1
|
Kamal M, Linlin K, Gao J, Xinrui Z, Xinming C, Haibo W, Lulu D, Abd El-Hack ME, Mahrose K, Cheng Y. Effects of Saccharomyces cerevisiae and Bacillus subtilis on in vitro fermentation in the rumen of Hu sheep. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:498-506. [PMID: 39221964 DOI: 10.1002/jsfa.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The demand for animal products is increasing in developing countries due to population growth. However, livestock production contributes significantly to global warming, accounting for 25%. Probiotics can help improve livestock efficiency by enhancing gut microbes and fat metabolism. They can modify rumen populations, enhance fermentation, reduce methane emissions and improve feed digestion. In this study, the goal was to determine the most effective method of reducing methane emissions in the rumen of sheep in vitro by adding different concentrations of Saccharomyces cerevisiae and Bacillus subtilis. RESULTS Adding 8 × 106 CFU g-1 S. cerevisiae during fermentation reduced pH levels after 48 h. This also increased the concentrations of NH3-N, microbial protein and total gas production. At the same time, it decreased methane emissions. Furthermore, adding 20 × 106 CFU g-1 B. subtilis to the mixture increased total gas production (TGP) and methane production, with the highest production observed after 48 h. However, it did not affect pH levels after 48 h. CONCLUSION It can be concluded that S. cerevisiae had significantly increased microbial protein and NH3-N concentrations after fermentation without altering pH. Additionally, the addition of S. cerevisiae enhanced TGP and reduced methane emissions. It is worth noting that TGP increased because B. subtilis was added at a concentration of 20 × 106 CFU g-1, with no significant differences between concentrations. Therefore, we recommend adding S. cerevisiae and B. subtilis to the diet at doses of 8 and 20 × 106 CFU g-1, as it resulted in higher TGP and reduced methane emissions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mahmoud Kamal
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Animal Production Research Institute, Agricultural Research Center, Giza, Egypt
| | - Kou Linlin
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Jian Gao
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Zhao Xinrui
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Cheng Xinming
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Wang Haibo
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Dai Lulu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | | | - Khalid Mahrose
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Zhang X, Lv J, Hui J, Wu A, Zhao L, Feng L, Deng L, Yu M, Liu F, Yao J, Lei X. Dietary saccharin sodium supplementation improves the production performance of dairy goats without residue in milk in summer. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:166-176. [PMID: 39263440 PMCID: PMC11389551 DOI: 10.1016/j.aninu.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 09/13/2024]
Abstract
The purpose of this study was to investigate the effects of dietary saccharin sodium supplementation on production performance, serum biochemical indicators, and rumen fermentation of dairy goats in summer. Twelve Guanzhong dairy goats with similar body weight, days in milk, and milk yield were randomly divided into two dietary treatments: (1) CON: basal diet; (2) SS: basal diet + 150 mg/kg saccharin sodium on the basis of dry matter. The experiment lasted 35 d, including 7 d for adaptation and 28 d for dietary treatments, sampling and data collection. Each dairy goat was housed individually in a clean separate pen with ad libitum access to diet and water. The goats fed SS diet had increased dry matter intake (DMI; P = 0.037), 4% fat corrected milk yield (P = 0.049), energy corrected milk yield (P = 0.037), milk protein yield (P = 0.031), and total solids yield (P = 0.036). Serum activity of aspartate aminotransferase (P = 0.047) and concentrations of 70-kDa heat shock protein (P = 0.090), malondialdehyde (P = 0.092), and total protein (P = 0.057) were lower in goats fed SS diet than those fed CON diet. Supplementation of saccharin sodium tended to increase activity of glutathione peroxidase in serum (P = 0.079). The concentrations of rumen total volatile fatty acid (P = 0.042) and butyrate (P = 0.038) were increased by saccharin sodium supplementation. Dietary supplementation of saccharin sodium increased the relative abundance of Lachnobacterium (P = 0.022), Pseudoramibacter (P = 0.022), Shuttleworthia (P = 0.025), and Syntrophococcus (P = 0.037), but reduced the relative abundance of Prevotella_1 (P = 0.037) and Lachnospiraceae_UCG_008 (P = 0.037) in rumen. Saccharin sodium was observed in feces and urine of goats fed diet supplemented with saccharin sodium, but saccharin sodium was undetectable in the milk of goats receiving SS diet. In conclusion, administration of saccharin sodium was effective in increasing fat and energy corrected milk yield by increasing DMI and improving rumen fermentation and antioxidant capacity of dairy goats in summer. In addition, saccharin sodium residue was undetectable in the milk.
