1
|
Sharma N, Shekhar P, Kumar V, Kaur H, Jayasena V. Microbial pigments: Sources, current status, future challenges in cosmetics and therapeutic applications. J Basic Microbiol 2024; 64:4-21. [PMID: 37861279 DOI: 10.1002/jobm.202300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Color serves as the initial attraction and offers a pleasing aspect. While synthetic colorants have been popular for many years, their adverse environmental and health effects cannot be overlooked. This necessitates the search for natural colorants, especially microbial colorants, which have proven and more effective. Pigment-producing microorganisms offer substantial benefits. Natural colors improve product marketability and bestow additional benefits, including antioxidant, antiaging, anticancer, antiviral, antimicrobial, and antitumor properties. This review covers the various types of microbial pigments, the methods to enhance their production, and their cosmetic and therapeutic applications. We also address the challenges faced during the commercial production of microbial pigments and propose potential solutions.
Collapse
Affiliation(s)
- Nitin Sharma
- Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | | | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Harpreet Kaur
- Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
2
|
Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food Funct 2023; 14:7799-7824. [PMID: 37593767 DOI: 10.1039/d3fo02330c] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Humans are unique indiscriminate carotenoid accumulators, so the human body accumulates a wide range of dietary carotenoids of different types and to varying concentrations. Carotenoids were once recognized as physiological antioxidants because of their ability to quench singlet molecular oxygen (1O2). In the 1990s, large-scale intervention studies failed to demonstrate that supplementary β-carotene intake reduces the incidence of lung cancer, although its antioxidant activity was supposed to contribute to the prevention of oxidative stress-induced carcinogenesis. Nevertheless, the antioxidant activity of carotenoids has attracted renewed attention as the pathophysiological role of 1O2 has emerged, and as the ability of dietary carotenoids to induce antioxidant enzymes has been revealed. This review focuses on six major carotenoids from fruit and vegetables and revisits their physiological functions as biological antioxidants from the standpoint of health promotion and disease prevention. β-Carotene 9',10'-oxygenase-derived oxidative metabolites trigger increases in the activities of antioxidant enzymes. Lutein and zeaxanthin selectively accumulate in human macular cells to protect against light-induced macular impairment by acting as antioxidants. Lycopene accumulates exclusively and to high concentrations in the testis, where its antioxidant activity may help to eliminate oxidative damage. Dietary carotenoids appear to exert their antioxidant activity in photo-irradiated skin after their persistent deposition in the skin. An acceptable level of dietary carotenoids for disease prevention should be established because they can have deleterious effects as prooxidants if they accumulate to excess levels. Finally, it is expected that the reason why humans are indiscriminate carotenoid accumulators will be understood soon.
Collapse
Affiliation(s)
- Junji Terao
- Faculty of Medicine, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
3
|
Takajo T, Nagahama H, Zuinen K, Tsuchida K, Okino A, Anzai K. Evaluation of cold atmospheric pressure plasma irradiation of water as a method of singlet oxygen generation. J Clin Biochem Nutr 2023; 73:9-15. [PMID: 37534089 PMCID: PMC10390813 DOI: 10.3164/jcbn.22-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 08/04/2023] Open
Abstract
We used cold atmospheric pressure plasma jet to examine in detail 1O2 generation in water. ESR with 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide, a secondary amine probe, was used for the detection of 1O2. Nitroxide radical formation was detected after cold atmospheric pressure plasma jet irradiation of a 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide solution. An 1O2 scavenger/quencher inhibited the ESR signal intensity induced by cold atmospheric pressure plasma jet irradiation, but this inhibition was not 100%. As 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide reacts with oxidizing species other than 1O2, it was assumed that the signal intensity inhibited by NaN3 corresponds to only the nitroxide radical generated by 1O2. The concentration of 1O2 produced by cold atmospheric pressure plasma jet irradiation for 60 s was estimated at 8 μM. When this 1O2 generation was compared to methods of 1O2 generation like rose bengal photoirradiation and 4-methyl-1,4-etheno-2,3-benzodioxin-1(4H)-propanoic acid (endoperoxide) thermal decomposition, 1O2 generation was found to be, in decreasing order, rose bengal photoirradiation ≥ cold atmospheric pressure plasma jet > endoperoxide thermal decomposition. Cold atmospheric pressure plasma jet is presumed to not specifically generate 1O2, but can be used to mimic states of oxidative stress involving multiple ROS.
Collapse
Affiliation(s)
- Tokuko Takajo
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Hiroki Nagahama
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Katsuya Zuinen
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Kazunori Tsuchida
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Akitoshi Okino
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Kazunori Anzai
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| |
Collapse
|
4
|
Polyakov NE, Focsan AL, Gao Y, Kispert LD. The Endless World of Carotenoids-Structural, Chemical and Biological Aspects of Some Rare Carotenoids. Int J Mol Sci 2023; 24:9885. [PMID: 37373031 PMCID: PMC10298575 DOI: 10.3390/ijms24129885] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Carotenoids are a large and diverse group of compounds that have been shown to have a wide range of potential health benefits. While some carotenoids have been extensively studied, many others have not received as much attention. Studying the physicochemical properties of carotenoids using electron paramagnetic resonance (EPR) and density functional theory (DFT) helped us understand their chemical structure and how they interact with other molecules in different environments. Ultimately, this can provide insights into their potential biological activity and how they might be used to promote health. In particular, some rare carotenoids, such as sioxanthin, siphonaxanthin and crocin, that are described here contain more functional groups than the conventional carotenoids, or have similar groups but with some situated outside of the rings, such as sapronaxanthin, myxol, deinoxanthin and sarcinaxanthin. By careful design or self-assembly, these rare carotenoids can form multiple H-bonds and coordination bonds in host molecules. The stability, oxidation potentials and antioxidant activity of the carotenoids can be improved in host molecules, and the photo-oxidation efficiency of the carotenoids can also be controlled. The photostability of the carotenoids can be increased if the carotenoids are embedded in a nonpolar environment when no bonds are formed. In addition, the application of nanosized supramolecular systems for carotenoid delivery can improve the stability and biological activity of rare carotenoids.
Collapse
Affiliation(s)
- Nikolay E. Polyakov
- Institute of Chemical Kinetics & Combustion, Institutskaya Str. 3, 630090 Novosibirsk, Russia;
| | - A. Ligia Focsan
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, USA;
| | - Yunlong Gao
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Lowell D. Kispert
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
5
|
Biopigments of Microbial Origin and Their Application in the Cosmetic Industry. COSMETICS 2023. [DOI: 10.3390/cosmetics10020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Along with serving as a source of color, many microbial pigments have gained attention as interesting bioactive molecules with potential health advantages. These pigments have several applications in the food, agrochemical, medicine, and cosmetic industries. They have attracted the attention of these industries due to their high production value, low cost, stability, and biodegradability. Recently, many consumers worldwide have noted the impact of synthetic dyes; thus, natural pigments are more in demand than synthetic colors. On the other hand, the cosmetic industry has been moving toward greener manufacturing, from the formulation to the packaging material. Microbial pigments have several applications in the field of cosmetics due to their photoprotection, antioxidant, and antiaging properties, including inhibiting melanogenesis and acting as natural colorants for cosmetics, as some microorganisms are rich in pigments. More investigations are required to estimate the safety and efficacy of employing microbial pigments in cosmetic products. Furthermore, it is necessary to obtain information about DNA sequencing, metabolic pathways, and genetic engineering. In addition, unique habitats should be explored for novel pigments and new producing strains. Thus, new microbial pigments could be of consideration to the cosmetic industry, as they are ideal for future cosmetics with positive health effects.
