1
|
Alnuaimi S, Reljic T, Abdulla FS, Memon H, Al-Ali S, Smith T, Serdarevic F, Velija Asimi Z, Kumar A, Semiz S. PPAR agonists as add-on treatment with metformin in management of type 2 diabetes: a systematic review and meta-analysis. Sci Rep 2024; 14:8809. [PMID: 38627464 PMCID: PMC11021491 DOI: 10.1038/s41598-024-59390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
The combination of metformin and the peroxisome proliferator-activated receptors (PPAR) agonists offers a promising avenue for managing type 2 diabetes (T2D) through their potential complementary mechanisms of action. The results from randomized controlled trials (RCT) assessing the efficacy of PPAR agonists plus metformin versus metformin alone in T2D are inconsistent, which prompted the conduct of the systematic review and meta-analysis. We searched MEDLINE and EMBASE from inception (1966) to March 2023 to identify all RCTs comparing any PPAR agonists plus metformin versus metformin alone in T2D. Categorical variables were summarized as relative risk along with 95% confidence interval (CI). Twenty RCTs enrolling a total of 6058 patients met the inclusion criteria. The certainty of evidence ranged from moderate to very low. Pooled results show that using PPAR agonist plus metformin, as compared to metformin alone, results in lower concentrations of fasting glucose [MD = - 22.07 mg/dl (95% CI - 27.17, - 16.97), HbA1c [MD = - 0.53% (95% CI - 0.67, - 0.38)], HOMA-IR [MD = - 1.26 (95% CI - 2.16, - 0.37)], and fasting insulin [MD = - 19.83 pmol/L (95% CI - 29.54, - 10.13)] without significant increase in any adverse events. Thus, synthesized evidence from RCTs demonstrates the beneficial effects of PPAR agonist add-on treatment versus metformin alone in T2D patients. In particular, novel dual PPARα/γ agonist (tesaglitazar) demonstrate efficacy in improving glycaemic and lipid concentrations, so further RCTs should be performed to elucidate the long-term outcomes and safety profile of these novel combined and personalized therapeutic strategies in the management of T2D.PROSPERO registration no. CRD42023412603.
Collapse
Affiliation(s)
- Saif Alnuaimi
- College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Tea Reljic
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Fatima S Abdulla
- College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hamda Memon
- College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Sarah Al-Ali
- College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Teagen Smith
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Fadila Serdarevic
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Zelija Velija Asimi
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Ambuj Kumar
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Sabina Semiz
- College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Joshi SR, Das S, Xaviar S, Samajdar SS, Saha I, Sarkar S, Mukherjee S, Tripathi SK, Pal J, Chatterjee N. Efficacy and safety of lobeglitazone, a new Thiazolidinedione, as compared to the standard of care in type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Metab Syndr 2023; 17:102703. [PMID: 36634469 DOI: 10.1016/j.dsx.2022.102703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
AIM This systematic review and meta-analysis was conducted to evaluate the efficacy and safety of lobeglitazone as compared to the standard of care (SOC) in patients with type 2 diabetes mellitus (T2DM). METHODS Databases were searched for relevant randomized controlled trials. The primary outcome was the comparison of the glycated hemoglobin (HbA1C) level after 24 weeks. Pooled mean differences and odds ratios were calculated using random-effects models. RESULTS Of 267 studies that were screened, four were included. Treatment with adjunct lobeglitazone showed a reduction in the HbA1C level [mean difference: -0.23% (95% CI: -0.62 to 0.16); p = 0.24; i2: 87%; moderate GRADE (Grading of Recommendations Assessment, Development and. Evaluation) of evidence], fasting blood glucose level [mean difference: -7.12 mg/dl (95% CI: -20.09 to 5.85); p = 0.28; i2: 87%; moderate GRADE of evidence], and lipid profile as compared to those following treatment with the SOC; however, the changes were not statistically significant. The risk of hypoglycemia was significantly lower [odds ratio: 0.24 (95% CI: 0.08 to 0.70); p < 0.05; i2: 0%; moderate GRADE of evidence] without any significant difference in the risk of drug-related adverse events [odds ratio: 1.59 (95% CI: 0.87 to 2.93); p = 0.13; i2: 0%; moderate GRADE of evidence] following treatment with lobeglitazone as compared to those following treatment with the SOC. CONCLUSION Treatment with adjunct lobeglitazone showed changes in the blood glycemic status and lipid profile similar to SOC in patients with T2DM, and the results were not statistically significant. Lobeglitazone was well tolerated; its safety profile was comparable to SOC.
Collapse
Affiliation(s)
| | - Saibal Das
- Indian Council of Medical Research - Centre for Ageing and Mental Health, Kolkata, India; Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Suja Xaviar
- Department of Pharmacology, Sri Manakula Vinayagar Medical College and Hospital, Puducherry, India
| | - Shambo Samrat Samajdar
- Department of Clinical and Experimental Pharmacology, Calcutta School of Tropical Medicine, Kolkata, India.
| | - Indranil Saha
- Indian Council of Medical Research - Centre for Ageing and Mental Health, Kolkata, India
| | - Sougata Sarkar
- Department of Clinical and Experimental Pharmacology, Calcutta School of Tropical Medicine, Kolkata, India
| | - Shatavisa Mukherjee
- Department of Clinical and Experimental Pharmacology, Calcutta School of Tropical Medicine, Kolkata, India
| | | | - Jyotirmoy Pal
- Department of Medicine, RG Kar College and Hospital, Kolkata, India
| | - Nandini Chatterjee
- Department of Medicine, Institute of Postgraduate Medical Education and Research and SSKM Hospital, Kolkata, India
| |
Collapse
|
4
|
Mimicking Gene-Environment Interaction of Higher Altitude Dwellers by Intermittent Hypoxia Training: COVID-19 Preventive Strategies. BIOLOGY 2022; 12:biology12010006. [PMID: 36671699 PMCID: PMC9855005 DOI: 10.3390/biology12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Cyclooxygenase 2 (COX2) inhibitors have been demonstrated to protect against hypoxia pathogenesis in several investigations. It has also been utilized as an adjuvant therapy in the treatment of COVID-19. COX inhibitors, which have previously been shown to be effective in treating previous viral and malarial infections are strong candidates for improving the COVID-19 therapeutic doctrine. However, another COX inhibitor, ibuprofen, is linked to an increase in the angiotensin-converting enzyme 2 (ACE2), which could increase virus susceptibility. Hence, inhibiting COX2 via therapeutics might not always be protective and we need to investigate the downstream molecules that may be involved in hypoxia environment adaptation. Research has discovered that people who are accustomed to reduced oxygen levels at altitude may be protected against the harmful effects of COVID-19. It is important to highlight that the study's conclusions only applied to those who regularly lived at high altitudes; they did not apply to those who occasionally moved to higher altitudes but still lived at lower altitudes. COVID-19 appears to be more dangerous to individuals residing at lower altitudes. The downstream molecules in the (COX2) pathway have been shown to adapt in high-altitude dwellers, which may partially explain why these individuals have a lower prevalence of COVID-19 infection. More research is needed, however, to directly address COX2 expression in people living at higher altitudes. It is possible to mimic the gene-environment interaction of higher altitude people by intermittent hypoxia training. COX-2 adaptation resulting from hypoxic exposure at altitude or intermittent hypoxia exercise training (IHT) seems to have an important therapeutic function. Swimming, a type of IHT, was found to lower COX-2 protein production, a pro-inflammatory milieu transcription factor, while increasing the anti-inflammatory microenvironment. Furthermore, Intermittent Hypoxia Preconditioning (IHP) has been demonstrated in numerous clinical investigations to enhance patients' cardiopulmonary function, raise cardiorespiratory fitness, and increase tissues' and organs' tolerance to ischemia. Biochemical activities of IHP have also been reported as a feasible application strategy for IHP for the rehabilitation of COVID-19 patients. In this paper, we aim to highlight some of the most relevant shared genes implicated with COVID-19 pathogenesis and hypoxia. We hypothesize that COVID-19 pathogenesis and hypoxia share a similar mechanism that affects apoptosis, proliferation, the immune system, and metabolism. We also highlight the necessity of studying individuals who live at higher altitudes to emulate their gene-environment interactions and compare the findings with IHT. Finally, we propose COX2 as an upstream target for testing the effectiveness of IHT in preventing or minimizing the effects of COVID-19 and other oxygen-related pathological conditions in the future.