Collapse
Affiliation(s)
- Xiongfei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jirong Lv
- Sichuan Provincial Animal Feeding Regulation Center, DadHank Biotechnology Corporation, Chengdu, Sichuan 611130, China
| | - Jingtao Hui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ao Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lichao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linyu Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Miao Yu
- Sichuan Provincial Animal Feeding Regulation Center, DadHank Biotechnology Corporation, Chengdu, Sichuan 611130, China
| | - Feng Liu
- Sichuan Provincial Animal Feeding Regulation Center, DadHank Biotechnology Corporation, Chengdu, Sichuan 611130, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinjian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Esfiokhi SHM, Norouzian MA, Abadi MRS, Ahvanooei MRR. Effects of probiotic-supplemented milk replacer on growth, blood biochemistry, fermentation, digestibility, and carcass traits in lambs. Vet Anim Sci 2024; 25:100368. [PMID: 38966005 PMCID: PMC11222791 DOI: 10.1016/j.vas.2024.100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
The objective of this study was to investigate the effects of feeding cow's milk replacer and probiotic supplementation on growth performance, blood metabolites, ruminal fermentation parameters, and nutrient digestibility in male lambs, with ewe's milk serving as the control treatment. Eighteen male lambs with an average initial body weight of 5.0 ± 1.2 kg and age of 15 ± 4 days were randomly assigned to three experimental groups: ewe's milk, cow's milk replacer, and cow's milk replacer with probiotic supplementation. The experiment was conducted using a completely randomized design. Lambs fed ewe's milk showed significantly higher average daily gain (218.4 g/day) compared to those fed cow's milk replacer (183.7 g/day) or cow's milk replacer with probiotic (209.1 g/day). Similarly, dry matter intake was highest in the ewe's milk group (585.6 g/day) compared to the cow's milk replacer (435.9 g/day) and cow's milk replacer with probiotic (510.5 g/day) groups. Blood glucose levels were higher in the ewe's milk group (75.3 mg/dL) compared to the cow's milk replacer (70.3 mg/dL) and cow's milk replacer with probiotic (72.1 mg/dL) groups. Probiotic supplementation resulted in increased blood urea nitrogen (15.6 mg/dL) and total protein (7.3 g/dL) levels compared to the other groups. Furthermore, the ewe's milk group showed higher apparent dry matter (76.1%) and crude protein (68.5%) digestibility compared to the other treatments. The fecal score on day 30 was higher in the cow's milk replacer group (2.34) compared to the ewe's milk (1.24) and cow's milk replacer with probiotic (1.45) groups. There were no significant differences in the carcass traits of the experimental lambs. In conclusion, based on the results of this study, it seems that feeding cow's milk + probiotic as a replacement for ewe's milk did not significantly affect the performance, carcass traits, and blood and fermentation parameters in infant lambs.
Collapse
Affiliation(s)
- SH Mousavi Esfiokhi
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - MA Norouzian
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - MR Sahl Abadi
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - MR Rezaei Ahvanooei
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Uwineza C, Parchami M, Bouzarjomehr M, Taherzadeh MJ, Mahboubi A. Recent Developments in the Application of Filamentous Fungus Aspergillus oryzae in Ruminant Feed. Animals (Basel) 2024; 14:2427. [PMID: 39199960 PMCID: PMC11350777 DOI: 10.3390/ani14162427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
The resource-intensive nature of the ruminant farming sector, which has been exacerbated by population growth and increasing pressure to reduce feed antibiotics and growth promoters, has sparked interest in looking for sustainable alternative feed sources to enhance ruminant production efficiency. Edible filamentous fungi, rich in macronutrients like proteins, offer promise in reducing the reliance on conventional protein sources and antimicrobials to improve feed quality and animal performance. The inclusion of single-cell proteins, particularly filamentous fungi, in ruminant feed has long been of scientific and industrial interest. This review focuses on the potential application of the extensively studied Aspergillus oryzae and its fermentation extracts in ruminant nutrition. It provides an overview of conventional ruminant feed ingredients, supplements, and efficiency. Additionally, this review analyzes the re-utilization of organic residues for A. oryzae cultivation and examines the effects of adding fungal extracts to ruminant feed on ruminal digestibility and animal performance, all within a circular bioeconomy framework.
