1
|
Sangtanoo P, Srimongkol P, Saisavoey T, Puthong S, Buakeaw A, Suttisuwan R, Jatupornpipat M, Pimtong W, Reamtong O, Karnchanatat A. Bee pollen peptides as potent tyrosinase inhibitors with anti-melanogenesis effects in murine b16f10 melanoma cells and zebrafish embryos. Sci Rep 2024; 14:30834. [PMID: 39730661 DOI: 10.1038/s41598-024-81495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024] Open
Abstract
One important functional food ingredient today, valued for its health properties and ability to prevent disease, is bee pollen, which comprises a combination of nectar, pollen from plants, and the secretions of bees. In this research, the tyrosinase (TYR) inhibiting abilities of the peptides derived from bee pollen protein hydrolysates are investigated. Various proteases were utilized to generate these peptides, followed by testing at different concentrations. Tyrosinase inhibition activity was detected in all cases, while the hydrolysate drawn from 5.0% w/v neutrase exhibited the best IC50 value and was thus investigated further via ultrafiltration to separate the active fractions. The highest potential for tyrosinase inhibition was recorded for the fractions below 0.65 kDa. Subsequent purification steps via SEC and RP-HPLC led to the identification of the VDGYPAAGY (named VY-9) peptide via LC-Q-TOF-MS/MS in fraction F1-2, known for its non-toxic and hydrophobic characteristics albeit poor water solubility. The synthesized VY-9 peptide demonstrated competitive inhibition, with IC50 values of 0.55 ± 0.03 µM for mono-phenolase and 2.54 ± 0.06 µM for di-phenolase activities, as confirmed by molecular docking analysis revealing dominant hydrogen bond interactions with TYR. Effective concentrations of 0.2-1.6 µM of VY-9 showed negligible cytotoxicity in B16F10 cells. Melanin synthesis suppression was examined via qRT-PCR, and western blot in MITF, TYR, TRP-1, and TRP-2. Cell death in zebrafish embryos was evaluated in vivo using a toxicity assay which revealed no significant influence from VY-9, while anti-melanogenic effects were observed when the concentration was 4 µM, suggesting bee pollen-derived peptides' potential in cosmetic and pharmaceutical depigmentation applications.
Collapse
Affiliation(s)
- Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Tanatorn Saisavoey
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Rutairat Suttisuwan
- Biodiversity and Sustainable Utilization Research Unit, Department of Biology, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nang linchi Road, Sathorn, Bangkok, 10120, Thailand
| | - Marisa Jatupornpipat
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology, Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Rotter A, Varamogianni-Mamatsi D, Zvonar Pobirk A, Gosenca Matjaž M, Cueto M, Díaz-Marrero AR, Jónsdóttir R, Sveinsdóttir K, Catalá TS, Romano G, Aslanbay Guler B, Atak E, Berden Zrimec M, Bosch D, Deniz I, Gaudêncio SP, Grigalionyte-Bembič E, Klun K, Zidar L, Coll Rius A, Baebler Š, Lukić Bilela L, Rinkevich B, Mandalakis M. Marine cosmetics and the blue bioeconomy: From sourcing to success stories. iScience 2024; 27:111339. [PMID: 39650733 PMCID: PMC11625311 DOI: 10.1016/j.isci.2024.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
As the global population continues to grow, so does the demand for longer, healthier lives and environmentally responsible choices. Consumers are increasingly drawn to naturally sourced products with proven health and wellbeing benefits. The marine environment presents a promising yet underexplored resource for the cosmetics industry, offering bioactive compounds with the potential for safe and biocompatible ingredients. This manuscript provides a comprehensive overview of the potential of marine organisms for cosmetics production, highlighting marine-derived compounds and their applications in skin/hair/oral-care products, cosmeceuticals and more. It also lays down critical safety considerations and addresses the methodologies for sourcing marine compounds, including harvesting, the biorefinery concept, use of systems biology for enhanced product development, and the relevant regulatory landscape. The review is enriched by three case studies: design of macroalgal skincare products in Iceland, establishment of a microalgal cosmetics spin-off in Italy, and the utilization of marine proteins for cosmeceutical applications.
Collapse
Affiliation(s)
- Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Ana R. Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Spain
| | - Rósa Jónsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
| | - Kolbrún Sveinsdóttir
- Matis ohf., Icelandic Food and Biotech R&D, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Teresa S. Catalá
- Global Society Institute, Wälderhaus, am Inselpark 19, 21109 Hamburg, Germany
- Organization for Science, Education and Global Society GmbH, am Inselpark 19, 21109 Hamburg, Germany
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn - Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy
| | - Bahar Aslanbay Guler
- Faculty of Engineering Department of Bioengineering, Ege University, Izmir 35100, Turkey
| | - Eylem Atak
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | | | - Daniel Bosch
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Irem Deniz
- Faculty of Engineering Department of Bioengineering, Manisa Celal Bayar University, Manisa 45119, Turkey
| | - Susana P. Gaudêncio
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | | | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Luen Zidar
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Anna Coll Rius
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, Haifa 3102201, Israel
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| |
Collapse
|
3
|
Fazel R, Hassani B, Zare F, Jokar Darzi H, Khoshneviszadeh M, Poustforoosh A, Behrouz M, Sabet R, Sadeghpour H. Design, synthesis, in silico ADME, DFT, molecular dynamics simulation, anti-tyrosinase, and antioxidant activity of some of the 3-hydroxypyridin-4-one hybrids in combination with acylhydrazone derivatives. J Biomol Struct Dyn 2024; 42:9518-9528. [PMID: 37674457 DOI: 10.1080/07391102.2023.2252087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/20/2023] [Indexed: 09/08/2023]
Abstract
Tyrosinase is the rate-limiting enzyme in synthesizing melanin. Melanin is responsible for changing the color of fruits and vegetables and protecting against skin photo-carcinogenesis. Herein, some of the hybrids of 3-hydroxypyridine-4-one and acylhydrazones were designed and synthesized to study the anti-tyrosinase and antioxidant activities. The diphenolase activity of mushroom tyrosinase using L-DOPA assayed the inhibitory effects, and the antioxidant activity was assessed using DPPH free radical. The synthesized derivatives were confirmed using 1H-NMR, 13C-NMR, IR, and Mass spectroscopy. Among analogs, compound 5h bearing furan ring with IC50=8.94 μM was more potent than kojic acid (IC50=16.68 μM). The pharmacokinetic profile of the compounds showed that the tested compounds had suitable oral bioavailability and drug-likeness properties. The molecular docking studies showed that compound 5h was located in the tyrosinase-binding site. Also, the molecular dynamics simulation was performed on compound 5h, proving the obtained molecular docking results. At the B3LYP/6-31 + G** level of theory, the reactivity descriptors for 5 g and 5h were investigated using DFT calculations. Also, IR frequency was calculated to verify DFT results with experimental data. The electrostatic potential energy of the surface and the HOMO and LUMO molecular orbitals were also studied. It agrees with experimental results that the 5h is a soft molecule and ready for chemical reaction with other interacting molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Razieh Fazel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habibollah Jokar Darzi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Behrouz
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Azimi F, Mahdavi M, Khoshneviszadeh M, Shafiee F, Azimi M, Hassanzadeh F, Haji Ashrafee F. Kinetic studies, molecular docking, and antioxidant activity of novel 1,3-diphenyl pyrazole-thiosemicarbazone with anti-tyrosinase and anti-melanogenesis properties. Bioorg Chem 2024; 152:107722. [PMID: 39213796 DOI: 10.1016/j.bioorg.2024.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This study reports the Design Hypothesis of a novel series of 1,3-diphenyl pyrazole-thiosemicarbazone as novel tyrosinase inhibitors (TYRI). The designed compounds were prepared and their TYRI activity and mechanisms were studied. The results showed that the selected compounds exhibited potent tyrosinase inhibitory activities greater than that of kojic acid (KA). Lead candidates, denoted as 6g and 6n, with a para-hydroxyphenyl group attached to the 3-position of the pyrazole ring demonstrated IC50 values of 2.09 and 3.18 µM, respectively. The potency of these compounds was approximately 5-8 times higher than that of KA. The in vitro melanin content of 6g or 6n-treated melanoma cells resulted in significant efficacy in melanin reduction. The DPPH assay result revealed that the tyrosinase inhibition mechanism for these derivatives was independent of a redox effect and corresponded to the interaction with tyrosinase. According to the Lineweaver-Burk plot, the most potent compounds, 6g and 6n, exhibit a mixed type of inhibition, primarily noncompetitive inhibition. In silico molecular docking studies were employed to determine the binding mode and explore the Design Hypothesis in detail. The results suggested that these compounds could be considered promising leads for the further development of novel inhibitors to treat disorders related to tyrosinase.
Collapse
Affiliation(s)
- Fateme Azimi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Shafiee
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran
| | - Mahin Azimi
- Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Farshid Hassanzadeh
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran
| | | |
Collapse
|
5
|
Ashooriha M, Khoshneviszadeh M, Kabiri M, Dehshahri A, Hassani B, Ansari M, Emami S. Multi-functional tyrosinase inhibitors derived from kojic acid and hydroquinone-like diphenols for treatment of hyperpigmentation: Synthesis and in vitro biological evaluation. Arch Pharm (Weinheim) 2024:e2400380. [PMID: 39466938 DOI: 10.1002/ardp.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
A series of multi-functional tyrosinase inhibitors derived from kojic acid (KA) and hydroquinone-like diphenols were designed and synthesized using click chemistry. The in vitro enzymatic assay revealed that all compounds containing a free enolic structure showed excellent activity against tyrosinase (IC50 = 0.14-3.7 µM), being significantly more potent than KA. The most active compounds were catechol (6c) and α-naphthol (6i) analogs with 138- and 96-fold higher potency than KA. On the other hand, all free phenolic compounds (6a-c and 6g-j) derived from aromatic diols showed outstanding free radical scavenging activities superior to KA. Certainly, the α-naphthol derivative 6i with IC50 = 10.1 µM was the most active anti-oxidant, being as potent as quercetin. The SAR analysis indicated that the enolic head of the conjugate molecules mainly contributes to the anti-tyrosinase activity, and the free phenolic part of the molecules can offer anti-oxidant potency. The anti-melanogenic assay of the most promising derivative, 6i, against melanoma (B16F10) cells demonstrated that the prototype compound 6i can significantly reduce the melanin content, more effectively than KA. By using a conjugation strategy, we have improved the tyrosinase inhibitory and radical scavenging activity in the multi-functional agents such as 6i over the parent compound KA, being potentially useful in the treatment of hyperpigmentation and other skin disorders.
Collapse
Affiliation(s)
- Morteza Ashooriha
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kabiri
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, New York City, New York, USA
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Ansari
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Qi S, Guo L, Liang J, Wang K, Liao Q, He S, Lyu W, Cheng Z, Wang J, Luo X, Yan X, Lu Z, Wang X, Wang Z, Chen X, Li Q. A new strategy for the treatment of Parkinson's disease: Discovery and bio-evaluation of the first central-targeting tyrosinase inhibitor. Bioorg Chem 2024; 150:107612. [PMID: 38986418 DOI: 10.1016/j.bioorg.2024.107612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
The high level of tyrosinase leads to the generation of neuromelanin, further causing the abnormality of redox-related protein level and mediating the occurrence and development of Parkinson's disease (PD). However, the existing tyrosinase inhibitors are mostly natural product extracts or polyphenolic derivatives, which hindered them from penetrating the blood-brain barrier (BBB). Herein, we obtained a novel tyrosinase inhibitor, 2-06 (tyrosinase: monophenolase IC50 = 70.44 ± 22.69 μM, diphenolase IC50 = 1.89 ± 0.64 μM), through the structure-based screening method. The compound 2-06 presented good in vitro and in vivo safety, and can inhibit the tyrosinase and melanogenesis in B16F10. Moreover, this compound showed neuroprotective effects and Parkinsonism behavior improving function. 2-06 was proved to penetrate the BBB and enter the central nervous system (CNS). The exploration of the binding mode between 2-06 and tyrosinase provided the foundation for the subsequent structural optimization. This is the first research to develop a central-targeting tyrosinase inhibitor, which is crucial for in-depth study on the new strategy for utilizing tyrosinase inhibitors to treat PD.
