1
|
Xue M, Jia M, Qin Y, Francis F, Gu X. Toxicity of parental co-exposure of microplastic and bisphenol compounds on adult zebrafish: Multi-omics investigations on offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176897. [PMID: 39401590 DOI: 10.1016/j.scitotenv.2024.176897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
In recent years, the widespread use of bisphenol compounds and microplastics (MP) have attracted attention due to their harmful effects. Here, individual and combined effects of MP and bisphenol compounds, were assessed on adult zebrafish after co-exposure of bisphenol A (BPA) or bisphenol S (BPS) and 25 μm polyethylene MP. Impacts on their offspring (the F1 generation) were also investigated. The reproductive toxicity in adult zebrafish impacted exerted by bisphenol compounds were aggravated by the co-presence of MP. Transcriptomics and metabolomics further showed single or co-exposure of bisphenol compounds and MP could together regulate apoptosis, calcium signaling pathway and glycerophospholipid signaling pathways. Our results also showed the different toxicity mechanisms on transcriptional and metabolic profiles in the combination effects of bisphenol compounds and MP. The co-exposure of BPA and MP predominantly influenced neurotoxicity via the MAPK signaling pathway and voltage-dependent calcium channels, whereas the co-exposure of BPS and MP principally affected visual development through phototransduction and retinol metabolism. The co-exposure of BPA and MP, as well as BPS and MP, specifically regulate lipid metabolism and carbohydrate metabolism in zebrafish offspring, respectively. Overall, this study provided a deep understanding of the toxicity differences between co-exposure and single exposure of bisphenol compound and MP in zebrafish, as well as the transgenerational effects and potential molecular mechanisms of bisphenol compounds and MP in zebrafish offspring.
Collapse
Affiliation(s)
- Moyong Xue
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium; Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Ming Jia
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing, China
| | - Yuchang Qin
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Xu Gu
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing, China.
| |
Collapse
|
2
|
Zhang Y, Guo X, Zhao J, Gao X, Zhang L, Huang T, Wang Y, Niu Q, Zhang Q. The downregulation of TREM2 exacerbates toxicity of development and neurobehavior induced by aluminum chloride and nano-alumina in adult zebrafish. Toxicol Appl Pharmacol 2024; 492:117107. [PMID: 39288838 DOI: 10.1016/j.taap.2024.117107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
To investigate the difference in the development and neurobehavior between aluminum chloride (AlCl3) and nano-alumina (AlNPs) in adult zebrafish and the role of triggering receptor expressed on myeloid cells (TREM2) in this process. Zebrafish embryos were randomly administered with control, negative control, TREM2 knockdown, AlCl3, TREM2 knockdown + AlCl3, AlNPs, and TREM2 knockdown + AlNPs, wherein AlCl3 and AlNPs were 50 mg/L and TREM2 knockdown was achieved by microinjecting lentiviral-containing TREM2 inhibitors into the yolk sac. We assessed development, neurobehavior, histopathology, ultrastructural structure, neurotransmitters (AChE, DA), SOD, genes of TREM2 and neurodevelopment (α1-tubulin, syn2a, mbp), and AD-related proteins and genes. AlCl3 significantly lowered the malformation rate than AlNPs, and further increased rates of malformation and mortality following TREM2 knockdown. The locomotor ability, learning and memory were similar between AlCl3 and AlNPs. TREM2 deficiency further exacerbated their impairment in panic reflex, microglia decrease, and nerve fibers thickening and tangling. AlCl3, rather than AlNPs, significantly elevated AChE activity and p-tau content while decreasing TREM2 and syn2a levels than the control. TREM2 loss further aggravated impairment in the AChE and SOD activity, and psen1 and p-tau levels. Therefore, AlCl3 induces greater developmental toxicity but equivalent neurobehavior toxicity than AlNPs, while their toxicity was intensified by TREM2 deficiency.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Toxicology, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan 030012, China
| | - Xinyue Guo
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China; Department of Business Management, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an 710054, China
| | - Jinjin Zhao
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaocheng Gao
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Lan Zhang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Tao Huang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Yanhong Wang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Qiao Niu
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Qinli Zhang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China; Department of Pathology, University of Mississippi Medical Center, 2500 N State St., Jackson, MS 39216, United States of America.
| |
Collapse
|
3
|
Liu Y, Shi X, Lu C, Kou G, Wu X, Meng X, Lv Y, Luo J, Cui W, Yang X. Acute indomethacin exposure impairs cardiac development by affecting cardiac muscle contraction and inducing myocardial apoptosis in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116976. [PMID: 39216225 DOI: 10.1016/j.ecoenv.2024.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The accumulation of the active pharmaceutical chemical in the environment usually results in environmental pollution to increase the risk to human health. Indomethacin is a non-steroidal anti-inflammatory drug that potentially causes systemic and developmental toxicity in various tissues. However, there have been few studies for its potential effects on cardiac development. In this study, we systematically determined the cardiotoxicity of acute indomethacin exposure in zebrafish at different concentrations with morphological, histological, and molecular levels. Specifically, the malformation and dysfunction of cardiac development, including pericardial oedema, abnormal heart rate, the larger distance between the venous sinus and bulbus arteriosus (SV-BA), enlargement of the pericardial area, and aberrant motor capability, were determined after indomethacin exposure. In addition, further investigation indicated that indomethacin exposure results in myocardial apoptosis in a dose-dependent manner in zebrafish at early developmental stage. Mechanistically, our results revealed that indomethacin exposure mainly regulates key cardiac development-related genes, especially genes related to the cardiac muscle contraction-related signaling pathway, in zebrafish embryos. Thus, our findings suggested that acute indomethacin exposure might cause cardiotoxicity by disturbing the cardiac muscle contraction-related signaling pathway and inducing myocardial apoptosis in zebrafish embryos.
Collapse
Affiliation(s)
- Yi Liu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Xiaoling Shi
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Chunjiao Lu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Guanhua Kou
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Xuewei Wu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Xin Meng
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Yuhang Lv
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Juanjuan Luo
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China
| | - Wei Cui
- College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China.
| | - Xiaojun Yang
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, China.
| |
Collapse
|
4
|
Aydemir U, Mousa AH, Dicko C, Strakosas X, Shameem MA, Hellman K, Yadav AS, Ekström P, Hughes D, Ek F, Berggren M, Arner A, Hjort M, Olsson R. In situ assembly of an injectable cardiac stimulator. Nat Commun 2024; 15:6774. [PMID: 39117721 PMCID: PMC11310494 DOI: 10.1038/s41467-024-51111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Without intervention, cardiac arrhythmias pose a risk of fatality. However, timely intervention can be challenging in environments where transporting a large, heavy defibrillator is impractical, or emergency surgery to implant cardiac stimulation devices is not feasible. Here, we introduce an injectable cardiac stimulator, a syringe loaded with a nanoparticle solution comprising a conductive polymer and a monomer that, upon injection, forms a conductive structure around the heart for cardiac stimulation. Following treatment, the electrode is cleared from the body, eliminating the need for surgical extraction. The mixture adheres to the beating heart in vivo without disrupting its normal rhythm. The electrofunctionalized injectable cardiac stimulator demonstrates a tissue-compatible Young's modulus of 21 kPa and a high conductivity of 55 S/cm. The injected electrode facilitates electrocardiogram measurements, regulates heartbeat in vivo, and rectifies arrhythmia. Conductive functionality is maintained for five consecutive days, and no toxicity is observed at the organism, organ, or cellular levels.
Collapse
Affiliation(s)
- Umut Aydemir
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Abdelrazek H Mousa
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Cedric Dicko
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Xenofon Strakosas
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Muhammad Anwar Shameem
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Karin Hellman
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Amit Singh Yadav
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Peter Ekström
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Damien Hughes
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Fredrik Ek
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Anders Arner
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Martin Hjort
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Roger Olsson
- Chemical Biology & Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Lavecchia A, De Virgilio C, Mansi L, Manzari C, Mylonas CC, Picardi E, Pousis C, Cox SN, Ventriglia G, Zupa R, Pesole G, Corriero A. Comparison of ovarian mRNA expression levels in wild and hatchery-produced greater amberjack Seriola dumerili. Sci Rep 2024; 14:18034. [PMID: 39098967 PMCID: PMC11298523 DOI: 10.1038/s41598-024-69091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
The greater amberjack Seriola dumerili is a promising candidate for aquaculture production. This study compares the ovary transcriptome of greater amberjack sampled in the wild (WILD) with hatchery-produced breeders reared in aquaculture sea cages in the Mediterranean Sea. Among the seven sampled cultured fish, three were classified as reproductively dysfunctional (DysF group), while four showed no signs of reproductive alteration (NormalF group). The DysF fish showed 1,166 differentially expressed genes (DEGs) compared to WILD females, and 755 DEGs compared to the NormalF. According to gene ontology (GO) analysis, DysF females exhibited enrichment of genes belonging to the biological categories classified as Secreted, ECM-receptor interaction, and Focal adhesion. Protein-protein interaction analysis revealed proteins involved in the biological categories of ECM-receptor interaction, Enzyme-linked receptor protein signaling, Wnt signal transduction pathways, and Ovulation cycle. KEGG pathway analysis showed DEGs involved in 111 pathways, including Neuroactive ligand-receptor interaction, Steroid hormone biosynthesis, Cell cycle, Oocyte meiosis, Necroptosis, Ferroptosis, Apoptosis, Autophagy, Progesterone-mediated oocyte maturation, Endocytosis and Phagosome, as well as Hedgehog, Apelin, PPAR, Notch, and GnRH signalling pathways. Additionally, DysF females exhibited factors encoded by upregulated genes associated with hypogonadism and polycystic ovary syndrome in mammals. This study -which is part of a broader research effort examining the transcriptome of the entire reproductive axis in greater amberjack of both sexes-, enhances our comprehension of the mechanisms underlying the appearance of reproductive dysfunctions when fish are reared under aquaculture conditions.
Collapse
Affiliation(s)
- Anna Lavecchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Caterina De Virgilio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Luigi Mansi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003, Heraklion, Crete, Greece
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Chrysovalentinos Pousis
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy
| | - Sharon N Cox
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Gianluca Ventriglia
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy
| | - Rosa Zupa
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Aldo Corriero
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, BA, Italy.
| |
Collapse
|
6
|
Liu Y, Jin X, Ye Y, Xu Z, Du Z, Hong H, Yu H, Lin H, Huang X, Sun H. Emerging disinfection byproducts 3-bromine carbazole induces cardiac developmental toxicity via aryl hydrocarbon receptor activation in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123609. [PMID: 38395134 DOI: 10.1016/j.envpol.2024.123609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
3-bromine carbazole (3-BCZ) represents a group of emerging aromatic disinfection byproducts (DBP) detected in drinking water; however, limited information is available regarding its potential cardiotoxicity. To assess its impacts, zebrafish embryos were exposed to 0, 0.06, 0.14, 0.29, 0.58, 1.44 or 2.88 mg/L of 3-BCZ for 120 h post fertilization (hpf). Our results revealed that ≥1.44 mg/L 3-BCZ exposure induced a higher incidence of heart malformation and an elevated pericardial area in zebrafish larvae; it also decreased the number of cardiac muscle cells and thins the walls of the ventricle and atrium while increasing cardiac output and impeding cardiac looping. Furthermore, 3-BCZ exposure also exhibited significant effects on the transcriptional levels of genes related to both cardiac development (nkx2.5, vmhc, gata4, tbx5, tbx2b, bmp4, bmp10, and bmp2b) and cardiac function (cacna1ab, cacna1da, atp2a1l, atp1b2b, atp1a3b, and tnnc1a). Notably, N-acetyl-L-cysteine, a reactive oxygen species scavenger, may alleviate the failure of cardiac looping induced by 3-BCZ but not the associated cardiac dysfunction or malformation; conversely, the aryl hydrocarbon receptor agonist CH131229 can completely eliminate the cardiotoxicity caused by 3-BCZ. This study provides new evidence for potential risks associated with ingesting 3-BCZ as well as revealing underlying mechanisms responsible for its cardiotoxic effects on zebrafish embryos.