Collapse
|
6
|
Molecular basis of skin photoaging and therapeutic interventions by plant-derived natural product ingredients: A comprehensive review. Heliyon 2023; 9:e13580. [PMID: 36895391 PMCID: PMC9988502 DOI: 10.1016/j.heliyon.2023.e13580] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Skin areas exposed to ultraviolet radiation (UV) from sunlight are more prone to photoaging than unexposed areas evidenced by several signs which include skin dryness, irregular pigmentation, lentigines, hyperpigmentation, wrinkling, and decreased elasticity. Plant-based natural product ingredients with therapeutic potential against skin photoaging are gaining more attention. This article aims the reviewing the research work done in exploring the cellular and molecular mechanisms involved in UV-induced skin photoaging, followed by summarizing the mechanistic insights involved in its therapeutics by natural product-based ingredients. In the mechanistic section of the convoluted procedure of photoaging, we described the effect of UV radiation (UVR) on different cellular macromolecules (direct damage) and subsequently, the deleterious consequences of UVR-generated reactive oxygen species (indirect damage) and signaling pathways activated or inhibited by UV induced ROS generation in various cellular pathologies of skin photoaging like inflammation, extracellular matrix degradation, apoptosis, mitochondrial dysfunction, and immune suppression. We also discussed the effect of UV radiation on the adipose tissue, and transient receptor potential cation channel V of photoaging skin. In the past few decades, mechanistic studies performed in this area have deciphered various therapeutic targets, opening avenues for different available therapeutic options against this pathological condition. So the remaining portion of the review deals with various natural product-based therapeutic agents available against skin photodamage.
Collapse
|
7
|
Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Significance of Singlet Oxygen Molecule in Pathologies. Int J Mol Sci 2023; 24:ijms24032739. [PMID: 36769060 PMCID: PMC9917472 DOI: 10.3390/ijms24032739] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species, including singlet oxygen, play an important role in the onset and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids. This review describes the molecular mechanisms of singlet oxygen production in vivo and methods for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases, oxidation products due to singlet oxygen have not been measured clinically. This review discusses their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Aya Umeno
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
- Correspondence: ; Tel.: +81-72-751-8234
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | |
Collapse
|
8
|
Baptista MS, Cadet J, Greer A, Thomas AH. Practical Aspects in the Study of Biological Photosensitization Including Reaction Mechanisms and Product Analyses: A Do's and Don'ts Guide †. Photochem Photobiol 2022; 99:313-334. [PMID: 36575651 DOI: 10.1111/php.13774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The interaction of light with natural matter leads to a plethora of photosensitized reactions. These reactions cause the degradation of biomolecules, such as DNA, lipids, proteins, being therefore detrimental to the living organisms, or they can also be beneficial by allowing the treatment of several diseases by photomedicine. Based on the molecular mechanistic understanding of the photosensitization reactions, we propose to classify them in four processes: oxygen-dependent (type I and type II processes) and oxygen-independent [triplet-triplet energy transfer (TTET) and photoadduct formation]. In here, these processes are discussed by considering a wide variety of approaches including time-resolved and steady-state techniques, together with solvent, quencher, and scavenger effects. The main aim of this survey is to provide a description of general techniques and approaches that can be used to investigate photosensitization reactions of biomolecules together with basic recommendations on good practices. Illustration of the suitability of these approaches is provided by the measurement of key biomarkers of singlet oxygen and one-electron oxidation reactions in both isolated and cellular DNA. Our work is an educational review that is mostly addressed to students and beginners.
Collapse
Affiliation(s)
- Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
9
|
Takahashi T, Kato S, Ito J, Shimizu N, Parida IS, Itaya-Takahashi M, Sakaino M, Imagi J, Yoshinaga K, Yoshinaga-Kiriake A, Gotoh N, Ikeda I, Nakagawa K. Dietary triacylglycerol hydroperoxide is not absorbed, yet it induces the formation of other triacylglycerol hydroperoxides in the gastrointestinal tract. Redox Biol 2022; 57:102471. [PMID: 36137475 PMCID: PMC9493066 DOI: 10.1016/j.redox.2022.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022] Open
Abstract
The in vivo presence of triacylglycerol hydroperoxide (TGOOH), a primary oxidation product of triacylglycerol (TG), has been speculated to be involved in various diseases. Thus, considerable attention has been paid to whether dietary TGOOH is absorbed from the intestine. In this study, we performed the lymph duct-cannulation study in rats and analyzed the level of TGOOH in lymph following administration of a TG emulsion containing TGOOH. As we successfully detected TGOOH from the lymph, we hypothesized that this might be originated from the intestinal absorption of dietary TGOOH [hypothesis I] and/or the in situ formation of TGOOH [hypothesis II]. To determine the validity of these hypotheses, we then performed another cannulation study using a TG emulsion containing a deuterium-labeled TGOOH (D2-TGOOH) that is traceable in vivo. After administration of this emulsion to rats, we clearly detected unlabeled TGOOH instead of D2-TGOOH from the lymph, indicating that TGOOH is not absorbed from the intestine but is more likely to be produced in situ. By discriminating the isomeric structures of TGOOH present in lymph, we predicted the mechanism by which the intake of dietary TGOOH triggers oxidative stress (e.g., via generation of singlet oxygen) and induces in situ formation of TGOOH. The results of this study hereby provide a foothold to better understand the physiological significance of TGOOH on human health.