Collapse
Affiliation(s)
- Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Lina Guo
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Kaixuan Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Qinghong Liao
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China; Shandong Kangqiao Biotechnology Co., Ltd, Qingdao 266033, Shandong, People's Republic of China
| | - Siyu He
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Zimeng Cheng
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Jiayi Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Xiaojia Luo
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Xiaomei Yan
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Ziyao Lu
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Xiaohan Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Ziming Wang
- School of Pharmacy, Binzhou Medical University, Yantai 256699, Shandong, People's Republic of China
| | - Xuehong Chen
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China.
| | - Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China.
| |
Collapse
|
7
|
Ablat A, Li MJ, Zhai XR, Wang Y, Bai XL, Shu P, Liao X. Fast Screening of Tyrosinase Inhibitors in Coreopsis tinctoria Nutt. by Ligand Fishing Based on Paper-Immobilized Tyrosinase. Molecules 2024; 29:4018. [PMID: 39274866 PMCID: PMC11397727 DOI: 10.3390/molecules29174018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Coreopsis tinctoria Nutt. is an important medicinal plant in traditional Uyghur medicine. The skin-lightening potential of the flower has been recognized recently; however, the active compounds responsible for that are not clear. In this work, tyrosinase, a target protein for regulating melanin synthesis, was immobilized on the Whatman paper for the first time to screen skin-lightening compounds present in the flower. Quercetagetin-7-O-glucoside (1), marein (2), and okanin (3) were found to be the enzyme inhibitors. The IC50 values of quercetagetin-7-O-glucoside (1) and okanin (3) were 79.06 ± 1.08 μM and 30.25 ± 1.11 μM, respectively, which is smaller than 100.21 ± 0.11 μM of the positive control kojic acid. Enzyme kinetic analysis and molecular docking were carried out to investigate their inhibition mechanism. Although marein (2) showed a weak inhibition effect in vitro, it inhibited the intracellular tyrosinase activity and diminished melanin production in melanoma B16 cells as did the other two inhibitors. The paper-based ligand fishing method developed in this work makes it effective to quickly screen tyrosinase inhibitors from natural products. This is the first report on the tyrosinase inhibitory effect of those three compounds, showing the promising potential of Coreopsis tinctoria for the development of herbal skin-lightening products.
Collapse
Affiliation(s)
- Ayzohra Ablat
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (A.A.); (X.-R.Z.); (X.-L.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Jie Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China; (M.-J.L.); (Y.W.)
| | - Xiao-Rui Zhai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (A.A.); (X.-R.Z.); (X.-L.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China; (M.-J.L.); (Y.W.)
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (A.A.); (X.-R.Z.); (X.-L.B.)
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China; (M.-J.L.); (Y.W.)
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (A.A.); (X.-R.Z.); (X.-L.B.)
| |
Collapse
|
8
|
Afzal M, Mehmood R, Mughal EU, Naeem N, Ashraf Z, Nazir Y, Shalaby FM, El-Sayed Abd El Hady A, Sadiq A. Elucidating bis-pyrimidines as new and efficient mushroom tyrosinase inhibitors: synthesis, SAR, kinetics and computational studies. RSC Adv 2024; 14:22769-22780. [PMID: 39035128 PMCID: PMC11258615 DOI: 10.1039/d4ra04652h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024] Open
Abstract
In this study, a series of novel bis-pyrimidine derivatives (1P-8P) were designed, synthesized, characterized, and investigated for their in vitro inhibitory activity against mushroom tyrosinase, an enzyme critical in melanin biosynthesis and implicated in various hyperpigmentation disorders. To the best of our knowledge, the bispyrimidine scaffold has been evaluated for the first time for its tyrosinase inhibitory activity. Their inhibitory activities were assessed, revealing inhibition with IC50 values in the micromolar range. Additionally, this series of compounds were found to inhibit tyrosinase activity in a mixed-type manner, with IC50 values ranging from 12.36 ± 1.24 to 86.67 ± 3.08 μM. To further elucidate the binding interactions, molecular docking simulations were performed, identifying key residues in the active site responsible for binding affinity. Furthermore, molecular dynamics (MD) simulations were conducted to assess the dynamic behavior, stability, and binding affinity of the most potent inhibitor, compound 6P. Quantitative Structure-Activity Relationship (QSAR) models were developed to correlate the structural features of the bis-pyrimidines with their inhibitory activity, providing insights into the structure-activity relationships (SAR) that govern their potency. The experimental and theoretical findings demonstrated excellent agreement. These findings pave the way for the development of novel bis-pyrimidine-based therapeutic agents for treating hyperpigmentation and related conditions.
Collapse
Affiliation(s)
- Manazza Afzal
- Department of Chemistry, Govt College Women University Sialkot-51300 Pakistan
| | - Rabia Mehmood
- Department of Chemistry, Govt College Women University Sialkot-51300 Pakistan
| | | | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Zaman Ashraf
- Department of Chemistry, Rawalpindi Women University Rawalpindi-46300 Pakistan
| | - Yasir Nazir
- Department of Chemistry, University of Sialkot Sialkot-51300 Pakistan
| | - Fatma Mohsen Shalaby
- King Khalid University, Faculty of Sciences, Biology Department Abha Kingdom of Saudi Arabia
| | - Amal El-Sayed Abd El Hady
- Department of Biology, Faculty of Science, Majmaah University Al Majma'ah 15341 Kingdom of Saudi Arabia
| | - Amina Sadiq
- Department of Chemistry, Govt College Women University Sialkot-51300 Pakistan
| |
Collapse
|
9
|
Wang M, Chen R, Wang S, Cui J, Lian D, Li L. Comparative Study of Binding Behaviors of Cyanidin, Cyanidin-3-Galactoside, Peonidin with Tyrosinase. J Fluoresc 2024; 34:1747-1760. [PMID: 37603228 DOI: 10.1007/s10895-023-03384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023]
Abstract
Cyanidin, peonidin and cyanidin-3-galactoside are the common anthocyanins with a variety of biological activities. Tyrosinase is a speed-limiting enzyme associated with melanin production. The inhibition of tyrosinase activity can prevent melanin disease while contributing to whitening. The interaction behaviors of the three anthocyanins against tyrosinase have been discussed in this paper. Cyanidin has strongest inhibitory effect on tyrosinase, and then peonidin, cyanidin-3-galactoside. Furthermore, the inhibition of tyrosinase by the three anthocyanins is mixed modes. The three anthocyanins can induce the static fluorescence quenching of tyrosinase. Cyanidin exhibits strongest binding affinity on tyrosinase, and then peonidin, cyanidin-3-galactoside based on Ka values obtain by fluorescence analysis. The binding of all anthocyanin to tyrosinase induce its conformation changes. According to molecular docking and fluorescence studies, they bind to tyrosinase by hydrogen bond and van der Waals force. In addition, the optimal modes of the three anthocyanins with tyrosinase are predicated by molecular docking. This work emphasizes that cyanidin, peonidin and cyanidin-3-galactoside may be potential drugs for the treatment of diseases caused by melanin.
Collapse
Affiliation(s)
- Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Rongda Chen
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
- Zhaoqing Xuanqing Middle School, Zhaoqing, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Jingjing Cui
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Di Lian
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
10
|
Saeed S, Saif MJ, Zahoor AF, Tabassum H, Kamal S, Faisal S, Ashraf R, Khan SG, Nazeer U, Irfan A, Bhat MA. Discovery of novel 1,2,4-triazole tethered β-hydroxy sulfides as bacterial tyrosinase inhibitors: synthesis and biophysical evaluation through in vitro and in silico approaches. RSC Adv 2024; 14:15419-15430. [PMID: 38741974 PMCID: PMC11089527 DOI: 10.1039/d4ra01252f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
In this study, a series of 1,2,4-triazole-tethered β-hydroxy sulfide scaffolds 11a-h was synthesized in good to remarkable yields (69-90%) through the thiolysis of oxiranes by the thiols in aqueous basic catalytic conditions. The synthesized 1,2,4-triazole-tethered β-hydroxy sulfides were screened against bacterial tyrosinase enzyme, and Gram-positive and Gram-negative bacterial cultures i.e., (S. aureus) Staphylococcus aureus & (E. coli) Escherichia coli. Among the synthesized derivatives, the molecules 11a (IC50 = 7.67 ± 1.00 μM), 11c (IC50 = 4.52 ± 0.09 μM), 11d (IC50 = 6.60 ± 1.25 μM), and 11f (IC50 = 5.93 ± 0.50 μM) displayed the better tyrosinase inhibitory activity in comparison to reference drugs ascorbic acid (IC50 = 11.5 ± 1.00 μM) and kojic acid (IC50 = 30.34 ± 0.75 μM). The molecule benzofuran-triazol-propan-2-ol 11c proved to be the most potent bacterial tyrosinase inhibitory agent with a minimum IC50 of 4.52 ± 0.09 μM, as compared to other synthesized counterparts and both standards (kojic acid and ascorbic acid). The compound diphenyl-triazol-propan-2-ol 11a and benzofuran-triazole-propan-2-ol 11c showed comparable anti-bacterial chemotherapeutic efficacy with minimum inhibitory concentrations (MIC = 2.0 ± 2.25 mg mL-1 and 2.5 ± 0.00 mg mL-1, respectively) against S. aureus bacterial strain in comparison with standard antibiotic penicillin (MIC = 2.2 ± 1.15 mg mL-1). Furthermore, among the synthesized derivatives, only compound 11c demonstrated better anti-bacterial activity (MIC = 10 ± 0.40 mg mL-1) against E. coli, which was slightly less than the standard antibiotic i.e., penicillin (MIC = 2.4 ± 1.00 mg mL-1). The compound 11c demonstrated a better binding score (-7.08 kcal mol-1) than ascorbic acid (-5.59 kcal mol-1) and kojic acid (-5.78 kcal mol-1). Molecular docking studies also validate the in vitro anti-tyrosinase assay results; therefore, the molecule 11c can be the lead bacterial tyrosinase inhibitor as well as the antibacterial agent against both types of bacterial strains after suitable structural modifications.
Collapse
Affiliation(s)
- Sadaf Saeed
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Hina Tabassum
- London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Shagufta Kamal
- Department of Biochemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar Peshawar 25120 Pakistan
| | - Rabia Ashraf
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
11
|
George N, Devi DG. Phytonano silver for cosmetic formulation- synthesis, characterization, and assessment of antimicrobial and antityrosinase potential. DISCOVER NANO 2024; 19:65. [PMID: 38619662 PMCID: PMC11018589 DOI: 10.1186/s11671-024-04008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Novel formulations of silver nanoparticles remain exciting if it is applicable for cosmetic purposes. This study proposes a value-added brand-new nanomaterial for improving skin complexion by inhibiting melanin development. This work aims to develop cost effective, efficient, natural silver nanoparticles phytomediated by aqueous extract of leaf sheath scales of Cocos nucifera (Cn-AgNPs) having potential as tyrosinase inhibitors hindering melanin synthesis. The formation of Cn-AgNPs was assessed spectrophotometrically and confirmed by the sharp SPR spectrum at 425 nm. The chemical composition profiling was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. The morphology was confirmed by Field Emission Scanning Electron Microscopy (FESEM) and the thermal stability was assessed by Thermogravimetric analysis (TGA). Pharmacological application studies supported the materialization of Cn-AgNPs with significant antityrosinase potential and considerably improved antibacterial and antioxidant properties. Cn-AgNPs showed potential antibacterial effects against gram-positive and negative strains, including prominent infectious agents of the skin. Antioxidant capacity was confirmed with an IC50 of 57.8 μg/mL by DPPH radical scavenging assay. Furthermore, in vitro melanin content determination was performed using SK-MEL cells. Cell line studies proved that Cn-AgNPs decrease the melanin content of cells. The IC50 value obtained was 84.82 μg/mL. Hence Cn-AgNPs is proposed to be acting as a whitening agent through lessening cellular melanin content and as a significant inhibitor of tyrosinase activity. The antioxidant properties and antibacterial effects can contribute to skin rejuvenation and can prevent skin infections as well. This evidence proposes the development of a new nanostructured pharmaceutical and cosmetic formulation from Cocos nucifera leaf sheath scales.