Collapse
Affiliation(s)
- Yingying Liu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Xudong Jin
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Yanan Ye
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Zeqiong Xu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, PR China
| | - Huachang Hong
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Haiying Yu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Hongjun Lin
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Hongjie Sun
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
| |
Collapse
|
7
|
Parker KS, El N, Buldo EC, MacCormack TJ. Mechanisms of PVP-functionalized silver nanoparticle toxicity in fish: Intravascular exposure disrupts cardiac pacemaker function and inhibits Na +/K +-ATPase activity in heart, but not gill. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109837. [PMID: 38218567 DOI: 10.1016/j.cbpc.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Polyvinylpyrrolidone-functionalized silver nanoparticles (nAgPVP) are popular in consumer products for their colloidal stability and antimicrobial activity. Whole lake additions of nAgPVP cause long term, ecosystem-scale changes in fish populations but the mechanisms underlying this effect are unclear. We have previously shown that in fish, nAgPVP impairs cardiac contractility and Na+/K+-ATPase (NKA) activity in vitro, raising the possibility that heart dysfunction could underlie population-level exposure effects. The goal of this study was to determine if nAgPVP influences the control of heart rate (fh), blood pressure, or cardiac NKA activity in vivo. First, a dose-response curve for the effects of 5 nm nAgPVP on contractility was completed on isometrically contracting ventricular muscle preparations from Arctic char (Salvelinus alpinus) and showed that force production was lowest at 500 μg L-1 and maximum pacing frequency increased with nAgPVP concentration. Stroke volume, cardiac output, and power output were maintained in isolated working heart preparations from brook char (Salvelinus fontinalis) exposed to 700 μg L-1 nAgPVP. Both fh and blood pressure were elevated after 24 h in brook char injected with 700 μg kg body mass-1 nAgPVP and fh was insensitive to modulation with blockers of β-adrenergic and muscarinic cholinergic receptors. Na+/K+-ATPase activity was significantly lower in heart, but not gill of nAgPVP injected fish. The results indicate that nAgPVP influences cardiac function in vivo by disrupting regulation of the pacemaker and cardiomyocyte ionoregulation. Impaired fh regulation may prevent fish from appropriately responding to environmental or social stressors and affect their ability to survive.
Collapse
Affiliation(s)
- K S Parker
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - N El
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - E C Buldo
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
8
|
Shao C, Huang R, Okyere SK, Muhammad Y, Wang S, Wang J, Wang X, Hu Y. Study on the chronic inflammatory injury caused by Ageratina adenophora on goat liver using metabolomics. Toxicon 2024; 239:107610. [PMID: 38218385 DOI: 10.1016/j.toxicon.2024.107610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Ageratina adenophora (A. adenophora) is an invasive plant that is harmful to animals. The plants toxic effects on the liver have been studied in detail, however, the inflammation aspects of the hepatotoxicity are rarely discussed in literature. Therefore, in this study, we investigated the level of inflammation and the associated changes in liver metabolism caused by A. adenophora ingestion. Goat were fed with A. adenophora powder which accounts for 40% of the forage for 90 d. After the feeding period, the liver tissues were collected and the level of inflammation was detected using H & E staining and the changes in metabolites by LC-MS/MS. The results indicated that A. adenophora changes the liver metabolites, The test group shown 153 different metabolites in liver of which 71 were upregulated and 82 down regulated. We also found two differential metabolic pathways: neuroactive ligand-receptor interaction and pyrimidine metabolism. The changes in the pathway suggested an association with inflammation and with pathological processes such as oxidative stress and apoptosis. In addition, we observed an increase in the levels of serum liver function indexes (AST and ALT), indicating the liver injury. Furthermore, inflammatory cell infiltration and cell degeneration were observed in histopathological sections. In conclusion, this study reveals that A. adenophora causes chronic inflammation and upregulate metabolites related to inflammation in the liver. The study complements the research content of A. adenophora hepatotoxicity and provides a basis for further research by analyzing changes in the liver metabolites.
Collapse
Affiliation(s)
- Chenyang Shao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ruya Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Department of Pharmaceutical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Yousif Muhammad
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jianchen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoxuan Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
9
|
Ding Z, Jia H, Yang Z, Yao N, Wang Y. The cardiovascular toxicity of clozapine in embryonic zebrafish and RNA sequencing-based transcriptome analysis. J Appl Toxicol 2024; 44:175-183. [PMID: 37605992 DOI: 10.1002/jat.4530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Clozapine (CLZ) is the most prescribed medication for treating refractory schizophrenia but is associated with significant cardiovascular toxicity. This study aimed to investigate the cardiovascular toxicity induced by CLZ using zebrafish as a model animal. For this purpose, zebrafish developed to 80-h post-fertilization were exposed to different CLZ concentration solutions for 24 h followed by cardiac morphological observations in yolk sac edema, pericardial edema, and blood coagulation, in addition to increased SV-BA distance, functionally manifested as bradycardia, and decreased cardiac ejection fraction using the untreated embryos as control. At the same time, RNA sequencing was used to study the possible molecular mechanism of CLZ-induced cardiovascular toxicity. The results indicated that compared to the control group, the experimental groups possessed a total of 5888 differentially expressed genes (DEGs), where gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment of analysis indicated that DEGs were mainly enriched in the pathways related to ion channels. These findings may provide new insights and directions for the subsequent in-depth study of the molecular mechanism of CLZ-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Zijiao Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huiting Jia
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziqian Yang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nan Yao
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Yunyun Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
10
|
Wang Q, Li X, Yao X, Ding J, Zhang J, Hu Z, Wang J, Zhu L, Wang J. Effects of butyl benzyl phthalate on zebrafish (Danio rerio) brain and the underlying molecular mechanisms revealed by transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167659. [PMID: 37806571 DOI: 10.1016/j.scitotenv.2023.167659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Butyl benzyl phthalate (BBP), a widely used class of plasticizers, has caused considerable concerns due to its widespread detection in various environmental media. However, the potential impact of BBP on the brain and its underlying molecular mechanisms remain poorly understood. In this study, adult zebrafish (Danio rerio) were exposed to 0, 5, 50, and 500 μg/L BBP for 28 days. Elevated levels of both reactive oxygen species and 8-hydroxydeoxyguanosine were observed, indicating the occurrence of oxidative stress and DNA damage. Furthermore, exposure to BBP resulted in neurotoxicity, apoptosis, and histopathological damage within the zebrafish brain. Transcriptome analysis further revealed that Gene Ontology terms associated with muscle contraction were specifically expressed in the brain after BBP exposure. In addition, BBP altered the transcriptome profile of the brain, with 293 genes induced and 511 genes repressed. Kyoto Encyclopedia of Genes and Genomes analysis highlighted the adverse effects of BBP on the complement and coagulation cascades and two cardiomyopathy-related pathways. Taken together, our results revealed that BBP resulted in brain oxidative stress, histological damage, and transcriptome alterations. These findings have the potential to offer novel insights into the adverse outcome pathways of key events in the brain.
Collapse
Affiliation(s)
- Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jia Ding
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Juan Zhang
- Shandong Institute for Product Quality Inspection, Jinan 250100, PR China
| | - Zhuran Hu
- Shandong Green and Blue Bio-technology Co. Ltd., Tai'an, PR China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
11
|
Zhu H, Liao D, Mehmood MA, Huang Y, Yuan W, Zheng J, Ma Y, Peng Y, Tian G, Xiao X, Lan C, Li L, Xu K, Lu H, Wang N. Systolic heart failure induced by butylparaben in zebrafish is caused through oxidative stress and immunosuppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115692. [PMID: 37981439 DOI: 10.1016/j.ecoenv.2023.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Due to Butylparaben (BuP) widespread application in cosmetics, food, pharmaceuticals, and its presence as an environmental residue, human and animal exposure to BuP is common, potentially posing hazards to both human and animal health. Congenital heart disease is already a serious problem. However, the effects of BuP on the developing heart and its underlying mechanisms remain unclear. Here, zebrafish embryos were exposed to environmentally and human-relevant concentrations of BuP (0.6 mg/L, 1.2 mg/L, and 1.8 mg/L, calculated but not measured) at 6 h post-fertilization (hpf) and were treated until 72 hpf. Exposure to BuP led to cardiac morphological defects and cardiac dysfunction in zebrafish embryos, manifesting symptoms similar to systolic heart failure. The etiology of BuP-induced systolic heart failure in zebrafish embryos is multifactorial, including cardiomyocyte apoptosis, endocardial and atrioventricular valve damage, insufficient myocardial energy, impaired Ca2+ homeostasis, depletion of cardiac-resident macrophages, cardiac immune non-responsiveness, and cardiac oxidative stress. However, excessive accumulation of reactive oxygen species (ROS) in the cardiac region and cardiac immunosuppression (depletion of cardiac-resident macrophages and cardiac immune non-responsiveness) may be the predominant factors. In conclusion, this study indicates that BuP is a potential hazardous substance that can cause adverse effects on the developing heart and provides evidence and insights into the pathological mechanisms by which BuP leads to cardiac dysfunction. It may help to prevent the BuP-based congenital heart disease heart failure in human through ameliorating strategies and BuP discharge policies, while raising awareness to prevent the misuse of preservatives.
Collapse
Affiliation(s)
- Hui Zhu
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Wuliangye Group Co., Ltd., Yibin 644007, China; Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Dalong Liao
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330029, Jiangxi, China
| | - Wei Yuan
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jia Zheng
- Wuliangye Group Co., Ltd., Yibin 644007, China
| | - Yi Ma
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Yuyang Peng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Guiyou Tian
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoping Xiao
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Chaohua Lan
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Linman Li
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Kewei Xu
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China; Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, China.
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Chengdu Chongqing Shuangcheng economic circle (Luzhou) advanced technology research institute, Luzhou 646000, China; Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China.
| |
Collapse
|
12
|
Zhang Y, Zhang C, Li K, Deng J, Liu H, Lai G, Xie B, Zhong X. Identification of Molecular Subtypes and Prognostic Characteristics of Adrenocortical Carcinoma Based on Unsupervised Clustering. Int J Mol Sci 2023; 24:15465. [PMID: 37895143 PMCID: PMC10607826 DOI: 10.3390/ijms242015465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis. Increasing evidence highlights the significant role of immune-related genes (IRGs) in ACC progression and immunotherapy, but the research is still limited. Based on the Cancer Genome Atlas (TCGA) database, immune-related molecular subtypes were identified by unsupervised consensus clustering. Univariate Cox analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression were employed to further establish immune-related gene signatures (IRGS). An evaluation of immune cell infiltration, biological function, tumor mutation burden (TMB), predicted immunotherapy response, and drug sensitivity in ACC patients was conducted to elucidate the applicative efficacy of IRGS in precision therapy. ACC patients were divided into two molecular subtypes through consistent clustering. Furthermore, the 3-gene signature (including PRKCA, LTBP1, and BIRC5) based on two molecular subtypes demonstrated consistent prognostic efficacy across the TCGA and GEO datasets and emerged as an independent prognostic factor. The low-risk group exhibited heightened immune cell infiltration, TMB, and immune checkpoint inhibitors (ICIs), associated with a favorable prognosis. Pathways associated with drug metabolism, hormone regulation, and metabolism were activated in the low-risk group. In conclusion, our findings suggest IRGS can be used as an independent prognostic biomarker, providing a foundation for shaping future ACC immunotherapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Biao Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing 400016, China; (Y.Z.); (C.Z.); (K.L.); (J.D.); (H.L.); (G.L.)
| | - Xiaoni Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing 400016, China; (Y.Z.); (C.Z.); (K.L.); (J.D.); (H.L.); (G.L.)