Collapse
Affiliation(s)
- Takumi Takahashi
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Shunji Kato
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan; J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Junya Ito
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Naoki Shimizu
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Isabella Supardi Parida
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Mayuko Itaya-Takahashi
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Masayoshi Sakaino
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Jun Imagi
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Kazuaki Yoshinaga
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Aya Yoshinaga-Kiriake
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Ikeda
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan; J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan.
| |
Collapse
|
10
|
Miazek K, Beton K, Śliwińska A, Brożek-Płuska B. The Effect of β-Carotene, Tocopherols and Ascorbic Acid as Anti-Oxidant Molecules on Human and Animal In Vitro/In Vivo Studies: A Review of Research Design and Analytical Techniques Used. Biomolecules 2022; 12:biom12081087. [PMID: 36008981 PMCID: PMC9406122 DOI: 10.3390/biom12081087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Prolonged elevated oxidative stress (OS) possesses negative effect on cell structure and functioning, and is associated with the development of numerous disorders. Naturally occurred anti-oxidant compounds reduce the oxidative stress in living organisms. In this review, antioxidant properties of β-carotene, tocopherols and ascorbic acid are presented based on in vitro, in vivo and populational studies. Firstly, environmental factors contributing to the OS occurrence and intracellular sources of Reactive Oxygen Species (ROS) generation, as well as ROS-mediated cellular structure degradation, are introduced. Secondly, enzymatic and non-enzymatic mechanism of anti-oxidant defence against OS development, is presented. Furthermore, ROS-preventing mechanisms and effectiveness of β-carotene, tocopherols and ascorbic acid as anti-oxidants are summarized, based on studies where different ROS-generating (oxidizing) agents are used. Oxidative stress biomarkers, as indicators on OS level and prevention by anti-oxidant supplementation, are presented with a focus on the methods (spectrophotometric, fluorometric, chromatographic, immuno-enzymatic) of their detection. Finally, the application of Raman spectroscopy and imaging as a tool for monitoring the effect of anti-oxidant (β-carotene, ascorbic acid) on cell structure and metabolism, is proposed. Literature data gathered suggest that β-carotene, tocopherols and ascorbic acid possess potential to mitigate oxidative stress in various biological systems. Moreover, Raman spectroscopy and imaging can be a valuable technique to study the effect of oxidative stress and anti-oxidant molecules in cell studies.
Collapse
Affiliation(s)
- Krystian Miazek
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
- Correspondence:
| | - Karolina Beton
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Beata Brożek-Płuska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
11
|
Impact of visible light on skin health: The role of antioxidants and free radical quenchers in skin protection. J Am Acad Dermatol 2021; 86:S27-S37. [PMID: 34942294 DOI: 10.1016/j.jaad.2021.12.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022]
Abstract
Until recently, the primary focus of photobiology has centered on the impact of UV radiation on skin health, including DNA damage and oncogenesis; however, the significant effects of visible light (VL) on skin remain grossly underreported. VL has been reported to cause erythema in individuals with light skin (Fitzpatrick skin types [FSTs] I-III) and pigmentary changes in individuals with dark skin types (FSTs IV-VI). These effects have importance in dermatologic diseases and potentially play a role in conditions aggravated by sun exposure, including phototoxicity in patients with FSTs I to III and post-inflammatory hyperpigmentation and melasma in patients with FSTs IV to VI. The induction of free radicals, leading to the generation of reactive species, is one driving mechanism of VL-induced skin pathologies, leading to the induction of melanogenesis and hyperpigmentation. Initial clinical studies have demonstrated the effectiveness of topical sunscreen with antioxidant combinations in inhibiting VL + UV-A1-induced erythema in FSTs I to III and reducing pigmentation in FSTs IV to VI. Antioxidants may help prevent the worsening of pigmentary disorders and can be incorporated into photoprotective strategies. It is essential that dermatologists and the public are aware of the impact of VL on skin, especially in patients with skin of color, and understand the available options for VL protection.
Collapse
|
12
|
Tang Y, Friesen JB, Nikolić DS, Lankin DC, McAlpine JB, Chen SN, Pauli GF. Silica Gel-mediated Oxidation of Prenyl Motifs Generates Natural Product-Like Artifacts. PLANTA MEDICA 2021; 87:998-1007. [PMID: 33975359 PMCID: PMC8867998 DOI: 10.1055/a-1472-6164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Prenyl moieties are commonly encountered in the natural products of terpenoid and mixed biosynthetic origin. The reactivity of unsaturated prenyl motifs is less recognized and shown here to affect the acyclic Rhodiola rosea monoterpene glycoside, kenposide A (8: ), which oxidizes readily on silica gel when exposed to air. The major degradation product mediated under these conditions was a new aldehyde, 9: . Exhibiting a shortened carbon skeleton formed through the breakdown of the terminal isopropenyl group, 9: is prone to acetalization in protic solvents. Further investigation of minor degradation products of both 8: and 8-prenylapigenin (8-PA, 12: ), a flavonoid with an ortho-prenyl substituent, revealed that the aldehyde formation was likely realized through epoxidation and subsequent cleavage at the prenyl olefinic bond. Employment of 1H NMR full spin analysis (HiFSA) achieved the assignment of all chemical shifts and coupling constants of the investigated terpenoids and facilitated the structural validation of the degradation product, 9: . This study indicates that prenylated compounds are generally susceptible to oxidative degradation, particularly in the presence of catalytic mediators, but also under physiological conditions. Such oxidative artifact/metabolite formation leads to a series of compounds with prenyl-derived (cyclic) partial structures that are analogous to species formed during Phase I metabolism in vivo. Phytochemical and pharmacological studies should take precautions or at least consider the impact of (unavoidable) exposure of prenyl-containing compounds to catalytic and/or oxidative conditions.
Collapse
Affiliation(s)
- Yu Tang
- UIC/NIH Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, United States
| | - J. Brent Friesen
- Center for Natural Product Technologies (CENAPT), Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, United States
- Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, United States
| | - Dejan S. Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, United States
| | - David C. Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, United States
| | - James B. McAlpine
- Center for Natural Product Technologies (CENAPT), Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, United States
- Center for Natural Product Technologies (CENAPT), Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, United States
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, United States
- Center for Natural Product Technologies (CENAPT), Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, United States
| |
Collapse
|
13
|
Conboy Stephenson R, Ross RP, Stanton C. Carotenoids in Milk and the Potential for Dairy Based Functional Foods. Foods 2021; 10:1263. [PMID: 34199355 PMCID: PMC8226488 DOI: 10.3390/foods10061263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
Carotenoids are a family of over 1100 known natural pigments synthesized by plants, algae, fungi and bacteria. Dietary intake of carotenoids is necessary for mammals as they cannot be synthesized in the body. In cows, the nature of the diet consumed strongly influences the composition of milk produced and this includes carotenoid concentration and profile. Fresh forage is the richest source of carotenoids for cows. The main carotenoids identified in forages are lutein, β-carotene, zeaxanthin and epilutein. Manipulating cow feed via carotenoid supplementation increases the carotenoid content of bovine milk. In humans, carotenoids have anti-oxidant, anti-inflammatory and provitamin A activity. Lutein is a major carotenoid in human milk and the brain tissue of adults and infants. Lutein and zeaxanthin are linked to improved eye health and cognitive function. Traditionally for humans, fruit and vegetables have been the main source of carotenoid intake. Functional foods present an opportunity to incorporate these naturally occurring compounds into milk products for added health benefits, widening the range of dietary sources of carotenoids. We offer an overview of the literature to date on carotenoid-fortified dairy products and infant formula. This review will describe and summarize the key mechanisms by which the carotenoid profile of bovine milk can be manipulated. We present findings on the origin and role of carotenoids in bovine and human milk, outline factors that impact the carotenoid content of milk, evaluate carotenoid-fortified milk products and discuss the associated challenges, such as bioaccessibility and stability.