Collapse
Affiliation(s)
- Neethu George
- Department of Biochemistry, Pazhassiraja College, Pulpally, Wayanad, Kerala, 673579, India
| | - D Gayathri Devi
- Department of Life Sciences, University of Calicut, Malappuram, Kerala, 673635, India.
| |
Collapse
|
12
|
Kozarski M, Klaus A, Špirović-Trifunović B, Miletić S, Lazić V, Žižak Ž, Vunduk J. Bioprospecting of Selected Species of Polypore Fungi from the Western Balkans. Molecules 2024; 29:314. [PMID: 38257227 PMCID: PMC10819588 DOI: 10.3390/molecules29020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Growing mushrooms means meeting challenges while aiming for sustainability and circularity. Wherever the producer is located, commercial strains are the same originating from several producers. Customized strains adapted to local conditions are urgently needed. Before introducing new species to the strain development pipeline, the chemical characterization and biological activity of wild ones need to be assessed. Accordingly, the mycoceutical potential of five polypore mushroom species from Serbia was evaluated including: secondary metabolite composition, oxidative damage prevention, anti-tyrosinase, and anti-angiotensin converting enzyme (ACE). The phenolic pattern was comparable in all samples, but the amounts of specific chemicals varied. Hydroxybenzoic acids were the primary components. All samples had varying quantities of ascorbic acid, carotene, and lycopene, and showed a pronounced inhibition of lipid peroxidation (LPx) and ability to scavenge HO•. Extracts were more potent tyrosinase inhibitors but unsuccessful when faced with ACE. Fomitopsis pinicola had the strongest anti-tumor efficacy while Ganoderma lucidum demonstrated strong selectivity in anti-tumor effect in comparison to normal cells. The evaluated species provided a solid foundation for commercial development while keeping local ecology in mind.
Collapse
Affiliation(s)
- Maja Kozarski
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (M.K.); (A.K.); (V.L.)
| | - Anita Klaus
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (M.K.); (A.K.); (V.L.)
| | - Bojana Špirović-Trifunović
- Institute for Phytomedicine, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Srdjan Miletić
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Vesna Lazić
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (M.K.); (A.K.); (V.L.)
| | - Željko Žižak
- Institute of Oncology and Radiology of Serbia, Paterova 14, 11000 Belgrade, Serbia;
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Belgrade, Serbia
| |
Collapse
|
13
|
Beltran E, Serafini MR, Alves IA, Aragón Novoa DM. Novel Synthesized Tyrosinase Inhibitors: A Systematic Patent Review (2012-Present). Curr Med Chem 2024; 31:308-335. [PMID: 36740802 DOI: 10.2174/0929867330666230203111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 02/07/2023]
Abstract
Tyrosine is an enzyme responsible for melanin production. Its abnormal accumulation in different parts of the body is known as hyperpigmentation. Tyrosinase inhibitors have been used as one of the main approaches to treat these kinds of cosmetic and medical issues. This review aimed to discuss the advances in patents for this class of inhibitors, focusing on synthetic ones, by studying recent patent applications (2012-2022). We performed a screening using the European Patent Office's Espacenet database, from which 15 inventions were selected and fully studied. China has more patent applications, all of them were focused on synthetic methods and the majority declared at least two additional applications as antibrowning agents for fruits and vegetables, biological pesticides, and medicine to treat diseases like Parkinson's or melanoma. The strategies employed by the investigators focused on the examination of previous literature, which oriented on the type of structures that have been found to show good inhibitory activity; the study also examined aspects of their reaction mechanisms and information about the structureactivity relationship. For some groups of inhibitors, such as benzaldehyde and anthraquinone derivatives, the data were meaningful and extensive. In contrast, arginyl and troponoids compounds were difficult to analyze due to the limited research works.
Collapse
Affiliation(s)
- Erika Beltran
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | | | - Izabel Almeida Alves
- Department of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
- Program of Postgraduation in Pharmaceutical Sciences, State University of Bahia, Salvador, BA, Brazil
| | | |
Collapse
|
14
|
Rioux B, Mouterde LMM, Alarcan J, Abiola TT, Vink MJA, Woolley JM, Peru AAM, Mention MM, Brunissen F, Berden G, Oomens J, Braeuning A, Stavros VG, Allais F. An expeditive and green chemo-enzymatic route to diester sinapoyl-l-malate analogues: sustainable bioinspired and biosourced UV filters and molecular heaters. Chem Sci 2023; 14:13962-13978. [PMID: 38075651 PMCID: PMC10699562 DOI: 10.1039/d3sc04836e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/21/2023] [Indexed: 06/03/2024] Open
Abstract
Sinapoyl malate, naturally present in plants, has proved to be an exceptional UV filter and molecular heater for plants. Although there are nowadays industrially relevant sustainable synthetic routes to sinapoyl malate, its incorporation into certain cosmetic formulations, as well as its adsorption on plant leaves, is limited by its hydrophilicity. To overcome these obstacles, it is important to find a way to effectively control the hydrophilic-lipophilic balance of sinapoyl malate to make it readily compatible with the cosmetic formulations and stick on the waxy cuticle of leaves. To this end, herein, we describe a highly regioselective chemo-enzymatic synthesis of sinapoyl malate analogues possessing fatty aliphatic chains of variable length, enabling the lipophilicity of the compounds to be modulated. The potential toxicity (i.e., mutagenicity, carcinogenicity, endocrine disruption, acute and repeated-dose toxicity), bioaccumulation, persistence and biodegradability potential of these new analogues were evaluated in silico, along with the study of their transient absorption spectroscopy, their photostability as well as their photodegradation products.
Collapse
Affiliation(s)
- Benjamin Rioux
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech 51110 Pomacle France
| | - Louis M M Mouterde
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech 51110 Pomacle France
| | - Jimmy Alarcan
- Department of Food Safety, German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 10589 Berlin Germany
| | - Temitope T Abiola
- Department of Chemistry, University of Warwick Gibbet Hill Road CV4 7AL Coventry UK
- Department of Chemistry, Lash Miller Chemical Laboratories 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Matthias J A Vink
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University Toernooiveld 7 6525ED Nijmegen Netherlands
| | - Jack M Woolley
- Department of Chemistry, University of Warwick Gibbet Hill Road CV4 7AL Coventry UK
| | - Aurélien A M Peru
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech 51110 Pomacle France
| | - Matthieu M Mention
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech 51110 Pomacle France
| | - Fanny Brunissen
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech 51110 Pomacle France
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University Toernooiveld 7 6525ED Nijmegen Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University Toernooiveld 7 6525ED Nijmegen Netherlands
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 10589 Berlin Germany
| | - Vasilios G Stavros
- Department of Chemistry, University of Warwick Gibbet Hill Road CV4 7AL Coventry UK
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech 51110 Pomacle France
| |
Collapse
|
15
|
Zolghadri S, Asad AG, Farzi F, Ghajarzadeh F, Habibi Z, Rahban M, Zolghadri S, Stanek A. Span 60/Cholesterol Niosomal Formulation as a Suitable Vehicle for Gallic Acid Delivery with Potent In Vitro Antibacterial, Antimelanoma, and Anti-Tyrosinase Activity. Pharmaceuticals (Basel) 2023; 16:1680. [PMID: 38139807 PMCID: PMC10748266 DOI: 10.3390/ph16121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Natural compounds such as gallic acid (GA) have attracted more attention in cosmetic and pharmaceutical skin care products. However, the low solubility and poor stability of GA have limited its application. This study aimed to synthesize and characterize the GA niosomal dispersion (GAN) and investigate the potential of an optimal formulation as a skin drug delivery system for GA. For this purpose, GAN formulations were synthesized using the thin layer evaporation method with different molar ratios of Tween 60/Span 60, along with a constant molar ratio of polyethylene glycol 4000 (PEG-4000) and cholesterol in a methanol and chloroform solvent (1:4 v/v). The physicochemical properties of nanosystems in terms of size, zeta potential, drug entrapment, drug release, morphology, and system-drug interaction were characterized using different methods. In addition, in vitro cytotoxicity, anti-tyrosinase activity, and antibacterial activity were evaluated by MTT assay, the spectrophotometric method, and micro-well dilution assay. All formulations revealed a size of 80-276 nm, polydispersity index (PDI) values below 0.35, and zeta potential values below-9.7 mV. F2 was selected as the optimal formulation due to its smaller size and high stability. The optimal formulation of GAN (F2) was as follows: a 1:1 molar ratio of Span 60 to cholesterol and 1.5 mM GA. The release of the F2 drug showed a biphasic pattern, which was fast in the first 12 h until 58% was released. Our results showed the high antibacterial activity of GAN against Escherichia coli and Pseudomonas aeruginosa. The MTT assay showed that GA encapsulation increased its effect on B6F10 cancer cells. The F2 formulation exhibited potent anti-tyrosinase activity and inhibited melanin synthesis. These findings suggest that it can be used in dermatological skin care products in the cosmetic and pharmaceutical industries due to its significant antibacterial, anti-melanoma, and anti-tyrosinase activity.
Collapse
Affiliation(s)
- Sara Zolghadri
- Department of Chemistry, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Ali Ghanbari Asad
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa 7461686688, Iran;
| | - Fatemeh Farzi
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran; (F.F.); (F.G.); (Z.H.)
| | - Fatemeh Ghajarzadeh
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran; (F.F.); (F.G.); (Z.H.)
| | - Zeinab Habibi
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran; (F.F.); (F.G.); (Z.H.)
| | - Mahdie Rahban
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran; (F.F.); (F.G.); (Z.H.)
| | - Agata Stanek
- Department and Clinic of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
16
|
Boateng ST, Roy T, Torrey K, Owunna U, Banang-Mbeumi S, Basnet D, Niedda E, Alexander AD, Hage DE, Atchimnaidu S, Nagalo BM, Aryal D, Findley A, Seeram NP, Efimova T, Sechi M, Hill RA, Ma H, Chamcheu JC, Murru S. Synthesis, in silico modelling, and in vitro biological evaluation of substituted pyrazole derivatives as potential anti-skin cancer, anti-tyrosinase, and antioxidant agents. J Enzyme Inhib Med Chem 2023; 38:2205042. [PMID: 37184042 PMCID: PMC10187093 DOI: 10.1080/14756366.2023.2205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
Twenty-five azole compounds (P1-P25) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities in silico and in vitro. P25 exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation. In a mushroom tyrosinase inhibition assay, P14 was most potent among the compounds (half-maximal inhibitory concentration where 50% of cells are dead, IC50 15.9 μM), with activity greater than arbutin and kojic acid. Also, P6 exhibited noteworthy free radical-scavenging activity. Furthermore, in silico docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) simulations predicted prominent-phenotypic actives to engage diverse cancer/hyperpigmentation-related targets with relatively high affinities. Altogether, promising early-stage hits were identified - some with multiple activities - warranting further hit-to-lead optimisation chemistry with further biological evaluations, towards identifying new skin-cancer and skin-pigmentation renormalising agents.