Collapse
Affiliation(s)
| | | | | | | | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden; (C.U.)
| |
Collapse
|
5
|
Guo J, Zhang Z, Guan LL, Zhou M, Yoon I, Khafipour E, Plaizier JC. Postbiotics from Saccharomyces cerevisiae fermentation stabilize rumen solids microbiota and promote microbial network interactions and diversity of hub taxa during grain-based subacute ruminal acidosis (SARA) challenges in lactating dairy cows. Front Microbiol 2024; 15:1409659. [PMID: 39220041 PMCID: PMC11362103 DOI: 10.3389/fmicb.2024.1409659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
Background High-yielding dairy cows are commonly fed high-grain rations. However, this can cause subacute ruminal acidosis (SARA), a metabolic disorder in dairy cows that is usually accompanied by dysbiosis of the rumen microbiome. Postbiotics that contain functional metabolites provide a competitive niche for influential members of the rumen microbiome, may stabilize and promote their populations, and, therefore, may attenuate the adverse effects of SARA. Methods This study used a total of 32 rumen-cannulated lactating dairy cows, which were randomly assigned into four treatments: no SCFP (control), 14 g/d Original XPC (SCFPa), 19 g/d NutriTek (SCFPb-1X), and 38 g/d NutriTek (SCFPb-2X) (Diamond V, Cedar Rapids, IA) from 4 weeks before until 12 weeks after parturition. Grain-based SARA challenges were conducted during week 5 (SARA1) and week 8 (SARA2) after parturition by replacing 20% dry matter of the base total mixed ration (TMR) with pellets containing 50% ground barley and 50% ground wheat. The DNA of rumen solids digesta was extracted and subjected to V3-V4 16S rRNA gene sequencing. The characteristics of rumen solids microbiota were compared between non-SARA (Pre-SARA1, week 4; Post-SARA1, week 7; and Post-SARA2, weeks 10 and 12) and SARA stages (SARA1/1, SARA1/2, SARA2/1, SARA2/2), as well as among treatments. Results Both SARA challenges reduced the richness and diversity of the microbiota and the relative abundances of the phylum Fibrobacteres. Supplementation with SCFP promoted the growth of several fibrolytic bacteria, including Lachnospiraceae UCG-009, Treponema, unclassified Lachnospiraceae, and unclassified Ruminococcaceae during the SARA challenges. These challenges also reduced the positive interactions and the numbers of hub taxa in the microbiota. The SCFPb treatment increased positive interactions among microbial members of the solids digesta and the number of hub taxa during the SARA and non-SARA stages. The SCFPb-2X treatment prevented changes in the network characteristics, including the number of components, clustering coefficient, modularity, positive edge percentage, and edge density of the microbiota during SARA challenges. These challenges reduced predicted carbohydrate and nitrogen metabolism in microbiota, whereas SCFP supplementation attenuated those reductions. Conclusions Supplementation with SCFP, especially the SCFPb-2X attenuated the adverse effects of grain-based SARA on the diversity and predicted functionality of rumen solids microbiota.
Collapse
Affiliation(s)
- Junfei Guo
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Zhengxiao Zhang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Le Luo Guan
- Department of Agriculture, Food and Nutrition, University of Alberta, Edmonton, AB, Canada
| | - Mi Zhou
- Department of Agriculture, Food and Nutrition, University of Alberta, Edmonton, AB, Canada
| | - Ilkyu Yoon
- Diamond V, Cedar Rapids, IA, United States
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jan C. Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Zened A, Julien C, Cauquil L, Pascal G, Canlet C, Tremblay-Franco M, Ali-Haimoud-Lekhal D, Enjalbert F, Bayourthe C, Combes S. Milk replacer feeding once or twice a day did not change the ruminal metabolomic profile and the microbial diversity of dairy calves from birth to weaning. J Dairy Sci 2024; 107:5574-5586. [PMID: 38460877 DOI: 10.3168/jds.2023-24327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
In commercial dairy production systems, feeding calves once daily could be an alternative to reduce labor expenses. Several studies comparing once-a-day (OAD) versus twice-a-day (TAD) milk feeding systems have not evidenced differences in calf growth, rumen development, blood parameters or health scores, but effect on ruminal microbiota remains to be investigated. The objective of this study was to determine the effects of OAD or TAD on the establishment of the ruminal microbiota and its metabolic activity. Sixteen male calves (45.9 ± 5.7 kg at birth) were involved in the trial from birth to weaning (63 d). After the colostrum phase, 2 feeding programs based on a milk replacer were tested and calves were allocated to these programs on d 5. To study the establishment of the bacterial community, ruminal fluid was obtained from each calf 1 h after the morning meal at 7, 35, and 63 d of age. The ruminal metabolome was evaluated at a 7-d interval from d 1 to d 63. Ruminal microbiota and metabolite profiles were characterized by 16 S rRNA gene sequencing- and by 1H nuclear magnetic resonance spectroscopy, respectively. Our results showed that feeding milk replacer once or TAD did not change the ruminal microbiota and metabolites of dairy calves from birth to weaning. Microbial data showed that diversity and richness increased with age, suggesting a shift from a heterogeneous and less diverse community after birth (d 7) to a more diverse but homogeneous community at 35 and 63 d. These findings suggest that feeding milk OAD can be successfully applied to a calf feeding system without compromising microbial establishment and functions.