Collapse
Affiliation(s)
- Ruth Conboy Stephenson
- Vistamilk/Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Catherine Stanton
- Vistamilk/Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| |
Collapse
|
14
|
Cutaneous Carotenoid Level Measured by Multiple Spatially Resolved Reflection Spectroscopy Sensors Correlates with Vegetable Intake and Is Increased by Continual Intake of Vegetable Juice. Diseases 2020; 9:diseases9010004. [PMID: 33396495 PMCID: PMC7838938 DOI: 10.3390/diseases9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 01/15/2023] Open
Abstract
Although vegetables are beneficial for human health, in many countries, the recommended vegetable intake is not reached. To assess vegetable intake, it is important to understand vegetable consumption. Therefore, we conducted a cross-sectional and intervention study of 26 healthy individuals (50% women; 37.0 ± 8.9 years) and estimated vegetable intake on the basis of the cutaneous carotenoid level (CCL) with a noninvasive skin carotenoid sensor, considering that vegetable juice intake can increase CCL. Participants consumed vegetable juice containing 350 g of vegetables daily for 4 weeks. Blood carotenoid levels and CCL were measured for 12 weeks. Cross-sectional analysis showed a significant positive correlation between CCL and vegetable intake (r = 0.489). Vegetable juice consumption significantly increased CCL and the blood levels of α-carotene, β-carotene, and lycopene (p < 0.05). The correlation coefficient between the blood level and CCL for lycopene was smaller (r = 0.001) compared to that between the blood level and CCL for α-carotene (r = 0.523) and β-carotene (r = 0.460), likely because of bioavailability differences. In conclusion, noninvasive skin carotenoid measurements are effective for determining vegetable intake, and vegetable juice significantly increases CCL.
Collapse
|
15
|
Pedić L, Pondeljak N, Šitum M. Recent information on photoaging mechanisms and the preventive role of topical sunscreen products. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2020. [DOI: 10.15570/actaapa.2020.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Abd-Elazeem OM, Osman NA, El-Shenawy NS. Bioactive Compounds of Seaweeds and Their Effects on Certain Types of Cancer. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2020; 8:112-119. [DOI: 10.34172/ajmb.2020.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Cancer is considered as one of the major health problems worldwide. So far, no completely effective method has been found for cancer treatment. Therefore, the rise of using natural products has been proposed as an alternative therapy in this regard. For many years, the seaweed has been a source of many functional bioactive compounds including polysaccharides, polyphenols, pigments, terpenes, and many others. These compounds have shown many bioactivities including anticancer activity against different kinds of cancer. Bioactive compounds obtained from the seaweed have been demonstrated to cause apoptosis in cancer cells and trigger cell cycle arrest with low cytotoxicity against normal cells. In this review, it was attempted to shed light on the anticancer activity of some seaweed-derived bioactive compounds.
Collapse
Affiliation(s)
| | - Nehal A.H.k. Osman
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Nahla S. El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
17
|
Herianto S, Hou CY, Lin CM, Chen HL. Nonthermal plasma-activated water: A comprehensive review of this new tool for enhanced food safety and quality. Compr Rev Food Sci Food Saf 2020; 20:583-626. [PMID: 33443805 DOI: 10.1111/1541-4337.12667] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Nonthermal plasma (NTP) is an advanced technology that has gained extensive attention because of its capacity for decontaminating food from both biological and chemical sources. Plasma-activated water (PAW), a product of NTP's reaction with water containing a rich diversity of highly reactive oxygen species (ROS) and reactive nitrogen species (RNS), is now being considered as the primary reactive chemical component in food decontamination. Despite exciting developments in this field recently, at present there is no comprehensive review specifically focusing on the comprehensive effects of PAW on food safety and quality. Although PAW applications in biological decontamination have been extensively evaluated, a complete analysis of the most recent developments in PAW technology (e.g., PAW combined with other treatments, and PAW applications in chemical degradation and as curing agents) is nevertheless lacking. Therefore, this review focuses on PAW applications for enhanced food safety (both biological and chemical safeties) according to the latest studies. Further, the subsequent effects on food quality (chemical, physical, and sensory properties) are discussed in detail. In addition, several recent trends of PAW developments, such as curing agents, thawing media, preservation of aquatic products, and the synergistic effects of PAW in combination with other traditional treatments, are also presented. Finally, this review outlines several limitations presented by PAW treatment, suggesting several future research directions and challenges that may hinder the translation of these technologies into real-life applications.
Collapse
Affiliation(s)
- Samuel Herianto
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Chia-Min Lin
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
18
|
Effects of titanium dioxide nanoparticles on the myocardium of the adult albino rats and the protective role of β-carotene (histological, immunohistochemical and ultrastructural study). J Mol Histol 2020; 51:485-501. [PMID: 32671652 DOI: 10.1007/s10735-020-09897-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are the most produced nanomaterials. TiO2 NPs are used as a drug carrier and molecular imaging vehicle in the cardiovascular system. We aimed to study TiO2 NPs effects on the ventricular myocardium and evaluate the ameliorative effects of β-carotene (βC). Forty adult albino rats were divided into four groups: negative control group (Ι) received a distilled water. Treated group (II): received 20 mg/kg/day TiO2NPs intraperitoneally. Protected group (III): received 10 mg/kg/day βC orally together with TiO2 NPs in a dose of 20 mg/kg/day intraperitoneally. Positive control group (IV) was given βC orally in a dose of 10 mg/kg/day for 14 days. Sections were stained with hematoxylin & eosin, bromphenol blue (BPB), and periodic acid Schiff (PAS). Anti-desmin & anti-CD45 immunohistochemical staining and electron microscopic examination were performed. Group (II) revealed fragmented myofibrils and inflammatory infiltrations. In group (III), normal cardiomyocytes with less inflammatory infiltrations. The optical density of PAS and BPB staining and anti-desmin showed a very highly significant decrease in the group (II) versus the control groups (P < 0.001). A highly significant increase in the optical density of group (III) versus group (II) (P < 0.01). Also, the area percentage mean values of collagen fibers and anti-CD45 in the group (II) showed a very highly significant increase versus the control groups (P < 0.001). Group (III) revealed a very highly significant decrease in the area percentage versus group (II) (P < 0.001). In conclusion: TiO2 NPs adversely affected the histological structure of the adult rat ventricular myocardium in acute exposure (14 days) and the damage was less with βC.