| |
Collapse
|
13
|
Wang X, Chen F, Lu J, Wu M, Cheng J, Xu W, Li Z, Zhang Y. Developmental and cardiovascular toxicities of acetochlor and its chiral isomers in zebrafish embryos through oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165296. [PMID: 37406693 DOI: 10.1016/j.scitotenv.2023.165296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Acetochlor (ACT) is a widely used pesticide, yet the environmental and health safety of its chiral isomers remains inadequately evaluated. In this study, we evaluated the toxicity of ACT and its chiral isomers in a zebrafish model. Our findings demonstrate that ACT and its chiral isomers disrupt early zebrafish embryo development, inducing oxidative stress, abnormal lipid metabolism, and apoptosis. Additionally, ACT and its chiral isomers lead to cardiovascular damage, including reduced heart rate, decreased red blood cell (RBC) flow rate, and vascular damage. We further observed that (+)-S-ACT has a significant impact on the transcription of genes involved in cardiac and vascular development, including tbx5, hand2, nkx2.5, gata4, vegfa, dll4, cdh5, and vegfc. Our study highlights the potential risk posed by different conformations of chiral isomeric pesticides and raises concerns regarding their impact on human health. Overall, our results suggest that the chiral isomers of ACT induce developmental defects and cardiovascular toxicity in zebrafish, with (+)-S-ACT being considerably more toxic to zebrafish than (-)-R-ACT.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
14
|
Yu Y, Tong D, Yu Y, Tian D, Zhou W, Zhang X, Shi W, Liu G. Toxic effects of four emerging pollutants on cardiac performance and associated physiological parameters of the thick-shell mussel (Mytilus coruscus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122244. [PMID: 37482340 DOI: 10.1016/j.envpol.2023.122244] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Robust cardiac performance is critical for the health and even survival of an animal; however, it is sensitive to environmental stressors. At present, little is known about the cardiotoxicity of emerging pollutants to bivalve mollusks. Thus, in this study, the cardiotoxic effects of four emergent pollutants, carbamazepine (CBZ), bisphenol A (BPA), tetrabromobisphenol A (TBBPA), and tris(2-chloroethyl) phosphate (TCEP), on the thick-shell mussel, Mytilus coruscus, were evaluated by heartbeat monitoring and histological examinations. In addition, the impacts of these pollutants on parameters that closely related to cardiac function including neurotransmitters, calcium homeostasis, energy supply, and oxidative status were assessed. Our results demonstrated that 28-day exposure of the thick-shell mussel to these pollutants resulted in evident heart tissue lesions (indicated by hemocyte infiltration and myocardial fibrosis) and disruptions of cardiac performance (characterized by bradyrhythmia and arrhythmia). In addition to obstructing neurotransmitters and calcium homeostasis, exposure to pollutants also led to constrained energy supply and induced oxidative stress in mussel hearts. These findings indicate that although do differ somehow in their effects, these four pollutants may exert cardiotoxic impacts on mussels, which could pose severe threats to this important species and therefore deserves more attention.
Collapse
Affiliation(s)
- Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
15
|
Park J, MacGavin S, Niederbrach L, Mchaourab HS. Interplay between Nrf2 and αB-crystallin in the lens and heart of zebrafish under proteostatic stress. Front Mol Biosci 2023; 10:1185704. [PMID: 37577747 PMCID: PMC10422029 DOI: 10.3389/fmolb.2023.1185704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
A coordinated oxidative stress response, partly triggered by the transcription factor Nrf2, protects cells from the continual production of reactive oxygen species. Left unbuffered, reactive oxygen species can lead to protein aggregation that has been implicated in a spectrum of diseases such as cataract of the ocular lens and myopathy of the heart. While proteostasis is maintained by diverse families of heat shock proteins, the interplay between the oxidative and proteostatic stress responses in the lens and heart has not been investigated. Capitalizing on multiple zebrafish lines that have compromised function of Nrf2 and/or the two zebrafish small heat shock proteins αBa- and αBb-crystallin, we uncovered a transcriptional relationship that leads to a substantial increase in αBb-crystallin transcripts in the heart in response to compromised function of Nrf2. In the lens, the concomitant loss of function of Nrf2 and αBa-crystallin leads to upregulation of the cholesterol biosynthesis pathway, thus mitigating the phenotypic consequences of the αBa-crystallin knockout. By contrast, abrogation of Nrf2 function accentuates the penetrance of a heart edema phenotype characteristic of embryos of αB-crystallin knockout lines. Multiple molecular pathways, such as genes involved in extracellular interactions and implicated in cardiomyopathy, are revealed from transcriptome profiling, thus identifying novel targets for further investigation. Together, our transcriptome/phenotypic analysis establishes an intersection between oxidative stress and chaperone responses in the lens and heart.
Collapse
Affiliation(s)
| | | | | | - Hassane S. Mchaourab
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
16
|
Wang L, Gao J, Cao X, Du J, Cao L, Nie Z, Xu G, Dong Z. Integrated Analysis of Transcriptomics and Metabolomics Unveil the Novel Insight of One-Year-Old Precocious Mechanism in the Chinese Mitten Crab, Eriocheir sinensis. Int J Mol Sci 2023; 24:11171. [PMID: 37446357 DOI: 10.3390/ijms241311171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Eriocheir sinensis is traditionally a native high-value crab that is widely distributed in eastern Asia, and the precocity is considered the bottleneck problem affecting the development of the industry. The precocious E. sinensis is defined as a crab that reaches complete sexual maturation during the first year of its lifespan rather than as normally in the second year. However, the exact regulatory mechanisms underlying the precocity are still unclear to date. This study is the first to explore the mechanism of precocity with transcriptome-metabolome association analysis between the precocious and normal sexually mature E. sinensis. Our results indicated that the phenylalanine metabolism (map00360) and neuroactive ligand-receptor interaction (map04080) pathways play an important role in the precocity in the ovary of E. sinensis. In map00360, the predicted aromatic-L-amino-acid decarboxylase and 4-hydroxyphenylpyruvate dioxygenase isoform X1 genes and the phenethylamine, phenylethyl alcohol, trans-2-hydroxycinnamate, and L-tyrosine metabolites were all down-regulated in the ovary of the precocious E. sinensis. The map04080 was the common KEGG pathway in the ovary and hepatopancreas between the precocious and normal crab. In the ovary, the predicted growth hormone secretagogue receptor type 1 gene was up-regulated, and the L-glutamate metabolite was down-regulated in the precocious E. sinensis. In the hepatopancreas, the predicted forkhead box protein I2 gene and taurine metabolite were up-regulated and the the L-glutamate metabolite was down-regulated in the precocious crab. There was no common pathway in the testis. Numerous common pathways in the hepatopancreas between male precocious and normal crab were identified. The specific amino acids, fatty acids and flavorful nucleotide (inosine monophosphate (MP), cytidine MP, adenosine MP, uridine MP, and guanosine MP) contents in the hepatopancreas and gonads further confirmed the above omics results. Our results suggest that the phenylalanine metabolism may affect the ovarian development by changing the contents of the neurotransmitter and tyrosine. The neuroactive ligand-receptor interaction pathway may affect the growth by changing the expressions of related genes and affect the umami taste of the gonads and hepatopancreas through the differences of L-glutamate metabolite in the precocious E. sinensis. The results provided valuable and novel insights on the precocious mechanism and may have a significant impact on the development of the E. sinensis aquaculture industry.
Collapse
Affiliation(s)
- Lanmei Wang
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
| | - Xi Cao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jinliang Du
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Zhijuan Nie
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zaijie Dong
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
17
|
Gonçalves JD, Ferraz JBS, Meirelles FV, Nociti RP, Oliveira MEF. An Exploratory Data Analysis from Ovine and Bovine RNA-Seq Identifies Pathways and Key Genes Related to Cervical Dilatation. Animals (Basel) 2023; 13:2052. [PMID: 37443850 DOI: 10.3390/ani13132052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 07/15/2023] Open
Abstract
The present study developed a review and exploration of data in public and already validated repositories. The main objective was to identify the pathways involved in ruminants' cervical dilatation, which are conserved between cattle and sheep in the follicular and luteal phases of the reproductive cycle. In cattle, 1961 genes were more differentially expressed in the follicular phase and 1560 in the luteal phase. An amount of 24 genes were considered exclusively expressed from these. A total of 18 genes were in the follicular phase and 6 genes were in the luteal phase. In sheep, 2126 genes were more differentially expressed in the follicular phase and 2469 genes were more differentially expressed in the luteal phase. Hoxb genes were identified in both species and are correlated with the PI3K/Akt pathway. PI3K/Akt was also found in both cattle and sheep, appearing prominently in the follicular and luteal phases of both species. Our analyses have pointed out that the PI3K/Akt pathway and the Hoxb genes appear in prominence in modulating mechanisms that involve estrus alterations in the cervix. PI3K/Akt appears to be an important pathway in the cervical relaxation process.
Collapse
Affiliation(s)
- Joedson Dantas Gonçalves
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal 14884-900, SP, Brazil
| | - José Bento Sterman Ferraz
- Molecular Morphophysiology and Development Laboratory, Departament of Veterinary Medicine, Faculty of Food Engineering-FZEA, University of São Paulo, Av. Duque de Caxias Norte 255, Pirassununga 14635-900, SP, Brazil
| | - Flávio Vieira Meirelles
- Molecular Morphophysiology and Development Laboratory, Departament of Veterinary Medicine, Faculty of Food Engineering-FZEA, University of São Paulo, Av. Duque de Caxias Norte 255, Pirassununga 14635-900, SP, Brazil
| | - Ricardo Perecin Nociti
- Molecular Morphophysiology and Development Laboratory, Departament of Veterinary Medicine, Faculty of Food Engineering-FZEA, University of São Paulo, Av. Duque de Caxias Norte 255, Pirassununga 14635-900, SP, Brazil
| | - Maria Emilia Franco Oliveira
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal 14884-900, SP, Brazil
| |
Collapse
|
18
|
Valadares LPDA, Lima LCO, Saboia-Morais SMTD, Arantes TM, Cristovan FH, da Silva NM, Andrade AB, Ribeiro SAB, Alves BG, Virote BDCR, da Silva IC, Machado MRF. Embryotoxicity of silica nanoparticles in the drug delivery of domperidone in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106454. [PMID: 36958154 DOI: 10.1016/j.aquatox.2023.106454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Domperidone is a dopamine D2 receptor inhibitor that stimulates pituitary gonadotropins. It is usually associated with synthetic GnRHa to promote spawning in fish. However, the route of administration used, intramuscular injection, can be quite stressful. Little is known about the effects of domperidone, as well as other routes. This study aims to evaluate the toxicity of domperidone encapsulated by silica nanoparticles in zebrafish embryos. The study involved four groups with three concentrations: 1. domperidone (DP) 0.0001, 0.0002 and 0.0004 mg/mL; 2. DP associated with silica nanoparticles (SiNPs) 0.0001 + 1.1, 0.0002 + 2.2 and 0.0004 + 4.4 mg/mL; 3. SiNPs 1.1, 2.2 and 4.4 mg/mL and 4. Control (E3), with four repetitions per group. Survival, teratogen and heart rate (HR) were evaluated over a period of 168 hpf. Survival was higher in DP + SiNPs treatment, HR was lower in treatment with 4.4 mg/mL of SiNPs, while treatment with 0.004 mg/mL of DP increased HR. This study demonstrated that the association of DP and SiNPs decreased the toxicity of both DP and SiNPs, demonstrating that this may be a viable alternative to reduce the possible cardiotoxic effects of DP.
