. Similar molecular docking stability studies and molecular dynamics simulations were conducted.
Collapse
Affiliation(s)
- Mourad Stitou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, Taza Gare, B.P 1223, Taza, Morocco
| | - Hamid Toufik
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, Taza Gare, B.P 1223, Taza, Morocco.
| | - Taoufik Akabli
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, Taza Gare, B.P 1223, Taza, Morocco
| | - Fatima Lamchouri
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, Taza Gare, B.P 1223, Taza, Morocco
| |
Collapse
|
8
|
Dat TD, Viet ND, Thanh VH, Nhi HND, Linh NTT, Ngan NTK, Nam HM, Thanh Phong M, Hieu NH. Optimization of Triterpenoid Extracted from Vietnamese Ganoderma lucidum via Supercritical Extraction Method and Biological Tests. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2032750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tran Do Dat
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Duc Viet
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Vuong Hoai Thanh
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Ho Nguyen Dieu Nhi
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Ngo Thi Thuy Linh
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Kim Ngan
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hoang Minh Nam
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Mai Thanh Phong
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Huu Hieu
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
9
|
Beressa TB, Deyno S, Mtewa AG, Aidah N, Tuyiringire N, Lukubye B, Weisheit A, Tolo CU, Ogwang PE. Potential Benefits of Antiviral African Medicinal Plants in the Management of Viral Infections: Systematic Review. Front Pharmacol 2022; 12:682794. [PMID: 35002686 PMCID: PMC8740180 DOI: 10.3389/fphar.2021.682794] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Viruses cause various human diseases, some of which become pandemic outbreaks. This study synthesized evidence on antiviral medicinal plants in Africa which could potentially be further studied for viral infections including Coronavirus disease 2019 (COVID-19) treatment. Methods: PUBMED, CINAHIL, Scopus, Google Scholar, and Google databases were searched through keywords; antiviral, plant, herb, and Africa were combined using “AND” and “OR”. In-vitro studies, in-vivo studies, or clinical trials on botanical medicine used for the treatment of viruses in Africa were included. Results: Thirty-six studies were included in the evidence synthesis. Three hundred and twenty-eight plants were screened for antiviral activities of which 127 showed noteworthy activities against 25 viral species. These, were Poliovirus (42 plants), HSV (34 plants), Coxsackievirus (16 plants), Rhinovirus (14plants), Influenza (12 plants), Astrovirus (11 plants), SARS-CoV-2 (10 plants), HIV (10 plants), Echovirus (8 plants), Parvovirus (6 plants), Semiliki forest virus (5 plants), Measles virus (5 plants), Hepatitis virus (3 plants), Canine distemper virus (3 plants), Zika virus (2 plants), Vesicular stomatitis virus T2 (2 plants). Feline herpesvirus (FHV-1), Enterovirus, Dengue virus, Ebola virus, Chikungunya virus, Yellow fever virus, Respiratory syncytial virus, Rift Valley fever virus, Human cytomegalovirus each showed sensitivities to one plant. Conclusion: The current study provided a list of African medicinal plants which demonstrated antiviral activities and could potentially be candidates for COVID-19 treatment. However, all studies were preliminary and in vitro screening. Further in vivo studies are required for plant-based management of viral diseases.
Collapse
Affiliation(s)
- Tamirat Bekele Beressa
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
| | - Serawit Deyno
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,School of Pharmacy, Faculty of Medicine, Hawassa University, Hawassa, Ethiopia
| | - Andrew G Mtewa
- Chemistry Section, Department of Applied Studies, Institute of Technology, Malawi University of Science and Technology, Limbe, Malawi
| | - Namuli Aidah
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Naasson Tuyiringire
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,School of Nursing and Midwifery, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| | - Ben Lukubye
- Department of Biology, Faculty of Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Anke Weisheit
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Casim Umba Tolo
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
10
|
Luan M, Wang H, Wang J, Zhang X, Zhao F, Liu Z, Meng Q. Advances in Anti-inflammatory Activity, Mechanism and Therapeutic Application of Ursolic Acid. Mini Rev Med Chem 2022; 22:422-436. [PMID: 34517797 DOI: 10.2174/1389557521666210913113522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/08/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
In vivo and in vitro studies reveal that Ursolic Acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli and has favorable anti-inflammatory effects. The antiinflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of the signal pathway, downregulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases, such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.
Collapse
Affiliation(s)
- Mingzhu Luan
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Shandong Province, 276826, P.R. China
| | - Jiazhen Wang
- The Second Hospital of Anhui Medical University, Anhui Province, 230601, P.R. China
| | - Xiaofan Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Fenglan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Zongliang Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Qingguo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| |
Collapse
|
11
|
Liu HR, Ahmad N, Lv B, Li C. Advances in production and structural derivatization of the promising molecule ursolic acid. Biotechnol J 2021; 16:e2000657. [PMID: 34096160 DOI: 10.1002/biot.202000657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
Ursolic acid (UA) is a ursane-type pentacyclic triterpenoid compound, naturally produced in plants via specialized metabolism and exhibits vast range of remarkable physiological activities and pharmacological manifestations. Owing to significant safety and efficacy in different medical conditions, UA may serve as a backbone to produce its derivatives with novel therapeutic functions. This review aims to provide ideas for exploring more diverse structures to improve UA pharmacological activity and increasing its biological yield to meet the industrial requirements by systematically reviewing the current research progress of UA. We first provides an overview of the pharmacological activities, acquisition methods and structural modifications of UA. Among them, we focused on the synthetic modifications of UA to yield valuable derivatives with enhanced therapeutic potential. Furthermore, harnessing the essential advances for green synthesis of UA and its derivatives by advent of metabolic engineering and synthetic biology are of great concern. In this regard, all pivotal advances for enhancing the production of UA have been discussed. In combination with the advantages of UA biosynthesis and transformation strategy, large-scale microbial production of UA is a promising platform for further exploration.
Collapse
Affiliation(s)
- Hao-Ran Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Nadeem Ahmad
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Kazakova O, Șoica C, Babaev M, Petrova A, Khusnutdinova E, Poptsov A, Macașoi I, Drăghici G, Avram Ș, Vlaia L, Mioc A, Mioc M, Dehelean C, Voicu A. 3-Pyridinylidene Derivatives of Chemically Modified Lupane and Ursane Triterpenes as Promising Anticancer Agents by Targeting Apoptosis. Int J Mol Sci 2021; 22:ijms221910695. [PMID: 34639035 PMCID: PMC8509773 DOI: 10.3390/ijms221910695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer persists as a global challenge due to the extent to which conventional anticancer therapies pose high risks counterbalanced with their therapeutic benefit. Naturally occurring substances stand as an important safer alternative source for anticancer drug development. In the current study, a series of modified lupane and ursane derivatives was subjected to in vitro screening on the NCI-60 cancer cell line panel. Compounds 6 and 7 have been identified as highly active with GI50 values ranging from 0.03 µM to 5.9 µM (compound 6) and 0.18–1.53 µM (compound 7). Thus, these two compounds were further assessed in detail in order to identify a possible antiproliferative mechanism of action. DAPI (4′,6-diamidino-2-phenylindole) staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that both compounds induced upregulation of proapoptotic Bak and Bad genes while downregulating Bcl-XL and Bcl-2 antiapoptotic genes. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, while compound 7 showed higher in silico Bcl-XL inhibition potential as compared to the native inhibitor ATB-737, suggesting that compounds may induce apoptotic cell death through targeted antiapoptotic protein inhibition, as well.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
- Correspondence: (O.K.); (M.M.)
| | - Codruța Șoica
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Marat Babaev
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Anastasiya Petrova
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Elmira Khusnutdinova
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Alexander Poptsov
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Ioana Macașoi
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - George Drăghici
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ștefana Avram
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Vlaia
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, Faculty of Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Alexandra Mioc
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Marius Mioc
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (O.K.); (M.M.)
| | - Cristina Dehelean
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Adrian Voicu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| |
Collapse
|
13
|
Ampelopsin Inhibits Cell Proliferation and Induces Apoptosis in HL60 and K562 Leukemia Cells by Downregulating AKT and NF-κB Signaling Pathways. Int J Mol Sci 2021; 22:ijms22084265. [PMID: 33924032 PMCID: PMC8073078 DOI: 10.3390/ijms22084265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Leukemia is a type of blood cancer caused by the rapid proliferation of abnormal white blood cells. Currently, several treatment options, including chemotherapy, radiation therapy, and bone marrow transplantation, are used to treat leukemia, but the morbidity and mortality rates of patients with leukemia are still high. Therefore, there is still a need to develop more selective and less toxic drugs for the effective treatment of leukemia. Ampelopsin, also known as dihydromyricetin, is a plant-derived flavonoid that possesses multiple pharmacological functions, including antibacterial, anti-inflammatory, antioxidative, antiangiogenic, and anticancer activities. However, the anticancer effect and mechanism of action of ampelopsin in leukemia remain unclear. In this study, we evaluated the antileukemic effect of ampelopsin against acute promyelocytic HL60 and chronic myelogenous K562 leukemia cells. Ampelopsin significantly inhibited the proliferation of both leukemia cell lines at concentrations that did not affect normal cell viability. Ampelopsin induced cell cycle arrest at the sub-G1 phase in HL60 cells but the S phase in K562 cells. In addition, ampelopsin regulated the expression of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors differently in each leukemia cell. Ampelopsin also induced apoptosis in both leukemia cell lines through nuclear condensation, loss of mitochondrial membrane potential, increase in reactive oxygen species (ROS) generation, activation of caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP), and regulation of Bcl-2 family members. Furthermore, the antileukemic effect of ampelopsin was associated with the downregulation of AKT and NF-κB signaling pathways. Moreover, ampelopsin suppressed the expression levels of leukemia stemness markers, such as Oct4, Sox2, CD44, and CD133. Taken together, our findings suggest that ampelopsin may be an attractive chemotherapeutic agent against leukemia.