Collapse
|
5
|
Quarta C, Stemmer K, Novikoff A, Yang B, Klingelhuber F, Harger A, Bakhti M, Bastidas-Ponce A, Baugé E, Campbell JE, Capozzi M, Clemmensen C, Collden G, Cota P, Douros J, Drucker DJ, DuBois B, Feuchtinger A, Garcia-Caceres C, Grandl G, Hennuyer N, Herzig S, Hofmann SM, Knerr PJ, Kulaj K, Lalloyer F, Lickert H, Liskiewicz A, Liskiewicz D, Maity G, Perez-Tilve D, Prakash S, Sanchez-Garrido MA, Zhang Q, Staels B, Krahmer N, DiMarchi RD, Tschöp MH, Finan B, Müller TD. GLP-1-mediated delivery of tesaglitazar improves obesity and glucose metabolism in male mice. Nat Metab 2022; 4:1071-1083. [PMID: 35995995 PMCID: PMC9398908 DOI: 10.1038/s42255-022-00617-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/12/2022] [Indexed: 11/21/2022]
Abstract
Dual agonists activating the peroxisome proliferator-activated receptors alpha and gamma (PPARɑ/ɣ) have beneficial effects on glucose and lipid metabolism in patients with type 2 diabetes, but their development was discontinued due to potential adverse effects. Here we report the design and preclinical evaluation of a molecule that covalently links the PPARɑ/ɣ dual-agonist tesaglitazar to a GLP-1 receptor agonist (GLP-1RA) to allow for GLP-1R-dependent cellular delivery of tesaglitazar. GLP-1RA/tesaglitazar does not differ from the pharmacokinetically matched GLP-1RA in GLP-1R signalling, but shows GLP-1R-dependent PPARɣ-retinoic acid receptor heterodimerization and enhanced improvements of body weight, food intake and glucose metabolism relative to the GLP-1RA or tesaglitazar alone in obese male mice. The conjugate fails to affect body weight and glucose metabolism in GLP-1R knockout mice and shows preserved effects in obese mice at subthreshold doses for the GLP-1RA and tesaglitazar. Liquid chromatography-mass spectrometry-based proteomics identified PPAR regulated proteins in the hypothalamus that are acutely upregulated by GLP-1RA/tesaglitazar. Our data show that GLP-1RA/tesaglitazar improves glucose control with superior efficacy to the GLP-1RA or tesaglitazar alone and suggest that this conjugate might hold therapeutic value to acutely treat hyperglycaemia and insulin resistance.
Collapse
Affiliation(s)
- Carmelo Quarta
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Molecular Cell Biology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of München, Munich, Germany
| | - Bin Yang
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Felix Klingelhuber
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Alex Harger
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Aimee Bastidas-Ponce
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Eric Baugé
- Inserm, CHU Lille, Institute of Pasteur de Lille, European Genomic Institute for Genomics, University of Lille, Lille, France
| | - Jonathan E Campbell
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA
| | - Megan Capozzi
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gustav Collden
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Perla Cota
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jon Douros
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Barent DuBois
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Cristina Garcia-Caceres
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nathalie Hennuyer
- Inserm, CHU Lille, Institute of Pasteur de Lille, European Genomic Institute for Genomics, University of Lille, Lille, France
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Medical Clinic and Polyclinic IV, Ludwig-Maximilians University of München, Munich, Germany
| | - Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Konxhe Kulaj
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Fanny Lalloyer
- Inserm, CHU Lille, Institute of Pasteur de Lille, European Genomic Institute for Genomics, University of Lille, Lille, France
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arek Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Daniela Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gandhari Maity
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sneha Prakash
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Miguel A Sanchez-Garrido
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Córdoba, Spain
| | - Qian Zhang
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Bart Staels
- Inserm, CHU Lille, Institute of Pasteur de Lille, European Genomic Institute for Genomics, University of Lille, Lille, France
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of München, Munich, Germany
- Helmholtz Zentrum München, Neuherberg, Germany
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
6
|
The Glitazars Paradox: Cardiotoxicity of the Metabolically Beneficial Dual PPARα and PPARγ Activation. J Cardiovasc Pharmacol 2021; 76:514-526. [PMID: 33165133 DOI: 10.1097/fjc.0000000000000891] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most common complications in patients with type-2 diabetes are hyperglycemia and hyperlipidemia that can lead to cardiovascular disease. Alleviation of these complications constitutes the major therapeutic approach for the treatment of diabetes mellitus. Agonists of peroxisome proliferator-activated receptor (PPAR) alpha and PPARγ are used for the treatment of hyperlipidemia and hyperglycemia, respectively. PPARs belong to the nuclear receptors superfamily and regulate fatty acid metabolism. PPARα ligands, such as fibrates, reduce circulating triglyceride levels, and PPARγ agonists, such as thiazolidinediones, improve insulin sensitivity. Dual-PPARα/γ agonists (glitazars) were developed to combine the beneficial effects of PPARα and PPARγ agonism. Although they improved metabolic parameters, they paradoxically aggravated congestive heart failure in patients with type-2 diabetes via mechanisms that remain elusive. Many of the glitazars, such as muraglitazar, tesaglitazar, and aleglitazar, were abandoned in phase-III clinical trials. The objective of this review article pertains to the understanding of how combined PPARα and PPARγ activation, which successfully targets the major complications of diabetes, causes cardiac dysfunction. Furthermore, it aims to suggest interventions that will maintain the beneficial effects of dual PPARα/γ agonism and alleviate adverse cardiac outcomes in diabetes.