Collapse
Affiliation(s)
- Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Kara Torrey
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Uchechi Owunna
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA, USA
| | - David Basnet
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Eleonora Niedda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Alexis D. Alexander
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Denzel El Hage
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siriki Atchimnaidu
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Dinesh Aryal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- Department of Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - Ann Findley
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Mario Sechi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Ronald A. Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siva Murru
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
17
|
Ledwoń P, Goldeman W, Hałdys K, Jewgiński M, Calamai G, Rossowska J, Papini AM, Rovero P, Latajka R. Tripeptides conjugated with thiosemicarbazones: new inhibitors of tyrosinase for cosmeceutical use. J Enzyme Inhib Med Chem 2023; 38:2193676. [PMID: 37146256 PMCID: PMC10165932 DOI: 10.1080/14756366.2023.2193676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
The development of skin-care products is recently growing. Cosmetic formulas containing active ingredients with proven efficacy, namely cosmeceuticals, are based on various compounds, including peptides. Different whitening agents featuring anti-tyrosinase activity have been applied in the cosmeceutical field. Despite their availability, their applicability is often limited due to several drawbacks including toxicity, lack of stability, and other factors. In this work, we present the inhibitory effect on diphenolase activity of thiosemicarbazone (TSC)-peptide conjugates. Tripeptides FFY, FWY, and FYY were conjugated with three TSCs bearing one or two aromatic rings via amide bond formation in a solid phase. Compounds were then examined as tyrosinase and melanogenesis inhibitors in murine melanoma B16F0 cell line, followed by the cytotoxicity assays of these cells. In silico investigations explained the differences in the activity, observed among tested compounds. Mushroom tyrosinase was inhibited by TSC1-conjugates at micromolar level, with IC50 lower than this for kojic acid, a widely used reference compound. Up to now, this is the first report regarding thiosemicarbazones conjugated with tripeptides, synthesised for the purpose of tyrosinase inhibition.
Collapse
Affiliation(s)
- Patrycja Ledwoń
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Waldemar Goldeman
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Katarzyna Hałdys
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Michał Jewgiński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Greta Calamai
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Wrocław, Poland
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
18
|
Chatatikun M, Tedasen A, Pattaranggoon NC, Palachum W, Chuaijit S, Mudpan A, Pruksaphanrat S, Sohbenalee S, Yamasaki K, Klangbud WK. Antioxidant activity, anti-tyrosinase activity, molecular docking studies, and molecular dynamic simulation of active compounds found in nipa palm vinegar. PeerJ 2023; 11:e16494. [PMID: 38025738 PMCID: PMC10680452 DOI: 10.7717/peerj.16494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Tyrosinase is a key enzyme in melanogenesis and its inhibitors have become increasingly because of their potential activity as hypopigmenting agents which have less side effects. Nipa palm vinegar is an aqueous product that is normally used as a food supplement. The aim of this study was to study the determination of antioxidant activity and tyrosinase inhibitory activities of aqueous extract of original nipa palm vinegar (AE O-NPV), nipa palm vinegar powder (NPV-P) and aqueous extract of nipa palm vinegar powder (AE NPV-P) were examined. Nipa palm vinegars were evaluated the phenolic and flavonoid content, and the active compounds which were submitted to molecular docking and molecular dynamic simulation, chemoinformatics, rule of five, skin absorption and toxicity. The highest phenolic and flavonoid contents in the AE O-NPV were 2.36 ± 0.23 mg gallic acid equivalents/g extract and 5.11 ± 0.59 mg quercetin equivalents/g, and the highest ABTS radical cation scavenging activity was also found. The AE O-NPV, NPV-P and AE NPV-P showed anti-mushroom tyrosinase activity. The HPLC analysis showed that there were vanillic acid and three flavonoids (catechin, rutin and quercetin). The molecular docking study revealed that the binding of the vanillic acid and three flavonoids occurred in the active site residues (histidine and other amino acids). Moreover, the number of hydrogen bond acceptors/donors, solubility, polar surface area and bioavailability score of the vanillic acid and three flavonoids were acceptable compared to Lipinski's Rule of Five. The molecular dynamic simulation showed that vanillic acid interacts with HIS284 through π-π stacking hydrophobic interactions and forms a metal-acceptor interaction with the copper molecule at the tyrosinase active site. All compounds revealed good skin permeability and nontoxicity. Nipa palm vinegar could be a promising source of a new ingredient for tyrosinase inhibition for cosmetics or pharmaceutical products.
Collapse
Affiliation(s)
- Moragot Chatatikun
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Center of Excellence Research of Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Research Excellence Center of Innovation and Health Products, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Nawanwat Chainuwong Pattaranggoon
- Program in Bioinformatics and Computational Biology, Chulalongkorn University, Bangkok, Thailand
- Faculty of Medical Technology, Rangsit University, Muang Pathumthani, Pathumthani, Thailand
| | - Wilawan Palachum
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Center of Excellence Research of Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Sirithip Chuaijit
- School of Medicine, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Amron Mudpan
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Supawita Pruksaphanrat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Sasirat Sohbenalee
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Kenshi Yamasaki
- Department of Dermatology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Wiyada Kwanhian Klangbud
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Center of Excellence Research of Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
19
|
Denis AA, Toledo D, Hakim QA, Quintana AA, Escobar CR, Oluwole SA, Costa A, Garcia EG, Hill AR, Agatemor C. Ligand-Independent Activation of Aryl Hydrocarbon Receptor and Attenuation of Glutamine Levels by Natural Deep Eutectic Solvent. Chembiochem 2023; 24:e202300540. [PMID: 37615422 DOI: 10.1002/cbic.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Natural deep eutectic solvents (NADESs) are emerging sustainable alternatives to conventional organic solvents. Beyond their role as laboratory solvents, NADESs are increasingly explored in drug delivery and as therapeutics. Their increasing applications notwithstanding, our understanding of how they interact with biomolecules at multiple levels - metabolome, proteome, and transcriptome - within human cell remain poor. Here, we deploy integrated metabolomics, proteomics, and transcriptomics to probe how NADESs perturb the molecular landscape of human cells. In a human cell line model, we found that an archetypal NADES derived from choline and geranic acid (CAGE) significantly altered the metabolome, proteome, and transcriptome. CAGE upregulated indole-3-lactic acid and 4-hydroxyphenyllactic acid levels, resulting in ligand-independent activation of aryl hydrocarbon receptor to signal the transcription of genes with implications for inflammation, immunomodulation, cell development, and chemical detoxification. Further, treating the cell line with CAGE downregulated glutamine biosynthesis, a nutrient rapidly proliferating cancer cells require. CAGE's ability to attenuate glutamine levels is potentially relevant for cancer treatment. These findings suggest that NADESs, even when derived from natural components like choline, can indirectly modulate cell biology at multiple levels, expanding their applications beyond chemistry to biomedicine and biotechnology.
Collapse
Affiliation(s)
| | - Daniela Toledo
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
| | | | | | | | | | - Arthur Costa
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
| | | | - Anaya Rose Hill
- Department of Biology, University of Miami, Miami, FL-33146, USA
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
- Department of Biology, University of Miami, Miami, FL-33146, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, University of Miami, Miami, FL-33136, USA
| |
Collapse
|
20
|
Hassani B, Zare F, Emami L, Khoshneviszadeh M, Fazel R, Kave N, Sabet R, Sadeghpour H. Synthesis of 3-hydroxypyridin-4-one derivatives bearing benzyl hydrazide substitutions towards anti-tyrosinase and free radical scavenging activities. RSC Adv 2023; 13:32433-32443. [PMID: 37942455 PMCID: PMC10629491 DOI: 10.1039/d3ra06490e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Tyrosinase is a vital enzyme in the biosynthesis of melanin, which has a significant role in skin protection. Due to the importance of the tyrosinase enzyme in the cosmetics and health industries, studies to design new tyrosinase inhibitors have been expanded. In this study, the design and synthesis of 3-dihydroxypyridine-4-one derivatives containing benzo hydrazide groups with different substitutions were carried out, and their antioxidant and anti-tyrosinase activities were also evaluated. The proposed compounds showed tyrosinase inhibitory effects (IC50) in the 25.29 to 64.13 μM range. Among all compounds, 6i showed potent anti-tyrosinase activity with an IC50 = 25.29 μM. Also, the antioxidant activity of derivatives by using DPPH radical scavenging indicates an EC50 value between 0.039 and 0.389 mM. Molecular docking studies were performed to reveal the position and interactions of 6i as the most potent inhibitor within the tyrosinase active site. The results showed that 6i binds well to the proposed binding site and forms a stable complex with the target protein. Furthermore, the physicochemical profiles of the tested compounds indicated drug-like and bioavailability properties. The kinetic assay revealed that 6i acts as a competitive inhibitor. Also, for the estimation of the reactivity of the best compound (6i), the density functional theory (DFT) was performed at the B3LYP/6-31+G**.
Collapse
Affiliation(s)
- Bahareh Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Fateme Zare
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Leila Emami
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Razieh Fazel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Negin Kave
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| |
Collapse
|
21
|
Zengin G, Nilofar, Yildiztugay E, Bouyahya A, Cavusoglu H, Gevrenova R, Zheleva-Dimitrova D. A Comparative Study on UHPLC-HRMS Profiles and Biological Activities of Inula sarana Different Extracts and Its Beta-Cyclodextrin Complex: Effective Insights for Novel Applications. Antioxidants (Basel) 2023; 12:1842. [PMID: 37891923 PMCID: PMC10604322 DOI: 10.3390/antiox12101842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Within this particular framework, the extracts obtained from Inula sarana using a variety of solvents, included n-hexane, ethyl acetate, dichloromethane (DCM), 70% ethanol, ethanol, and water. The extracts obtained from n-hexane, ethyl acetate, and DCM were then subjected to a specific method for their incorporation into β-cyclodextrin (β-CD). The establishment of complex formation was validated through the utilization of scanning electron microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The identification of phytochemical components was executed using UHPLC-HRMS. Furthermore, the total phenolic and flavonoid content was evaluated using the Folin-Ciocalteu assay and the AlCl3 method. Subsequently, the determination of antioxidant capacity was conducted utilizing DPPH, ABTS, CUPRAC, Frap, PBD, and MCA assays. The enzyme inhibitory activities of the samples (extracts and β-CD complexes) were also examined by AChE, BChE, tyrosinase, α-glucosidase, and α-amylase. The findings indicated that water and 70% ethanol extracts contained the highest phenolic content. One hundred and fourteen bioactive compounds were identified by UHPLC-HRMS analysis. This study unveiled a substantial array of flavonoids, phenolic acid-hexosides and caffeoylhexaric acids within I. sarana, marking their initial identification in this context. Among the various extracts tested, the 70% ethanol extract stood out due to its high flavonoid content (jaceosidin, cirsiliol, and eupatilin) and hydroxybenzoic and hydroxycinnamic acid hexosides. This extract also displayed notably enhanced antioxidant activity, with ABTS, CUPRAC, and FRAP test values of 106.50 mg TE/g dry extract, 224.31 mg TE/g dry extract, and 110.40 mg TE/g, respectively. However, the antioxidant values of the complex extracts with β-CD were generally lower than those of the pure extracts, an observation warranting significant consideration. In terms of enzyme inhibition activity, the ethanol and 70% ethanol extracts exhibited higher inhibitory effects on AChE, tyrosinase, and α-glucosidase. Conversely, n-hexane displayed stronger inhibitory activity against BChE. The ethyl acetate extract demonstrated elevated amylase inhibitory activity. However, the antioxidant values of the complex extracts with β-CD were generally lower than those of the pure extracts, a noteworthy observation, while water and extracts from the I. sarana complex with β-CD exhibited minimal or negatable inhibitory activity against specific enzymes.