Collapse
Affiliation(s)
| | - Larise Caroline Oliveira Lima
- Aquam production and conservation of aquatic species biodiversity, Federal University of Rio Grande do Sul, Porto Alegra, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | - Benner Geraldo Alves
- Invited Professor of the Postgraduate Program in Animal Bioscience at the Federal University of Jataí, Jataí, Goiás Brazil
| | | | - Ives Charlie da Silva
- Department of Pharmacology, University of São Paulo - ICB/USP, São Paulo - Capital, São Paulo, Brazil
| | | |
Collapse
|
19
|
Ni X, Yin X, Qi C, Liu C, Chen H, Zhou Y, Ao W, Bao S, Xue J, Yang J, Dong W. Cardiotoxicity of (-)-borneol, (+)-borneol, and isoborneol in zebrafish embryos is associated with Na + /K + -ATPase and Ca 2+ -ATPase inhibition. J Appl Toxicol 2023; 43:373-386. [PMID: 36062847 DOI: 10.1002/jat.4388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022]
Abstract
Borneol is an example of traditional Chinese medicine widely used in Asia. There are different isomers of chiral borneol in the market, but its toxicity and effects need further study. In this study, we used zebrafish embryos to examine the effects of exposure to three isomers of borneol [(-)-borneol, (+)-borneol, and isoborneol] on heart development and the association with Na+ /K+ -ATPase from 4 h post-fertilization (4 hpf). The results showed that the three isomers of borneol increased mortality and decreased hatching rate when the zebrafish embryo developed to 72 hpf. All three isomers of borneol (0.01-1.0 mM) significantly reduced heart rate from 48 to 120 hpf and reduced the expression of genes related to Ca2+ -ATPase (cacna1ab and cacna1da) and Na+ /K+ -ATPase (atp1b2b, atp1a3b, and atp1a2). At the same time, the three isomers of borneol significantly reduced the activities of Ca2+ -ATPase and Na+ /K+ -ATPase at 0.1 to 1.0 mM. (+)-Borneol caused the most significant reduction (p < 0.05), followed by isoborneol and (-)-borneol. Na+ /K+ -ATPase was mainly expressed in otic vesicles and protonephridium. All three isomers of borneol reduced Na+ /K+ -ATPase mRNA expression, but isoborneol was the most significant (p < 0.01). Our results indicated that (+)-borneol was the least toxic of the three isomers while the isoborneol showed the most substantial toxic effect, closely related to effects on Na+ /K+ -ATPase.
Collapse
Affiliation(s)
- Xuan Ni
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.,School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xiaoyu Yin
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Chelimuge Qi
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Chunyu Liu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Hao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Yini Zhou
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Wuliji Ao
- Inner Mongolia Research Institute of Traditional Mongolian Medicine Engineering technology/College of Mongolian Medicine and Pharmacy, Inner Mongolia Minzu University, Tongliao, China
| | - Shuyin Bao
- The Medical College of Inner Mongolia Minzu University, Tongliao, China
| | - Jiangdong Xue
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
20
|
Liu H, Chen Y, Hu W, Luo Y, Zhu P, You S, Li Y, Jiang Z, Wu X, Li X. Impacts of PFOA C8, GenX C6, and their mixtures on zebrafish developmental toxicity and gene expression provide insight about tumor-related disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160085. [PMID: 36356740 DOI: 10.1016/j.scitotenv.2022.160085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Concerns about per- and polyfluoroalkyl substances (PFASs) have grown in importance in the fields of ecotoxicology and public health. This study aims to compare the potential effects of long-chain (carbon atoms ≥ 7) and short-chain derivatives and their mixtures' exposure according to PFASs-exposed (1, 2, 5, 10, and 20 mg/L) zebrafish's (Danio rerio) toxic effects and their differential gene expression. Here, PFOAC8, GenXC6, and their mixtures (v/v, 1:1) could reduce embryo hatchability and increase teratogenicity and mortality. The toxicity of PFOAC8 was higher than that of GenXC6, and the toxicity of their mixtures was irregular. Their exposure (2 mg/L) caused zebrafish ventricular edema, malformation of the spine, blood accumulation, or developmental delay. In addition, all of them had significant differences in gene expression. PFOAC8 exposure causes overall genetic changes, and the pathways of this transformation were autophagy and apoptosis. More importantly, in order to protect cells from PFOAC8, GenXC6, and their mixtures' influences, zebrafish inhibited the expression of ATPase and Ca2+ transport gene (atp1b2b), mitochondrial function-related regulatory genes (mt-co2, mt-co3, and mt-cyb), and tumor or carcinogenic cell proliferation genes (laptm4b and ctsbb). Overall, PFOAC8, GenXC6, and their mixtures' exposures will affect the gene expression effects of zebrafish embryos, indicating that PFASs may pose a potential threat to aquatic biological safety. These results showed that the relevant genes in zebrafish that were inhibited by PFASs exposure were related to tumorigenesis. Therefore, the effect of PFASs on zebrafish can be further used to study the pathogenesis of tumors.
Collapse
Affiliation(s)
- Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yu Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Wenli Hu
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuan Luo
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Shiqi You
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yunxuan Li
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhaobiao Jiang
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiushan Wu
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
21
|
Zhao X, Xu H, Li Y, Ma R, Qi Y, Zhang M, Guo C, Sun Z, Li Y. Proteomic profiling reveals dysregulated mitochondrial complex subunits responsible for myocardial toxicity induced by SiNPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159206. [PMID: 36198348 DOI: 10.1016/j.scitotenv.2022.159206] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The relationship between environmental exposure to silica nanoparticles (SiNPs) and adverse cardiac outcomes has received more attention. Our recent work has revealed a size-dependent impact of the intratracheal instilled SiNPs on cardiac health of ApoE-/- mice using nanoscale SiNPs-60 and submicro-sized SiNPs-300, but the underlying mechanism of action still remains unclear. Hence, we identified proteins and protein networks perturbed by SiNPs in myocardial tissues of ApoE-/- mice by using LC-MS/MS-based quantitative proteomics. A set of 435 differentially expressed proteins (DEPs) were screened in response to SiNPs, which mainly enriched in the mitochondria and functioned in cell metabolism, biosynthesis and signal transduction. KEGG analysis showed that DEPs were significantly associated with oxidative phosphorylation and cardiomyopathy. The protein-protein interaction (PPI) network revealed 9 DEPs (e.g., Ndufs1, Ndufv1, Cox4i1) as potential biomarkers of SiNPs-induced myocardial toxicity. Of note, all the 9 candidate proteins were subunits of mitochondria respiratory chain complex, and their expressions were dependent on particle size, which were remarkably down-regulated by SiNPs-60 but not by SiNPs-300. More importantly, the correlation analysis verified the 9 dysregulated mitochondria complex protein subunits strongly correlated to the biochemical and functional indexes of cardiac injury in response to SiNPs. In conclusion, our study firstly provided significant proteomic insights into the potential molecular mechanisms underlying SiNPs-elicited cardiotoxicity, with the dysregulated mitochondrial complex subunits as core regulatory molecules. Overall, our study would provide the scientific basis for the molecular actions and mechanisms of toxicity induced by SiNPs.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Min Zhang
- Department of Nephrology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
22
|
Nie H, Pan M, Chen J, Yang Q, Hung TC, Xing D, Peng M, Peng X, Li G, Yan W. Titanium dioxide nanoparticles decreases bioconcentration of azoxystrobin in zebrafish larvae leading to the alleviation of cardiotoxicity. CHEMOSPHERE 2022; 307:135977. [PMID: 35948095 DOI: 10.1016/j.chemosphere.2022.135977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Interactions between titanium dioxide nanoparticles (n-TiO2) and pollutants in the aquatic environment may alter the bioavailability of pollutants, and thus altering their toxicity and fate. In order to investigate the bioconcentration of azoxystrobin (AZ) and its mechanism of cardiotoxicity in the presence of n-TiO2, the experiment was divided into control, n-TiO2 (100 μg/L), AZ (40, 200 and 1000 μg/L) and AZ (40, 200, 1000 μg/L) + n-TiO2 groups, and the zebrafish embryos were exposed to the exposure solution until 72 h post-fertilization. Results suggested the presence of n-TiO2 notably reduced the accumulation of AZ in larvae compared with exposure to AZ alone, thereby significantly decreasing AZ-induced cardiotoxicity, including heart rate changes, pericardium edema, venous thrombosis, increased sinus venosus and bulbus arteriosus distance and changes in cardiac-related gene expression. Further studies showed that AZ + n-TiO2 together restrained total-ATPase and Ca2+-ATPase activities, while the activity of Na+K+-ATPase increased at first and then decreased. Furthermore, there were significant changes in the expressions of oxidative phosphorylation and calcium channel-related genes, suggesting mitochondrial dysfunction may be the potential mechanism of cardiotoxicity induced by AZ and n-TiO2. This study supplies a new perspective for the joint action of AZ and environmental coexisting pollutants and provides a basis for ecological risk management of pesticides.
Collapse
Affiliation(s)
- Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Chen
- Changsha Xinjia Bio-Engineering Co., Ltd., Changsha, 410000, Hunan, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, 430079, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA, 95616, USA
| | - Dan Xing
- Dadu River Hydropower Development Co., Ltd., Chengdu, China
| | - Maomin Peng
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, Hubei, China
| | - Xitian Peng
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, Hubei, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| | - Wei Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, Hubei, China
| |
Collapse
|
23
|
Fan Z, Yang Y, Hu P, Huang Y, He L, Hu R, Zhao K, Zhang H, Liu C. Molecular mechanism of ethylparaben on zebrafish embryo cardiotoxicity based on transcriptome analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156785. [PMID: 35752233 DOI: 10.1016/j.scitotenv.2022.156785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Ethylparaben (EP), one of the parabens, a ubiquitous food and cosmetic preservatives, has caused widespread concern due to its health risks. Recently, studies have found that parabens exposure during pregnancy is negatively correlated with fetal and early childhood development. However, studies about EP on embryo development are few. In this study, the cardiotoxicity effects of EP concentrations ranging from 0 to 20 mg/L on zebrafish embryo development were explored. Results showed that EP exposure induce abnormal cardiac function and morphology, mainly manifested as pericardial effusion and abnormal heart rate in early-stage development of zebrafish embryos. Through transcriptome sequencing followed by Gene Ontology enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, we further confirmed that EP exposure ultimately leads to cardiac morphologic abnormalities via the following three mechanisms: 1. Disruption of the retinoic acid signaling pathway related to original cardiac catheter development; 2. Inhibition of gene expression related to myocardial contraction; 3. Orientation development disturbance of heart tube. Moreover, O-Dianisidine staining, whole-mount in situ hybridization at 30 and 48 hours post fertilization (hpf) and hematoxylin-eosin staining results all confirmed the decreased heart's return blood volume, misoriented heart tubes toward either the right or the middle side, and heart loop defects. For the first time, we explored the mechanism by which EP exposure causes abnormal heart development in zebrafish embryos, laying the foundation for further revealing of the EP toxicity on embryonic development.
Collapse
Affiliation(s)
- Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Henan Province Key Laboratory for Reproduction and Genetics, Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Yunyi Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Peixuan Hu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yaochen Huang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Liting He
- The Second People's Hospital of Guiyang, Guiyang 550000, People's Republic of China
| | - Rui Hu
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518047, People's Republic of China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
24
|
Chen Y, Xiao L, Gao G, He L, Zhao K, Shang X, Liu C. 2, 5-dichloro-1, 4-benuinone exposure to zebrafish embryos/larvae causes neurodevelopmental toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114007. [PMID: 36030688 DOI: 10.1016/j.ecoenv.2022.114007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
2, 5-dichloro-1, 4-benuinone (2, 5-DCBQ) is an emerging disinfection by-product belonging to the class of halobenzoquinones (HBQs). However, there is limited evidence regarding the neurotoxic effects of 2, 5-DCBQ. To better understand the toxicological mechanisms of aquatic organisms, zebrafish embryos were exposed to 0.2 mg/L, 0.4 mg/L, and 0.6 mg/L of 2, 5-DCBQ from 4 h post-fertilization (hpf) to 120 hpf. Developmental defects, such as reduced body length, decreased heart rate, decreased pigmentation, and abnormal motor axon structure was observed. In particular, the locomotor activity of zebrafish larvae reduced with exposure to increasing 2, 5-DCBQ concentrations, and this effect was more pronounced under dark stimulation. The results indicated that the genes associated with neuronal development (gfap, mbp, syn2a, elavl3, ache, and a1-tubulin) were significantly downregulated after treatment with 2, 5-DCBQ. Furthermore, the KEGG result showed the neuroactive ligand-receptor interaction and apoptosis pathways were visibly disrupted, and we found acetylcholinesterase activity was also affected. In summary, the disinfection by-product, 2, 5-DCBQ, exhibits neurodevelopmental toxicity in zebrafish embryos, providing novel evidence for comprehensive analyses of its toxicity.