Collapse
Affiliation(s)
- A Zened
- INP-PURPAN, 31076, Toulouse, France; GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France.
| | - C Julien
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - L Cauquil
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - G Pascal
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - C Canlet
- Toxalim, Université de Toulouse, INRAE, ENVT, INP-Purpan,UPS, 31027, Toulouse, France
| | - M Tremblay-Franco
- Toxalim, Université de Toulouse, INRAE, ENVT, INP-Purpan,UPS, 31027, Toulouse, France
| | - D Ali-Haimoud-Lekhal
- INP-PURPAN, 31076, Toulouse, France; GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - F Enjalbert
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - C Bayourthe
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - S Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| |
Collapse
|
7
|
Chen X, Xiao J, Zhao W, Li Y, Zhao W, Zhang W, Xin L, Han Z, Wang L, Aschalew ND, Zhang X, Wang T, Qin G, Sun Z, Zhen Y. Mechanistic insights into rumen function promotion through yeast culture ( Saccharomyces cerevisiae) metabolites using in vitro and in vivo models. Front Microbiol 2024; 15:1407024. [PMID: 39081884 PMCID: PMC11287897 DOI: 10.3389/fmicb.2024.1407024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Yeast culture (YC) enhances ruminant performance, but its functional mechanism remains unclear because of the complex composition of YC and the uncertain substances affecting rumen fermentation. The objective of this study was to determine the composition of effective metabolites in YC by exploring its effects on rumen fermentation in vitro, growth and slaughter performance, serum index, rumen fermentation parameters, rumen microorganisms, and metabolites in lambs. Methods In Trial 1, various YCs were successfully produced, providing raw materials for identifying effective metabolites. The experiment was divided into 5 treatment groups with 5 replicates in each group: the control group (basal diet without additives) and YC groups were supplemented with 0.625‰ of four different yeast cultures, respectively (groups A, B, C, and D). Rumen fermentation parameters were determined at 3, 6, 12, and 24 h in vitro. A univariate regression model multiple factor associative effects index (MFAEI; y) was established to correlate the most influential factors on in vitro rumen fermentation with YC metabolites (x). This identified the metabolites promoting rumen fermentation and optimal YC substance levels. In Trial 2, metabolites in YC not positively correlated with MFAEI were excluded, and effective substances were combined with pure chemicals (M group). This experiment validated the effectiveness of YC metabolites in lamb production based on their impact on growth, slaughter performance, serum indices, rumen parameters, microorganisms, and metabolites. Thirty cross-generation rams (Small tail Han-yang ♀ × Australian white sheep ♂) with good body condition and similar body weight were divided into three treatment groups with 10 replicates in each group: control group, YC group, pure chemicals combination group (M group). Results Growth performance and serum index were measured on days 30 and 60, and slaughter performance, rumen fermentation parameters, microorganisms, and metabolites were measured on day 60. The M group significantly increased the dressing percentage, and significantly decreased the GR values of lambs (p < 0.05). The concentration of growth hormone (GH), Cortisol, insulin (INS), and rumen VFA in the M group significantly increased (p < 0.05). Discussion These experiments confirmed that YC or its screened effective metabolites positively impact lamb slaughter performance, rumen fermentation, and microbial metabolism.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Jun Xiao
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Wanzhu Zhao
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yanan Li
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wei Zhao
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Weigang Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Liang Xin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Zhiyi Han
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Lanhui Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Natnael Demelash Aschalew
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xuefeng Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tao Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Guixin Qin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhe Sun