Collapse
Affiliation(s)
- Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy
| | - Evren Yildiztugay
- Department of Biotechnology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Halit Cavusoglu
- Department of Physics, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | | |
Collapse
|
22
|
Duarte M, Carvalho MJ, de Carvalho NM, Azevedo-Silva J, Mendes A, Ribeiro IP, Fernandes JC, Oliveira ALS, Oliveira C, Pintado M, Amaro A, Madureira AR. Skincare potential of a sustainable postbiotic extract produced through sugarcane straw fermentation by Saccharomyces cerevisiae. Biofactors 2023; 49:1038-1060. [PMID: 37317790 DOI: 10.1002/biof.1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023]
Abstract
Postbiotics are defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host." They can be produced by fermentation, using culture media with glucose (carbon source), and lactic acid bacteria of the genus Lactobacillus, and/or yeast, mainly Saccharomyces cerevisiae as fermentative microorganisms. Postbiotics comprise different metabolites, and have important biological properties (antioxidant, anti-inflammatory, etc.), thus their cosmetic application should be considered. During this work, the postbiotics production was carried out by fermentation with sugarcane straw, as a source of carbon and phenolic compounds, and as a sustainable process to obtain bioactive extracts. For the production of postbiotics, a saccharification process was carried out with cellulase at 55°C for 24 h. Fermentation was performed sequentially after saccharification at 30°C, for 72 h, using S. cerevisiae. The cells-free extract was characterized regarding its composition, antioxidant activity, and skincare potential. Its use was safe at concentrations below ~20 mg mL-1 (extract's dry weight in deionized water) for keratinocytes and ~ 7.5 mg mL-1 for fibroblasts. It showed antioxidant activity, with ABTS IC50 of 1.88 mg mL-1 , and inhibited elastase and tyrosinase activities by 83.4% and 42.4%, respectively, at the maximum concentration tested (20 mg mL-1 ). In addition, it promoted the production of cytokeratin 14, and demonstrated anti-inflammatory activity at a concentration of 10 mg mL-1 . In the skin microbiota of human volunteers, the extract inhibited Cutibacterium acnes and the Malassezia genus. Shortly, postbiotics were successfully produced using sugarcane straw, and showed bioactive properties that potentiate their use in cosmetic/skincare products.
Collapse
Affiliation(s)
- Marco Duarte
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Maria João Carvalho
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Nelson Mota de Carvalho
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - João Azevedo-Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Adélia Mendes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Inês Pinto Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Porto, Portugal
| | - João Carlos Fernandes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana L S Oliveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Carla Oliveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Amaro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Raquel Madureira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
23
|
Wang Y, Jia J, Wang Q, Wei Y, Yuan H. Secondary Metabolites from the Cultures of Medicinal Mushroom Vanderbylia robiniophila and Their Tyrosinase Inhibitory Activities. J Fungi (Basel) 2023; 9:702. [PMID: 37504691 PMCID: PMC10381909 DOI: 10.3390/jof9070702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023] Open
Abstract
Vanderbylia robiniophila (Huaier in Chinese) has been used as a traditional herbal medicine in China for over 1600 years. However, the secondary metabolites of V. robiniophila have not been systematically examined. Corresponding chemical investigation in this study led to the discovery of two new compounds, (22E, 24R)-6β, 7α-dimethoxyergosta-8(14), 22-diene-3β, 5α-diol (1) and vanderbyliolide A (8), along with eight known ones (2-7, 9-10). Their structures were determined by extensive spectroscopic analyses and electronic circular dichroism (ECD) calculations. The tyrosinase inhibitory activity of all isolated compounds was evaluated, and compound 10 showed a potential tyrosinase inhibitory effect with an IC50 value of 60.47 ± 2.63 μM. Kinetic studies of the inhibition reactions suggested that 10 provides the inhibitory ability on tyrosinase in an uncompetitive way.
Collapse
Affiliation(s)
- Yuxi Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Jinghui Jia
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
- College of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Qi Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yulian Wei
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Haisheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
- College of Life Sciences, Liaoning University, Shenyang 110036, China
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
24
|
Al-Rooqi M, Sadiq A, Obaid RJ, Ashraf Z, Nazir Y, Jassas RS, Naeem N, Alsharif MA, Shah SWA, Moussa Z, Mughal EU, Farghaly AR, Ahmed SA. Evaluation of 2,3-Dihydro-1,5-benzothiazepine Derivatives as Potential Tyrosinase Inhibitors: In Vitro and In Silico Studies. ACS OMEGA 2023; 8:17195-17208. [PMID: 37214694 PMCID: PMC10193543 DOI: 10.1021/acsomega.3c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Benzothiazepines are pharmacologically active compounds, frequently utilized as a precursor for acquiring versatile molecules with several bioactivities including anti-inflammatory, anti-human immunodeficiency virus (anti-HIV), analgesic, antitumor, antimicrobial, and antitubercular. In this study, the 2,4-diphenyl-2,3-dihydro-1,5-benzothiazepine scaffold was selected for their in vitro, docking, and druglikeness studies to evaluate their inhibitory potential against mushroom tyrosinase. All synthesized analogues, 1-14, exhibited moderate to good IC50 values ranging from 1.21 to 70.65 μM. The synthesized benzothiazepine derivatives were potent tyrosinase inhibitors, which outperformed the reference kojic acid (IC50 = 16.69 μM). The kinetic analysis revealed that compound 2 (2-(3,4-dimethoxyphenyl)-4-(p-tolyl)-2,3-dihydrobenzo[b][1,4]thiazepine) was a mixed-type tyrosinase inhibitor with a Ki value of 1.01 μM. Molecular modeling studies against tyrosinase protein (PDB ID: 2Y9X) were conducted to recognize the binding modes of these analogues. The utilization of molecular dynamic (MD) simulations enabled the assessment of the protein-ligand complex's dynamic behavior, stability, and binding affinity for the compounds. These simulations ultimately led to the identification of compound 2 as a potential inhibitor of tyrosinase. Additionally, a druglikeness study was conducted, which supported the promising potential of the new analogues as novel antityrosinase agents. The in silico studies were consistent with the in vitro results, showing that these ligands had good binding scores against tyrosinase and interacted with the core residues of the target protein. Gaussian 09 was used for the geometry optimization of all complexes.
Collapse
Affiliation(s)
- Munirah
M. Al-Rooqi
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Amina Sadiq
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| | - Rami J. Obaid
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Zaman Ashraf
- Department
of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Yasir Nazir
- Department
of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
- Department
of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Rabab S. Jassas
- Department
of Chemistry, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nafeesa Naeem
- Department
of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Meshari A. Alsharif
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Syed Wadud Ali Shah
- Department
of Pharmacy, University of Malakand, Chakdara Dir 18000, Khyber Pakhtunkhwa, Pakistan
| | - Ziad Moussa
- Department
of Chemistry, College of Science, United
Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | | | - Abdel-Rahman Farghaly
- Department
of Chemistry, College of Science, Jazan
University, Jazan 114, Saudi Arabia
| | - Saleh A. Ahmed
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
25
|
Yoon D, Kang MK, Jung HJ, Ullah S, Lee J, Jeong Y, Noh SG, Kang D, Park Y, Chun P, Chung HY, Moon HR. Design, Synthesis, In Vitro, and In Silico Insights of 5-(Substituted benzylidene)-2-phenylthiazol-4(5 H)-one Derivatives: A Novel Class of Anti-Melanogenic Compounds. Molecules 2023; 28:molecules28083293. [PMID: 37110531 PMCID: PMC10144242 DOI: 10.3390/molecules28083293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
(Z)-5-Benzylidene-2-phenylthiazol-4(5H)-one ((Z)-BPT) derivatives were designed by combining the structural characteristics of two tyrosinase inhibitors. The double-bond geometry of trisubstituted alkenes, (Z)-BPTs 1-14, was determined based on the 3JC,Hβ coupling constant of 1H-coupled 13C NMR spectra. Three (Z)-BPT derivatives (1-3) showed stronger tyrosinase inhibitory activities than kojic acid; in particular, 2 was to be 189-fold more potent than kojic acid. Kinetic analysis using mushroom tyrosinase indicated that 1 and 2 were competitive inhibitors, whereas 3 was a mixed-type inhibitor. The in silico results revealed that 1-3 could strongly bind to the active sites of mushroom and human tyrosinases, supporting the kinetic results. Derivatives 1 and 2 decreased the intracellular melanin contents in a concentration-dependent manner in B16F10 cells, and their anti-melanogenic efficacy exceeded that of kojic acid. The anti-tyrosinase activity of 1 and 2 in B16F10 cells was similar to their anti-melanogenic effects, suggesting that their anti-melanogenic effects were primarily owing to their anti-tyrosinase activity. Western blotting of B16F10 cells revealed that the derivatives 1 and 2 inhibited tyrosinase expression, which partially contributes to their anti-melanogenic ability. Several derivatives, including 2 and 3, exhibited potent antioxidant activities against ABTS cation radicals, DPPH radicals, ROS, and peroxynitrite. These results suggest that (Z)-BPT derivatives 1 and 2 have promising potential as novel anti-melanogenic agents.
Collapse
Affiliation(s)
- Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sultan Ullah
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Jieun Lee
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yeongmu Jeong
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sang Gyun Noh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
26
|
Benslama O, Lekmine S, Mansouri N. Phytochemical constituents of Astragalus monspessulanus and integrative analysis for its antioxidant, photoprotective, and antityrosinase activities: Experimental and computational investigation. Eur J Integr Med 2023. [DOI: 10.1016/j.eujim.2023.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
27
|
Lee J, Jeong Y, Jin Jung H, Ullah S, Ko J, Young Kim G, Yoon D, Hong S, Kang D, Park Y, Chun P, Young Chung H, Ryong Moon H. Anti-tyrosinase flavone derivatives and their anti-melanogenic activities: Importance of the β-phenyl-α,β-unsaturated carbonyl scaffold. Bioorg Chem 2023; 135:106504. [PMID: 37015153 DOI: 10.1016/j.bioorg.2023.106504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Flavone derivatives were designed and synthesized based on the hypothesis that flavones containing the β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold have potential anti-tyrosinase activity. Flavones 1a and 1e inhibited mushroom tyrosinase more potently than kojic acid, and 1e inhibited monophenolase and diphenolase 61- and 28-fold more than kojic acid, respectively. Kinetic studies on mushroom tyrosinase indicated that 1a and 1e competitively inhibit monophenolase and diphenolase, and docking results supported these results. In an in vitro assay using B16F10 murine cells, 1a and 1e inhibited melanin production more potently than kojic acid, and this was attributed to the inhibition of tyrosinase. Furthermore, 1a and 1e strongly scavenged DPPH and ABTS radicals and ROS, which suggested that their antioxidant properties were at least partly responsible for their anti-melanogenic effects. Moreover, flavone 1a also inhibited the gene expressions of the melanogenesis-related genes tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Our findings that flavone derivatives (i) directly inhibit tyrosinase, (ii) act as antioxidants, and (iii) inhibit the expressions of melanogenesis-related genes suggest their potential use as natural melanogenesis inhibitors. Furthermore, the study confirms that the PUSC scaffold confers anti-tyrosinase activity.
Collapse
|
28
|
Divar M, Tadayyon S, Khoshneviszadeh M, Pirhadi S, Attarroshan M, Mobaraki K, Damghani T, Mirfazli S, Edraki N. Benzyl‐Triazole Derivatives of Hydrazinecarbothiamide Derivatives as Potent Tyrosinase Inhibitors: Synthesis, Biological Evaluation, Structure‐Activity Relationship and Docking Study. ChemistrySelect 2023. [DOI: 10.1002/slct.202203382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Masoumeh Divar
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Somayeh Tadayyon
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences 7146864685 Shiraz Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences 7146864685 Shiraz Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Mahshid Attarroshan
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Kourosh Mobaraki
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences 7146864685 Shiraz Iran
| | - Tahereh Damghani
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Sara Mirfazli
- Department of Medicinal Chemistry School of Pharmacy Iran University of Medical Sciences 1475886671 Tehran Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| |
Collapse
|
29
|
Buitrago E, Faure C, Carotti M, Bergantino E, Hardré R, Maresca M, Philouze C, Vanthuyne N, Boumendjel A, Bubacco L, du Moulinet d'Hardemare A, Jamet H, Réglier M, Belle C. Exploiting HOPNO-dicopper center interaction to development of inhibitors for human tyrosinase. Eur J Med Chem 2023; 248:115090. [PMID: 36634457 DOI: 10.1016/j.ejmech.2023.115090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
In human, Tyrosinase enzyme (TyH) is involved in the key steps of protective pigments biosynthesis (in skin, eyes and hair). The use of molecules targeting its binuclear copper active site represents a relevant strategy to regulate TyH activities. In this work, we targeted 2-Hydroxypyridine-N-oxide analogs (HOPNO, an established chelating group for the tyrosinase dicopper active site) with the aim to combine effects induced by combination with a reference inhibitor (kojic acid) or natural substrate (tyrosine). The HOPNO-MeOH (3) and the racemic amino acid HOPNO-AA compounds (11) were tested on purified tyrosinases from different sources (fungal, bacterial and human) for comparison purposes. Both compounds have more potent inhibitory activities than the parent HOPNO moiety and display strictly competitive inhibition constant, in particular with human tyrosinase. Furthermore, 11 appears to be the most active on the B16-F1 mammal melanoma cells. The investigations were completed by stereospecificity analysis. Racemic mixture of the fully protected amino acid 10 was separated by chiral HPLC into the corresponding enantiomers. Assignment of the absolute configuration of the deprotected compounds was completed, based on X-ray crystallography. The inhibition activities on melanin production were tested on lysates and whole human melanoma MNT-1 cells. Results showed significant enhancement of the inhibitory effects for the (S) enantiomer compared to the (R) enantiomer. Computational studies led to an explanation of this difference of activity based for both enantiomers on the respective position of the amino acid group versus the HOPNO plane.