Collapse
|
19
|
Tamura H, Ishikita H. Quenching of Singlet Oxygen by Carotenoids via Ultrafast Superexchange Dynamics. J Phys Chem A 2020; 124:5081-5088. [PMID: 32482065 DOI: 10.1021/acs.jpca.0c02228] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We analyze the quenching mechanism of singlet molecular oxygen (1O2) by carotenoids, namely lycopene, β-carotene, astaxanthin, and lutein, by means of quantum dynamics calculations and ab initio calculations. The singlet carotenoid (1Car) and 1O2 molecules can form a weakly bound complex via donation of electron density from the highest occupied molecular orbital (HOMO) of the carotenoid to the πg* orbitals of 1O2. The Dexter-type superexchange via charge transfer states (Car•+/O2•-) governs the 1O2 quenching. The Car•+/O2•- states are substantially higher in energy (2-4 eV) than the initial 1Car/1O2 states. The quantum dynamics calculations indicate an ultrafast 1O2 quenching on a timescale of subpicosecond owing to the strong electronic couplings in the carotenoid/O2 complexes. The superexchange mechanism via the Car•+/O2•- states dominates the 1O2 quenching, although the direct two-electron coupling can also play a certain role.
Collapse
Affiliation(s)
- Hiroyuki Tamura
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
20
|
Leanse LG, Goh XS, Cheng JX, Hooper DC, Dai T. Dual-wavelength photo-killing of methicillin-resistant Staphylococcus aureus. JCI Insight 2020; 5:134343. [PMID: 32493838 DOI: 10.1172/jci.insight.134343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
With the effectiveness of antimicrobials declining as antimicrobial resistance continues to threaten public health, we must look to alternative strategies for the treatment of infections. In this study, we investigated an innovative, drug-free, dual-wavelength irradiation approach that combines 2 wavelengths of light, 460 nm and 405 nm, against methicillin-resistant Staphylococcus aureus (MRSA). MRSA was initially irradiated with 460-nm light (90-360 J/cm2) and subsequently irradiated with aliquots of 405-nm light (54-324 J/cm2). For in vivo studies, mouse skin was abraded and infected with approximately 107 CFUs of MRSA and incubated for 3 hours before irradiating with 460 nm (360 J/cm2) and 405 nm (342 J/cm2). Naive mouse skin was also irradiated to investigate apoptosis. We found that staphyloxanthin, the carotenoid pigment in MRSA cells, promoted resistance to the antimicrobial effects of 405-nm light. In addition, we found that the photolytic effect of 460-nm light on staphyloxanthin attenuated resistance of MRSA to 405-nm light killing. Irradiation of 460 nm alone did not elicit any antimicrobial effect on MRSA. In a proof-of-principle mouse skin abrasion infection model, we observed significant killing of MRSA using the dual-wavelength irradiation approach. However, when either wavelength of light was administered alone, no significant decrease in bacterial viability was observed. Moreover, exposure of the dual-wavelength irradiation to naive mouse skin did not result in any visible apoptosis. In conclusion, a dual-wavelength irradiation strategy may offer an innovative, effective, and safe approach for the treatment of skin infections caused by MRSA.
Collapse
Affiliation(s)
- Leon G Leanse
- Wellman Center for Photomedicine.,Vaccine and Immunotherapy Center, and
| | | | - Ji-Xin Cheng
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine.,Vaccine and Immunotherapy Center, and
| |
Collapse
|
21
|
|
22
|
Meléndez-Martínez AJ. An Overview of Carotenoids, Apocarotenoids, and Vitamin A in Agro-Food, Nutrition, Health, and Disease. Mol Nutr Food Res 2019; 63:e1801045. [PMID: 31189216 DOI: 10.1002/mnfr.201801045] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/14/2019] [Indexed: 01/05/2023]
Abstract
Carotenoids are fascinating compounds that can be converted into many others, including retinoids that also play key roles in many processes. Although carotenoids are largely known in the context of food science, nutrition, and health as natural colorants and precursors of vitamin A (VA), evidence has accumulated that even those that cannot be converted to VA may be involved in health-promoting biological actions. It is not surprising that carotenoids (most notably lutein) are among the bioactives for which the need to establish recommended dietary intakes have been recently discussed. In this review, the importance of carotenoids (including apocarotenoids) and key derivatives (retinoids with VA activity) in agro-food with relevance to health is summarized. Furthermore, the European Network to Advance Carotenoid Research and Applications in Agro-Food and Health (EUROCAROTEN) is introduced. EUROCAROTEN originated from the Ibero-American Network for the Study of Carotenoids as Functional Food Ingredients (IBERCAROT).
Collapse
Affiliation(s)
- Antonio J Meléndez-Martínez
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012, Seville, Spain
| |
Collapse
|
23
|
Meléndez-Martínez AJ, Stinco CM, Mapelli-Brahm P. Skin Carotenoids in Public Health and Nutricosmetics: The Emerging Roles and Applications of the UV Radiation-Absorbing Colourless Carotenoids Phytoene and Phytofluene. Nutrients 2019; 11:nu11051093. [PMID: 31100970 PMCID: PMC6566388 DOI: 10.3390/nu11051093] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023] Open
Abstract
In this work, the importance of dietary carotenoids in skin health and appearance is comprehensively reviewed and discussed. References are made to their applications in health-promoting and nutricosmetic products and the important public health implications that can be derived. Attention is focused on the colourless UV radiation (UVR)-absorbing dietary carotenoids phytoene and phytofluene, which are attracting increased interest in food science and technology, nutrition, health and cosmetics. These compounds are major dietary carotenoids, readily bioavailable, and have been shown to be involved in several health-promoting actions, as pinpointed in recent reviews. The growing evidence that these unique UVR-absorbing carotenoids with distinctive structures, properties (light absorption, susceptibility to oxidation, rigidity, tendency to aggregation, or even fluorescence, in the case of phytofluene) and activities can be beneficial in these contexts is highlighted. Additionally, the recommendation that the levels of these carotenoids are considered in properly assessing skin carotenoid status is made.
Collapse
Affiliation(s)
- Antonio J Meléndez-Martínez
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain.
| | - Carla M Stinco
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain.
| | - Paula Mapelli-Brahm
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
24
|
Freitas JV, Junqueira HC, Martins WK, Baptista MS, Gaspar LR. Antioxidant role on the protection of melanocytes against visible light-induced photodamage. Free Radic Biol Med 2019; 131:399-407. [PMID: 30590132 DOI: 10.1016/j.freeradbiomed.2018.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/22/2018] [Accepted: 12/22/2018] [Indexed: 11/22/2022]
Abstract
Visible light can induce the generation of singlet oxygen and can cause oxidative stress, especially in melanocytes due to melanin photosensitization. Currently, there is no organic UV-filter that provide visible light protection. Previous studies showed that some antioxidants, such as apigenin (API), chrysin (CRI) and beta-carotene (BTC) besides neutralizing radical chain reactions can also quench singlet oxygen via physical or chemical quenching and exhibit potential for use in photoprotection. Therefore, the aim of this study is to evaluate the efficacy of API, CRI and BTC on the protection against cell death induced by melanin photosensitization and understand the underlying mechanisms that are involved in the protection. Precise protocols of melanogenesis and quantification of singlet oxygen generation were developed. Viability of B16-F10 cells with melanin basal levels and after melanogenesis induction was evaluated after visible light exposure in the presence and absence of API, CRI and BTC. Results showed that API and BTC protected cells from photoinduced cell death API exhibiting superior photoprotective effect. We noticed that the efficiency of cell protection and the rate of singlet oxygen suppression are not well correlated, at least for the studied series of antioxidants, indicating that the anti-radical capacity should be playing a major role in protecting cells against the damage induced by melanin photosensitization. In terms of sun care strategies, both API and BTC offer protection against visible light-induced damages and may be effective topical antioxidants to be added to sunscreens.