Collapse
|
7
|
Kroon T, Harms M, Maurer S, Bonnet L, Alexandersson I, Lindblom A, Ahnmark A, Nilsson D, Gennemark P, O'Mahony G, Osinski V, McNamara C, Boucher J. PPARγ and PPARα synergize to induce robust browning of white fat in vivo. Mol Metab 2020; 36:100964. [PMID: 32248079 PMCID: PMC7132097 DOI: 10.1016/j.molmet.2020.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Peroxisome proliferator-activated receptors (PPARs) are key transcription factors that regulate adipose development and function, and the conversion of white into brown-like adipocytes. Here we investigated whether PPARα and PPARγ activation synergize to induce the browning of white fat. METHODS A selection of PPAR activators was tested for their ability to induce the browning of both mouse and human white adipocytes in vitro, and in vivo in lean and obese mice. RESULTS All dual PPARα/γ activators tested robustly increased uncoupling protein 1 (Ucp1) expression in both mouse and human adipocytes in vitro, with tesaglitazar leading to the largest Ucp1 induction. Importantly, dual PPARα/γ activator tesaglitazar strongly induced browning of white fat in vivo in both lean and obese male mice at thermoneutrality, greatly exceeding the increase in Ucp1 observed with the selective PPARγ activator rosiglitazone. While selective PPARγ activation was sufficient for the conversion of white into brown-like adipocytes in vitro, dual PPARα/γ activation was superior to selective PPARγ activation at inducing white fat browning in vivo. Mechanistically, the superiority of dual PPARα/γ activators is mediated at least in part via a PPARα-driven increase in fibroblast growth factor 21 (FGF21). Combined treatment with rosiglitazone and FGF21 resulted in a synergistic increase in Ucp1 mRNA levels both in vitro and in vivo. Tesaglitazar-induced browning was associated with increased energy expenditure, enhanced insulin sensitivity, reduced liver steatosis, and an overall improved metabolic profile compared to rosiglitazone and vehicle control groups. CONCLUSIONS PPARγ and PPARα synergize to induce robust browning of white fat in vivo, via PPARγ activation in adipose, and PPARα-mediated increase in FGF21.
Collapse
Affiliation(s)
- Tobias Kroon
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Matthew Harms
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stefanie Maurer
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Laurianne Bonnet
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Ida Alexandersson
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Anna Lindblom
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrea Ahnmark
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Nilsson
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Peter Gennemark
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gavin O'Mahony
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Victoria Osinski
- Department of Medicine, Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Coleen McNamara
- Department of Medicine, Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Jeremie Boucher
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.
| |
Collapse
|
8
|
Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS. Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence. Int J Mol Sci 2019; 20:E5055. [PMID: 31614690 PMCID: PMC6834327 DOI: 10.3390/ijms20205055] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that govern the expression of genes responsible for energy metabolism, cellular development, and differentiation. Their crucial biological roles dictate the significance of PPAR-targeting synthetic ligands in medical research and drug discovery. Clinical implications of PPAR agonists span across a wide range of health conditions, including metabolic diseases, chronic inflammatory diseases, infections, autoimmune diseases, neurological and psychiatric disorders, and malignancies. In this review we aim to consolidate existing clinical evidence of PPAR modulators, highlighting their clinical prospects and challenges. Findings from clinical trials revealed that different agonists of the same PPAR subtype could present different safety profiles and clinical outcomes in a disease-dependent manner. Pemafibrate, due to its high selectivity, is likely to replace other PPARα agonists for dyslipidemia and cardiovascular diseases. PPARγ agonist pioglitazone showed tremendous promises in many non-metabolic disorders like chronic kidney disease, depression, inflammation, and autoimmune diseases. The clinical niche of PPARβ/δ agonists is less well-explored. Interestingly, dual- or pan-PPAR agonists, namely chiglitazar, saroglitazar, elafibranor, and lanifibranor, are gaining momentum with their optimistic outcomes in many diseases including type 2 diabetes, dyslipidemia, non-alcoholic fatty liver disease, and primary biliary cholangitis. Notably, the preclinical and clinical development for PPAR antagonists remains unacceptably deficient. We anticipate the future design of better PPAR modulators with minimal off-target effects, high selectivity, superior bioavailability, and pharmacokinetics. This will open new possibilities for PPAR ligands in medicine.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Charlie Marvalim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Justin Yin Hao Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| |
Collapse
|
9
|
Zha D, Wu X, Gao P. Adiponectin and Its Receptors in Diabetic Kidney Disease: Molecular Mechanisms and Clinical Potential. Endocrinology 2017; 158:2022-2034. [PMID: 28402446 DOI: 10.1210/en.2016-1765] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Abstract
Diabetic kidney disease (DKD) is a major complication for diabetic patients. Adiponectin is an insulin sensitizer and anti-inflammatory adipokine and is mainly secreted by adipocytes. Two types of adiponectin receptors, AdipoR1 and AdipoR2, have been identified. In both type 1 and type 2 diabetes (T2D) patients with DKD, elevated adiponectin serum levels have been observed, and adiponectin serum level is a prognostic factor of end-stage renal disease. Renal insufficiency and tubular injury possibly play a contributory role in increases in serum and urinary adiponectin levels in diabetic nephropathy by either increasing biodegradation or elimination of adiponectin in the kidneys, or enhancing production of adiponectin in adipose tissue. Increases in adiponectin levels resulted in amelioration of albuminuria, glomerular hypertrophy, and reduction of inflammatory response in kidney tissue. The renoprotection of adiponectin is associated with improvement of the endothelial dysfunction, reduction of oxidative stress, and upregulation of endothelial nitric oxide synthase expression through activation of adenosine 5'-monophosphate-activated protein kinase by AdipoR1 and activation of peroxisome proliferator-activated receptor (PPAR)-α signaling pathway by AdipoR2. Several single nucleotide polymorphisms in the AdipoQ gene, including the promoter, are associated with increased risk of the development of T2D and DKD. Renin-angiotensin-aldosterone system blockers, adiponectin receptor agonists, and PPAR agonists (e.g., tesaglitazar, thiazolidinediones, fenofibrate), which increase plasma adiponectin levels and adiponectin receptors expression, may be potential therapeutic drugs for the treatment of DKD.
Collapse
Affiliation(s)
- Dongqing Zha
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xiaoyan Wu
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Ping Gao
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
10
|
Abd El-Haleim EA, Bahgat AK, Saleh S. Effects of combined PPAR-γ and PPAR-α agonist therapy on fructose induced NASH in rats: Modulation of gene expression. Eur J Pharmacol 2016; 773:59-70. [PMID: 26825546 DOI: 10.1016/j.ejphar.2016.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 02/09/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) gamma and alpha have been shown to play key roles in maintaining glucose and lipid homeostasis by acting as insulin sensitizers and lipid-lowering agents respectively, which would make them potential candidates for the treatment of non-alcoholic steatohepatitis (NASH) characterized by insulin resistance, hyperglycemia, and hypertriglyceridemia. The effects of pioglitazone, a PPAR-γ agonist, and fenofibrate, a PPAR-α agonist, as monotherapy and in combination on the expressions of key genes linked to the development of NASH were studied in rats with fructose-induced NASH. Fructose-enriched diet was given to rats for 12 weeks. Fenofibrate (100mg/kg), pioglitazone (4 mg/kg) and combined treatment with both in half doses were given. Body weight, liver index, insulin resistance indices, triglycerides, oxidative stress markers, AST/ALT ratio and TNF-α were measured. Additionally, hepatic genes expressions of SOCS-3, sterol regulatory element binding protein-1c, fatty acid synthase, malonyl CoA decarboxylase, TGF-β1, and adipose tissue genes expressions of leptin and adiponectin were investigated. The combination of both drugs, in half doses, improved NASH-related disturbances similar to, or even better than, a full dose of fenofibrate alone possibly due to attenuating effects of pioglitazone on expression of genes responsible for insulin resistance, fatty acid synthesis and fibrosis in addition to correcting the balance between leptin and adiponectin. Histopathology confirmed the ability of this combination to decrease steatosis area and to normalize hepatic tissue structure. In Conclusion, dual activation of PPAR-γ and PPAR-α has remarkable effect in ameliorating NASH by modulation of some hepatic and adipose tissue genes expressions.