Collapse
|
14
|
Cao M, Xiao D, Ding X. The anti-tumor effect of ursolic acid on papillary thyroid carcinoma via suppressing Fibronectin-1. Biosci Biotechnol Biochem 2020; 84:2415-2424. [PMID: 32942951 DOI: 10.1080/09168451.2020.1813543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
This study aims to discover the effects of ursolic acid (UA) on papillary thyroid carcinoma (PTC). Human PTC cells were under UA treatment, and cell viability, clone formation, and apoptosis were measured by MTT assay, clone formation assay, and flow cytometry, respectively. Expressions of apoptosis- and epithelial-mesenchymal transition (EMT)-related markers were determined via qRT-PCR and western blot. Fibronectin-1 (FN1) expression in thyroid carcinoma was analyzed by GEPIA2 and qRT-PCR. The effects of overexpressed FN1 on UA-treated cells were detected following the previous procedures. Cell viability, proliferation, and EMT-related marker expressions were inhibited, while cell apoptosis and apoptosis-related marker expressions were promoted by UA. FN1 was higher expressed in thyroid carcinoma and downregulated by UA. Effects of FN1 on cell viability, proliferation, and apoptosis- and EMT-related marker expressions were partially reversed by UA. UA inhibited human PTC cell viability, proliferation, and EMT but promoted apoptosis via suppressing FN1.
Collapse
Affiliation(s)
- Mingxiang Cao
- Department of Anesthesiology, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| | - Di Xiao
- Department of Anesthesiology, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| | - Xubei Ding
- Department of Thyroid and Breast Surgery, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| |
Collapse
|
15
|
Wang PY, Xiang M, Luo M, Liu HW, Zhou X, Wu ZB, Liu LW, Li Z, Yang S. Novel piperazine-tailored ursolic acid hybrids as significant antibacterial agents targeting phytopathogens Xanthomonas oryzae pv. oryzae and X. axonopodis pv. citri probably directed by activation of apoptosis. PEST MANAGEMENT SCIENCE 2020; 76:2746-2754. [PMID: 32187443 DOI: 10.1002/ps.5822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Induced apoptosis is an effective technique that can reprogram cellular physiological and pathological processes to eradicate undesirable cells using their innate systems. Inspired by this, numerous apoptosis inducers have been developed to treat animal diseases, especially in the anticancer field. However, few studies have reported on the development of inductive agents that attack plant pathogens by activation of apoptosis. With the aim of exploring and discovering apoptosis inducers that target phytopathogens, a cluster of piperazine-tailored ursolic acid (UA) hybrids was systematically fabricated. RESULTS In vitro testing showed that the title molecules could inhibit the growth of two intractable bacterial strains, defined as Xanthomonas oryzae pv. oryzae and X. axonopodis pv. citri. The corresponding lowest EC50 values were 0.37 and 1.08 μg mL-1 , which exceed those of UA (>400 μg mL-1 ) and positive controls. Moreover, compounds 5u and 5v could manage bacterial blight in vivo using pot experiments. Flow cytometer analysis indicted that the title compounds could induce distinct apoptotic behaviors on tested bacteria. In-depth study revealed that the introduction of designed compounds could reduce the enzyme activities of catalase and superoxide dismutase, subsequently leading to the accumulation of reactive oxygen species. CONCLUSION This study promoted the development of apoptosis initiators for managing bacterial infections in agriculture by an innovative mode of action. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Meng Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Min Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Hong-Wu Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhi-Bing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhong Li
- College of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- College of Pharmacy, East China University of Science & Technology, Shanghai, China
| |
Collapse
|
16
|
Nguyen NH, Ta QTH, Pham QT, Luong TNH, Phung VT, Duong TH, Vo VG. Anticancer Activity of Novel Plant Extracts and Compounds from Adenosma bracteosum (Bonati) in Human Lung and Liver Cancer Cells. Molecules 2020; 25:E2912. [PMID: 32599892 PMCID: PMC7356985 DOI: 10.3390/molecules25122912] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
Cancer is the second leading cause of death globally, and despite the advances in drug development, it is still necessary to develop new plant-derived medicines. Compared with using conventional chemical drugs to decrease the side effects induced by chemotherapy, natural herbal medicines have many advantages. The present study aimed to discover the potential cytotoxicity of ethanol extract and its derived fractions (chloroform, ethyl acetate, butanol, and aqueous) of Adenosma bracteosum Bonati. (A. bracteosum) on human large cell lung carcinoma (NCI-H460) and hepatocellular carcinoma (HepG2). Among these fractions, the chloroform showed significant activity in the inhibition of proliferation of both cancerous cells because of the presence of bioactive compounds including xanthomicrol, 5,4'-dihydroxy-6,7,8,3'-tetramethoxyflavone, and ursolic acid which were clearly revealed by nuclear magnetic resonance spectroscopy (1H-NMR, 13C-NMR, Heteronuclear Multiple Bond Coherence, and Heteronuclear Single Quantum Coherence Spectroscopy) analyses. According to the radical scavenging capacity, the 5,4'-dihydroxy-6,7,8,3'-tetramethoxyflavone compound (AB2) exhibited the highest anticancer activity on both NCI-H460 and HepG2 with IC50 values of 4.57 ± 0.32 and 5.67 ± 0.09 µg/mL respectively, followed by the ursolic acid with the lower percent inhibition at 13.05 ± 0.55 and 10.00 ± 0.16 µg/mL, respectively (p < 0.05). Remarkably, the AB2 compound induced to significant increase in the production of reactive oxygen species accompanied by attenuation of mitochondrial membrane potential, thus inducing the activation of caspase-3 activity in both human lung and liver cancer cells. These results suggest that A. bracteosum is a promising source of useful natural products and AB2 offers opportunities to develop the novel anticancer drugs.
Collapse
Affiliation(s)
- Ngoc Hong Nguyen
- CirTech Institute, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam;
| | - Qui Thanh Hoai Ta
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Quang Thang Pham
- Institute of Applied Science, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam; (Q.T.P.); (T.N.H.L.)
| | - Thi Ngoc Han Luong
- Institute of Applied Science, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam; (Q.T.P.); (T.N.H.L.)
| | - Van Trung Phung
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam;
| | - Thuc-Huy Duong
- Department of Organic Chemistry, University of Education, Ho Chi Minh City 700000, Vietnam;
| | - Van Giau Vo
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
17
|
Faraone I, Russo D, Chiummiento L, Fernandez E, Choudhary A, Monné M, Milella L, Rai DK. Phytochemicals of Minthostachys diffusa Epling and Their Health-Promoting Bioactivities. Foods 2020; 9:foods9020144. [PMID: 32024045 PMCID: PMC7074199 DOI: 10.3390/foods9020144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
Abstract
The genus Minthostachys belonging to the Lamiaceae family, and is an important South American mint genus used commonly in folk medicine as an aroma in cooking. The phytochemical-rich samples of the aerial parts of Minthostachys diffusa Epling. were tested for pharmacological and health-promoting bioactivities using in vitro chemical and enzymatic assays. A range of radical scavenging activities of the samples against biological radicals such as nitric oxide and superoxide anion and against synthetic 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals, the ferric reducing antioxidant power and the lipid peroxidation inhibition were determined and ranked using the ‘relative antioxidant capacity index’ (RACI). The ethyl acetate fraction showed the highest RACI of +1.12. Analysis of the various fractions’ inhibitory ability against enzymes involved in diabetes (α-amylase and α-glucosidase), and against enzymes associated with Parkinson’s or Alzheimer’s diseases (acetylcholinesterase and butyrylcholinesterase) also suggested that the ethyl acetate fraction was the most active. Liquid chromatography–tandem mass spectrometry analysis of the ethyl acetate fraction showed more than 30 polyphenolic compounds, including triterpenes. The inhibitory cholinesterase effects of the triterpenes identified from M. diffusa were further analysed by in silico docking of these compounds into 3D-structures of acetylcholinesterase and butyrylcholinesterase. This is the first study on pharmacological activities and phytochemical profiling of the aerial parts of M. diffusa, showing that this plant, normally used as food in South America, is also rich in health-promoting phytochemicals.