Collapse
Affiliation(s)
- Elina Buitrago
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France; University of Grenoble Alpes, CNRS-UGA UMR 5063, DPM CS 40700, 38058, Grenoble, Cedex 9, France
| | - Clarisse Faure
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Marcello Carotti
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | - Elisabetta Bergantino
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | - Renaud Hardré
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Marc Maresca
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Christian Philouze
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Ahcène Boumendjel
- University of Grenoble Alpes, CNRS-UGA UMR 5063, DPM CS 40700, 38058, Grenoble, Cedex 9, France
| | - Luigi Bubacco
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | | | - Hélène Jamet
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Marius Réglier
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Catherine Belle
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France.
| |
Collapse
|
30
|
Kooltheat N, Tedasen A, Yamasaki K, Chatatikun M. Melanogenesis Inhibitory Activity, Chemical Components and Molecular Docking Studies of Prunus cerasoides Buch.-Ham. D. Don. Flowers. J Evid Based Integr Med 2023; 28:2515690X231152928. [PMID: 36740925 PMCID: PMC9905211 DOI: 10.1177/2515690x231152928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Safe depigmenting agents are currently increasing in the cosmetic or pharmaceutical industry because various compounds have been found to have undesirable side effects. Therefore, the present study aimed to investigate the melanogenesis inhibitory effects of Prunus cerasoides Buch. -Ham. D. Don. flower extracts and their molecular mechanism in B16F10 mouse melanoma cells. Moreover, we also examined phenolic and flavonoid contents, antioxidant activity, chemical constituents of potential extracts, and molecular docking. The highest phenolic and flavonoid contents with the greatest scavenging activity were found in the butanol extract of the P. cerasoides flower compared to other extracts. From all extracts, only crude, diethyl ether, and butanol extracts showed an inhibition of mushroom tyrosinase activity, cellular tyrosinase activity, and melanin content as well as the downregulation of the gene expression of the microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2) in α-MSH-stimulated B16F10 cells. Based on the molecular docking study, n-hexadecanoic acid, heptadecanoic acid, octadecanoic acid, 9,12-octadecadienoic acid, 9,12,15-octadecanoic acid, and eicosanoic acid might show an inhibitory effect against tyrosinase and MITF. In conclusion, this finding demonstrates that both the diethyl ether and butanol extracts of the P. cerasoides flower can effectively reduce tyrosinase activity and melanin synthesis through the downregulation of the melanogenic gene expression in B16F10 cells and through the molecular docking study. Taken together, the diethyl ether and butanol extracts of the P. cerasoides flower could be an anti-melanogenic ingredient for hyperpigmentary or melasma treatment.
Collapse
Affiliation(s)
- Nateelak Kooltheat
- Department of Medical Technology, School of Allied Health Sciences,
Walailak
University, Nakhon Si Thammarat 80161,
Thailand,Hematology and Transfusion Science Research Center, School of Allied
Health Sciences, Walailak
University, Nakhon Si Thammarat 80161,
Thailand
| | - Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences,
Walailak
University, Nakhon Si Thammarat 80161,
Thailand,Research Excellence Center for Innovation and Health Products
(RECIHP), Walailak
University, Nakhon Si Thammarat 80161,
Thailand
| | - Kenshi Yamasaki
- Department of Dermatology, Graduate School of Medicine, Tohoku
University, Sendai, Miyagi 980-8575, Japan
| | - Moragot Chatatikun
- Department of Medical Technology, School of Allied Health Sciences,
Walailak
University, Nakhon Si Thammarat 80161,
Thailand,Center of Excellence Research for Melioidosis and Microorganisms
(CERMM), Walailak
University, Nakhon Si Thammarat 80161,
Thailand,Moragot Chatatikun, School of Allied Health
Sciences, Walailak University 222, Nakhon Si Thammarat 80161, Thailand.
| |
Collapse
|
31
|
Peng W, Wang N, Wang S, Wang J, Bian Z. Effects of microwave and exogenous l-phenylalanine treatment on phenolic constituents, antioxidant capacity and enzyme inhibitory activity of Tartary buckwheat sprouts. Food Sci Biotechnol 2023; 32:11-19. [PMID: 36606090 PMCID: PMC9807718 DOI: 10.1007/s10068-022-01172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 01/07/2023] Open
Abstract
The phenolic substances, antioxidant capacity, and enzyme inhibitory activity of germinated Fagopyrum tataricum (Tartary buckwheat) under different microwave and l-phenylalanine (l-Phe) were investigated for the potential of enriching polyphenols. With the germination of seeds, the contents of total phenolics and total flavonoids increased, the antioxidant capacity and enzyme inhibitory activity were enhanced. The highest contents of total phenolics and total flavonoids in Tartary buckwheat sprouts were 17.41 mg GAE/g and 6.26 g RE/100 g DW (7 days), respectively. Correlation analysis and principal component analysis indicated that T3 (microwave 250 W, 90 s; l-Phe 2.9 mmol/L) could effectively improve the content of polyphenols, enzyme inhibition activity and antioxidant capacity of Tartary buckwheat sprouts obviously. This study hopes to provide some new ideas for enriching phenolics and improving antioxidation of Tartary buckwheat sprouts.
Collapse
Affiliation(s)
- Wenping Peng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000 Anhui China
| | - Nan Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000 Anhui China
| | - Shunmin Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000 Anhui China
| | - Junzhen Wang
- Xichang Institute of Agricultural Science, Liangshan Yi People Autonomous Prefecture, Liangshan, 615000 Sichuan China
| | - Zixiu Bian
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000 Anhui China
| |
Collapse
|
32
|
Sheweita SA, El-Masry YM, Zaghloul TI, Mostafa SK, Elgindy NA. Preclinical studies on melanogenesis proteins using a resveratrol-nanoformula as a skin whitener. Int J Biol Macromol 2022; 223:870-881. [PMID: 36370858 DOI: 10.1016/j.ijbiomac.2022.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
A naturally occurring polyphenol called trans-resveratrol has received a lot of attention due to its possible health advantages for humans. The low solubility of trans-resveratrol and its isomerization upon UV exposure strongly limit its application as a skin-whitening agent. In the present study, to increase trans-resveratrol solubility, a new nanoformula was created by combining hydrophilic surfactants and oils. Trans-Resveratrol nanoformula has been prepared, characterized, and applied as a skin-whitening agent on the dorsal skin of Guinea pigs. The optimized trans-resveratrol nanoformula with a particle size of 63.49 nm displayed a single peak and a polydispersity index [0.36 ± 0.02]. In addition, the zeta potential of the optimized formula was -30.4 mV, confirming the high stability of this nanoformula. The melanin contents in the trans-resveratrol nanoformula-treated group were substantially lower than those of the control and the blank nanoformula-treated groups after staining of the dorsal skins [black areas] of guinea pigs with Fontana Mountain dye. The pigmentation index in the control, blank nanoformula, and optimized trans-resveratrol nanoformula were 329.4 ± 36.9, 335.8 ± 71.4, and 124.8 ± 19.6 respectively. Confirming this finding, immunohistochemistry analysis of skin tissues revealed that the expressions of melanogenesis-regulating proteins such as tyrosinase and microphthalmia-associated transcription factor were down-regulated. The safety of topical application of trans-resveratrol nanoformula was validated by no changes in free radical levels and oxidative stress markers proteins in the livers and kidneys of guinea pigs at the end of the experiment. Conclusions: A novel trans-resveratrol nanoformula as well as the mechanism whereby it promotes skin whitening effects were presented. Furthermore, the study illustrated that trans-resveratrol nanoformula is safe, non-toxic, and can be applied for skin whitening, although more research on human skin is needed.
Collapse
Affiliation(s)
- Salah A Sheweita
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, KSA; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt.
| | - Yassin M El-Masry
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Taha I Zaghloul
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Shaimaa K Mostafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Delta University for Science and Technology, Gamesa, Mansoura, Egypt
| | - Nazik A Elgindy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
33
|
Thamrongwatwongsa J, Pattarapipatkul N, Jaithon T, Jindaruk A, Paemanee A, T-Thienprasert NP, Phonphoem WP. Mulberroside F from In Vitro Culture of Mulberry and the Potential Use of the Root Extracts in Cosmeceutical Applications. PLANTS (BASEL, SWITZERLAND) 2022; 12:146. [PMID: 36616275 PMCID: PMC9823754 DOI: 10.3390/plants12010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Mulberry (Morus spp.) is primarily used in sericulture, and its uses also extend to the food, pharmaceutical, and cosmetic industries. Mulberry extracts are rich in many bioactive compounds that exhibit a wide range of biological properties. Mulberroside F (Moracin M-6, 3'-di-O-β-D-glucopyranoside), one of the bioactive compounds found in mulberry, has previously been reported as a whitening agent by inhibiting melanin synthesis and exhibiting antioxidant effects. However, there is still limited information on the presence of this compound in plants cultured in vitro. In this study, the mulberroside F content, biochemical, and cytotoxic properties of the extracts from mulberry cultured in vitro were determined. The results revealed that both root and callus were found to be a potential source of mulberroside F. Furthermore, the mulberroside F content was positively correlated with the inhibitory effects on tyrosinase activity. Cell viability assay also revealed that crude extract of the mulberry root has no cytotoxicity in both human keratinocyte cell line (HaCaT) and Vero cells. Taken together, mulberry tissue culture represents a possible alternative and continuous production of mulberroside F, which could be further utilized in cosmeceutical applications.
Collapse
Affiliation(s)
| | - Nattaya Pattarapipatkul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Titiradsadakorn Jaithon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Ananya Jindaruk
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Atchara Paemanee
- Metabolomics Research Team, National Omics Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | | | | |
Collapse
|
34
|
You Z, Li Y, Chen M, Wong VKW, Zhang K, Zheng X, Liu W. Inhibition of plant essential oils and their interaction in binary combinations against tyrosinase. Food Nutr Res 2022; 66:8466. [PMID: 36590855 PMCID: PMC9793764 DOI: 10.29219/fnr.v66.8466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 07/26/2022] [Accepted: 10/30/2022] [Indexed: 12/27/2022] Open
Abstract
Background Essential oils (EOs), derived from aromatic plants, exhibit properties beneficial to health, such as anti-inflammatory, anti-oxidative, antidiabetic, and antiaging effects. However, the effect of EOs and their interaction in binary combinations against tyrosinase is not yet known. Objective To evaluate the underlying mechanisms of EOs and their interaction in binary combinations against tyrosinas. Design We explored to investigate the inhibitory effect of 65 EOs and the interaction among cinnamon, bay, and magnolia officinalis in their binary combinations against tyrosinase. In addition, the main constituents of cinnamon, bay, and magnolia officinalis were analyzed by gas chromatography-mass spectrometry (GC-MS). Results The results showed that the most potent EOs against tyrosinase were cinnamon, bay, and magnolia officinalis with IC50 values of 25.7, 30.8, and 61.9 μg/mL, respectively. Moreover, the inhibitory mechanism and kinetics studies revealed that cinnamon and bay were reversible and competitive-type inhibitors, and magnolia officinalis was a reversible and mixed-type inhibitor. In addition, these results, assessed in mixtures of three binary combinations, indicated that the combination of cinnamon with bay at different dose and at dose ratio had a strong antagonistic effect against tyrosinase. Magnolia officinalis combined with cinnamon or bay experienced both antagonistic and synergistic effect in anti-tyrosinase activity. Conclusion It is revealed that natural EOs would be promising to be effective anti-tyrosinase agents, and binary combinations of cinnamon, bay, and magnolia officinalis might not have synergistic effects on tyrosinase under certain condition.