Collapse
Affiliation(s)
- Juliana Vescovi Freitas
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Helena Couto Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Waleska Kerllen Martins
- Universidade Anhanguera de São Paulo, São Paulo, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Mauricio S Baptista
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lorena Rigo Gaspar
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
25
|
Entrapment of β-carotene and zinc in whey protein nanoparticles using the pH cycle method: Evidence of sustained release delivery in intestinal and gastric fluids. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Hajimohammadi M, Nosrati P. Scavenging effect of pasipay ( passiflora incarnate L.) on singlet oxygen generation and fatty acid photooxygenation. Food Sci Nutr 2018; 6:1670-1675. [PMID: 30258611 PMCID: PMC6145240 DOI: 10.1002/fsn3.731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/03/2018] [Accepted: 06/13/2018] [Indexed: 11/06/2022] Open
Abstract
Anthracene as a chemical probe is usually used to trap the singlet oxygen and then detection and quantification can be based on absorbance. In this study, oxidation of anthracene declared that rate of singlet oxygen quenching in the presence of pasipay (passiflora incarnate L.) as a natural antioxidant, 1,4 Diazabicyclo [2.2.2] octane (DABCO) as a well-known singlet oxygen scavenger and highly effective synthetic antioxidants in food industry such as Butylated hydroxytoluene (BHT), Butylated hydroxyanisole (BHA), tert-Butylhydroquinone (TBHQ) decreased in the order of DABCO >pasipay > TBHQ > BHT > BHA. On the other hand, lipid photooxidation is the undesirable chemical process in which singlet oxygen result in the peroxidation of fatty acids. The results of this study also showed that oleic acid oxidation with singlet oxygen in the presence of pasipay (contains 0.4576 mg flavonoid compounds) diminished about 11% which shows pasipay has an effective role to inhibit lipid peroxidation.
Collapse
|
27
|
Pibiri I, Buscemi S, Palumbo Piccionello A, Pace A. Photochemically Produced Singlet Oxygen: Applications and Perspectives. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800076] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Silvestre Buscemi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
- Dipartimento di Scienze per l'Innovazione Tecnologica; Istituto EuroMediterraneo di Scienza e Tecnologia - IEMEST; Via Michele Miraglia, 20 - 90139 - Palermo Italy
| |
Collapse
|
28
|
Morita M, Naito Y, Yoshikawa T, Niki E. Inhibition of plasma lipid oxidation induced by peroxyl radicals, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen by clinical drugs. Bioorg Med Chem Lett 2016; 26:5411-5417. [DOI: 10.1016/j.bmcl.2016.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022]
|
29
|
Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules 2016; 21:molecules21111442. [PMID: 27801875 PMCID: PMC6274579 DOI: 10.3390/molecules21111442] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
There is currently no doubt about the serious threat that oxidative stress (OS) poses to human health. Therefore, a crucial strategy to maintain a good health status is to identify molecules capable of offering protection against OS through chemical routes. Based on the known efficiency of the phenolic and melatonin (MLT) families of compounds as antioxidants, it is logical to assume that phenolic MLT-related compounds should be (at least) equally efficient. Unfortunately, they have been less investigated than phenols, MLT and its non-phenolic metabolites in this context. The evidence reviewed here strongly suggests that MLT phenolic derivatives can act as both primary and secondary antioxidants, exerting their protection through diverse chemical routes. They all seem to be better free radical scavengers than MLT and Trolox, while some of them also surpass ascorbic acid and resveratrol. However, there are still many aspects that deserve further investigations for this kind of compounds.
Collapse
|
30
|
The potential of zein nanoparticles to protect entrapped β-carotene in the presence of milk under simulated gastrointestinal (GI) conditions. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Yaremenko IA, Vil’ VA, Demchuk DV, Terent’ev AO. Rearrangements of organic peroxides and related processes. Beilstein J Org Chem 2016; 12:1647-748. [PMID: 27559418 PMCID: PMC4979652 DOI: 10.3762/bjoc.12.162] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022] Open
Abstract
This review is the first to collate and summarize main data on named and unnamed rearrangement reactions of peroxides. It should be noted, that in the chemistry of peroxides two types of processes are considered under the term rearrangements. These are conventional rearrangements occurring with the retention of the molecular weight and transformations of one of the peroxide moieties after O-O-bond cleavage. Detailed information about the Baeyer-Villiger, Criegee, Hock, Kornblum-DeLaMare, Dakin, Elbs, Schenck, Smith, Wieland, and Story reactions is given. Unnamed rearrangements of organic peroxides and related processes are also analyzed. The rearrangements and related processes of important natural and synthetic peroxides are discussed separately.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Vera A Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry V Demchuk
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
32
|
Freitas JV, Gaspar LR. In vitro photosafety and efficacy screening of apigenin, chrysin and beta-carotene for UVA and VIS protection. Eur J Pharm Sci 2016; 89:146-53. [DOI: 10.1016/j.ejps.2016.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/06/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
|
33
|
Altinok E, Frausto F, Thomas SW. Water‐soluble fluorescent polymers that respond to singlet oxygen. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Esra Altinok
- Department of ChemistryTufts University62 Talbot AvenueMedford Massachusetts02155
| | - Fanny Frausto
- Department of ChemistryTufts University62 Talbot AvenueMedford Massachusetts02155
| | - Samuel W. Thomas
- Department of ChemistryTufts University62 Talbot AvenueMedford Massachusetts02155
| |
Collapse
|
34
|
Endogenous Generation of Singlet Oxygen and Ozone in Human and Animal Tissues: Mechanisms, Biological Significance, and Influence of Dietary Components. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2398573. [PMID: 27042259 PMCID: PMC4799824 DOI: 10.1155/2016/2398573] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/08/2016] [Indexed: 12/18/2022]
Abstract
Recent studies have shown that exposing antibodies or amino acids to singlet oxygen results in the formation of ozone (or an ozone-like oxidant) and hydrogen peroxide and that human neutrophils produce both singlet oxygen and ozone during bacterial killing. There is also mounting evidence that endogenous singlet oxygen production may be a common occurrence in cells through various mechanisms. Thus, the ozone-producing combination of singlet oxygen and amino acids might be a common cellular occurrence. This paper reviews the potential pathways of formation of singlet oxygen and ozone in vivo and also proposes some new pathways for singlet oxygen formation. Physiological consequences of the endogenous formation of these oxidants in human tissues are discussed, as well as examples of how dietary factors may promote or inhibit their generation and activity.