Collapse
Affiliation(s)
- Immacolata Faraone
- Department of Science, University of Basilicata, V.le dell’Ateneo Lucano, 10, 85100 Potenza, Italy; (I.F.); (D.R.); (L.C.); (M.M.)
- Spinoff BioActiPlant s.r.l., Università della Basilicata, V.le dell’Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Daniela Russo
- Department of Science, University of Basilicata, V.le dell’Ateneo Lucano, 10, 85100 Potenza, Italy; (I.F.); (D.R.); (L.C.); (M.M.)
- Spinoff BioActiPlant s.r.l., Università della Basilicata, V.le dell’Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Lucia Chiummiento
- Department of Science, University of Basilicata, V.le dell’Ateneo Lucano, 10, 85100 Potenza, Italy; (I.F.); (D.R.); (L.C.); (M.M.)
| | - Eloy Fernandez
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Praha 6-Suchdol, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Alka Choudhary
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15KN3K Dublin, Ireland; (A.C.); (D.K.R.)
| | - Magnus Monné
- Department of Science, University of Basilicata, V.le dell’Ateneo Lucano, 10, 85100 Potenza, Italy; (I.F.); (D.R.); (L.C.); (M.M.)
| | - Luigi Milella
- Department of Science, University of Basilicata, V.le dell’Ateneo Lucano, 10, 85100 Potenza, Italy; (I.F.); (D.R.); (L.C.); (M.M.)
- Spinoff BioActiPlant s.r.l., Università della Basilicata, V.le dell’Ateneo Lucano, 10, 85100 Potenza, Italy
- Correspondence: ; Tel./Fax: +39-0971-205525
| | - Dilip K. Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15KN3K Dublin, Ireland; (A.C.); (D.K.R.)
| |
Collapse
|
18
|
Palu D, Bighelli A, Casanova J, Paoli M. Identification and Quantitation of Ursolic and Oleanolic Acids in Ilex aquifolium L. Leaf Extracts Using 13C and 1H-NMR Spectroscopy. Molecules 2019; 24:E4413. [PMID: 31816870 PMCID: PMC6930589 DOI: 10.3390/molecules24234413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/09/2023] Open
Abstract
Leaves of Ilex aquifolium L. have been used for their therapeutic properties. In previous studies, components contained in the leaves were first isolated by various chromatographic techniques. Then, quantitation of oleanolic and ursolic acids, which are responsible for the biological and therapeutic activities of the plant, was performed by HPLC, HPTLC, and somewhat by GC-MS. Our objective was to develop a simple method that allows the identification of compounds contained in the leaves of Corsican I. aquifolium and to quantify ursolic and oleanolic acids. Leaves were successively extracted with hexane and dichloromethane. The extracts were chromatographed on silica gel and the fractions of column chromatography submitted to 13C-NMR analysis, following a computerized method developed in the laboratory. 13C-NMR allowed the identification of various triterpenes including ursolic acid and oleanolic acid. Quantitation of both acids was achieved, for the first time, by 1H-NMR after validation of the method (accuracy, precision, linearity, limit of detection and limit of quantitation). Ursolic and oleanolic acids accounted for 55.3% and 20.8% of the dichloromethane extract, respectively. This represents 1.3% and 0.5% of the mass of dried leaves. 1H-NMR spectroscopy appeared as a powerful tool for a rapid quantitation of biologically active compounds from I. aquifolium.
Collapse
Affiliation(s)
| | | | | | - Mathieu Paoli
- Université de Corse-CNRS, UMR 6134 SPE, Equipe Chimie et Biomasse, Route des Sanguinaires, F- 20000 Ajaccio, France; (D.P.); (A.B.); (J.C.)
| |
Collapse
|
19
|
Xu CG, Zhu XL, Wang W, Zhou XJ. Ursolic acid inhibits epithelial-mesenchymal transition in vitro and in vivo. PHARMACEUTICAL BIOLOGY 2019; 57:169-175. [PMID: 30905239 PMCID: PMC6442106 DOI: 10.1080/13880209.2019.1577464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 05/21/2023]
Abstract
CONTEXT Ursolic acid (UA; 3β-hydroxy-urs-12-en-28-oic acid), one of the pentacyclic triterpenoids found in various plants and herbs, possesses some beneficial effects under pathological conditions, including combating hepatic fibrosis. OBJECTIVE This study investigates the effects of UA on renal tubulointerstitial fibrosis in vivo and in vitro. MATERIALS AND METHODS In vivo, 24 male C57BL6 mice were divided into four groups. Eighteen mice were subjected to unilateral ureteral obstruction (UUO) and the remaining six sham-operated mice served as control. UUO mice received either vehicle or UA (50 or 100 mg/kg) by gastric gavage for 6 days. In vitro, HK-2 cells were treated with 10 or 50 μM UA and 10 ng/mL recombinant human transforming growth factor-β1 (TGF-β1). The molecular mechanisms of fibrosis were investigated. RESULTS UUO induced marked interstitial collagen I and fibronectin deposition and epithelial-mesenchymal transition (EMT), as evidenced by increased α-smooth muscle actin (α-SMA) and decreased E-cadherin. However, UA treatment significantly reduced collagen I and fibronectin accumulation in the fibrotic kidney. UA treatment also decreased α-SMA and preserved E-cadherin in vivo. In vitro, TGF-β1-treated HK-2 cells demonstrated elevated α-SMA, snail1, slug, TGF-β1, and p-smad3, as well as diminished E-cadherin. UA pretreatment prevented E-cadherin loss and diminished α-SMA expression in HK-2 cells. UA downregulated mRNA expression of snail1 and slug. UA also lowered TGF-β1 protein expression and p-Smad3 in HK-2 cells. CONCLUSIONS UA attenuated renal tubulointerstitial fibrosis by inhibiting EMT, and such inhibition may be achieved by decreasing profibrotic factors. UA may be a novel therapeutic agent for renal fibrosis.
Collapse
Affiliation(s)
- Chang-Geng Xu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia-Lian Zhu
- Department of Hand Surgery, Affiliated Nanhua Hospital of University of South China, Hengyang, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang-Jun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Subramaniam S, Selvaduray KR, Radhakrishnan AK. Bioactive Compounds: Natural Defense Against Cancer? Biomolecules 2019; 9:biom9120758. [PMID: 31766399 PMCID: PMC6995630 DOI: 10.3390/biom9120758] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is a devastating disease that has claimed many lives. Natural bioactive agents from plants are gaining wide attention for their anticancer activities. Several studies have found that natural plant-based bioactive compounds can enhance the efficacy of chemotherapy, and in some cases ameliorate some of the side-effects of drugs used as chemotherapeutic agents. In this paper, we have reviewed the literature on the anticancer effects of four plant-based bioactive compounds namely, curcumin, myricetin, geraniin and tocotrienols (T3) to provide an overview on some of the key findings that are related to this effect. The molecular mechanisms through which the active compounds may exert their anticancer properties in cell and animal-based studies also discussed.
Collapse
Affiliation(s)
- Shonia Subramaniam
- Pathology Division, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur 50050, Malaysia;
- Product Development and Advisory Services, Malaysian Palm Oil Board, Kajang, Selangor 43000, Malaysia;
| | - Kanga Rani Selvaduray
- Product Development and Advisory Services, Malaysian Palm Oil Board, Kajang, Selangor 43000, Malaysia;
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
- Correspondence: ; Tel.: +60-355-144-902
| |
Collapse
|
21
|
Cai D, Zhang Z, Chen Y, Zhang Y, Sun Y, Gong Y. Exploring New Structural Features of the 18β-Glycyrrhetinic Acid Scaffold for the Inhibition of Anaplastic Lymphoma Kinase. Molecules 2019; 24:molecules24193631. [PMID: 31597403 PMCID: PMC6803848 DOI: 10.3390/molecules24193631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
Novel 18β-glycyrrhetinic acid derivatives possessing a carbamate moiety and structurally similar ester derivatives were developed and evaluated for their efficacy as antitumor inhibitors. In the cellular assays, most of the N-substituted carbamate derivatives at the C3-position exhibited potent activities. The results of SAR investigation revealed that the introduction of the morpholine group at the C30-COOH led to a significant loss of the inhibitory potency. Among the ester derivatives, the ester group at C3-position also determined a noticeable reduction in the efficacy. Compound 3j exhibited the most prominent antiproliferative activity against six human cancer cells (A549, HT29, HepG2, MCF-7, PC-3, and Karpas299). Furthermore, compound 3j exerted a moderate inhibiting effect on the ALK. The results of molecular docking analyses suggested that it could bind well to the active site of the receptor ALK, which was consistent with the biological data. These results might inspire further structural optimization of 18β-glycyrrhetinic acid aiming at the development of potent antitumor agents. The structures 4d, 4g, 4h, 4j, and 4n were studied by X-ray crystallographic analyses.