Collapse
Affiliation(s)
- Zonglin You
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yonglian Li
- School of Eco-environment Technology, Guangdong Industry Polytechnic, Guangzhou, China
| | - Min Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Vincent Kam Wai Wong
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,Wenfeng Liu School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China. Tel/Fax: +86 75 0329 9071.
| |
Collapse
|
35
|
Brassinin Abundant in Brassicaceae Suppresses Melanogenesis through Dual Mechanisms of Tyrosinase Inhibition. Foods 2022; 12:foods12010121. [PMID: 36613338 PMCID: PMC9818315 DOI: 10.3390/foods12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Brassinin is a phytoalexin abundant in plants, especially in cabbage, and has been reported to act as an anti-cancer and anti-inflammatory agent. However, limited studies are available to elucidate the functionalities of brassinin. Here, we tested the effects of brassinin on melanogenesis using cell-free and cell-based biochemical analysis and docking simulation. Cell-free experiments exhibited that brassinin has antioxidant and anti-tyrosinase activities. When applied to B16F10 cells stimulated with a melanogenesis inducer α-MSH, brassinin pretreatment significantly reduced melanin accumulation and cellular tyrosinase activity. Docking simulation indicates that the docking score of brassinin to the binding pocket of tyrosinase is better than that of kojic acid or arbutin, anti-melanogenic positive controls, indicating that brassinin inhibits melanogenesis at least partially by binding to and inactivating tyrosinase. In addition, qPCR results showed that brassinin reduced tyrosinase mRNA levels. Together, these results suggest that brassinin exerts anti-melanogenesis effects by inhibiting both the activity and mRNA expression levels of tyrosinase. Therefore, our study showed that brassinin has the potential to be used in pharmaceutical or cosmetic products for depigmentation.
Collapse
|
36
|
Paramita V, Masruchin N, Wirohadidjojo YW, Puruhito B, Ariyanto HD, Yulianto ME, Hartati I, Yohana E, Hidayatulloh F, Sutrisno T, Wijayanto B. Multiple response optimizations on the leached-spray-dried bancha green tea towards healthy ageing. Sci Rep 2022; 12:21347. [PMID: 36494428 PMCID: PMC9734194 DOI: 10.1038/s41598-022-25644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Bancha is a popular type of green tea in Japan, rich in tea polyphenols (TPs) and has a more astringent aroma with a less aromatic and strong character that complements functional foods. The blanching process is used to extract TPs and remove unwanted microorganisms, as well as inhibit phenolic oxidation. This study proposed a green tea blanching process followed by spray drying the extracts with maltodextrin. Furthermore, it is focused on maximizing the major chemical components of green tea (i.e., catechins, caffeine, and phenolic contents) based on powder particle size obtained through Multiple Response Surface Methodology optimizations. The results show that the proposed model accurately predicts leached-spray dried green tea's total catechin and caffeine content, with a coefficient of 0.9475 and 0.8692, respectively. This process yielded composite desirability of 0.9751, while individual desirability yielded excellent results of 1.0000, 0.9188, 1.0000, and 0.9839 for catechin, caffeine, phenol content, and powder. The settings appear to yield functional results for entire responses. Due to the concerns in tropical skin nutrition applications, smaller particle size green tea can promote better adsorption than larger sizes.
Collapse
Affiliation(s)
- Vita Paramita
- grid.412032.60000 0001 0744 0787Department of Technology Industry, Diponegoro University, Semarang, 50275 Indonesia
| | - Nanang Masruchin
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN), Cibinong, Bogor, 16911 Indonesia
| | - Yohanes Widodo Wirohadidjojo
- grid.8570.a0000 0001 2152 4506Department of Dermatology and Venereology, Gadjah Mada University, Yogyakarta, 55281 Indonesia
| | - Buwono Puruhito
- grid.412032.60000 0001 0744 0787Department of Dermatology and Venereology, Diponegoro University, Semarang, 50275 Indonesia
| | - Hermawan Dwi Ariyanto
- grid.412032.60000 0001 0744 0787Department of Technology Industry, Diponegoro University, Semarang, 50275 Indonesia
| | - Mohamad Endy Yulianto
- grid.412032.60000 0001 0744 0787Department of Technology Industry, Diponegoro University, Semarang, 50275 Indonesia
| | - Indah Hartati
- Department of Chemical Engineering, Wahid Hasyim University, Semarang, 50232 Indonesia
| | - Eflita Yohana
- grid.412032.60000 0001 0744 0787Department of Mechanical Engineering, Diponegoro University, Semarang, 50275 Indonesia
| | | | - Tris Sutrisno
- grid.412032.60000 0001 0744 0787Department of Technology Industry, Diponegoro University, Semarang, 50275 Indonesia
| | | |
Collapse
|
37
|
Zhao W, Yang A, Wang J, Huang D, Deng Y, Zhang X, Qu Q, Ma W, Xiong R, Zhu M, Huang C. Potential application of natural bioactive compounds as skin-whitening agents: A review. J Cosmet Dermatol 2022; 21:6669-6687. [PMID: 36204978 DOI: 10.1111/jocd.15437] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Melanin is a skin pigment that gives color to the skin, hair, and eyes. The accumulation or over production of melanin can lead to aesthetic problems as well as serious diseases associated with hyperpigmentation. Skin lightening is described as the procedure of using natural or synthetic products to lighten the skin tone or provide an even skin complexion by reducing the amount of melanin in the skin; therefore, skin lightening products help people to treat their skin problems. Ingredients such as hydroquinone, ascorbic acid, and retinoic acid were used as whitening agents to lighten the skin. However, they have many adverse effects on the skin and body health, such as skin irritation. AIM In this review, firstly, discuss on the directly/indirectly target melanogenesis-related signal pathways. Secondly, summarize potential natural bioactive ingredients with skin lightening properties from plants, marine organisms, microorganisms. Finally, the remaining problems and future challenges are also discussed. METHODS For relevant literature, a literature search was conducted using Google Scholar and Web of Science. Natural bioactive compounds, tyrosinase inhibitors, and other related topics were researched and evaluated. RESULTS Natural products isolated from plant and animal resources are potential active cosmetic candidates for lightening the skin tone and skin whitening and protection against UV irradiation. Natural bioactive ingredients as cosmetic whitening additives have attracted increasingly attention due to their safety and cost effectiveness, with few side effects. CONCLUSION Although natural active substances have been advocated for use in whitening cosmetics in recent years, there are still many challenges due to the fact that traditional inhibitors are used perennial in cosmetics which cannot be easily changed and the research on natural active substances is still in its infancy. In the future, by improving the extraction technique of natural extracts, it is achieved to give a qualitative and quantitative analysis of the active ingredients of the extracts, to determine the effect of the active components of action, and to find the substances that have the best possible whitening effect in natural organisms.
Collapse
Affiliation(s)
- Wei Zhao
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | | | - Jing Wang
- Zhejiang OSM Group Co., Ltd, Huzhou, China
| | - Dan Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Yankang Deng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Xiaoli Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| |
Collapse
|
38
|
Masjedi M, Solhjoo A. Does trigonelline help skin tone? Molecular docking studies of trigonelline on the human tyrosinase, formulation, optimization, and characterization of an emulgel-containing Trigonella foenum-graecum L. fenugreek standardized hydroalcoholic extract. J Cosmet Dermatol 2022; 21:7178-7193. [PMID: 36217567 DOI: 10.1111/jocd.15453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/03/2022] [Indexed: 01/06/2023]
Abstract
AIMS This study aimed to perform molecular docking studies to identify possibilities of the inhibitory potential of the trigonelline present in fenugreek seeds on the human tyrosinase, standardize fenugreek extract, formulate, and characterize an emulgel-containing fenugreek extract-entrapped niosomal vesicles. MATERIALS AND METHODS The docking study was performed using AutoDock software. The extract was standardized by the RP-HPLC method. Emulgels containing fenugreek extract and fenugreek extract-entrapped niosomes were optimized by the D-optimal method. In vitro characterization and stability studies were also carried out. RESULTS The lowest energy docked poses of trigonelline on the human tyrosinase complex was calculated -5.8 kcal/mol. Also, in vitro assessment of the tyrosinase inhibitory effect of trigonelline and comparison of IC50 values of trigonelline and kojic acid revealed that the enzyme inhibition efficacy of trigonelline was stronger than that of kojic acid. Optimization led to emulgels with desired viscosity, droplet size, and spreadability values. The release study showed that trigonelline was released from the niosomes at a lower rate compared with extract containing emulgel. Permeation investigations revealed that trigonelline in niosomes has a higher ability to permeate through the skin. CONCLUSION In conclusion, in silico and in vitro studies have shown that trigonelline can be assumed as an appropriate candidate for developing new cosmetic preparations and nonionic surfactant vesicles help trigonelline to permeate through the skin to a higher extent. However, clinical trials should be performed to confirm these findings.
Collapse
Affiliation(s)
- Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Daroosazan Sorena Exir Pharmaceutical Company, Shiraz, Iran
| | - Aida Solhjoo
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Liu JK. Natural products in cosmetics. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:40. [PMID: 36437391 PMCID: PMC9702281 DOI: 10.1007/s13659-022-00363-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/11/2022] [Indexed: 05/14/2023]
Abstract
The global cosmetics market reached US$500 billion in 2017 and is expected to exceed US$800 billion by 2023, at around a 7% annual growth rate. The cosmetics industry is emerging as one of the fastest-growing industries of the past decade. Data shows that the Chinese cosmetics market was US$60 billion in 2021. It is expected to be the world's number one consumer cosmetics market by 2050, with a size of approximately US$450 billion. The influence of social media and the internet has raised awareness of the risks associated with the usage of many chemicals in cosmetics and the health benefits of natural products derived from plants and other natural resources. As a result, the cosmetic industry is now paying more attention to natural products. The present review focus on the possible applications of natural products from various biological sources in skin care cosmetics, including topical care products, fragrances, moisturizers, UV protective, and anti-wrinkle products. In addition, the mechanisms of targets for evaluation of active ingredients in cosmetics and the possible benefits of these bioactive compounds in rejuvenation and health, and their potential role in cosmetics are also discussed.
Collapse
Affiliation(s)
- Ji-Kai Liu
- Wuhan Institute of Health, Shenzhen Moore Vaporization Health & Medical Technology Co., Ltd., Wuhan, 430074, People's Republic of China.
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
40
|
Papaemmanouil CD, Peña-García J, Banegas-Luna AJ, Kostagianni AD, Gerothanassis IP, Pérez-Sánchez H, Tzakos AG. ANTIAGE-DB: A Database and Server for the Prediction of Anti-Aging Compounds Targeting Elastase, Hyaluronidase, and Tyrosinase. Antioxidants (Basel) 2022; 11:antiox11112268. [PMID: 36421454 PMCID: PMC9686885 DOI: 10.3390/antiox11112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Natural products bear a multivariate biochemical profile with antioxidant, anti-inflammatory, antibacterial, and antitumoral properties. Along with their natural sources, they have been widely used both as anti-aging and anti-melanogenic agents due to their effective contribution in the elimination of reactive oxygen species (ROS) caused by oxidative stress. Their anti-aging activity is mainly related to their capacity of inhibiting enzymes like Human Neutrophil Elastase (HNE), Hyaluronidase (Hyal) and Tyrosinase (Tyr). Herein, we accumulated literature information (covering the period 1965–2020) on the inhibitory activity of natural products and their natural sources towards these enzymes. To navigate this information, we developed a database and server termed ANTIAGE-DB that allows the prediction of the anti-aging potential of target compounds. The server operates in two axes. First a comparison of compounds by shape similarity can be performed against our curated database of natural products whose inhibitory potential has been established in the literature. In addition, inverse virtual screening can be performed for a chosen molecule against the three targeted enzymes. The server is open access, and a detailed report with the prediction results is emailed to the user. ANTIAGE-DB could enable researchers to explore the chemical space of natural based products, but is not limited to, as anti-aging compounds and can predict their anti-aging potential. ANTIAGE-DB is accessed online.