Collapse
|
35
|
Rapid assessment of singlet oxygen-induced plasma lipid oxidation and its inhibition by antioxidants with diphenyl-1-pyrenylphosphine (DPPP). Anal Bioanal Chem 2015; 408:265-70. [DOI: 10.1007/s00216-015-9102-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/29/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
36
|
|
37
|
Freitas JV, Lopes NP, Gaspar LR. Photostability evaluation of five UV-filters, trans-resveratrol and beta-carotene in sunscreens. Eur J Pharm Sci 2015; 78:79-89. [PMID: 26159738 DOI: 10.1016/j.ejps.2015.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/01/2015] [Accepted: 07/05/2015] [Indexed: 01/03/2023]
Abstract
Trans-resveratrol (RES) is used in cosmetic formulations and beta-carotene (BTC) is a classical sunscreen antioxidant, but their photostability in sunscreens, a property directly correlated to performance and safety has not been addressed in the literature. This paper reports the assessment of RES and/or BTC influence on the photostability of five UV-filters (octyl methoxycinnamate - OMC, avobenzone -AVO, octocrylene - OCT, bemotrizinole - BMZ, octyltriazone - OTZ) in three different combinations after UVA exposure followed by the identification of degradation products and the assessment of photoreactivity. The evaluation of sunscreen photostability was performed by HPLC and spectrophotometric analysis, and degradation products were identified by GC-MS analysis. Components RES, BTC, OMC and AVO were significantly degraded after UV exposure (reduction of around 16% in recovery). According to HPLC analysis, all formulations presented similar photostability profiles. Eleven degradation products were identified in GC-MS analysis, among them products of RES, BTC, OMC and AVO photodegradation. All evaluated formulations were considered photoreactive, as well as the isolated compounds RES and AVO. Considering HPLC, spectrophotometric and GC-MS results, it is suggested that formulations containing BMZ were considered the most photostable. The combination RES+BTC in a sunscreen improved the photostability of AVO. The benefits of using a combination of antioxidants in sunscreens was demonstrated by showing that using RES+BTC+studied UV-filters led to more photostable formulations, which in turn implies in better safety and efficacy.
Collapse
Affiliation(s)
- Juliana Vescovi Freitas
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café s/n, Bairro Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Norberto Peporine Lopes
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café s/n, Bairro Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Lorena Rigo Gaspar
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café s/n, Bairro Monte Alegre, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
38
|
Freitas J, Praça F, Bentley M, Gaspar L. Trans-resveratrol and beta-carotene from sunscreens penetrate viable skin layers and reduce cutaneous penetration of UV-filters. Int J Pharm 2015; 484:131-7. [DOI: 10.1016/j.ijpharm.2015.02.062] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/09/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
39
|
Lademann H, Gerber B, Olbertz DM, Darvin ME, Stauf L, Ueberholz K, Heinrich V, Lademann J, Briese V. Non-Invasive Spectroscopic Determination of the Antioxidative Status of Gravidae and Neonates. Skin Pharmacol Physiol 2015; 28:189-95. [DOI: 10.1159/000365520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022]
|
40
|
Barcelos RCS, Vey LT, Segat HJ, Benvegnú DM, Trevizol F, Roversi K, Roversi K, Dias VT, Dolci GS, Kuhn FT, Piccolo J, CristinaVeit J, Emanuelli T, Bürger ME. Influence ofTransFat on Skin Damage in First-Generation Rats Exposed to UV Radiation. Photochem Photobiol 2015; 91:424-30. [DOI: 10.1111/php.12414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/25/2014] [Indexed: 11/28/2022]
Affiliation(s)
| | - Luciana T. Vey
- Departamento de Fisiologia e Farmacologia; Universidade Federal de Santa Maria; Santa Maria Brazil
| | - Hecson Jesser Segat
- Departamento de Fisiologia e Farmacologia; Universidade Federal de Santa Maria; Santa Maria Brazil
| | | | - Fabíola Trevizol
- Programa de Pós-Graduação em Farmacologia; Universidade Federal de Santa Maria; Santa Maria Brazil
| | - Karine Roversi
- Departamento de Fisiologia e Farmacologia; Universidade Federal de Santa Maria; Santa Maria Brazil
| | - Katiane Roversi
- Departamento de Fisiologia e Farmacologia; Universidade Federal de Santa Maria; Santa Maria Brazil
| | - Verônica T. Dias
- Departamento de Fisiologia e Farmacologia; Universidade Federal de Santa Maria; Santa Maria Brazil
| | - Geisa S. Dolci
- Programa de Pós-Graduação em Farmacologia; Universidade Federal de Santa Maria; Santa Maria Brazil
| | - Fábio T. Kuhn
- Programa de Pós-Graduação em Farmacologia; Universidade Federal de Santa Maria; Santa Maria Brazil
| | - Jaqueline Piccolo
- Departamento de Tecnologia dos Alimentos; Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos; UFSM; Santa Maria Brazil
| | - Juliana CristinaVeit
- Departamento de Tecnologia dos Alimentos; Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos; UFSM; Santa Maria Brazil
| | - Tatiana Emanuelli
- Programa de Pós-Graduação em Farmacologia; Universidade Federal de Santa Maria; Santa Maria Brazil
- Departamento de Tecnologia dos Alimentos; Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos; UFSM; Santa Maria Brazil
| | - Marilise E. Bürger
- Programa de Pós-Graduação em Farmacologia; Universidade Federal de Santa Maria; Santa Maria Brazil
| |
Collapse
|
41
|
|
42
|
Yu RX, Köcher W, Darvin ME, Büttner M, Jung S, Lee BN, Klotter C, Hurrelmann K, Meinke MC, Lademann J. Spectroscopic biofeedback on cutaneous carotenoids as part of a prevention program could be effective to raise health awareness in adolescents. JOURNAL OF BIOPHOTONICS 2014; 7:926-937. [PMID: 25538973 DOI: 10.1002/jbio.201300134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cutaneous carotenoid concentration correlates with the overall antioxidant status of a person and can be seen as biomarker for nutrition and lifestyle. 50 high school students were spectroscopically measured for their cutaneous carotenoid concentrations initially in a static phase, followed by an intervention phase with biofeedback of their measured values, living a healthy lifestyle and on healthy food this time. The volunteers showed higher carotenoid concentrations than found in previous studies. A significant correlation of healthy lifestyle habits and a high antioxidant status could be determined. Subjects improved their nutritional habits and significantly increased their carotenoid concentration during intervention. Follow-up five months later showed a consolidation of the increase. The investigations show that a healthy diet and a well-balanced lifestyle correlate with a high cutaneous antioxidant concentration and that spectroscopic biofeedback measurement of cutaneous carotenoids as part of an integrated prevention program is a feasible and effective means to raise the health awareness in adolescents.