Collapse
Affiliation(s)
- Dong Cai
- College of Public Basic Sciences, Jinzhou Medical University, Jinzhou 121001, China.
| | - ZhiHua Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China.
| | - Yu Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - YanYan Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China.
| | - YuQi Sun
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China.
| | - YiXia Gong
- College of Public Basic Sciences, Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
22
|
Ahmadinejad N, Shafiei F. Quantitative Structure-Activity Relationship Study of Camptothecin Derivatives as Anticancer Drugs Using Molecular Descriptors. Comb Chem High Throughput Screen 2019; 22:387-399. [DOI: 10.2174/1386207322666190708112251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/15/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
Abstract
Aim and Objective:A Quantitative Structure-Activity Relationship (QSAR) has been widely developed to derive a correlation between chemical structures of molecules to their known activities. In the present investigation, QSAR models have been carried out on 76 Camptothecin (CPT) derivatives as anticancer drugs to develop a robust model for the prediction of physicochemical properties.Materials and Methods:A training set of 60 structurally diverse CPT derivatives was used to construct QSAR models for the prediction of physiochemical parameters such as Van der Waals surface area (SvdW), Van der Waals Volume (VvdW), Molar Refractivity (MR) and Polarizability (α). The QSAR models were optimized using Multiple Linear Regression (MLR) analysis. A test set of 16 compounds was evaluated using the defined models.:The Genetic Algorithm And Multiple Linear Regression Analysis (GA-MLR) were used to select the descriptors derived from the Dragon software to generate the correlation models that relate the structural features to the studied properties.Results:QSAR models were used to delineate the important descriptors responsible for the properties of the CPT derivatives. The statistically significant QSAR models derived by GA-MLR analysis were validated by Leave-One-Out Cross-Validation (LOOCV) and test set validation methods. The multicollinearity and autocorrelation properties of the descriptors contributed in the models were tested by calculating the Variance Inflation Factor (VIF) and the Durbin–Watson (DW) statistics.Conclusion:The predictive ability of the models was found to be satisfactory. Thus, QSAR models derived from this study may be helpful for modeling and designing some new CPT derivatives and for predicting their activity.
Collapse
Affiliation(s)
- Neda Ahmadinejad
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Fatemeh Shafiei
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
23
|
Yadav D, Nath Mishra B, Khan F. 3D-QSAR and docking studies on ursolic acid derivatives for anticancer activity based on bladder cell line T24 targeting NF-kB pathway inhibition. J Biomol Struct Dyn 2019; 37:3822-3837. [PMID: 30261824 DOI: 10.1080/07391102.2018.1528888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023]
Abstract
Bladder cancer is the common reason for mortality worldwide, and its increasing rate announces as a significant area of research in drug designing. The side effects and toxicity of existing drugs and the consequence of gradual cancer cell resistance against the available therapy make the treatment poor. Globally, there is a continuous high demand to develop new, more potent, and easily affordable drugs against cancer. The current research article illustrates the application of developed three-dimensional quantitative structure-activity relationship (3D-QSAR) based on human bladder cancer cell line T24 in vitro anticancer activity. The derived QSAR model has been used for prediction of natural compounds and analogs with 80% similarity of the most active compound of the dataset. The developed model describes the structure-activity relationship for terpenes and their derivatives at the molecular level. The developed comparative molecular field analysis (CoMFA) model shows a satisfactory cross-validation correlation coefficient (q2) of 0.54 and a regression correlation coefficient (r2) of 0.86. In order to evaluate the compliance with electronic pharmacokinetic parameters, Lipinski's rule of five filter, absorption, distribution, metabolism, and excretion (ADME) and toxicity of predicted compounds have been calculated. Furthermore, molecular-docking study has been performed to prioritize these predicted compounds based on their docking score and binding pocket similarity through the identified potential anticancer targets. Finally, two compounds T9 and B42 have been identified as the best hit because these two fall within the standard limits of all filters and show a good binding affinity. Conclusively, all satisfactory results strongly suggest that the derived 3D-QSAR model and obtained candidate's binding structures are reasonable in the prediction of a new antagonist's activity. The strategy adopted in the present research is expected to be of immense importance and a great support in the identification and optimization of lead in the early and advance drug discovery.
Collapse
Affiliation(s)
- Deepika Yadav
- a Department of Metabolic and Structural Biology , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India
- b Department of Biotechnology , Institute of Engineering and Technology (Dr. A.P.J. Abdul Kalam Technical University) , Lucknow , Uttar Pradesh , India
| | - Bhartendu Nath Mishra
- b Department of Biotechnology , Institute of Engineering and Technology (Dr. A.P.J. Abdul Kalam Technical University) , Lucknow , Uttar Pradesh , India
| | - Feroz Khan
- a Department of Metabolic and Structural Biology , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India
| |
Collapse
|
24
|
Soleymani S, Farzaei MH, Zargaran A, Niknam S, Rahimi R. Promising plant-derived secondary metabolites for treatment of acne vulgaris: a mechanistic review. Arch Dermatol Res 2019; 312:5-23. [PMID: 31448393 DOI: 10.1007/s00403-019-01968-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
25
|
Osher E, Macaulay VM. Therapeutic Targeting of the IGF Axis. Cells 2019; 8:E895. [PMID: 31416218 PMCID: PMC6721736 DOI: 10.3390/cells8080895] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
The insulin like growth factor (IGF) axis plays a fundamental role in normal growth and development, and when deregulated makes an important contribution to disease. Here, we review the functions mediated by ligand-induced IGF axis activation, and discuss the evidence for the involvement of IGF signaling in the pathogenesis of cancer, endocrine disorders including acromegaly, diabetes and thyroid eye disease, skin diseases such as acne and psoriasis, and the frailty that accompanies aging. We discuss the use of IGF axis inhibitors, focusing on the different approaches that have been taken to develop effective and tolerable ways to block this important signaling pathway. We outline the advantages and disadvantages of each approach, and discuss progress in evaluating these agents, including factors that contributed to the failure of many of these novel therapeutics in early phase cancer trials. Finally, we summarize grounds for cautious optimism for ongoing and future studies of IGF blockade in cancer and non-malignant disorders including thyroid eye disease and aging.
Collapse
Affiliation(s)
- Eliot Osher
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
26
|
Mlala S, Oyedeji AO, Gondwe M, Oyedeji OO. Ursolic Acid and Its Derivatives as Bioactive Agents. Molecules 2019; 24:E2751. [PMID: 31362424 PMCID: PMC6695944 DOI: 10.3390/molecules24152751] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
Non-communicable diseases (NCDs) such as cancer, diabetes, and chronic respiratory and cardiovascular diseases continue to be threatening and deadly to human kind. Resistance to and side effects of known drugs for treatment further increase the threat, while at the same time leaving scientists to search for alternative sources from nature, especially from plants. Pentacyclic triterpenoids (PT) from medicinal plants have been identified as one class of secondary metabolites that could play a critical role in the treatment and management of several NCDs. One of such PT is ursolic acid (UA, 3 β-hydroxy-urs-12-en-28-oic acid), which possesses important biological effects, including anti-inflammatory, anticancer, antidiabetic, antioxidant and antibacterial effects, but its bioavailability and solubility limits its clinical application. Mimusops caffra, Ilex paraguarieni, and Glechoma hederacea, have been reported as major sources of UA. The chemistry of UA has been studied extensively based on the literature, with modifications mostly having been made at positions C-3 (hydroxyl), C12-C13 (double bonds) and C-28 (carboxylic acid), leading to several UA derivatives (esters, amides, oxadiazole quinolone, etc.) with enhanced potency, bioavailability and water solubility. This article comprehensively reviews the information that has become available over the last decade with respect to the sources, chemistry, biological potency and clinical trials of UA and its derivatives as potential therapeutic agents, with a focus on addressing NCDs.