Collapse
Affiliation(s)
- Enas A Abd El-Haleim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ashraf K Bahgat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Samira Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Peroxisome Proliferator-Activated Receptors and the Heart: Lessons from the Past and Future Directions. PPAR Res 2015; 2015:271983. [PMID: 26587015 PMCID: PMC4637490 DOI: 10.1155/2015/271983] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear family of ligand activated transcriptional factors and comprise three different isoforms, PPAR-α, PPAR-β/δ, and PPAR-γ. The main role of PPARs is to regulate the expression of genes involved in lipid and glucose metabolism. Several studies have demonstrated that PPAR agonists improve dyslipidemia and glucose control in animals, supporting their potential as a promising therapeutic option to treat diabetes and dyslipidemia. However, substantial differences exist in the therapeutic or adverse effects of specific drug candidates, and clinical studies have yielded inconsistent data on their cardioprotective effects. This review summarizes the current knowledge regarding the molecular function of PPARs and the mechanisms of the PPAR regulation by posttranslational modification in the heart. We also describe the results and lessons learned from important clinical trials on PPAR agonists and discuss the potential future directions for this class of drugs.
Collapse
|
12
|
Masschelein E, Puype J, Broos S, Van Thienen R, Deldicque L, Lambrechts D, Hespel P, Thomis M. A genetic predisposition score associates with reduced aerobic capacity in response to acute normobaric hypoxia in lowlanders. High Alt Med Biol 2015; 16:34-42. [PMID: 25761120 DOI: 10.1089/ham.2014.1083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Given the high inter-individual variability in the sensitivity to high altitude, we hypothesize the presence of underlying genetic factors. The aim of this study was to construct a genetic predisposition score based on previously identified high-altitude gene variants to explain the inter-individual variation in the reduced maximal O2 uptake (ΔVo2max) in response to acute hypoxia. Ninety-six healthy young male Belgian lowlanders were included. In both normobaric normoxia (Fio2=20.9%) and acute normobaric hypoxia (Fio2=10.7%-12.5%) Vo2max was measured. Forty-one SNPs in 21 genes were genotyped. A stepwise regression analysis was applied to detect a subset of SNPs to be associated with ΔVo2max. This subset of SNPs was included in the genetic predisposition score. A general linear model and regression analysis with age, weight, height, hypoxic protocol group, and Vo2max in normoxia as covariates were used to test the explained variance of the genetic predisposition score. A ROC analysis was performed to discriminate between the low- and high ΔVo2max subgroups. A stepwise regression analysis revealed a subset of SNPs [rs833070 (VEGFA), rs4253778 (PPARA), rs6735530 (EPAS1), rs4341 (ACE), rs1042713 (ADRB2), and rs1042714 (ADRB2)] to be associated with ΔVo2max. The genetic predisposition score was found to be an independent predictive variable with a partial explained variance of 23% (p<0.0001). A ROC analysis showed significant discriminating accuracy (AUC=0.78, 95% confidence interval=0.64-0.91) between the low- and high ΔVo2max subgroups. This six-SNP based genetic predisposition score showed a significantly predictive value for ΔVo2max.
Collapse
Affiliation(s)
- Evi Masschelein
- 1 Exercise Physiology Research Group , KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Efficacy and safety of lobeglitazone monotherapy in patients with type 2 diabetes mellitus over 24-weeks: a multicenter, randomized, double-blind, parallel-group, placebo controlled trial. PLoS One 2014; 9:e92843. [PMID: 24736628 PMCID: PMC3988010 DOI: 10.1371/journal.pone.0092843] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/25/2014] [Indexed: 11/29/2022] Open
Abstract
Objective The aim of this study was to assess the glucose-lowering and lipid-modifying effects, and safety profile of lobeglitazone, a novel peroxisome proliferator-activated receptor- γ agonist, compared to placebo as a monotherapy in patients with type 2 diabetes. Research Design and Methods In this 24-week, multicenter, randomized, double-blind, parallel-group, placebo controlled study, 173 patients were randomly assigned (a 2∶1 ratio) to lobeglitazone 0.5 mg (n = 115) or matching placebo (n = 58) orally once daily. The primary endpoint was the change in glycated hemoglobin (HbA1c) from baseline to the end of treatment. The secondary endpoints included various glycemic parameters, lipid parameters and safety profile (ClinicalTrials.gov number NCT01001611). Results At 24 weeks, a significant reduction in HbA1c was observed with lobeglitazone versus placebo (−0.44% vs 0.16%, mean difference −0.6%, p<0.0001). The goal of HbA1c <7% was achieved significantly more in the lobeglitazone group compared to the placebo group (44% vs 12%, p<0.0001). Markers of insulin resistance were also improved in the lobeglitazone group. In addition, lobeglitazone treatment significantly improved triglycerides, high density lipoprotein cholesterol, small dense low density lipoprotein cholesterol, free fatty acid, and apolipoprotein-B/CIII compared to placebo (p<0.01, respectively). More weight gain was observed in the lobeglitazone group than the placebo group (0.89 kg vs – 0.63 kg, mean difference 1.52 kg, p<0.0001). The safety profile was comparable between the two groups and lobeglitazone was well tolerated. Conclusions Lobeglitazone 0.5 mg showed a favorable balance in the efficacy and safety profile. The results support a potential role of lobeglitazone in treating type 2 diabetes. Trial Registration Clinicaltrials.gov NCT01001611
Collapse
|
14
|
Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr J 2014; 13:17. [PMID: 24524207 PMCID: PMC3943808 DOI: 10.1186/1475-2891-13-17] [Citation(s) in RCA: 830] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/07/2014] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors are expressed in many tissues, including adipocytes, hepatocytes, muscles and endothelial cells; however, the affinity depends on the isoform of PPAR, and different distribution and expression profiles, which ultimately lead to different clinical outcomes. Because they play an important role in lipid and glucose homeostasis, they are called lipid and insulin sensors. Their actions are limited to specific tissue types and thus, reveal a characteristic influence on target cells. PPARα mainly influences fatty acid metabolism and its activation lowers lipid levels, while PPARγ is mostly involved in the regulation of the adipogenesis, energy balance, and lipid biosynthesis. PPARβ/δ participates in fatty acid oxidation, mostly in skeletal and cardiac muscles, but it also regulates blood glucose and cholesterol levels. Many natural and synthetic ligands influence the expression of these receptors. Synthetic ligands are widely used in the treatment of dyslipidemia (e.g. fibrates--PPARα activators) or in diabetes mellitus (e.g. thiazolidinediones--PPARγ agonists). New generation drugs--PPARα/γ dual agonists--reveal hypolipemic, hypotensive, antiatherogenic, anti-inflammatory and anticoagulant action while the overexpression of PPARβ/δ prevents the development of obesity and reduces lipid accumulation in cardiac cells, even during a high-fat diet. Precise data on the expression and function of natural PPAR agonists on glucose and lipid metabolism are still missing, mostly because the same ligand influences several receptors and a number of reports have provided conflicting results. To date, we know that PPARs have the capability to accommodate and bind a variety of natural and synthetic lipophilic acids, such as essential fatty acids, eicosanoids, phytanic acid and palmitoylethanolamide. A current understanding of the effects of PPARs, their molecular mechanisms and the role of these receptors in nutrition and therapeutic treatment are delineated in this paper.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Bromatology and Human Nutrition, University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