Collapse
Affiliation(s)
- Ruo-Xi Yu
- Charite´ – Universita¨tsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Cutaneous Physiology (CCP), Charite´ platz 1, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Effects of Phosphatidylcholine on Interaction of α-Tocopherol and β-Carotene in Photosensitized Oxidation of Emulsions. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Mechanistic insight into beta-carotene-mediated protection against ulcerative colitis-associated local and systemic damage in mice. Eur J Nutr 2014; 54:639-52. [PMID: 25074825 DOI: 10.1007/s00394-014-0745-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/17/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE Ulcerative colitis (UC), a chronic gastrointestinal disorder, is a debilitating disease affecting many people across the globe. Research suggests that the levels of several antioxidants, including β-carotene (β-CAR), decrease in the serum of patients with UC. The present study was aimed at elucidating the molecular mechanisms involved in β-CAR-mediated protection against UC in mice. METHODS UC was induced in mice using 3%w/v dextran sulfate sodium in drinking water for two cycles; one cycle comprised of 7 days of dextran sulfate sodium-treated water followed by 14 days of normal drinking water. β-CAR was administered at the doses of 5, 10 and 20 mg/kg bw/day, po throughout the experiment. The effect of β-CAR in mice with UC was evaluated using biochemical parameters, histological evaluation, comet and micronucleus assays, immunohistochemistry and Western blot analysis. RESULTS The results indicated that β-CAR treatment ameliorated the severity of UC by modulating various molecular targets such as nuclear factor-kappa B, cyclooxygenase-2, interleukin 17, signal transducer and activator of transcription 3, nuclear erythroid 2-related factor 2, matrix metalloproteinase-9 and connective tissue growth factor. Further, β-CAR treatment maintained the gut integrity by increasing the expression of a tight junction protein, occludin, which was decreased in the colon of mice with UC. Also β-CAR treatment significantly reduced UC-associated elevated plasma lipopolysaccharide level, systemic inflammation and genotoxicity. CONCLUSION β-CAR ameliorated UC-associated local and systemic damage in mice by acting on multiple targets.
Collapse
|
45
|
Jaswir I, Shahidan N, Othman R, Has-Yun Hashim YZ, Octavianti F, Salleh MNB. Effects of Season and Storage Period on Accumulation of Individual Carotenoids in Pumpkin Flesh (Cucurbita moschata). J Oleo Sci 2014; 63:761-7. [DOI: 10.5650/jos.ess13186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med 2014; 66:3-12. [PMID: 23557727 DOI: 10.1016/j.freeradbiomed.2013.03.022] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/28/2022]
Abstract
Multiple reactive oxygen/nitrogen species induce oxidative stress. Mammals have evolved with an elaborate defense network against oxidative stress, in which multiple antioxidant compounds and enzymes with different functions exert their respective roles. Radical scavenging is one of the essential roles of antioxidants and vitamin E is the most abundant and important lipophilic radical-scavenging antioxidant in vivo. The kinetic data and physiological molar ratio of vitamin E to substrates show that the peroxyl radicals are the only radicals that vitamin E can scavenge to break chain propagation efficiently and that vitamin E is unable to act as a potent scavenger of hydroxyl, alkoxyl, nitrogen dioxide, and thiyl radicals in vivo. The preventive effect of vitamin E against the oxidation mediated by nonradical oxidants such as hypochlorite, singlet oxygen, ozone, and enzymes may be limited in vivo. The synergistic interaction of vitamin E and vitamin C is effective for enhancing the antioxidant capacity of vitamin E. The in vitro and in vivo evidence of the function of vitamin E as a peroxyl radical-scavenging antioxidant and inhibitor of lipid peroxidation is presented.
Collapse
Affiliation(s)
- Etsuo Niki
- Health Research Institute, National Institute of Advanced Industrial Science & Technology, Ikeda, Osaka 563-8577, Japan.
| |
Collapse
|
47
|
Fletcher NM, Awonuga AO, Saed MG, Abu-Soud HM, Diamond MP, Saed GM. Lycopene, a powerful antioxidant, significantly reduces the development of the adhesion phenotype. Syst Biol Reprod Med 2013; 60:14-20. [PMID: 24219141 DOI: 10.3109/19396368.2013.847129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Postoperative adhesions are a common medical complication of gynecologic and other pelvic surgeries resulting in persistent pelvic pain, obstruction of the intestines, and even infertility. The molecular mechanisms of postoperative adhesion development remain to be elucidated. We have recently described a role for reactive oxygen species, specifically superoxide, in the development of postoperative adhesions. In this study, we sought to determine whether lycopene, a potent antioxidant, reduces markers characteristic of the adhesion phenotype. Primary fibroblast cultures from normal peritoneum and adhesion tissues were utilized to determine mRNA levels of adhesion phenotype markers type I collagen, transforming growth factor-beta 1 (TGF-β1), and vascular endothelial growth factor (VEGF) in response to lycopene (24 hours, 10 μM) treatment. There was a 2 (p < 0.003), 4.7 (p < 0.004), and 1.6 fold (p < 0.004) increase in mRNA levels of type I collagen, TGF-β1, and VEGF, respectively, in adhesion as compared to normal peritoneal fibroblasts. Lycopene treatment led to a 6.8 and a 12.4 fold decrease in type I collagen mRNA levels, in normal peritoneal and adhesion fibroblasts, respectively (p < 0.005). Lycopene treatment led to a 4.2 (p < 0.03) and a 4.6 (p < 0.05) fold decrease in VEGF mRNA levels, in normal peritoneal and adhesion fibroblasts, respectively. Lycopene treatment led to a 7.0 fold decrease in TGF-β1 mRNA levels, in adhesion fibroblasts (p < 0.03). A 1.9 fold decrease in TGF-β1 mRNA was observed in normal peritoneal fibroblasts in response to treatment, although it was not significant. Lycopene substantially reduced levels of adhesion phenotype markers in normal peritoneal and adhesion fibroblasts and whether it will reduce postoperative adhesions needs to be further investigated.
Collapse
Affiliation(s)
- Nicole M Fletcher
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine , Detroit , Michigan and
| | | | | | | | | | | |
Collapse
|
48
|
Cholesterol photosensitized oxidation in food and biological systems. Biochimie 2013; 95:473-81. [DOI: 10.1016/j.biochi.2012.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/10/2012] [Indexed: 01/24/2023]
|
49
|
Kovacic P, Somanathan R. Broad overview of oxidative stress and its complications in human health. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojpm.2013.31005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Mukai R, Terao J. Role of dietary flavonoids in oxidative stress and prevention of muscle atrophy. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2013. [DOI: 10.7600/jpfsm.2.385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|