Collapse
Affiliation(s)
- Sithenkosi Mlala
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Private Bag X1, Mthatha 5117, South Africa
| | - Mavuto Gondwe
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University, Private Bag X1, Mthatha 5117, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| |
Collapse
|
27
|
Sultana N, Qazi MS, Kamal M. New Anti-inflammatory Triterpene Esters and Glycosides from Alstonia scholaris. Antiinflamm Antiallergy Agents Med Chem 2019; 19:370-386. [PMID: 31339078 DOI: 10.2174/1871523018666190724122406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/24/2019] [Accepted: 05/10/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Phytochemical studies on the ethanolic extract of aerial parts of Alstonia scholaris lead to the isolation of two new triterpenoid of the lanostanetype, lanosta 5ene,24-ethyl-3-O-β-D-glucopyranoside (1), lanosta,5ene,24-ethyl-3-O-β-D-glucopyranosideester (2) and new ursane type triterpenoidmethylester, 12-ursene-2,3,18,19-tetrol,28 acetate (nighascholarene) (3), together with seven known triterpenes, betuline, triterpene of the lupane type, alstoprenyol (4), 3β-hydroxy-28-β-acetoxy-5-olea triterpene (5),α-amyrin acetate (6), α-amyrin (7), lupeol acetate (8), 3β-hydroxy-24-nor-urs-4,12,28-triene triterpene (9) and ursolic acid (l0). METHODOLOGY The triterpenoid structures of these colorless compounds were deduced from the 1H and 13C-NMR data, and in particular from the application of two-dimensional 1H, 13C correlation experiments as well as by comparison with reported literature data. CONCLUSION This study deals with isolation and structural elucidation of natural new triterpenoidesters and glycosides with anti-inflammatory activity.
Collapse
Affiliation(s)
- Nighat Sultana
- Pharmaceutical Research Center, PCSIR Laboratories Complex, Karachi, Pakistan
| | - Muhammad Saleem Qazi
- Pharmaceutical Research Center, PCSIR Laboratories Complex, Karachi, Pakistan.,Department of Biotechnology, University of Karachi, Karachi, Pakistan
| | - Mustafa Kamal
- Department of Biotechnology, University of Karachi, Karachi, Pakistan
| |
Collapse
|
28
|
Frolova TS, Lipeeva AV, Baev DS, Baiborodin SI, Orishchenko КE, Kochetov AV, Sinitsyna OI. Fluorescent labeling of ursolic acid with FITC for investigation of its cytotoxic activity using confocal microscopy. Bioorg Chem 2019; 87:876-887. [PMID: 30538052 DOI: 10.1016/j.bioorg.2018.11.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 11/17/2022]
Abstract
Fluorescent labeling is a widely-used approach in the study of intracellular processes. This method is becoming increasingly popular for studying small bioactive molecules of natural origin; it allows us to estimate the vital intracellular changes which occur under their influence. We propose a new approach for visualization of the intracellular distribution of triterpene acids, based on fluorescent labeling by fluoresceine isothiocyanate. As a model compound we took the most widely-used and best-studied acid in the ursane series - ursolic acid, as this enabled us to compare the results obtained during our research with the available data, in order to evaluate the validity of the proposed method. Experimental tracing of the dynamics of penetration and distribution of the labeled ursolic acid has shown that when the acid enters the cell, it initially localizes on the inner membranes where the predicted target Akt1/protein kinase B - a protein that inhibits apoptosis - is located.
Collapse
Affiliation(s)
- Tatiana S Frolova
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk Institute of Organic Chemistry of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk State University, 2, Pirogov Street, 630090 Novosibirsk, Russia; Federal Research Center of Fundamental and Translational Medicine of Siberian Branch of the Russian Academy of Sciences, 2, Timakov Street, 630117 Novosibirsk, Russia.
| | - Alla V Lipeeva
- Novosibirsk Institute of Organic Chemistry of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Dmitry S Baev
- Novosibirsk Institute of Organic Chemistry of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk State University, 2, Pirogov Street, 630090 Novosibirsk, Russia
| | - Sergey I Baiborodin
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Кonstantin E Orishchenko
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Alexey V Kochetov
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk State University, 2, Pirogov Street, 630090 Novosibirsk, Russia
| | - Olga I Sinitsyna
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk State University, 2, Pirogov Street, 630090 Novosibirsk, Russia
| |
Collapse
|
29
|
Cao S, Tian XL, Yu WX, Zhou LP, Dong XL, Favus MJ, Wong MS. Oleanolic Acid and Ursolic Acid Improve Bone Properties and Calcium Balance and Modulate Vitamin D Metabolism in Aged Female Rats. Front Pharmacol 2018; 9:1435. [PMID: 30564129 PMCID: PMC6288304 DOI: 10.3389/fphar.2018.01435] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022] Open
Abstract
Oleanolic acid (OA) and ursolic acid (UA) are the major chemical constituents in Fructus Ligustri Lucidi (FLL), a kidney-tonifying Chinese herb that is previously shown to improve bone properties and enhance calcium balance in aged female rats. The present study was designed to study if OA and UA act as the active ingredients in FLL to exert the positive effects on bone and mineral metabolism in aged rats. Aged (13-month-old) Sprague-Dawley female rats were randomly assigned to four groups with oral administration of drug or vehicle treatment for 12 weeks: medium calcium diet (MCD, 0.6% calcium), high calcium diet (HCD, 1.2% calcium), MCD + FLL (700 mg/kg/day), MCD + OA (23.6 mg/kg/day) + UA (8.6 mg/kg/day). A group of mature (3-month-old) female rats fed with MCD was included as positive control. The results demonstrated that FLL and OA+UA increased bone mineral density and improved microarchitectural properties of aged female rats. The osteoprotective effects of FLL and OA+UA might be, at least in part, associated with their actions on enhancing calcium balance and suppressing age-induced secondary hyperparathyroidism in aged female rats. FLL and OA+UA also significantly induced renal CYP27B1 protein expression and OA+UA treatment decreased CYP24A1 mRNA and protein expressions in aged female rats. In addition, FLL and OA+UA significantly increased the promoter activity, mRNA and protein expressions of renal CYP27B1 in vitro in human proximal tubule HKC-8 cells. The present findings suggest that OA+UA can be regarded as the active ingredients of FLL and might be a potential drug candidate for prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xue-Lian Tian
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Wen-Xuan Yu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Li-Ping Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiao-Li Dong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Murray J Favus
- Section of Endocrinology, Department of Medicine, The University of Chicago, Chicago, IL, United States
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
30
|
Abu-Gharbieh E, Shehab NG, Almasri IM, Bustanji Y. Antihyperuricemic and xanthine oxidase inhibitory activities of Tribulus arabicus and its isolated compound, ursolic acid: In vitro and in vivo investigation and docking simulations. PLoS One 2018; 13:e0202572. [PMID: 30114281 PMCID: PMC6095567 DOI: 10.1371/journal.pone.0202572] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/06/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hyperurecemia is usually associated with gout and various metabolic arthritis disorders. Limited medications are available to manage such conditions. This study aimed to isolate the triterpenes constituent of the plant and to assess xanthine oxidase (XO) inhibitory and antihyperuricemic activities of Tribulus arabicus ethanolic extract, its fractions and the isolated compound using in vitro and in vivo approaches. METHODS The ethanolic extract, fractions; n-hexane, chloroform and n-butanol and the isolated compound (ursolic acid) were evaluated in vitro for their XO inhibitory activity. Those that demonstrated significant activity were further evaluated for their antihyperuricemic activity on potassium oxonate-induced hyperuricemia in mice. RESULTS The ethanolic extract was found to be safe up to 5000 mg/kg. The extract and its n-hexane fraction exhibited significant inhibitory activity on XO, whilst only a modest reduction in the enzymatic activity was noticed with n-butanol and chloroform fractions. Furthermore, administration of the ethanolic extract at low and high doses significantly reduced serum urate levels in mice by 31.1 and 64.6% respectively. The isolated active constituent, ursolic acid, showed potent XO inhibition activity (Half maximal inhibitory concentration, IC50 = 10.3 μg/mL), and significantly reduced uric acid level in vivo by 79.9%. Virtually, the binding mode of ursolic acid with XO was determined using molecular docking simulations. CONCLUSIONS The activity of the ethanolic extract of T. arabicus and its n-hexane fraction can be attributed to the isolated compound, ursolic acid. Ursolic acid has good hypouricemic activity and therefore has high potential to be used for the treatment of gout and hyperuricemia-related diseases.