15
|
Sahebkar A, Chew GT, Watts GF. New peroxisome proliferator-activated receptor agonists: potential treatments for atherogenic dyslipidemia and non-alcoholic fatty liver disease. Expert Opin Pharmacother 2014; 15:493-503. [PMID: 24428677 DOI: 10.1517/14656566.2014.876992] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Novel peroxisome proliferator-activated receptor (PPAR) modulators (selective PPAR modulators [SPPARMs]) and dual PPAR agonists may have an important role in the treatment of cardiometabolic disorders owing to lipid-modifying, insulin-sensitizing and anti-inflammatory effects. AREAS COVERED This review summarizes the efficacy of new PPAR agonists and SPPARMs that are under development for the treatment of atherogenic dyslipidemia and non-alcoholic fatty liver disease (NAFLD). EXPERT OPINION ABT-335 is a new formulation of fenofibrate that has been approved for concomitant use with statins. K-877, a SPPARM-α with encouraging preliminary results in modulating atherogenic dyslipidemia, and INT131, a SPPARM-γ with predominantly insulin-sensitizing actions, may also have favorable lipid-modifying effects. Although the development of dual PPAR-α/γ agonists (glitazars) and the SPPARM-δ GW501516 has been abandoned because of safety issues, another SPPARM-δ (MBX-8025) and a dual PPAR-α/δ agonist (GFT-505) have shown promising efficacy in decreasing plasma triglyceride and increasing high-density lipoprotein cholesterol concentrations, as well as improving insulin sensitivity and liver function. The beneficial effects of GFT-505 are complemented by preclinical findings that indicate reduction of hepatic fat accumulation, inflammation and fibrosis, making it a promising candidate for the treatment of NAFLD/nonalcoholic steatohepatitis (NASH). Long-term trials are required to test the efficacy and safety of these new PPAR agonists in reducing cardiovascular outcomes and treating NAFLD/NASH.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | | | | |
Collapse
|
16
|
Goyal P, Igel LI, LaScalea K, Borden WB. Cardiometabolic Impact of Non-Statin Lipid Lowering Therapies. Curr Atheroscler Rep 2014; 16:390. [DOI: 10.1007/s11883-013-0390-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Stein SA, Lamos EM, Davis SN. A review of the efficacy and safety of oral antidiabetic drugs. Expert Opin Drug Saf 2012; 12:153-75. [PMID: 23241069 DOI: 10.1517/14740338.2013.752813] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Additional oral antidiabetic agents to metformin, sulfonylureas (SU) and thiazolidinediones (TZD) are approved for the treatment of type 2 diabetes. AREAS COVERED The efficacy and safety of metformin, SUs, TZDs, dipeptidyl peptidase-IV (DPP-4) inhibitors, meglitinide analogs, α-glucosidase inhibitors (AGIs), bile-acid sequestrants (BAS) and bromocriptine will be reviewed. EXPERT OPINION Several new oral agents have been approved for type 2 diabetes management in recent years. It is important to understand the efficacy and safety of these medications in addition to the older agents to best maximize oral drug therapy for diabetes. Of the recently introduced oral hypoglycemic/antihyperglycemic agents, the DPP-4 inhibitors are moderately efficacious compared with mainstay treatment with metformin with a low side-effect profile and have good efficacy in combination with other oral agents and insulin. They are a recommended alternative when metformin use is limited by gastrointestinal (GI) side effects or when SU treatment results in significant hypoglycemia or weight gain. Meglitinide analogs are limited by their frequent dosing, expense and hypoglycemia (repaglinide > nateglinide), while AGIs are also limited by their dosing schedule and GI side-effect profile. BAS and bromocriptine have the lowest efficacy with regard to HbA(1c) reduction, also are plagued by GI adverse reactions, but have a low risk of hypoglycemia.
Collapse
Affiliation(s)
- Stephanie Aleskow Stein
- University of Maryland Medical Center, Endocrinology, Diabetes and Metabolism, 22 South Greene St. N3W157, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
18
|
Bortolini M, Wright MB, Bopst M, Balas B. Examining the safety of PPAR agonists - current trends and future prospects. Expert Opin Drug Saf 2012; 12:65-79. [PMID: 23134541 DOI: 10.1517/14740338.2013.741585] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The peroxisome proliferator-activated receptor (PPAR)-α and -γ agonists, fibrates and glitazones, are effective treatments for dyslipidemia and type 2 diabetes mellitus, respectively, but exhibit class-related, as well as compound-specific safety characteristics. AREAS COVERED This article reviews the profiles of PPAR-α, PPAR-γ, and dual PPAR-α/γ agonists with regard to class-related and compound-specific efficacy and adverse effects. We explore how learnings from first-generation drugs are being applied to develop safer PPAR-targeted therapies. EXPERT OPINION The finding that rosiglitazone may increase risk for cardiovascular events has led to regulatory guidelines requiring demonstration of cardiovascular safety in appropriate outcome trials for new type 2 diabetes mellitus drugs. The emerging data on the possibly increased risk of bladder cancer with pioglitazone may prompt the need for post-approval safety studies for new drugs. Since PPAR-α and -γ affect key cardiometabolic risk factors (diabetic dyslipidemia, insulin resistance, hyperglycemia, and inflammation) in a complementary fashion, combining their benefits has emerged as a particularly attractive option. New PPAR-targeted therapies that balance the relative potency and/or activity toward PPAR-α and -γ have shown promise in retaining efficacy while reducing potential side effects.
Collapse
Affiliation(s)
- Michele Bortolini
- Cardiometabolic Franchise Safety Science Leader, F. Hoffmann-La Roche, Ltd, PDS-Safety Risk Management, 663/2028, CH4070 Basel, Switzerland.
| | | | | | | |
Collapse
|
19
|
Abstract
Diabetes is a complex disease defined by hyperglycaemia; however, strong associations with abdominal obesity, hypertension and dyslipidaemia contribute to the high risk of cardiovascular disease. Although aggressive glycaemic control reduces microvascular complications, the evidence for macrovascular complications is less certain. The theoretical benefits of the mode of action of peroxisome proliferator-activated receptor (PPAR) agonists are clear. In clinical practice, PPAR-α agonists such as fibrates improve dyslipidaemia, while PPAR-γ agonists such as thiazolidinediones improve insulin resistance and diabetes control. However, although these agents are traditionally classed according to their target, they have different and sometimes conflicting clinical benefit and adverse event profiles. It is speculated that this is because of differing properties and specificities for the PPAR receptors (each of which targets specific genes). This is most obvious in the impact on cardiovascular outcomes--in clinical trials pioglitazone appeared to reduce cardiovascular events, whereas rosiglitazone potentially increased the risk of myocardial infarction. The development of a dual PPAR-α/γ agonist may prove beneficial in effectively managing glycaemic control and improving dyslipidaemia in patients with type 2 diabetes. Yet, development of agents such as muraglitazar and tesaglitazar has been hindered by various serious adverse events. Aleglitazar, a balanced dual PPAR-α/γ agonist, is currently the most advanced in clinical development and has shown promising results in phase II clinical trials with beneficial effects on glucose and lipid variables. A phase III study, ALECARDIO, is ongoing and will establish whether improvements in laboratory test profiles translate into an improvement in cardiovascular outcomes.