Collapse
Affiliation(s)
- Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Lin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Guangyu Gao
- Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Liting He
- The Second People's Hospital of Guiyang, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, PR China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| |
Collapse
|
25
|
Eghan K, Lee S, Kim WK. Cardiotoxicity and neurobehavioral effects induced by acrylamide in Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113923. [PMID: 35930837 DOI: 10.1016/j.ecoenv.2022.113923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Acrylamide has neurotoxic and/or cardiotoxic effects on humans however available information regarding the neuro- and cardiotoxicity currently is very limited for freshwater organism models. Using three distinct techniques, thus, we investigated the neuro- and cardiotoxic effects of acrylamide in the freshwater invertebrate model, Daphnia magna. We exposed D. magna to acrylamide at concentrations of 0.3, 2.7, and 11.1 mg/L for 48 h alongside a control group. We then conducted physiological (thoracic limb activity and heart rate) and behavioral tests (including distance moved, velocity, turn angle, moving duration, the distance between subjects, and body contact frequency), as well as gene transcription analyses (related to cardiomyopathy, the serotonergic synapse, neuroactive ligand-receptor interactions, the GABAergic synapse, and acetylcholine receptors). After acrylamide exposure, the thoracic limb activity and heart rates of D. magna showed time- and dose dependent inhibition. From low to high exposure concentrations, both heart rates and thoracic limb activity were decreased. Additionally, the distance between subjects and body contact frequencies was significantly reduced. At the gene transcription level, acrylamide significantly altered the transcription of five genes related to cardiomyopathy and eight genes related to the serotonergic synapse, neuroactive ligand-receptor interactions, and the GABAergic synapse. The signs of hindered neural and cardiac functions were shown in D. magna. This suggests that acrylamide exposure leads to cardiotoxicity and neurobehavior defects in D. magna. Because cardiotoxicity and neurobehavioral changes may cause an ecological imbalance via predation of D. magna, acrylamide may also be considered a threat to freshwater ecosystem.
Collapse
Affiliation(s)
- Kojo Eghan
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea.
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea.
| | - Woo-Keun Kim
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea.
| |
Collapse
|
26
|
Network Pharmacology-Based Investigation on Therapeutic Mechanisms of the Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma Herb Pair for Anti-Migraine Effect. PLANTS 2022; 11:plants11172196. [PMID: 36079577 PMCID: PMC9460128 DOI: 10.3390/plants11172196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Migraines are a common neurological disorder characterized by desperate throbbing unilateral headaches and are related to phonophobia, photophobia, nausea, and vomiting. The Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma herb pair (ALHP) has been used to treat migraines for centuries in traditional Chinese medicine (TCM). However, the physiological mechanisms of migraine treatment have not yet been elucidated. In this study, a total of 50 hub targets related to the effect of 28 bioactive compounds in ALHP on anti-migraine were obtained through network pharmacology analysis. GO and KEGG analyses of the hub targets demonstrated that ALHP treatment of migraines significantly involved the G-protein-coupled receptor signaling pathway, chemical synaptic transmission, inflammatory response, and other biological processes. According to the degree of gene targets in the network, ACE, SLC3A6, NR3CI, MAPK1, PTGS2, PIK3CA, RELA, GRIN1, GRM5, IL1B, and DRD2 were found to be the core gene targets. The docking results showed a high affinity for docked conformations between compounds and predicted targets. The results of this study suggest that ALHP could treat migraines by regulating immunological functions, diminishing inflammation, and improving immunity through different physiological pathways, which contributes to the scientific base for more in-depth research as well as for a more widespread clinical application of ALHP.
Collapse
|
27
|
Wu R, Chen C, Zhang X. Label-Free LC-MS/MS Analysis Reveals Different Proteomic Profiles between Egg Yolks of Silky Fowl and Ordinary Chickens. Foods 2022; 11:foods11071035. [PMID: 35407122 PMCID: PMC8997978 DOI: 10.3390/foods11071035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
The proteomic profiles of Silky fowl egg yolk (SFEY) and Leghorn egg yolk (LEY) were analyzed by bottom-up label-free liquid chromatography–tandem mass spectrometry (LC-MS/MS). From a total of 186 identified proteins, 26 proteins were found significantly differentially abundant between two yolks, of which, 19 were up-regulated and 7 were down-regulated in SFEY, particularly, vitelline membrane outer layer protein 1, transthyretin and ovoinhibitor were up-regulated by 26, 25, and 16 times, respectively. In addition, there were 57 and 6 unique proteins in SFEY and LEY, respectively. Gene Ontology (GO) revealed SFEY contained relatively more abundant protease inhibitors and coagulation-related proteins. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed differentially abundant proteins in SFEY may be actively involved in the regulation of the neuroactive ligand–receptor interaction pathway. This study provides a theoretical basis for the understanding of proteomic and biological differences between these two yolks and can guide for further exploration of nutritional and biomedical use of Silky fowl egg.
Collapse
Affiliation(s)
- Rao Wu
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China;
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China;
- Correspondence: (C.C.); (X.Z.)
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China;
- Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: (C.C.); (X.Z.)
| |
Collapse
|
28
|
Gillies S, Verdon R, Stone V, Brown DM, Henry T, Tran L, Tucker C, Rossi AG, Tyler CR, Johnston HJ. Transgenic zebrafish larvae as a non-rodent alternative model to assess pro-inflammatory (neutrophil) responses to nanomaterials. Nanotoxicology 2022; 16:333-354. [PMID: 35797989 DOI: 10.1080/17435390.2022.2088312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hazard studies for nanomaterials (NMs) commonly assess whether they activate an inflammatory response. Such assessments often rely on rodents, but alternative models are needed to support the implementation of the 3Rs principles. Zebrafish (Danio rerio) offer a viable alternative for screening NM toxicity by investigating inflammatory responses. Here, we used non-protected life stages of transgenic zebrafish (Tg(mpx:GFP)i114) with fluorescently-labeled neutrophils to assess inflammatory responses to silver (Ag) and zinc oxide (ZnO) NMs using two approaches. Zebrafish were exposed to NMs via water following a tail fin injury, or NMs were microinjected into the otic vesicle. Zebrafish were exposed to NMs at 3 days post-fertilization (dpf) and neutrophil accumulation at the injury or injection site was quantified at 0, 4, 6, 8, 24, and 48 h post-exposure. Zebrafish larvae were also exposed to fMLF, LTB4, CXCL-8, C5a, and LPS to identify a suitable positive control for inflammation induction. Aqueous exposure to Ag and ZnO NMs stimulated an enhanced and sustained neutrophilic inflammatory response in injured zebrafish larvae, with a greater response observed for Ag NMs. Following microinjection, Ag NMs stimulated a time-dependent neutrophil accumulation in the otic vesicle which peaked at 48 h. LTB4 was identified as a positive control for studies investigating inflammatory responses in injured zebrafish following aqueous exposure, and CXCL-8 for microinjection studies that assess responses in the otic vesicle. Our findings support the use of transgenic zebrafish to rapidly screen the pro-inflammatory effects of NMs, with potential for wider application in assessing chemical safety (e.g. pharmaceuticals).
Collapse
Affiliation(s)
| | | | | | | | | | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Carl Tucker
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
29
|
Sun M, Ding R, Ma Y, Sun Q, Ren X, Sun Z, Duan J. Cardiovascular toxicity assessment of polyethylene nanoplastics on developing zebrafish embryos. CHEMOSPHERE 2021; 282:131124. [PMID: 34374342 DOI: 10.1016/j.chemosphere.2021.131124] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Environmental exposure to nanoplastics is inevitable as the application of nanoplastics in our daily life is more and more extensively. So, the adverse effects of nanoplastics on human health are also gaining greater concerns. However, the subsequent toxicological response to nanoplastics, especially on cardiovascular damage was still largely unknown. In this regard, the evaluation of cardiovascular effects of nanoplastics was performed in zebrafish embryos. The results indicated that the no observed adverse effect level (NOAEL) of nanoplastics is 50 μg/mL. The pericardial toxicity and hemodynamic changes were assessed by Albino (melanin allele) mutant zebrafish line. Severe pericardial edema was observed in zebrafish embryos after exposure to nanoplastics. At the concentration higher than NOAEL, nanoplastics significantly decreased the cardiac output (CO) and blood flow velocity. The fluorescence images manifested that the nanoplastics could inhibit the subintestinal angiogenesis of transgenic zebrafish embryos line Tg (fli-1: EGFP), which might disturb the cardiovascular formation and development. The resulting vascular endothelial dysfunction and hypercoagulable state of circulating blood further accelerated thrombosis. Reactive oxidative stress (ROS) and systemic inflammation were also found in Wild AB and Tg (mpo: GFP) zebrafish embryos, respectively. We also found many neutrophils recruiting in the tail vein where the zebrafish embryo thrombosis occurred. Our data suggested that nanoplastics could trigger the cardiovascular toxicity in zebrafish embryos, which could provide an essential clue for the safety assessment of nanoplastics.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yiming Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
30
|
Sun M, Cao Y, Sun Q, Ren X, Hu J, Sun Z, Duan J. Exposure to polydopamine nanoparticles induces neurotoxicity in the developing zebrafish. NANOIMPACT 2021; 24:100353. [PMID: 35559812 DOI: 10.1016/j.impact.2021.100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 06/15/2023]
Abstract
Currently, the potential applications of polydopamine (PDA) nanoparticles in the biomedical field are being extensively studied, such as cell internalization, biocompatible surface modification, biological imaging, nano-drug delivery, cancer diagnosis, and treatment. However, the subsequent toxicological response to PDA nanoparticles, especially on nervous system damage was still largely unknown. In this regard, the evaluation of the neurotoxicity of PDA nanoparticles was performed in the developing zebrafish larvae. Results of the transmission electron microscope (TEM), diameter analysis, 1H NMR, and thermogravimetric analysis (TGA) indicated that PDA nanoparticles had high stability without any depolymerization; the maximum non-lethal dose (MNLD) and LD10 of PDA nanoparticles for zebrafish were determined to be 0.5 mg/mL and 4 mg/mL. Pericardial edema and uninflated swim bladders were observed in zebrafish larvae after exposure to PDA nanoparticles. At a concentration higher than MNLD, the fluorescence images manifested that the PDA nanoparticles could inhibit the axonal growth of peripheral motor neurons in zebrafish, which might affect the movement distances and speed, disturb the movement trace, finally resulting in impaired motor function. However, in further investigating the mechanism of PDA nanoparticles-induced neurotoxicity in zebrafish larvae, we did not find apoptosis of central neurocytes. Our data suggested that PDA nanoparticles might trigger neurotoxicity in zebrafish, which could provide an essential clue for the safety assessment of PDA nanoparticles.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junjie Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
31
|
Shankar P, McClure RS, Waters KM, Tanguay RL. Gene co-expression network analysis in zebrafish reveals chemical class specific modules. BMC Genomics 2021; 22:658. [PMID: 34517816 PMCID: PMC8438978 DOI: 10.1186/s12864-021-07940-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Zebrafish is a popular animal model used for high-throughput screening of chemical hazards, however, investigations of transcriptomic mechanisms of toxicity are still needed. Here, our goal was to identify genes and biological pathways that Aryl Hydrocarbon Receptor 2 (AHR2) Activators and flame retardant chemicals (FRCs) alter in developing zebrafish. Taking advantage of a compendium of phenotypically-anchored RNA sequencing data collected from 48-h post fertilization (hpf) zebrafish, we inferred a co-expression network that grouped genes based on their transcriptional response. RESULTS Genes responding to the FRCs and AHR2 Activators localized to distinct regions of the network, with FRCs inducing a broader response related to neurobehavior. AHR2 Activators centered in one region related to chemical stress responses. We also discovered several highly co-expressed genes in this module, including cyp1a, and we subsequently show that these genes are definitively within the AHR2 signaling pathway. Systematic removal of the two chemical types from the data, and analysis of network changes identified neurogenesis associated with FRCs, and regulation of vascular development associated with both chemical classes. We also identified highly connected genes responding specifically to each class that are potential biomarkers of exposure. CONCLUSIONS Overall, we created the first zebrafish chemical-specific gene co-expression network illuminating how chemicals alter the transcriptome relative to each other. In addition to our conclusions regarding FRCs and AHR2 Activators, our network can be leveraged by other studies investigating chemical mechanisms of toxicity.