Collapse
Affiliation(s)
- Eman Abu-Gharbieh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacology and Toxicology, Dubai Pharmacy College, Dubai, United Arab Emirates
| | - Naglaa G. Shehab
- Department of Pharmaceutical Chemistry and Natural Products, Dubai Pharmacy College, Dubai, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ihab M. Almasri
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Al Azhar University, Gaza, Palestine
| | - Yasser Bustanji
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, Jordan
| |
Collapse
|
31
|
Sultana N. Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation. Steroids 2018; 136:76-92. [PMID: 29360535 DOI: 10.1016/j.steroids.2018.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 12/16/2017] [Accepted: 01/16/2018] [Indexed: 01/11/2023]
Abstract
Steroids are perhaps one of the most widely used group of drugs in present day. Beside the established utilization as immunosuppressive, anti-inflammatory, anti-rheumatic, progestational, diuretic, sedative, anabolic and contraceptive agents, recent applications of steroid compounds include the treatment of some forms of cancer, osteoporosis, HIV infections and treatment of declared AIDS. Steroids isolated are often available in minute amounts. So biotransformation of natural products provides a powerful means in solving supply problems in clinical trials and marketing of the drug for obtaining natural products in bulk amounts. If the structure is complex, it is often an impossible task to isolate enough of the natural products for clinical trials. The microbial biotransformation of steroids yielded several novel metabolites, exhibiting different activities. The metabolites produced from pregnenolone acetate by Cunning hamella elegans and Rhizopus stolonifer were screened against tyrosinase and cholinesterase showed significant inhibitory activities than the parent compound. Diosgenin and its transformed sarsasapogenin were screened for their acetyl cholinesterase and butyryl cholinesterase inhibitory activities. Sarsasapogenin was screened for phytotoxicity, and was found to be more active than the parent compound. Diosgenin, prednisone and their derivatives were screened for their anti-leishmanial activity. All derivatives were found to be more active than the parent compound. The biotransformation of steroids have been reviewed to a little extent. This review focuses on the biotransformation and functions of selected steroids, the classification, advantages and agents of enzymatic biotransformation and examines the potential role of new enzymatically transformed steroids and their derivatives in the chemoprevention and treatment of other diseases. tyrosinase and cholinesterase inhibitory activities, severe asthma, rheumatic disorders, renal disorders and diseases of inflammatory bowel, skin, gastrointestinal tract.
Collapse
Affiliation(s)
- Nighat Sultana
- Pharmaceutical Research Center, PCSIR Laboratories Complex, Shahrah-e-Dr. Salimuzzaman Siddiqui, Off University Road, Karachi 75280, Pakistan.
| |
Collapse
|
32
|
Al Saiqali M, Tangutur AD, Banoth C, Bhukya B. Antimicrobial and anticancer potential of low molecular weight polypeptides extracted and characterized from leaves of Azadirachta indica. Int J Biol Macromol 2018; 114:906-921. [DOI: 10.1016/j.ijbiomac.2018.03.169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
|
33
|
Silva ATME, Magalhães CG, Duarte LP, Mussel WDN, Ruiz ALTG, Shiozawa L, Carvalho JED, Trindade IC, Vieira Filho SA. Lupeol and its esters: NMR, powder XRD data and in vitro evaluation of cancer cell growth. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902017000300251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
34
|
López-Hortas L, Pérez-Larrán P, González-Muñoz MJ, Falqué E, Domínguez H. Recent developments on the extraction and application of ursolic acid. A review. Food Res Int 2018; 103:130-149. [PMID: 29389599 DOI: 10.1016/j.foodres.2017.10.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 01/02/2023]
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid widely found in herbs, leaves, flowers and fruits; update information on the major natural sources or agro-industrial wastes is presented. Traditional (maceration, Soxhlet and heat reflux) and modern (microwave-, ultrasound-, accelerated solvent- and supercritical fluid) extraction and purification technologies of UA, as well as some patented process, are summarized. The great interest in this bioactive compound is related to the beneficial effects in human health due to antioxidant, antimicrobial, anti-inflammatory, hepatoprotective, immunomodulatory, anti-tumor, chemopreventive, cardioprotective, antihyperlipidemic and hypoglycemic activities, and others. UA may augment the resistance of the skin barrier to irritants, prevent dry skin and could be suitable to develop antiaging products. The development of nanocrystals and nanoparticle-based drugs could reduce the side effects of high doses of UA in organisms, and increase its limited solubility and poor bioavailability of UA which limit the potential of this bioactive and the further applications. Commercial patented applications in relation to cosmetical and pharmaceutical uses of UA and its derivatives are surveyed.
Collapse
Affiliation(s)
- Lucía López-Hortas
- Departamento de Enxeñería Química, Facultad de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004 Ourense, Spain; Departamento de Química Analítica, Facultad de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004 Ourense, Spain
| | - Patricia Pérez-Larrán
- Departamento de Enxeñería Química, Facultad de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004 Ourense, Spain
| | - María Jesús González-Muñoz
- Departamento de Enxeñería Química, Facultad de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004 Ourense, Spain
| | - Elena Falqué
- Departamento de Química Analítica, Facultad de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004 Ourense, Spain
| | - Herminia Domínguez
- Departamento de Enxeñería Química, Facultad de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| |
Collapse
|
35
|
Ma X, Zhang Y, Wang Z, Shen Y, Zhang M, Nie Q, Hou Y, Bai G. Ursolic Acid, a Natural Nutraceutical Agent, Targets Caspase3 and Alleviates Inflammation-Associated Downstream Signal Transduction. Mol Nutr Food Res 2017; 61:1700332. [PMID: 28801966 PMCID: PMC5765441 DOI: 10.1002/mnfr.201700332] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/03/2017] [Indexed: 12/14/2022]
Abstract
SCOPE Ursolic acid (UA) is a pentacyclicterpenoid carboxylic acid that is present in a wide variety of plant foods. There are many beneficial health effects that are attributed to the properties of UA. However, the specific cellular targets of UA and the mechanism underlying downstream signal transduction processes linked to the anti-inflammation pathway have not been thoroughly elucidated to date. METHODS AND RESULTS Chemical biology strategies such as target fishing, click reaction synthesis of a UA probe and molecular imaging were used to identify potential target proteins of UA. Cysteinyl aspartate specific proteinase 3 (CASP3) and its downstream signaling pathway were verified as potential targets by molecular docking, intracellular enzyme activity evaluation and accurate pathway analysis. The results indicated that UA acted on CASP3, ERK1 and JNK2 targets, alleviated inflammation-associated downstream multiple signal transduction factors, including ERK1, NF-κB and STAT3, and exhibited anti-inflammation activities. CONCLUSION As a natural dietary supplement, UA demonstrated anti-inflammation activity via inhibition of CASP3 and shows the potential to improve the therapy effect of several inflammation-associated diseases.
Collapse
Affiliation(s)
- Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Zengyong Wang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Yunbing Shen
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Quandeng Nie
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| |
Collapse
|
36
|
Gu W, Jin XY, Li DD, Wang SF, Tao XB, Chen H. Design, synthesis and in vitro anticancer activity of novel quinoline and oxadiazole derivatives of ursolic acid. Bioorg Med Chem Lett 2017; 27:4128-4132. [PMID: 28733083 DOI: 10.1016/j.bmcl.2017.07.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/29/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
Abstract
A series of new quinoline derivatives of ursolic acid were designed and synthesized in an attempt to develop potential anticancer agents. The structures of these compounds were identified by 1H NMR, 13C NMR, IR and ESI-MS spectra analysis. The target compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (MDA-MB-231, Hela and SMMC-7721). From the results, compounds 3a-d displayed significant antitumor activity against three cancer cell lines. Especially, compound 3b was found to be the most potent derivative with IC50 values of 0.61±0.07, 0.36±0.05, 12.49±0.08μM against MDA-MB-231, HeLa and SMMC-7721 cells, respectively, stronger than positive control etoposide. Furthermore, the Annexin V-FITC/PI dual staining assay revealed that compound 3b could significantly induce the apoptosis of MDA-MB-231 cells in a dose-dependent manner. The cell cycle analysis also indicated that compound 3b could cause cell cycle arrest of MDA-MB-231 cells at G0/G1 phase.