Collapse
Affiliation(s)
- J P H Wilding
- Department of Obesity & Endocrinology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
20
|
Deehan R, Maerz-Weiss P, Catlett NL, Steiner G, Wong B, Wright MB, Blander G, Elliston KO, Ladd W, Bobadilla M, Mizrahi J, Haefliger C, Edgar A. Comparative transcriptional network modeling of three PPAR-α/γ co-agonists reveals distinct metabolic gene signatures in primary human hepatocytes. PLoS One 2012; 7:e35012. [PMID: 22514701 PMCID: PMC3325914 DOI: 10.1371/journal.pone.0035012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/08/2012] [Indexed: 11/24/2022] Open
Abstract
AIMS To compare the molecular and biologic signatures of a balanced dual peroxisome proliferator-activated receptor (PPAR)-α/γ agonist, aleglitazar, with tesaglitazar (a dual PPAR-α/γ agonist) or a combination of pioglitazone (Pio; PPAR-γ agonist) and fenofibrate (Feno; PPAR-α agonist) in human hepatocytes. METHODS AND RESULTS Gene expression microarray profiles were obtained from primary human hepatocytes treated with EC(50)-aligned low, medium and high concentrations of the three treatments. A systems biology approach, Causal Network Modeling, was used to model the data to infer upstream molecular mechanisms that may explain the observed changes in gene expression. Aleglitazar, tesaglitazar and Pio/Feno each induced unique transcriptional signatures, despite comparable core PPAR signaling. Although all treatments inferred qualitatively similar PPAR-α signaling, aleglitazar was inferred to have greater effects on high- and low-density lipoprotein cholesterol levels than tesaglitazar and Pio/Feno, due to a greater number of gene expression changes in pathways related to high-density and low-density lipoprotein metabolism. Distinct transcriptional and biologic signatures were also inferred for stress responses, which appeared to be less affected by aleglitazar than the comparators. In particular, Pio/Feno was inferred to increase NFE2L2 activity, a key component of the stress response pathway, while aleglitazar had no significant effect. All treatments were inferred to decrease proliferative signaling. CONCLUSIONS Aleglitazar induces transcriptional signatures related to lipid parameters and stress responses that are unique from other dual PPAR-α/γ treatments. This may underlie observed favorable changes in lipid profiles in animal and clinical studies with aleglitazar and suggests a differentiated gene profile compared with other dual PPAR-α/γ agonist treatments.
Collapse
Affiliation(s)
- Renée Deehan
- Selventa, Cambridge, Massachusetts, United States of America
| | | | | | | | - Ben Wong
- Selventa, Cambridge, Massachusetts, United States of America
| | | | - Gil Blander
- Selventa, Cambridge, Massachusetts, United States of America
| | | | - William Ladd
- Selventa, Cambridge, Massachusetts, United States of America
| | | | | | | | - Alan Edgar
- F. Hoffmann-La Roche AG, Basel, Switzerland
| |
Collapse
|
21
|
Brown EA. Genetic explorations of recent human metabolic adaptations: hypotheses and evidence. Biol Rev Camb Philos Soc 2012; 87:838-55. [DOI: 10.1111/j.1469-185x.2012.00227.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Cheviron ZA, Brumfield RT. Genomic insights into adaptation to high-altitude environments. Heredity (Edinb) 2012; 108:354-61. [PMID: 21934702 PMCID: PMC3313048 DOI: 10.1038/hdy.2011.85] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/03/2011] [Accepted: 06/14/2011] [Indexed: 12/25/2022] Open
Abstract
Elucidating the molecular genetic basis of adaptive traits is a central goal of evolutionary genetics. The cold, hypoxic conditions of high-altitude habitats impose severe metabolic demands on endothermic vertebrates, and understanding how high-altitude endotherms cope with the combined effects of hypoxia and cold can provide important insights into the process of adaptive evolution. The physiological responses to high-altitude stress have been the subject of over a century of research, and recent advances in genomic technologies have opened up exciting opportunities to explore the molecular genetic basis of adaptive physiological traits. Here, we review recent literature on the use of genomic approaches to study adaptation to high-altitude hypoxia in terrestrial vertebrates, and explore opportunities provided by newly developed technologies to address unanswered questions in high-altitude adaptation at a genomic scale.
Collapse
Affiliation(s)
- Z A Cheviron
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | | |
Collapse
|
23
|
Kwon HS. New therapeutic agents for glycemic control in diabetes mellitus. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2012. [DOI: 10.5124/jkma.2012.55.3.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hyuk Sang Kwon
- Department of Endocrinology, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Lindblom P, Berg AL, Zhang H, Westerberg R, Tugwood J, Lundgren H, Marcusson-Ståhl M, Sjögren N, Blomgren B, Öhman P, Skånberg I, Evans J, Hellmold H. Tesaglitazar, a dual PPAR-α/γ agonist, hamster carcinogenicity, investigative animal and clinical studies. Toxicol Pathol 2011; 40:18-32. [PMID: 22131108 DOI: 10.1177/0192623311429972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tesaglitazar was developed as a dual peroxisome proliferator-activated receptor (PPARα/γ). To support the clinical program, a hamster carcinogenicity study was performed. The only neoplastic findings possibly related to treatment with tesaglitazar were low incidences of hemangioma and hemangiosarcoma in the liver of male animals. A high-power, two-year investigative study with interim necropsies was performed to further elucidate these findings. Treatment with tesaglitazar resulted in changes typical for exaggerated PPARα pharmacology in rodents, such as hepatocellular hypertrophy and hepatocellular carcinoma, but not an increased frequency of hemangiosarcomas. At the highest dose level, there was an increased incidence of sinusoidal dilatation and hemangiomas. No increased endothelial cell (EC) proliferation was detected in vivo, which was confirmed by in vitro administration to ECs. Immunohistochemistry and gene expression analyses indicated increased cellular stress and vascular endothelial growth factor (VEGF) expression in the liver, which may have contributed to the sinusoidal dilatation. A two-fold increase in the level of circulating VEGF was detected in the hamster at all dose levels, whereas no effect on VEGF was observed in patients treated with tesaglitazar. In conclusion, investigations have demonstrated that tesaglitazar does not produce hemangiosarcomas in hamster despite a slight effect on vascular morphology in the liver.