Collapse
Affiliation(s)
- Prarthana Shankar
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, 28645 East Highway 34, Oregon State University, Corvallis, OR, 97331, USA
| | - Ryan S McClure
- Biological Sciences Division, Pacific National Northwest Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA, 99352, USA
| | - Katrina M Waters
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, 28645 East Highway 34, Oregon State University, Corvallis, OR, 97331, USA.,Biological Sciences Division, Pacific National Northwest Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA, 99352, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, 28645 East Highway 34, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
32
|
Lu RXZ, Radisic M. Organ-on-a-chip platforms for evaluation of environmental nanoparticle toxicity. Bioact Mater 2021; 6:2801-2819. [PMID: 33665510 PMCID: PMC7900603 DOI: 10.1016/j.bioactmat.2021.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Despite showing a great promise in the field of nanomedicine, nanoparticles have gained a significant attention from regulatory agencies regarding their possible adverse health effects upon environmental exposure. Whether those nanoparticles are generated through intentional or unintentional means, the constant exposure to nanomaterials can inevitably lead to unintended consequences based on epidemiological data, yet the current understanding of nanotoxicity is insufficient relative to the rate of their emission in the environment and the lack of predictive platforms that mimic the human physiology. This calls for a development of more physiologically relevant models, which permit the comprehensive and systematic examination of toxic properties of nanoparticles. With the advancement in microfabrication techniques, scientists have shifted their focus on the development of an engineered system that acts as an intermediate between a well-plate system and animal models, known as organ-on-a-chips. The ability of organ-on-a-chip models to recapitulate in vivo like microenvironment and responses offers a new avenue for nanotoxicological research. In this review, we aim to provide overview of assessing potential risks of nanoparticle exposure using organ-on-a-chip systems and their potential to delineate biological mechanisms of epidemiological findings.
Collapse
Affiliation(s)
- Rick Xing Ze Lu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
- The Heart and Stroke/Richard Lewar Centre of Excellence, Toronto, ON, Canada
| |
Collapse
|
33
|
Zhu J, Liu C, Wang J, Liang Y, Gong X, You L, Ji C, Wang SL, Wang C, Chi X. Difenoconazole induces cardiovascular toxicity through oxidative stress-mediated apoptosis in early life stages of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112227. [PMID: 33848738 DOI: 10.1016/j.ecoenv.2021.112227] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Difenoconazole (DIF), a common broad-spectrum triazole fungicide, is associated with an increased risk of cardiovascular diseases. Unfortunately, little attention has been paid to the mechanisms underlying this association. In this study, zebrafish embryos were exposed to DIF (0, 0.3, 0.6 and 1.2 mg/L) from 4 to 96 h post fertilization (hpf) and cardiovascular toxicity was evaluated. Our results showed that DIF decreased hatching rate, survival rate and heart rate, with increased malformation rate. Cardiovascular deformities are the most prominent, including pericardial edema, abnormal cardiac structure and disrupted vascular pattern in two transgenic zebrafish models (myl7:egfp and fli1:egfp). DIF exacerbated oxidative stress by via accumulation of reactive oxygen species (ROS) and inhibition of antioxidant enzyme. Cardiovascular apoptosis was triggered through increased expression of p53, bcl-2, bax and caspase 9, while DIF suppressed the transcription of key genes involved in calcium signaling and cardiac muscle contraction. These adverse outcomes were restored by the antioxidant N-acetyl-L-cysteine (NAC), indicating that oxidative stress played a crucial role in DIF-induced cardiovascular toxicity caused by apoptosis and inhibition of cardiac muscle contraction. Taken together, this study revealed the key role of oxidative stress in DIF-induced cardiovascular toxicity and provided novel insights into strategies to mitigate its toxicity.
Collapse
Affiliation(s)
- Jiansheng Zhu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jingyu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China; Institute of Pediatrics, Nanjing Medical University, Nanjing 210029, PR China
| | - Yinyin Liang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Xing Gong
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Lianghui You
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China; Institute of Pediatrics, Nanjing Medical University, Nanjing 210029, PR China
| | - Chenbo Ji
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China; Institute of Pediatrics, Nanjing Medical University, Nanjing 210029, PR China
| | - Shou-Lin Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Chao Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| | - Xia Chi
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China; Institute of Pediatrics, Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
34
|
Jarrar B, Al‐Doaiss A, Shati A, Al‐Kahtani M, Jarrar Q. Behavioural alterations induced by chronic exposure to 10 nm silicon dioxide nanoparticles. IET Nanobiotechnol 2021; 15:221-235. [PMID: 34694701 PMCID: PMC8675786 DOI: 10.1049/nbt2.12041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/02/2020] [Accepted: 09/04/2020] [Indexed: 01/02/2023] Open
Abstract
Silicon dioxide nanoparticles (SiO2 NPs) are widely invested in medicine, industry, agriculture, consuming products, optical imaging agents, cosmetics, and drug delivery. However, the toxicity of these NPs on human health and the ecosystem have not been extensively studied and little information is available about their behavioural toxicities. The current study aimed to find out the behavioural alterations that might be induced by chronic exposure to 10 nm SiO2 NPs. BALB/C mice were subjected to 36 injections of SiO2 NPs (2 mg/kg Bw) and subjected to 11 neurobehavioural tests: elevated plus-maze test, elevated zero-maze test, multiradial maze test, open field test, hole-board test, light-dark box test, forced swimming test, tail-suspension test, Morris water-maze test, Y-maze test and multiple T-maze test. Treated mice demonstrated anxiety-like effect, depression tendency, behavioural despair stress, exploration and locomotors activity reduction with error induction in both reference and working memories. The findings may suggest that silica NPs are anxiogenic and could aggravate depression affecting memory, learning, overall activity and exploratory behaviour. Moreover, the findings may indicate that these nanomaterials (NMs) may induce potential oxidative stress in the body leading to neurobehavioural alterations with possible changes in the vital organ including the central nervous system.
Collapse
Affiliation(s)
- Bashir Jarrar
- Nanobiology UnitDepartment of Biological SciencesCollege of ScienceJerash UniversityJordan
| | - Amin Al‐Doaiss
- Department of BiologyCollege of ScienceKing Khalid UniversitySaudi Arabia
- Department of Anatomy and HistologyFaculty of MedicineSana'a UniversityYemen
| | - Ali Shati
- Department of BiologyCollege of ScienceKing Khalid UniversitySaudi Arabia
| | | | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Pharmacy PracticeFaculty of PharmacyIsra UniversityJordan
| |
Collapse
|
35
|
Guo C, Liu Y, Li Y. Adverse effects of amorphous silica nanoparticles: Focus on human cardiovascular health. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124626. [PMID: 33296760 DOI: 10.1016/j.jhazmat.2020.124626] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Amorphous silica nanoparticle (SiNPs) has tremendous potential for a host of applications, while its mass production, broad application and environmental release inevitably increase the risk of human exposure. SiNPs could enter into the human body through different routes such as inhalation, ingestion, skin contact and even injection for medical applications. The cardiovascular system is gradually recognized as one of the primary sites for engineered NPs exerting adverse effects. Accumulating epidemiological or experimental evidence support the association between SiNPs exposure and adverse cardiovascular effects. However, this topic is still in its infancy, and the literature shows high inter-study variability and even contradictory results. New challenges still present in the safety evaluation of SiNPs, and its toxicological mechanisms are poorly understood. Here, scientific papers related to cardiovascular studies of SiNPs in vivo and in vitro were selected, and the updated particle-caused cardiovascular toxicity and potential mechanisms were summarized. Moreover, the understanding of how factors primarily including exposure dose, route of administration, particle size and surface properties, influence the interaction between SiNPs and cardiovascular system was discussed. In particular, the adverse outcome pathway (AOP) framework by which SiNPs cause deleterious effects in the cardiovascular system was described, aiming to provide useful information necessary for the regulatory decision and to guide a safer application of nanotechnology.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
36
|
Du ZC, Xia ZS, Huang YF, Peng Y, Cao BB, Li CQ, Liang YF, Zhao FH, Zhang MZ, Chen ZM, Hou XT, Hao EW, Deng JG. Cardiotoxicity induced by Cochinchina momordica seed extract in zebrafish. J Appl Toxicol 2021; 41:1222-1231. [PMID: 33445225 DOI: 10.1002/jat.4108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/08/2020] [Accepted: 10/27/2020] [Indexed: 01/01/2023]
Abstract
Momordica cochinchinensis (Lour.) Spreng is an indigenous South Asian edible fruit, and seeds of Momordica cochinchinensis have been used therapeutically in traditional Chinese medicine. Previous studies have shown that M. cochinchinensis seed (Momordicae Semen) has various pharmaceutical properties such as antioxidant and anti-ulcer effects as well as contains secondary metabolites with potential anticancer activities such as triterpenoids and saponins. Recent studies reported that water extract and ethanol extract of M. cochinchinensi seed were tested on mammals using an acute toxic classic method as OECD guidelines 420. No matter injected intravenously or intramuscularly, animals died within several days. In this study, zebrafish embryos were exposed to various doses of Cochinchina momordica seed extract (CMSE) from 2 dpf (days post fertilization, dpf) to 3 dpf. CMSE-induced cardiotoxicity such as pericardial edema, cardiac apoptosis, increased ROS production, cardiac neutrophil infiltration, decreased blood flow velocity, and reduced expression of three marker genes of cardiac functions were found in zebrafish roughly in a dose-dependent manner. These results suggest that CMSE may induce cardiotoxicity through pathways involved in inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Zheng-Cai Du
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Zhong-Shang Xia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Yan-Feng Huang
- Hunter Biotechnology, Inc., Transfarland, Hangzhou, China
| | - Yi Peng
- Hunter Biotechnology, Inc., Transfarland, Hangzhou, China
| | - Bing-Bing Cao
- Hunter Biotechnology, Inc., Transfarland, Hangzhou, China
| | - Chun-Qi Li
- Hunter Biotechnology, Inc., Transfarland, Hangzhou, China
| | - Yun-Fei Liang
- Guangxi Wuzhou Pharmaceutical Group Co., Ltd., Wuzhou, China
| | - Fang-Hui Zhao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Ming-Zhe Zhang
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Zhang-Mei Chen
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Xiao-Tao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Er-Wei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China.,Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Jia-Gang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China.,Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Traditional Chinese Medicine, Nanning, China
| |
Collapse
|
37
|
Ma W, He S, Xu Y, Qi G, Ma H, Bang JJ, Li PA. Ameliorative Effect of Sodium Selenite on Silver Nanoparticles-Induced Myocardiocyte Structural Alterations in Rats. Int J Nanomedicine 2020; 15:8281-8292. [PMID: 33149575 PMCID: PMC7603418 DOI: 10.2147/ijn.s271457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/11/2020] [Indexed: 01/03/2023] Open
Abstract
Background The application of silver nanoparticles (AgNPs) is growing exponentially, and its potential damage to the cardiac remains to be elucidated. The purpose of this study was to investigate the ameliorative effect of sodium selenite on silver nanoparticles-induced myocardiocyte structural alterations in rats. Materials and Methods Forty male Sprague-Dawley (SD) rats were randomly divided into four groups: control group, AgNPs group, Se control group, and AgNPs + Se group. SD rats were administered AgNPs through a single intratracheal instillation, and sodium selenite was given by intraperitoneal injection for seven days. Cardiac function was determined by echocardiography and hemodynamic, ultrastructural changes by transmission electron microscopy examination. Mitochondrial fission and autophagy markers were measured by Western blotting. Results AgNPs caused a significant decrease in cardiac contraction, diastolic dysfunction, fragmentation, and lysis of the myofibrils, the formation of stenosis in the capillary, damaging the mitochondria membrane and cristae. AgNPs significantly increased mitochondrial fission markers dynamin-related protein 1 (Drp1), phospho-Drp1 (p-Drp1), and mitochondrial fission protein 1 (Fis1), as well as autophagy marker LC3 II/I (P<0.05). Treatment with sodium selenite is capable of protecting cardiac function from AgNPs toxicity through attenuating ultrastructural alterations, stabilizing mitochondrial dynamic balance and blocking mitochondrial autophagy. Conclusion We conclude that the protection of sodium selenite against silver nanoparticles-induced myocardiocyte structural alterations is associated with stabilizing mitochondrial dynamic balance and mitophagy.