Collapse
Affiliation(s)
- Wen Gu
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Xiao-Yan Jin
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Dong-Dong Li
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shi-Fa Wang
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xu-Bing Tao
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hao Chen
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
37
|
Wang H, Sim MK, Loke WK, Chinnathambi A, Alharbi SA, Tang FR, Sethi G. Potential Protective Effects of Ursolic Acid against Gamma Irradiation-Induced Damage Are Mediated through the Modulation of Diverse Inflammatory Mediators. Front Pharmacol 2017; 8:352. [PMID: 28670276 PMCID: PMC5472704 DOI: 10.3389/fphar.2017.00352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023] Open
Abstract
This study was aimed to evaluate the possible protective effects of ursolic acid (UA) against gamma radiation induced damage both in vitro as well as in vivo. It was observed that the exposure to gamma radiation dose- and time-dependently caused a significant decrease in the cell viability, while the treatment of UA attenuated this cytotoxicity. The production of free radicals including reactive oxygen species (ROS) and NO increased significantly post-irradiation and further induced lipid peroxidation and oxidative DNA damage in cells. These deleterious effects could also be effectively blocked by UA treatment. In addition, UA also reversed gamma irradiation induced inflammatory responses, as indicated by the decreased production of TNF-α, IL-6, and IL-1β. NF-κB signaling pathway has been reported to be a key mediator involved in gamma radiation-induced cellular damage. Our results further demonstrated that gamma radiation dose- and time-dependently enhanced NF-κB DNA binding activity, which was significantly attenuated upon UA treatment. The post-irradiation increase in the expression of both phospho-p65, and phospho-IκBα was also blocked by UA. Moreover, the treatment of UA was found to significantly prolong overall survival in mice exposed to whole body gamma irradiation, and reduce the excessive inflammatory responses. Given its radioprotective efficacy as described here, UA as an antioxidant and NF-κB pathway blocker, may function as an important pharmacological agent in protecting against gamma irradiation-induced injury.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
- Singapore Nuclear Research and Safety Initiative, National University of SingaporeSingapore, Singapore
| | - Meng-Kwoon Sim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Weng Keong Loke
- Agent Diagnostic and Therapeutic Laboratory, Defence and Environmental Research Institute, DSO National LaboratoriesSingapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, Saudi Arabia
| | - Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative, National University of SingaporeSingapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, Saudi Arabia
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, PerthWA, Australia
| |
Collapse
|
38
|
Chen Y, Li C, Zheng Y, Gao Y, Hu J, Chen H. Discovery of FZU-03,010 as a self-assembling anticancer amphiphile for acute myeloid leukemia. Bioorg Med Chem Lett 2016; 27:1007-1011. [PMID: 28073673 DOI: 10.1016/j.bmcl.2016.12.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/12/2016] [Accepted: 12/28/2016] [Indexed: 01/29/2023]
Abstract
Recently various drug candidates with excellent anticancer potency have been demonstrated, whereas their clinical application largely suffers from several limitations especially poor solubility. Ursolic acid (UA) as one of ubiquitous pentacyclic triterpenes in plantkingdom exhibited versatile antiproliferative effects in various cancer cell lines. However, the unfavorable pharmaceutical properties became the main obstacle for its clinical development. With the aim of development of novel derivatives with enhanced potency, a series of diversified UA amphiphiles have been designed, synthesized, and pharmacologically evaluated. Amphiphile 10 (FZU-03,010) with significant improved antiproliferative effect can self-assemble into stable nanoparticles in water, which may serve as a promising candidate for further development.
Collapse
Affiliation(s)
- Yingyu Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Cailong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yunquan Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China.
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
39
|
|
40
|
Zanini S, Marzotto M, Giovinazzo F, Bassi C, Bellavite P. Effects of dietary components on cancer of the digestive system. Crit Rev Food Sci Nutr 2016; 55:1870-85. [PMID: 24841279 DOI: 10.1080/10408398.2012.732126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cancer is the second leading cause of death in developed countries and poor diet and physical inactivity are major risk factors in cancer-related deaths. Therefore, interventions to reduce levels of smoking, improve diet, and increase physical activity must become much higher priorities in the general population's health and health care systems. The consumption of fruit and vegetables exerts a preventive effect towards cancer and in recent years natural dietary agents have attracted great attention in the scientific community and among the general public. Foods, such as tomatoes, olive oil, broccoli, garlic, onions, berries, soy bean, honey, tea, aloe vera, grapes, rosemary, basil, chili peppers, carrots, pomegranate, and curcuma contain active components that can influence the initiation and the progression of carcinogenesis, acting on pathways implied in cell proliferation, apoptosis and metastasis. The present review illustrates the main foods and their active components, including their antioxidant, cytotoxic, and pro-apoptotic properties, with a particular focus on the evidence related to cancers of the digestive system.
Collapse
Affiliation(s)
- Sara Zanini
- a Laboratory of Translational Surgery, Universitary Laboratories of Medical Research (LURM), G. B. Rossi Hospital , University of Verona , Verona , Italy
| | | | | | | | | |
Collapse
|
41
|
Luna-Vázquez FJ, Ibarra-Alvarado C, Rojas-Molina A, Romo-Mancillas A, López-Vallejo FH, Solís-Gutiérrez M, Rojas-Molina JI, Rivero-Cruz F. Role of Nitric Oxide and Hydrogen Sulfide in the Vasodilator Effect of Ursolic Acid and Uvaol from Black Cherry Prunus serotina Fruits. Molecules 2016; 21:78. [PMID: 26771591 PMCID: PMC6273102 DOI: 10.3390/molecules21010078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/27/2022] Open
Abstract
The present research aimed to isolate the non-polar secondary metabolites that produce the vasodilator effects induced by the dichloromethane extract of Prunus serotina (P. serotina) fruits and to determine whether the NO/cGMP and the H2S/KATP channel pathways are involved in their mechanism of action. A bioactivity-directed fractionation of the dichloromethane extract of P. serotina fruits led to the isolation of ursolic acid and uvaol as the main non-polar vasodilator compounds. These compounds showed significant relaxant effect on rat aortic rings in an endothelium- and concentration-dependent manner, which was inhibited by NG-nitro-L-arginine methyl ester (L-NAME), DL-propargylglycine (PAG) and glibenclamide (Gli). Additionally, both triterpenes increased NO and H2S production in aortic tissue. Molecular docking studies showed that ursolic acid and uvaol are able to bind to endothelial NOS and CSE with high affinity for residues that form the oligomeric interface of both enzymes. These results suggest that the vasodilator effect produced by ursolic acid and uvaol contained in P. serotina fruits, involves activation of the NO/cGMP and H2S/KATP channel pathways, possibly through direct activation of NOS and CSE.
Collapse
Affiliation(s)
- Francisco J Luna-Vázquez
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Antonio Romo-Mancillas
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Fabián H López-Vallejo
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Mariana Solís-Gutiérrez
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Juana I Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Fausto Rivero-Cruz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n, México D.F. 04510, Mexico.
| |
Collapse
|
42
|
Fu HJ, Zhao Y, Zhou YR, Bao BH, Du Y, Li JX. Ursolic acid derivatives as bone anabolic agents targeted to tryptophan hydroxylase 1 (Tph-1). Eur J Pharm Sci 2015; 76:33-47. [PMID: 25930119 DOI: 10.1016/j.ejps.2015.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/15/2015] [Accepted: 04/26/2015] [Indexed: 01/28/2023]
Abstract
Tryptophan hydroxylase 1 (Tph-1) initiates the biosynthesis of peripheral serotonin. As peripheral serotonin suppresses bone formation, inhibitor of Tph-1 provides a useful tool to discover anabolic agents for osteoporosis. In the present study, series of ursolic acid (UA) derivatives were synthesized, and their inhibitory activity on serotonin biosynthesis and cytotoxicity were evaluated. Among the derivatives, 8d with potent inhibitory activity on serotonin was applied for further research. The data revealed that 8d significantly inhibited protein and mRNA expressions of Tph-1, and an SPR study indicated that 8d directly interacted to Tph-1 with a binding affinity of KD=15.09μM. Oral administration of 8d significantly prevented bone loss via suppressing serotonin biosynthesis without estrogenic side-effects in ovariectomized (OVX) rats.
Collapse
Affiliation(s)
- Hai-Jian Fu
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Yang Zhao
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Yu-Ren Zhou
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Bei-Hua Bao
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Yun Du
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, PR China
| | - Jian-Xin Li
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, PR China.
| |
Collapse
|
43
|
Feng S, Li C. Stereospecific, High-Yielding, and Green Synthesis of β-Glycosyl Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5732-9. [PMID: 26042825 DOI: 10.1021/acs.jafc.5b02534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A new method of synthesizing β-glycosyl esters stereospecifically has been developed by treating O-benzyl-protected glycosyl chlorides with Cs2CO3, tetrabutylammomium bromide (TBAB), a carboxylic acid, water, and granular polytetrafluoroethylene (PTFE) at 80 °C under mechanical agitation. D-Glucosyl, D-xylosyl, and D-galactosyl chlorides and 20 carboxylic acids were used to demonstrate the scope of the reaction. Control experiments showed that the water and granular PTFE had indispensable roles. Water-soluble TBAB has been found to be as efficient as N-methyl-N,N,N-trioctyloctan-1-ammonium chloride (Aliquat 336) in the reactions. After scaling up to 5-12 g, all of the products were obtained quantitatively via simple filtration and no organic solvents or chromatography was needed for the entire process.