Collapse
|
25
|
Hamrén B, Ohman KP, Svensson MK, Karlsson MO. Pharmacokinetic-pharmacodynamic assessment of the interrelationships between tesaglitazar exposure and renal function in patients with type 2 diabetes mellitus. J Clin Pharmacol 2011; 52:1317-27. [PMID: 22045829 DOI: 10.1177/0091270011416937] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of tesaglitazar on renal function (assessed as urinary clearance of 125I-sodium iothalamate or estimated by the modification of diet in renal disease formula) were studied in a 24-week open-label trial in type 2 diabetes mellitus patients randomized to daily doses of either tesaglitazar 2 mg or pioglitazone 45 mg. The aim of the analysis was to develop a population pharmacokinetic-pharmacodynamic model that could simultaneously describe the interrelationship between tesaglitazar exposure and reduction in renal function over time in patients with type 2 diabetes mellitus. The pharmacokinetic-pharmacodynamic model could adequately describe the interplay between tesaglitazar and glomerular filtration rate. A one-compartment model in which the apparent clearance was influenced by glomerular filtration rate characterized the pharmacokinetics of tesaglitazar. An indirect-response model was used for the slow time course of change in glomerular filtration rate, which decreased from 100 to 78 mL/min/1.73m(2) after 12 weeks of treatment. All tesaglitazar-treated patients had a reduction in glomerular filtration rate, and available demographic variables could not explain differences in response. Patients treated with an angiotensin converting enzyme inhibitor were more sensitive to tesaglitazar and had larger glomerular filtration rate decrease compared to nontreated patients. Approximately 8 weeks after discontinuing treatment, mean glomerular filtration rate had returned towards baseline. The model and data give valuable insights into the dynamic changes in glomerular filtration rate over time.
Collapse
Affiliation(s)
- Bengt Hamrén
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | | | | |
Collapse
|
26
|
Abstract
There is a rising worldwide prevalence of diabetes, especially type 2 diabetes mellitus (T2DM), which is one of the most challenging health problems in the 21st century. The associated complications of diabetes, such as cardiovascular disease, peripheral vascular disease, stroke, diabetic neuropathy, amputations, renal failure, and blindness result in increasing disability, reduced life expectancy, and enormous health costs. T2DM is a polygenic disease characterized by multiple defects in insulin action in tissues and defects in pancreatic insulin secretion, which eventually leads to loss of pancreatic insulin-secreting cells. The treatment goals for T2DM patients are effective control of blood glucose, blood pressure, and lipids (if elevated) and, ultimately, to avert the serious complications associated with sustained tissue exposure to excessively high glucose concentrations. Prevention and control of diabetes with diet, weight control, and physical activity has been difficult. Treatment of T2DM has centered on increasing insulin levels, either by direct insulin administration or oral agents that promote insulin secretion, improving sensitivity to insulin in tissues, or reducing the rate of carbohydrate absorption from the gastrointestinal tract. This review presents comprehensive and up-to-date information on the mechanism(s) of action, efficacy, pharmacokinetics, pleiotropic effects, drug interactions, and adverse effects of the newer antidiabetic drugs, including (1) peroxisome proliferator-activated-receptor-γ agonists (thiazolidinediones, pioglitazone, and rosiglitazone); (2) the incretin, glucagon-like peptide-) receptor agonists (incretin-mimetics, exenatide. and liraglutide), (3) inhibitors of dipeptidyl-peptidase-4 (incretin enhancers, sitagliptin, and vildagliptin), (4) short-acting, nonsulfonylurea secretagogue, meglitinides (repaglinide and nateglinide), (5) amylin anlog-pramlintide, (6) α-glucosidase inhibitors (miglitol and voglibose), and (7) colesevelam (a bile acid sequestrant). In addition, information is presented on drug candidates in clinical trials, experimental compounds, and some plants used in the traditional treatment of diabetes based on experimental evidence. In the opinion of this reviewer, therapy based on orally active incretins and incretin mimetics with long duration of action that will be efficacious, preserve the β-cell number/function, and block the progression of diabetes will be highly desirable. However, major changes in lifestyle factors such as diet and, especially, exercise will also be needed if the growing burden of diabetes is to be contained.
Collapse
|
27
|
The genetics of altitude tolerance: the evidence for inherited susceptibility to acute mountain sickness. J Occup Environ Med 2011; 53:159-68. [PMID: 21270658 DOI: 10.1097/jom.0b013e318206b112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Acute mountain sickness (AMS) has become a significant environmental health issue as improvements in transportation, "environmental tourism," and resource development lure more people to the highlands. Whether there is a genetic contribution to AMS susceptibility is a central question in high-altitude medicine. This article provides a systematic review of the evidence supporting such an innate predisposition. METHODS Scientific literature databases were screened using the terms "acute mountain sickness/AMS" and "altitude illness" combined with the terms "DNA," "gene," "genetic," or "polymorphism." RESULTS Sixteen genes from a variety of pathways have been tested for association with AMS and variants in eight showed positive associations suggesting that AMS is an environmentally mediated polygenic disorder. CONCLUSIONS The data suggest that genotype contributes to capacity to rapidly and efficiently acclimatize to altitude; nevertheless, the mechanisms by which this occurs have yet to be elucidated.
Collapse
|
28
|
Ahmed TAN, Karalis I, Jukema JW. Emerging drugs for coronary artery disease. From past achievements and current needs to clinical promises. Expert Opin Emerg Drugs 2011; 16:203-33. [DOI: 10.1517/14728214.2011.549606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Abstract
The thiazolidinedione PPAR-γ activator drugs rosiglitazone and pioglitazone suppress insulin resistance in type 2 diabetic patients. They lock lipids into adipose tissue triglyceride stores, thereby preventing lipid metabolites from causing insulin resistance in liver and skeletal muscle and β-cell failure. They also reduce the secretion of inflammatory cytokines such as TNFα and increase the plasma level of adiponectin, which increases insulin sensitivity in liver and skeletal muscle. However, they have only a modest effect on dyslipidaemia, and they increase fat mass and plasma volume. Fibrate PPAR-α activator drugs decrease plasma triglycerides and increase HDL-cholesterol levels. PPAR-δ activators increase the capacity for fat oxidation in skeletal muscle.Clinical experience with bezafibrate, which activates PPAR-δ and -α, and studies on the PPAR-α/δ activator tetradecylthioacetic acid, the PPAR-δ activator GW501516, and combinations of the PPAR-α activator fenofibrate with rosiglitazone or pioglitazone have encouraged attempts to develop single molecules that activate two or all three PPARs. Most effort has focussed on dual PPAR-α/γ activators. These reduce both hyperglycaemia and dyslipidaemia, but their development has been terminated by issues such as increased weight gain, oedema, plasma creatinine and myocardial infarction or stroke. In addition, the FDA has stated that many PPAR ligands submitted to it have caused increased numbers of tumours in carcinogenicity studies.Rather than aiming for full potent agonists, it may be best to identify subtype-selective partial agonists or compounds that selectively activate PPAR signalling pathways and use these in combination. Nutrients or modified lipids that are low-affinity agonists may also have potential.