Collapse
Affiliation(s)
- Wanrui Ma
- Department of General Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Shan He
- Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Yanping Xu
- Unit of Echocardiography, Division of Functional Examination in Heart Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Guoxue Qi
- Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Huiyan Ma
- Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - John J Bang
- Department of Environmental, Earth and Geospatial Sciences, North Carolina Central University, Durham, NC, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| |
Collapse
|
38
|
Toxicity Evaluation of Nanostructured Silica Orally Administered to Rats: Influence on Immune System Function. NANOMATERIALS 2020; 10:nano10112126. [PMID: 33114664 PMCID: PMC7693904 DOI: 10.3390/nano10112126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/18/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
The experimental data on the oral toxicity of nanostructured amorphous silica (SiO2), widely used in food supplements, pharmaceuticals, and cosmetics, in terms of its in vivo effect on the immune system, are contradictory. Therefore, this study aimed to assess the rat's immune function after SiO2 oral administration. In the first experiment, SiO2 was daily orally administered to Wistar rats for 92 days in doses of 0.1, 1.0, 10, and 100 mg/kg of body weight (bw). In the second 28-day experiment, SiO2 in a dose of 100 mg/kg bw was daily orally administered to rats parenterally immunized with the food allergen ovalbumin (OVA) for the reproduction of systemic anaphylaxis reaction. Together with integral indices, we assessed intestinal permeability to protein macromolecules; hematology; CD45RA+, CD3+, CD4+, CD8+, and CD161a+ cells; cytokines TNF-α, IL-6, and IL-10; and IgG to OVA. The results obtained showed that SiO2 has no effect on the severity of the anaphylactic reaction, but is capable inducing a toxic effect on the T-cell immune systems of rats. Estimated no observed adverse effect level NOAEL for SiO2 ranges up to 100 mg/kg bw in terms of its daily consumption for 1-3 months. Using SiO2 as a food additive should be the subject of regulation.
Collapse
|
39
|
Liu YQ, Xue SM, Zhang P, Xu LN, Wang DP, Li G, Cao JM. Silica Nanoparticles Disturb Ion Channels and Transmembrane Potentials of Cardiomyocytes and Induce Lethal Arrhythmias in Mice. Int J Nanomedicine 2020; 15:7397-7413. [PMID: 33116478 PMCID: PMC7547143 DOI: 10.2147/ijn.s261692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Background The toxicity of silica nanoparticles (SiNPs) on cardiac electrophysiology has seldom been evaluated. Methods Patch-clamp was used to investigate the acute effects of SiNP-100 (100 nm) and SiNP-20 (20 nm) on the transmembrane potentials (TMPs) and ion channels in cultured neonatal mouse ventricular myocytes. Calcium mobilization in vitro, cardiomyocyte ROS generation, and LDH leakage after exposure to SiNPs in vitro and in vivo were measured using a microplate reader. Surface electrocardiograms were recorded in adult mice to evaluate the arrhythmogenic effects of SiNPs in vivo. SiNP endocytosis was observed using transmission electron microscopy. Results Within 30 min, both SiNPs (10-8-10-6 g/mL) did not affect the resting potential and IK1 channels. SiNP-100 increased the action potential amplitude (APA) and the INa current density, but SiNP-20 decreased APA and INa density. SiNP-100 prolonged the action potential duration (APD) and decreased the Ito current density, while SiNP-20 prolonged or shortened the APD, depending on exposure concentrations and increased Ito density. Both SiNPs (10-6 g/mL) induced calcium mobilization but did not increase ROS and LDH levels and were not endocytosed within 10 min in cardiomyocytes in vitro. In vivo, SiNP-100 (4-10 mg/kg) and SiNP-20 (4-30 mg/kg) did not elevate myocardial ROS but increased LDH levels depending on dose and exposure time. The same higher dose of SiNPs (intravenously injected) induced tachyarrhythmias and lethal bradyarrhythmias within 90 min in adult mice. Conclusion SiNPs (i) exert rapid toxic effects on the TMPs of cardiomyocytes in vitro largely owing to their direct interfering effects on the INa and Ito channels and Ca2+ homeostasis but not IK1 channels and ROS levels, and (ii) induce tachyarrhythmias and lethal bradyarrhythmias in vivo. SiNP-100 is more toxic than SiNP-20 on cardiac electrophysiology, and the toxicity mechanism is likely more complicated in vivo.
Collapse
Affiliation(s)
- Ya-Qin Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Si-Meng Xue
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Peng Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Lin-Na Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Guang Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ji-Min Cao
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| |
Collapse
|
40
|
Liang S, Duan J, Hu H, Zhang J, Gao S, Jing H, Li G, Sun Z. Comprehensive Analysis of SiNPs on the Genome-Wide Transcriptional Changes in Caenorhabditis elegans. Int J Nanomedicine 2020; 15:5227-5237. [PMID: 32801688 PMCID: PMC7399461 DOI: 10.2147/ijn.s251269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022] Open
Abstract
Background Large-scale production and application of amorphous silica nanoparticles (SiNPs) have enhanced the risk of human exposure to SiNPs. However, the toxic effects and the underlying biological mechanisms of SiNPs on Caenorhabditis elegans remain largely unclear. Purpose This study was to investigate the genome-wide transcriptional alteration of SiNPs on C. elegans. Methods and Results In this study, a total number of 3105 differentially expressed genes were identified in C. elegans. Among them, 1398 genes were significantly upregulated and 1707 genes were notably downregulated in C. elegans. Gene ontology analysis revealed that the significant change of gene functional categories triggered by SiNPs was focused on locomotion, determination of adult lifespan, reproduction, body morphogenesis, multicellular organism development, endoplasmic reticulum unfolded protein response, oocyte development, and nematode larval development. Meanwhile, we explored the regulated effects between microRNA and genes or signaling pathways. Pathway enrichment analysis and miRNA-gene-pathway-network displayed that 23 differential expression microRNA including cel-miR-85-3p, cel-miR-793, cel-miR-241-5p, and cel-miR-5549-5p could regulate the longevity-related pathways and inflammation signaling pathways, etc. Additionally, our data confirmed that SiNPs could disrupt the locomotion behavior and reduce the longevity by activating ins-7, daf-16, ftt-2, fat-5, and rho-1 genes in C. elegans. Conclusion Our study showed that SiNPs induced the change of the whole transcriptome in C. elegans, and triggered negative effects on longevity, development, reproduction, and body morphogenesis. These data provide abundant clues to understand the molecular mechanisms of SiNPs in C. elegans.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| | - Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| | - Shan Gao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control/Beijing Center of Preventive Medicine Research, Beijing 100013, People's Republic of China
| | - Haiming Jing
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control/Beijing Center of Preventive Medicine Research, Beijing 100013, People's Republic of China
| | - Guojun Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control/Beijing Center of Preventive Medicine Research, Beijing 100013, People's Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| |
Collapse
|
41
|
Wei J, Liu J, Liang S, Sun M, Duan J. Low-Dose Exposure of Silica Nanoparticles Induces Neurotoxicity via Neuroactive Ligand-Receptor Interaction Signaling Pathway in Zebrafish Embryos. Int J Nanomedicine 2020; 15:4407-4415. [PMID: 32606685 PMCID: PMC7310985 DOI: 10.2147/ijn.s254480] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Silica nanoparticles (SiO2 NPs) have been extensively employed in biomedical field. SiO2 NPs are primarily designed to enter the circulatory system; however, little information is available on potential adverse effects of SiO2 NPs on the nervous system. Methods The neurotoxicity of SiO2 NPs at different concentrations (3, 6, 12 ng/nL) on zebrafish embryos was determined using immunofluorescence and microarray techniques, and subsequently confirmed by qRT-PCR. Results SiO2 NPs disrupt the axonal integrity and decrease the length of axons in Tg (NBT: EGFP) transgenic lines. The number of apoptotic cells in the brain and central nervous system of zebrafish embryos was increased in the presence of 12 ng/nL of SiO2 NPs, but the difference did not reach statistical significance. Screening for changes in the expression of genes involved in the neuroactive ligand–receptor interaction pathway was performed by microarray and confirmed by qRT-PCR. These analyses demonstrated that SiO2 NPs markedly downregulated genes associated with neural function (grm6a, drd1b, chrnb3b, adrb2a, grin2ab, npffr2.1, npy8br, gabrd, chrma3, gabrg3, gria3a, grm1a, adra2b, and glra3). Conclusion The obtained results documented that SiO2 NPs can induce developmental neurotoxicity by affecting the neuroactive ligand–receptor interaction signaling pathway. This new evidence may help to clarify the mechanism of SiO2 NPs-mediated neurotoxicity.
Collapse
Affiliation(s)
- Jialiu Wei
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jianhui Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
42
|
Occupational Quartz Exposure in a Population of Male Individuals-Association With Risk of Developing Atrial Fibrillation. J Occup Environ Med 2020; 62:e267-e272. [PMID: 32502085 DOI: 10.1097/jom.0000000000001862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Occupational quartz exposure is a health risk, with increased risk of developing lung, autoimmune diseases, and elevated mortality in cardiovascular diseases. METHODS The population was obtained from the period 2005 to 2016 and consisted of 5237 cases of patients with atrial fibrillation (AF). Quartz exposure information was obtained through a Swedish job exposure matrix. RESULTS The risk of developing AF was increased for the quartz-exposed male population who were within a year of having commenced employment OR 1.54; (95% CI 1.06-2.24); this increased in the age group 20 to 55 (OR 2.05; CI 95% 1.02-4.10). CONCLUSION Our main conclusion is that quartz dust exposure may be related to increased risk of AF in high exposed (above 0.05 mg/m mean quartz dust) in men aged 20 to 55 years.
Collapse
|
43
|
Feng L, Ning R, Liu J, Liang S, Xu Q, Liu Y, Liu W, Duan J, Sun Z. Silica nanoparticles induce JNK-mediated inflammation and myocardial contractile dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122206. [PMID: 32036317 DOI: 10.1016/j.jhazmat.2020.122206] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Increasing environmental exposure to silica nanoparticles (SiNPs) and limited cardiotoxicity studies posed a challenge for the safety evaluation and management of these materials. This study aimed to explore the adverse effects and underlying mechanisms of subacute exposure to SiNPs on cardiac function in rats. Results from echocardiographic, ultrastructural and histopathological analysis found that SiNPs induced cardiac contractile dysfunction, accompanied by incomplete myocardial structures, disordered sarcomere segments, interstitial edema and myocyte apoptosis in heart. Levels of myocardial enzymes and inflammatory factors were markedly increased in both serum and heart tissue, accompanied by elevated levels of oxidative damage occurred in the hearts of SiNPs-treated rats. SiNPs significantly upregulated the expressions of inflammation and contraction-related proteins, including JNK, p-JNK, c-Jun, TF and PAR1. Lentivirus transfection of JNK shRNA showed the low-expression of JNK-facilitated F-actin and inhibited TF in the SiNPs-treated cardiomyocytes. Moreover, SiNPs activated the mRNA and protein levels of JNK/TF/PAR1 pathway, and these effects were significantly dampened after JNK knock down. Our results demonstrate that SiNPs trigger myocardial contractile dysfunction via JNK/TF/PAR1 signaling pathway.