Collapse
Affiliation(s)
- Suliu Feng
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Chunbao Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
44
|
Brahmkhatri VP, Prasanna C, Atreya HS. Insulin-like growth factor system in cancer: novel targeted therapies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:538019. [PMID: 25866791 PMCID: PMC4383470 DOI: 10.1155/2015/538019] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
Insulin-like growth factors (IGFs) are essential for growth and survival that suppress apoptosis and promote cell cycle progression, angiogenesis, and metastatic activities in various cancers. The IGFs actions are mediated through the IGF-1 receptor that is involved in cell transformation induced by tumour. These effects depend on the bioavailability of IGFs, which is regulated by IGF binding proteins (IGFBPs). We describe here the role of the IGF system in cancer, proposing new strategies targeting this system. We have attempted to expand the general viewpoint on IGF-1R, its inhibitors, potential limitations of IGF-1R, antibodies and tyrosine kinase inhibitors, and IGFBP actions. This review discusses the emerging view that blocking IGF via IGFBP is a better option than blocking IGF receptors. This can lead to the development of novel cancer therapies.
Collapse
Affiliation(s)
| | - Chinmayi Prasanna
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Hanudatta S. Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
45
|
Chen H, Gao Y, Wang A, Zhou X, Zheng Y, Zhou J. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents. Eur J Med Chem 2015; 92:648-55. [PMID: 25617694 PMCID: PMC4336574 DOI: 10.1016/j.ejmech.2015.01.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/28/2014] [Accepted: 01/15/2015] [Indexed: 12/12/2022]
Abstract
Currently, there is a renewed interest in common dietaries and plant-based traditional medicines for the prevention and treatment of cancer. In the search for potential anticancer agents from natural sources, ursolic acid (UA), a pentacyclic triterpenoid widely found in various medicinal herbs and fruits, exhibits powerful biological effects including its attractive anticancer activity against various types of cancer cells. However, the limited solubility, rapid metabolism and poor bioavailability of UA restricted its further clinical applications. In the past decade, with substantial progress toward the development of new chemical entities for the treatment of cancer, numerous UA derivatives have been designed and prepared to overcome its disadvantages. Despite extensive effort, discovery of effective UA derivatives has so far met with only limited success. This review summarizes the current status of the structural diversity and evolution in medicinal chemistry of UA analogues and provides a detailed discussion of future direction for further research in the chemical modifications of UA.
Collapse
Affiliation(s)
- Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Basic Science Building 3.314, Galveston, TX 77555, United States
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ailan Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xiaobin Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yunquan Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Basic Science Building 3.314, Galveston, TX 77555, United States.
| |
Collapse
|
46
|
Dong H, Yang X, Xie J, Xiang L, Li Y, Ou M, Chi T, Liu Z, Yu S, Gao Y, Chen J, Shao J, Jia L. UP12, a novel ursolic acid derivative with potential for targeting multiple signaling pathways in hepatocellular carcinoma. Biochem Pharmacol 2015; 93:151-62. [PMID: 25522955 DOI: 10.1016/j.bcp.2014.11.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/10/2023]
Abstract
Targeting cancer cell glucose metabolism is a promising strategy for cancer therapy. In past approaches to cancer drug discovery, ursolic acid (UA) has been chemically modified to improve its antitumor activities and bioavailability. Here, a novel ursolic acid (UA) derivative UP12 was developed via computer-aided drug design to explore potent anti-cancer agents and to examine possible mechanisms. The structural docking analyses suggested that UP12 could bind to the active sites of glucokinase (GK), glucose transporter 1 (GLUT1) and ATPase, which are the main enzymes involved in cancer glucose metabolism. We further investigated the synergistic effect between UP12 and glycolysis inhibitor 2-deoxy-d-glucose (2-DG) in inhibiting glucose metabolism of cancer cells. The pharmacological results showed that the combination enhanced depletion of intracellular ATP and decrease in lactate production, and pushed more cancer cells arrested in the S and G2/M cycle phases. The combination selectively down-regulated the expression of Bcl-2 and HKII proteins, up-regulated the expression of Bax and p53, and collectively resulted in enhanced apoptosis related to caspase-3, -8, and -9 activities, in addition to inhibition on the cell mitochondrial membrane potential. The animal studies further demonstrated that the combination exhibited significant antitumor activity without obvious toxicity. In summary, UP12 can interfere cancer cell metabolism pathway and further enhance the therapeutic effects of 2-DG likely through synergistic suppression of cancer cell glucose metabolism, making UP12 a likely new candidate for anti-cancer drug development.
Collapse
Affiliation(s)
- Haiyan Dong
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiang Yang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jingjing Xie
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Liping Xiang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yuanfang Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Minrui Ou
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Ting Chi
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zhenhua Liu
- Department of Medical Oncology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Suhong Yu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jianzhong Chen
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350001, China
| | - Jingwei Shao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350002, China; Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China.
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350002, China; Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
47
|
Synthesis and cytotoxic evaluation of novel amide–triazole-linked triterpenoid–AZT conjugates. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Jahan R, Al-Nahain A, Majumder S, Rahmatullah M. Ethnopharmacological Significance of Eclipta alba (L.) Hassk. (Asteraceae). INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:385969. [PMID: 27355071 PMCID: PMC4897414 DOI: 10.1155/2014/385969] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022]
Abstract
Eclipta alba can be found growing wild in fallow lands of Bangladesh where it is considered as a weed by farmers. Traditional medicinal systems of the Indian subcontinent countries as well as tribal practitioners consider the plant to have diverse medicinal values and use it commonly for treatment of gastrointestinal disorders, respiratory tract disorders (including asthma), fever, hair loss and graying of hair, liver disorders (including jaundice), skin disorders, spleen enlargement, and cuts and wounds. The plant has several phytoconstituents like wedelolactone, eclalbasaponins, ursolic acid, oleanolic acid, luteolin, and apigenin. Pharmacological activities of plant extracts and individual phytoconstituents have revealed anticancer, hepatoprotective, snake venom neutralizing, anti-inflammatory, and antimicrobial properties. Phytoconstituents like wedelolactone and ursolic and oleanolic acids as well as luteolin and apigenin can form the basis of new drugs against cancer, arthritis, gastrointestinal disorders, skin diseases, and liver disorders.
Collapse
Affiliation(s)
- Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhanmondi, Dhaka 1209, Bangladesh
| | - Abdullah Al-Nahain
- Department of Pharmacy, University of Development Alternative, Dhanmondi, Dhaka 1209, Bangladesh
| | - Snehali Majumder
- Department of Microbiology and Serology, NH Health, Bangalore 560099, India
| | - Mohammed Rahmatullah
- Department of Pharmacy, University of Development Alternative, Dhanmondi, Dhaka 1209, Bangladesh
- Faculty of Life Sciences, University of Development Alternative, House No. 78, Road No. 11A (new), Dhanmondi, Dhaka 1209, Bangladesh
| |
Collapse
|
49
|
Dang Thi TA, Kim Tuyet NT, Pham The C, Thanh Nguyen H, Ba Thi C, Doan Duy T, D'hooghe M, Van Nguyen T. Synthesis and cytotoxic evaluation of novel ester-triazole-linked triterpenoid-AZT conjugates. Bioorg Med Chem Lett 2014; 24:5190-4. [PMID: 25442310 DOI: 10.1016/j.bmcl.2014.09.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 12/26/2022]
Abstract
Betulinic acid and analogous naturally occurring triterpenoid acids were transformed into the corresponding propargyl esters and subsequently deployed as substrates for a click chemistry-mediated coupling with azidothymidine (AZT) en route to novel 1,2,3-triazole-tethered triterpenoid-AZT conjugates. Twelve new hybrids were thus prepared and assessed in terms of their cytotoxic activity, revealing an interesting anticancer activity of five triterpenoid-AZT hybrids on KB and Hep-G2 tumor cell lines.
Collapse
Affiliation(s)
- Tuyet Anh Dang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thi Kim Tuyet
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Chinh Pham The
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Ha Thanh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Cham Ba Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tien Doan Duy
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Tuyen Van Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
50
|
Ramalho SD, De Sousa LRF, Nebo L, Maganhi SH, Caracelli I, Zukerman-Schpector J, Lima MIS, Alves MFM, Da Silva MFDGF, Fernandes JB, Vieira PC. Triterpenoids as Novel Natural Inhibitors of Human Cathepsin L. Chem Biodivers 2014; 11:1354-63. [DOI: 10.1002/cbdv.201400065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Indexed: 12/22/2022]
|