Collapse
Affiliation(s)
- Monique Heald
- Clore Laboratory, University of Buckingham, Buckingham, Buckinghamshire, UK
| | | |
Collapse
|
30
|
Herz M, Gaspari F, Perico N, Viberti G, Urbanowska T, Rabbia M, Wieczorek Kirk D. Effects of high dose aleglitazar on renal function in patients with type 2 diabetes. Int J Cardiol 2010; 151:136-42. [PMID: 20837369 DOI: 10.1016/j.ijcard.2010.08.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/14/2010] [Accepted: 08/07/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Aleglitazar is a new, balanced dual peroxisome proliferator-activated receptor (PPAR)α/γ agonist designed to optimize lipid and glycemic benefits and minimize PPAR-related adverse effects. METHODS SESTA R was a 26-week, randomized, double-blind, multicenter study comparing the effects of a supratherapeutic dosage of aleglitazar (600 μg/day) with pioglitazone (45 mg/day) on change in measured GFR (mGFR) in 174 patients with type 2 diabetes and normal to mildly impaired renal function (estimated GFR [eGFR] 60 to 120 ml/min/1.73 m(2)). RESULTS In 118 patients with evaluable GFR measurements, baseline mean (± SD) mGFR was 97.6 ± 17.5 ml/min/1.73 m(2) in the aleglitazar group and 101.9±21.6ml/min/1.73m(2) in the pioglitazone group. Mean percent change from baseline mGFR was -16.9% (90% confidence interval -22.0 to -11.5) with aleglitazar and -4.6% (-10.15 to 1.35) with pioglitazone, a mean treatment difference of -13.0% (-19.0 to -6.5). The 17% decrease from baseline in mGFR was consistent with the 19% decrease in eGFR Modification of Diet in Renal Disease (MDRD) observed with aleglitazar, which reached a plateau after 4weeks, with no further progression until treatment discontinuation. Following aleglitazar withdrawal, eGFR values returned to pretreatment levels within the 4-8-week follow-up, which suggests reversible hemodynamic changes in renal function. CONCLUSIONS Despite the increased incidence of expected, dose-dependent PPAR class side effects (e.g., peripheral edema, weight gain, and congestive heart failure) limiting further development of this supratherapeutic dosage of aleglitazar (600 μg/day), these data, together with the data from the dose-ranging SYNCHRONY study, suggest aleglitazar may be a potential new treatment for cardiovascular risk reduction in post-acute coronary syndrome patients at the therapeutic 150 μg daily dose.
Collapse
|
31
|
Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R. Genetic evidence for high-altitude adaptation in Tibet. Science 2010; 329:72-5. [PMID: 20466884 DOI: 10.1126/science.1189406] [Citation(s) in RCA: 822] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tibetans have lived at very high altitudes for thousands of years, and they have a distinctive suite of physiological traits that enable them to tolerate environmental hypoxia. These phenotypes are clearly the result of adaptation to this environment, but their genetic basis remains unknown. We report genome-wide scans that reveal positive selection in several regions that contain genes whose products are likely involved in high-altitude adaptation. Positively selected haplotypes of EGLN1 and PPARA were significantly associated with the decreased hemoglobin phenotype that is unique to this highland population. Identification of these genes provides support for previously hypothesized mechanisms of high-altitude adaptation and illuminates the complexity of hypoxia-response pathways in humans.
Collapse
Affiliation(s)
- Tatum S Simonson
- Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Natarajan P, Ray KK, Cannon CP. High-Density Lipoprotein and Coronary Heart Disease. J Am Coll Cardiol 2010; 55:1283-99. [PMID: 20338488 DOI: 10.1016/j.jacc.2010.01.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/04/2010] [Accepted: 01/04/2010] [Indexed: 12/29/2022]
Affiliation(s)
- Pradeep Natarajan
- Department of Medicine, Cardiovascular Division, Brigham & Women's Hospital/Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
33
|
Wagner JA, Wright EC, Ennis MM, Prince M, Kochan J, Nunez DJR, Schneider B, Wang MD, Chen Y, Ghosh S, Musser BJ, Vassileva MT. Utility of adiponectin as a biomarker predictive of glycemic efficacy is demonstrated by collaborative pooling of data from clinical trials conducted by multiple sponsors. Clin Pharmacol Ther 2009; 86:619-25. [PMID: 19553931 DOI: 10.1038/clpt.2009.88] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study, conducted under the Metabolic Disorders Steering Committee of the Biomarkers Consortium (a public-private partnership managed by the Foundation for the National Institutes of Health (FNIH)), analyzed blinded data on 2,688 type 2 diabetes (T2D) patients from randomized clinical trials conducted by four pharmaceutical companies. An increase in the levels of adiponectin was observed after peroxisome proliferator-activated receptor (PPAR)-agonist treatment (P < 0.0001), but not after treatment with non-PPAR drugs. This increase correlated with decreases in levels of glucose, hemoglobin A(1c) (Hb(A1c)), hematocrit, and triglycerides, and increases in levels of blood urea nitrogen, creatinine, and high-density lipoprotein cholesterol (HDL-C). Early (6-8 weeks) increases in levels of adiponectin after treatment with PPAR agonists showed a negative correlation (r = -0.21, P < 0.0001) with subsequent changes in levels of Hb(A1c). Changes in adiponectin level did not appear to be associated with baseline level of Hb(A1c). Logistic regression demonstrated that an increase in the level of adiponectin predicts a decrease in the level of Hb(A1c). These analyses confirm previously demonstrated relationships between adiponectin levels and metabolic parameters and support the robust predictive utility of adiponectin across the spectrum of glucose tolerance. Cross-company precompetitive collaboration is a feasible and powerful approach to biomarker qualification.
Collapse
Affiliation(s)
- J A Wagner
- Department of Clinical Pharmacology, Merck Research Laboratories, Rahway, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ratner RE, Parikh S, Tou C. Efficacy, safety and tolerability of tesaglitazar when added to the therapeutic regimen of poorly controlled insulin-treated patients with type 2 diabetes. Diab Vasc Dis Res 2007; 4:214-21. [PMID: 17907111 DOI: 10.3132/dvdr.2007.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This randomised, double-blind, parallel-group study assessed the effects of addition of the dual peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist, tesaglitazar, for 24 weeks to the therapeutic regimen of 392 poorly controlled (glycosylated haemoglobin [HbA1C] 7.5-10%) insulin-treated, type 2 diabetes patients. At 24 weeks, tesaglitazar 0.5 mg resulted in a 0.66% (95% confidence intervals: -0.85, -0.47; p<0.0001) reduction from baseline in HbA1C, and reduced fasting plasma glucose (p<0.0001) and daily insulin dose (p=0.014) versus placebo. After 24 weeks, tesaglitazar caused greater improvements from baseline in triglycerides (p<0.0001), high-density lipoprotein cholesterol (HDL-C) (p<0.001), non-HDL-C (p<0.05), apolipoprotein (apo)A-I (p<0.05) and apoB levels (p<0.01) than placebo. Tesaglitazar was generally well tolerated but was associated with a greater increase in serum creatinine level than placebo. The clinical development of tesaglitazar is no longer continuing; its effects on the glucose and lipid abnormalities of type 2 diabetes suggest that the concept of dual PPARalpha/gamma agonism is worthy of further investigation.
Collapse
|