Collapse
Affiliation(s)
- Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ruihong Ning
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qing Xu
- Core Facilities for Electrophysiology, Core Facility Center, Capital Medical University, Beijing, 100069, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China
| | - Wei Liu
- Cardiology Department, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
44
|
Lozano O, Silva-Platas C, Chapoy-Villanueva H, Pérez BE, Lees JG, Ramachandra CJA, Contreras-Torres FF, Lázaro-Alfaro A, Luna-Figueroa E, Bernal-Ramírez J, Gordillo-Galeano A, Benitez A, Oropeza-Almazán Y, Castillo EC, Koh PL, Hausenloy DJ, Lim SY, García-Rivas G. Amorphous SiO2 nanoparticles promote cardiac dysfunction via the opening of the mitochondrial permeability transition pore in rat heart and human cardiomyocytes. Part Fibre Toxicol 2020; 17:15. [PMID: 32381100 PMCID: PMC7206702 DOI: 10.1186/s12989-020-00346-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Silica nanoparticles (nanoSiO2) are promising systems that can deliver biologically active compounds to tissues such as the heart in a controllable manner. However, cardiac toxicity induced by nanoSiO2 has been recently related to abnormal calcium handling and energetic failure in cardiomyocytes. Moreover, the precise mechanisms underlying this energetic debacle remain unclear. In order to elucidate these mechanisms, this article explores the ex vivo heart function and mitochondria after exposure to nanoSiO2. Results The cumulative administration of nanoSiO2 reduced the mechanical performance index of the rat heart with a half-maximal inhibitory concentration (IC50) of 93 μg/mL, affecting the relaxation rate. In isolated mitochondria nanoSiO2 was found to be internalized, inhibiting oxidative phosphorylation and significantly reducing the mitochondrial membrane potential (ΔΨm). The mitochondrial permeability transition pore (mPTP) was also induced with an increasing dose of nanoSiO2 and partially recovered with, a potent blocker of the mPTP, Cyclosporine A (CsA). The activity of aconitase and thiol oxidation, in the adenine nucleotide translocase, were found to be reduced due to nanoSiO2 exposure, suggesting that nanoSiO2 induces the mPTP via thiol modification and ROS generation. In cardiac cells exposed to nanoSiO2, enhanced viability and reduction of H2O2 were observed after application of a specific mitochondrial antioxidant, MitoTEMPO. Concomitantly, CsA treatment in adult rat cardiac cells reduced the nanoSiO2-triggered cell death and recovered ATP production (from 32.4 to 65.4%). Additionally, we performed evaluation of the mitochondrial effect of nanoSiO2 in human cardiomyocytes. We observed a 40% inhibition of maximal oxygen consumption rate in mitochondria at 500 μg/mL. Under this condition we identified a remarkable diminution in the spare respiratory capacity. This data indicates that a reduction in the amount of extra ATP that can be produced by mitochondria during a sudden increase in energy demand. In human cardiomyocytes, increased LDH release and necrosis were found at increased doses of nanoSiO2, reaching 85 and 48%, respectively. Such deleterious effects were partially prevented by the application of CsA. Therefore, exposure to nanoSiO2 affects cardiac function via mitochondrial dysfunction through the opening of the mPTP. Conclusion The aforementioned effects can be partially avoided reducing ROS or retarding the opening of the mPTP. These novel strategies which resulted in cardioprotection could be considered as potential therapies to decrease the side effects of nanoSiO2 exposure.
Collapse
Affiliation(s)
- Omar Lozano
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico.,Tecnologico de Monterrey. Centro de Investigación Biomédica, Hospital Zambrano-Helión, San Pedro Garza-García, Mexico
| | - Christian Silva-Platas
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Héctor Chapoy-Villanueva
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Baruc E Pérez
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Jarmon G Lees
- Departments of Medicine and Surgery, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | | | - Anay Lázaro-Alfaro
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Estefanía Luna-Figueroa
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Judith Bernal-Ramírez
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | | | - Alfredo Benitez
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, USA
| | - Yuriana Oropeza-Almazán
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Elena C Castillo
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Poh Ling Koh
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Shiang Y Lim
- Departments of Medicine and Surgery, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gerardo García-Rivas
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico. .,Tecnologico de Monterrey. Centro de Investigación Biomédica, Hospital Zambrano-Helión, San Pedro Garza-García, Mexico.
| |
Collapse
|
45
|
Zhu XY, Wu YY, Xia B, Dai MZ, Huang YF, Yang H, Li CQ, Li P. Fenobucarb-induced developmental neurotoxicity and mechanisms in zebrafish. Neurotoxicology 2020; 79:11-19. [PMID: 32247646 DOI: 10.1016/j.neuro.2020.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 11/18/2022]
Abstract
Fenobucarb (2-sec-butylphenyl methylcarbamate, BPMC) is an extensively used carbamate insecticide. Its developmental neurotoxicity and the underlying mechanisms have not been well investigated. In this study, zebrafish embryos were exposed to various concentrations of BPMC from 6 hpf (hours post fertilization, hpf) to 120 hpf. BPMC induced developmental toxicity with reduced motility in larval zebrafish. The spinal cord neutrophil infiltration, increased ROS production, caspase 3 and 9 activation, central nerve and peripheral motor neuron damage, axon and myelin degeneration were observed in zebrafish treated with BPMC generally in a dose-dependent manner. The expression of eight marker genes for nervous system function or development, namely, a1-tubulin, shha, elavl3, gap43, syn2a, gfap, mbp and manf, was significantly downregulated following BPMC exposure. AChE activity reduction and ache gene expression suppression was also found significantly in BPMC-treated zebrafish. These results indicate that BPMC is highly toxic to zebrafish and that BPMC induces zebrafish developmental neurotoxicity through pathways involved in inflammation, oxidative stress, degeneration and apoptosis.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, PR China; Hunter Biotechnology, Inc, F1A, Building 5, No. 88 Jiangling Road, Binjiang, Zone, Hangzhou City, Zhejiang Province 310051, PR China
| | - Yu-Ying Wu
- Hunter Biotechnology, Inc, F1A, Building 5, No. 88 Jiangling Road, Binjiang, Zone, Hangzhou City, Zhejiang Province 310051, PR China
| | - Bo Xia
- Hunter Biotechnology, Inc, F1A, Building 5, No. 88 Jiangling Road, Binjiang, Zone, Hangzhou City, Zhejiang Province 310051, PR China
| | - Ming-Zhu Dai
- Hunter Biotechnology, Inc, F1A, Building 5, No. 88 Jiangling Road, Binjiang, Zone, Hangzhou City, Zhejiang Province 310051, PR China
| | - Yan-Feng Huang
- Hunter Biotechnology, Inc, F1A, Building 5, No. 88 Jiangling Road, Binjiang, Zone, Hangzhou City, Zhejiang Province 310051, PR China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, PR China
| | - Chun-Qi Li
- Hunter Biotechnology, Inc, F1A, Building 5, No. 88 Jiangling Road, Binjiang, Zone, Hangzhou City, Zhejiang Province 310051, PR China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, PR China.
| |
Collapse
|
46
|
Liang S, Chen Y, Zhang S, Cao Y, Duan J, Wang Y, Sun Z. RhB-encapsulating silica nanoparticles modified with PEG impact the vascular endothelial function in endothelial cells and zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134493. [PMID: 32000304 DOI: 10.1016/j.scitotenv.2019.134493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Silica nanoparticles (SiNPs) have been widely used in human health related products, such as food additives, cosmetics and even drug delivery, gene therapy or bioimaging. Recently, a first-in-human clinical trial based on polyethylene glycol (PEG)-modified SiNPs had been approved by US FDA to trace melanoma. However, as a nano-based drug delivery system, its biocompatibility and vascular toxicity are still largely unknown. Thus, we synthesized the fluorescent SiNPs to explore the biocompatibility and vascular endothelial function, and compare different biological effects caused by PEG-modified and unmodified SiNPs in cells and zebrafish model. The characterizations of SiNPs and PEG-modified SiNPs were analyzed by TEM, SEM, AFM and DLS, which exhibited relatively good stable and dispersive. Compared with SiNPs, PEG-modified SiNPs had markedly reduced the inflammatory response and vascular damage in Tg (fli-1: EGFP) and Tg (mpo: GFP) transgenic zebrafish lines, respectively. Consistent with the in vivo results, the PEG-modified SiNPs had been found to significantly decline the levels of ROS, inflammatory cytokines and mitochondrial-mediated apoptosis in vascular endothelial cells compared to SiNPs, and the ROS scavenger NAC could effectively alleviate the above adverse effects induced by nanoparticles. Our results suggested that the PEG-modified SiNPs could become more safety via increasing the biocompatibility and decreasing cellular toxicities in living organisms.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shiming Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
47
|
d'Amora M, Liendo F, Deorsola FA, Bensaid S, Giordani S. Toxicological profile of calcium carbonate nanoparticles for industrial applications. Colloids Surf B Biointerfaces 2020; 190:110947. [PMID: 32203909 DOI: 10.1016/j.colsurfb.2020.110947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 11/27/2022]
Abstract
Calcium carbonate nanoparticles (CaCO3NPs) derived from CO2 are promising materials for different industrial applications. It is imperative to understand their toxicological profile in biological systems as the human and environmental exposures to CaCO3NPs increases with growing production. Here, we analyse the cytotoxicity of CaCO3NPs synthesized from a CaO slurry on two cell lines, and in vivo on zebrafish (Danio Rerio). Our results demonstrate the CaCO3NPs in vitro safety as they do not cause cell death or genotoxicity. Moreover, zebrafish treated with CaCO3NPs develop without any abnormalities, confirming the safety and biocompatibility of this nanomaterial.
Collapse
Affiliation(s)
- Marta d'Amora
- Nano Carbon Materials, Istituto Italiano di Tecnologia (IIT), via Livorno 60, 10144, Torino, Italy.
| | - Freddy Liendo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Fabio A Deorsola
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Samir Bensaid
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Silvia Giordani
- Nano Carbon Materials, Istituto Italiano di Tecnologia (IIT), via Livorno 60, 10144, Torino, Italy; School of Chemical Sciences, Dublin City University (DCU), Glasnevin, D09 C7F8, Dublin, Ireland.
| |
Collapse
|
48
|
Xiong G, Deng Y, Liao X, Zhang J, Cheng B, Cao Z, Lu H. Graphene oxide nanoparticles induce hepatic dysfunction through the regulation of innate immune signaling in zebrafish (Danio rerio). Nanotoxicology 2020; 14:667-682. [DOI: 10.1080/17435390.2020.1735552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guanghua Xiong
- Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, The Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji’an, Jiangxi, China
| | - Yunyun Deng
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, The Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji’an, Jiangxi, China
| | - Jun’e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Bo Cheng
- Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, The Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji’an, Jiangxi, China
| | - Zigang Cao
- Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, The Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji’an, Jiangxi, China
| | - Huiqiang Lu
- Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, The Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji’an, Jiangxi, China
| |
Collapse
|
49
|
Ye M, Xu W, He DQ, Wu X, Lai WF, Zhang XQ, Lin Y, Xu W, Li XW. Dammarane-Type Triterpenoids from the Roots of Rhus chinensis and Their Preventive Effects on Zebrafish Heart Failure and Thrombosis. JOURNAL OF NATURAL PRODUCTS 2020; 83:362-373. [PMID: 32031812 DOI: 10.1021/acs.jnatprod.9b00857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eight new dammarane-type triterpenoids (1-8), together with a related known analogue (9), were isolated from the roots of Rhus chinensis, a traditional Chinese medicine for treating coronary artery heart disease, guided by LC-MS analysis. Their structures were elucidated based on extensive spectroscopic analysis and quantum chemical calculations. Notably, compounds 1-7 and 9 possess an unusual 17α-side chain, and 1-4, 6, and 9 contain an uncommon 3-methyl-5,6-dihydro-2H-pyran-2-one moiety in the side chain. Compounds 1-5 and 9 have a 3,19-hemiketal bridge in the A ring. In an in vivo bioassay, 1, 2, and 4-6 exhibited significant preventive effects on zebrafish heart failure at 0.5 μg/mL, improving heart dilatation, venous congestion, cardiac output, blood flow velocity, and heart rate. Compound 5, displaying the most promising heart failure preventive activities, showed even better effects on increasing cardiac output (72%) and blood flow velocity (83%) than six first-line heart failure therapeutic drugs. Moreover, 1, 2, and 6 prevented the formation of thrombosis in zebrafish at 0.5 μg/mL. The present investigation suggests that the new dammarane triterpenoids might be partially responsible for the utility of R. chinensis in treating coronary artery heart disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xu-Wen Li
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road , Zhangjiang Hi-Tech Park, Shanghai 201203 , People's Republic of China
| |
Collapse
|
50
|
Bionanomining: biotechnological synthesis of metal nanoparticles from mining waste—opportunity for sustainable management of mining environmental liabilities. Appl Microbiol Biotechnol 2020; 104:1859-1869. [DOI: 10.1007/s00253-020-10353-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/18/2019] [Accepted: 01/05/2020] [Indexed: 12/19/2022]
|