Collapse
Affiliation(s)
- Christina D. Papaemmanouil
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Jorge Peña-García
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
| | - Antonio Jesús Banegas-Luna
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
| | - Androniki D. Kostagianni
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis P. Gerothanassis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
- Correspondence: (H.P.-S.); (A.G.T.)
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
- Correspondence: (H.P.-S.); (A.G.T.)
| |
Collapse
|
41
|
Inhibitory Effect of Curcumin-Inspired Derivatives on Tyrosinase Activity and Melanogenesis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227942. [PMID: 36432043 PMCID: PMC9695798 DOI: 10.3390/molecules27227942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Tyrosinase is a well-known copper-containing metalloenzyme typically involved in the synthesis of melanin. Recently, curcumin and several synthetic derivatives have been recognized as tyrosinase inhibitors with interesting anti-melanogenic therapeutic activity. In this study, three curcumin-inspired compounds 1, 6 and 7 were prepared in yields ranging from 60 to 88 % and spectrophotometric, electrochemical, in vitro and in silico analyses were carried out. The viability of PC12 cells, a rat pheochromocytoma derived-cell line, with compounds 1, 6 and 7, showed values around 80% at 5 µM concentration. In cell proliferation assays, compounds 1, 6 and 7 did not show significant toxicity on fibroblasts nor melanoma cells up to 10 µM with viability values over 90%. The inhibition of tyrosinase activity was evaluated both by a UV-Vis spectroscopic method at two different concentrations, 0.2 and 2.0 µM, and by amperometric assay with IC50 for compounds 1, 6 and 7 ranging from 11 to 24 nM. Melanin content assays on human melanoma cells were performed to test the capability of compounds to inhibit melanin biosynthesis. All compounds exerted a decrease in melanin content, with compound 7 being the most effective by showing a melanogenesis inhibition up to four times greater than arbutin at 100 µM. Moreover, the antioxidant activity of the selected inhibitors was evaluated against H2O2 in amperometric experiments, whereby compound 7 was about three times more effective compared to compounds 1 and 6. The tyrosinase X-ray structure of Bacterium megaterium crystal was used to carry out molecular docking studies in the presence of compounds 1, 6 and 7 in comparison with that of kojic acid and arbutin, two conventional tyrosinase inhibitors. Molecular docking of compounds 6 and 7 confirmed the high affinity of these compounds to tyrosinase protein.
Collapse
|
42
|
Wang D, Li M, Yuan C, Fang Y, Zhang Z. Guaiacol as a natural melanin biosynthesis inhibitor to control northern corn leaf blight. PEST MANAGEMENT SCIENCE 2022; 78:4557-4568. [PMID: 35833811 DOI: 10.1002/ps.7075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/04/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The natural 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis inhibitors (MBIs) are one of the promising approaches to the integrated management of plant diseases but have received scarce attention until now. Herein, to explore the natural DHN MBIs used in the control of northern corn leaf blight (NCLB), a library of 53 essential oil compounds was used to screen the MBIs against Exserohilum turcicum, the causal pathogen of NCLB, using tricyclazole as a reference compound. RESULTS The results of morphological change in the colony, thermogravimetric analysis, ultraviolet-visible spectroscopy, and transmission electron microscopy confirmed that guaiacol could effectively inhibit the melanin production at 50 μg/mL under in vitro conditions. The in vitro bioassay results indicated that this inhibition effect was concentration-dependent and the minimum inhibition concentration of guaiacol was 50 μg/mL. The in vivo experimental results demonstrated that guaiacol significantly inhibited appressorium formation and penetration on corn leaf sheaths at the concentration of 500 μg/mL. The pot experiment results revealed that there were no differences between guaiacol (500 μg/mL) and tricyclazole (100 μg/mL) in control efficacy. The enzymatic assay suggested that guaiacol might exert the activity through inhibiting DHN polymerization to form melanins, which was distinct from tricyclazole. CONCLUSIONS Taken together, this study screened out guaiacol as a natural MBI from 53 essential oil compounds and verified its effectiveness in the control of NCLB at 500 μg/mL. Above all, this research opened an avenue for exploring natural DHN MBIs in the integrated management of plant diseases. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Delong Wang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Min Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Chunxia Yuan
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Yali Fang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Zhijia Zhang
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
43
|
Muddassir M, Batool A, Alam M, Abbas Miana G, Altaf R, Alghamdi S, Almehmadi M, Abdulaziz O, Amer Alsaiari A, Umar Khayam Sahibzada M, Khusro A, Tariq Khan M. Evaluation of in vitro, in silico antidiabetic and antioxidant potential of bioactivity based isolated “Pakistanine” from Berberis baluchistanica. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
Talebi M, Majidi K, Bassam K, Abdi M, Daneshvar M, Moayedi SS, Pourhesabi S, Attarroshan M, Boumi S, Kabiri M, Hosseini FS, Khoshneviszadeh M, Amanlou M. Synthesis, biological evaluation, and molecular docking analysis of novel 1, 3, 4-thiadiazole -based kojic acid derivatives as tyrosinase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
45
|
Siew ZZ, Chan EWC, Wong CW. Anti‐browning active packaging: A review on delivery mechanism, mode of action, and compatibility with biodegradable polymers. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi Zhou Siew
- Department of Food Science with Nutrition Faculty of Applied Sciences, UCSI University Cheras Kuala Lumpur Malaysia
| | - Eric Wei Chiang Chan
- Department of Food Science with Nutrition Faculty of Applied Sciences, UCSI University Cheras Kuala Lumpur Malaysia
| | - Chen Wai Wong
- Department of Biotechnology, Faculty of Applied Sciences UCSI University Cheras Kuala Lumpur Malaysia
| |
Collapse
|
46
|
Amaral LM, Moniz T, Leite A, Oliveira A, Fernandes P, Ramos MJ, Araújo AN, Freitas M, Fernandes E, Rangel M. A combined experimental and computational study to discover novel tyrosinase inhibitors. J Inorg Biochem 2022; 234:111879. [DOI: 10.1016/j.jinorgbio.2022.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
|
47
|
Shehzadi SA, Saeed A, Perveen F, Channar PA, Arshad I, Abbas Q, Kalsoom S, Yousaf S, Simpson J. Identification of two novel thiazolidin-2-imines as tyrosinase inhibitors: synthesis, crystal structure, molecular docking and DFT studies. Heliyon 2022; 8:e10098. [PMID: 36046526 PMCID: PMC9421195 DOI: 10.1016/j.heliyon.2022.e10098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
Various N- and S-containing 5-membered heterocycles such as imidazole-2-thiones, thiazolidinones and thiazolidin-2-imines are among the most eminent biologically active organic heterocycles and are present in many marketed drugs. In view of their synthetic and biological significance, an efficient synthesis of two novel thiazolidine-2-imines (4a-b) utilizing a three-component one-pot approach starting from an aldimine, an alkyne and isothiocyanates has been developed. The reaction proceeded via a 5-exo digonal (5-exo dig) cyclization of a propargyl thiourea, formed in situ in the presence of Zn(II)-catalyst. The structures of the resulting products are elucidated by spectroscopic methods and X-ray crystallography. A DFT study explored the structural, thermodynamic and molecular electrostatic potential parameters for the compounds. The newly synthesized compounds (4a & 4b) were evaluated for the inhibition of tyrosinase both in vitro and in silico. The in vitro results revealed that the synthesized thiazolidine-2-imines (4a-b) showed good inhibition activity towards mushroom tyrosinase (IC50 = 1.151 ± 1.25 and 2.079 ± 0.87 μM respectively) in comparison to the kojic acid standard (IC50 = 16.031 ± 1.27 μM) a commonly used anti-pigment agent in plant and animal tissues. The experimental inhibition was further assessed by molecular docking studies between synthesized ligands and the human tyrosinase protein complex to investigate the intermolecular interactions responsible for tyrosinase inhibition activity.
Collapse
Affiliation(s)
- Syeda Aaliya Shehzadi
- Sulaiman Bin Abdullah Aba Al-Khail-Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, 44000 Islamabad, Pakistan
- Corresponding author.
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fouzia Perveen
- Research Center for Modelling and Simulations (RCMS), National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
| | | | - Ifzan Arshad
- Department of Chemistry, University of Management and Technology, Sialkot, Pakistan
- Corresponding author.
| | - Qamar Abbas
- Department of Physiology, University of Sindh, Jamshoro, Pakistan
| | - Saima Kalsoom
- Department of Chemistry, Preston University, Islamabad, Pakistan
| | - Sammer Yousaf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, 75270, Karachi, Pakistan
| | - Jim Simpson
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
48
|
Choi MH, Yang SH, Park WK, Shin HJ. Bamboo Lignin Fractions with In Vitro Tyrosinase Inhibition Activity Downregulate Melanogenesis in B16F10 Cells via PKA/CREB Signaling Pathway. Int J Mol Sci 2022; 23:ijms23137462. [PMID: 35806473 PMCID: PMC9267441 DOI: 10.3390/ijms23137462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Cosmetic ingredients originating from natural resources have garnered considerable attention, and the demand for whitening ingredients is increasing, particularly in Asian countries. Lignin is a natural phenolic biopolymer significantly effective as a natural sunscreen, as its ultraviolet protection efficacy ranges from 250 to 400 nm. However, using different types of lignin as cosmetic ingredients is difficult owing to the heterogeneity of lignin and the lack of in vitro and in vivo safety and efficacy data. Thus, steam-exploded lignin (SEL) was prepared from bamboo, fractionated via successive organic solvent extraction, and sequentially fractionated using ethyl acetate, methanol, and acetone to investigate its potential as a natural whitening material. Gel permeation chromatography showed that the molecular weight of acetone-soluble and acetone-insoluble SEL fractions were the lowest and the highest, respectively. Monomer structures of the four lignin fractions were elucidated using 1H, 13C, and 2D heteronuclear single quantum coherence nuclear magnetic resonance and pyrolysis gas chromatography/mass spectrometry. The antioxidant and tyrosinase inhibition activities of the four fractions were compared. The methanol-soluble SEL fraction (SEL-F2) showed the highest antioxidant activity (except 2,2-diphenyl-1-picrylhydrazyl scavenging activity), and the enzyme inhibition kinetics were confirmed. In this study, the expression pattern of the anti-melanogenic-related proteins by SEL-F2 was confirmed for the first time via the protein kinase A (PKA)/cAMP-response element-binding (CREB) protein signaling pathway in B16F10 melanoma cells. Thus, SEL may serve as a valuable cosmetic whitening ingredient.
Collapse
Affiliation(s)
- Moon-Hee Choi
- Department of Beauty and Cosmetics, Graduate School of Industrial Technology Startup, Chosun University, 309 Pilmundaero, Gwangju 61452, Korea;
| | - Seung-Hwa Yang
- Department of Chemical Engineering, Graduate School of Chosun University, Gwangju 61452, Korea;
| | - Won-Keun Park
- Department of Chemical Energy Engineering, Sangmyong University, Seoul 03016, Korea;
| | - Hyun-Jae Shin
- Department of Beauty and Cosmetics, Graduate School of Industrial Technology Startup, Chosun University, 309 Pilmundaero, Gwangju 61452, Korea;
- Department of Chemical Engineering, Graduate School of Chosun University, Gwangju 61452, Korea;
- Correspondence: ; Tel.: +82-62-230-75-18
| |
Collapse
|
49
|
Cui X, Li Y, Han T, Yang S, Liang Y, Wang Z, Wang T, Xu Z. The fermented kelp by Bacillus siamensis has antioxidant, skin-repairing and anti-wrinkle effects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
50
|
Mycobacterium smegmatis acyltransferase: The big new player in biocatalysis. Biotechnol Adv 2022; 59:107985. [DOI: 10.1016/j.biotechadv.2022.107985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
|