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuguo Zhen
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| |
Collapse
|
8
|
Kholif AE, Anele A, Anele UY. Microbial feed additives in ruminant feeding. AIMS Microbiol 2024; 10:542-571. [PMID: 39219749 PMCID: PMC11362274 DOI: 10.3934/microbiol.2024026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
The main purposes of feed additives administration are to increase feed quality, feed utilization, and the performance and health of animals. For many years, antibiotic-based feed additives showed promising results; however, their administration in animal feeds has been banned due to some public concerns regarding their residues in the produced milk and meat from treated animals. Some microorganisms have desirable properties and elicit certain effects, which makes them potential alternatives to antibiotics to enhance intestinal health and ruminal fermentation. The commonly evaluated microorganisms are some species of bacteria and yeasts. Supplementing microorganisms to ruminants boosts animal health, feed digestion, ruminal fermentation, animal performance (meat and milk), and feed efficiency. Moreover, feeding microorganisms helps young calves adapt quickly to consume solid feed and prevents thriving populations of enteric pathogens in the gastrointestinal tract which cause diarrhea. Lactobacillus, Streptococcus, Lactococcus, Bacillus, Enterococcus, Bifidobacterium, Saccharomyces cerevisiae, and Aspergillus oryzae are the commonly used microbial feed additives in ruminant production. The response of feeding such microorganisms depends on many factors including the level of administration, diet fed to animal, physiological status of animal, and many other factors. However, the precise modes of action in which microbial feed additives improve nutrient utilization and livestock production are under study. Therefore, we aim to highlight some of the uses of microorganisms-based feed additives effects on animal production, the modes of action of microorganisms, and their potential use as an alternative to antibiotic feed additives.
Collapse
Affiliation(s)
- Ahmed E. Kholif
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
| | - Anuoluwapo Anele
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Uchenna Y. Anele
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
9
|
Jiang Q, Sherlock DN, Elolimy AA, Yoon I, Loor JJ. Feeding a Saccharomyces cerevisiae fermentation product during a gut barrier challenge in lactating Holstein cows impacts the ruminal microbiota and metabolome. J Dairy Sci 2024; 107:4476-4494. [PMID: 38369118 DOI: 10.3168/jds.2023-24147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Through its influence on the gut microbiota, the feeding of Saccharomyces cerevisiae fermentation products (SCFP) has been a successful strategy to enhance the health of dairy cows during periods of physiological stresses. Although production and metabolic outcomes from feeding SCFP are well-known, its combined impacts on the ruminal microbiota and metabolome during gut barrier challenges remain unclear. To address this gap in knowledge, multiparous Holstein cows (97.1 ± 7.6 DIM [SD]; n = 8/group) fed a control diet (CON) or CON plus 19 g/d SCFP for 9 wk were subjected to a feed restriction (FR) challenge for 5 d, during which they were fed 40% of their ad libitum intake from the 7 d before FR. The DNA extracted from ruminal fluid was subjected to PacBio full-length 16S rRNA gene sequencing, real-time PCR of 12 major ruminal bacteria, and metabolomics analysis of up to 189 metabolites via GC/MS. High-quality amplicon sequence analyses were performed with the TADA (Targeted Amplicon Diversity Analysis), MicrobiomeAnalyst, PICRUSt2, and STAMP software packages, and metabolomics data were analyzed via MetaboAnalyst 5.0. Ruminal fluid metabolites from the SCFP group exhibited a greater α-diversity Chao 1 (P = 0.03) and Shannon indices (P = 0.05), and the partial least squares discriminant analysis clearly discriminated metabolite profiles between dietary groups. The abundance of CPla_4_termite_group, Candidatus Saccharimonas, Oribacterium, and Pirellula genus in cows fed SCFP was greater. In the SCFP group, concentrations of ethanolamine, 2-amino-4,6-dihydroxypyrimidine, glyoxylic acid, serine, threonine, cytosine, stearic acid, and pyrrole-2-carboxylic acid were greater in ruminal fluid. Both Fretibacterium and Succinivibrio abundances were positively correlated with metabolites across various biological processes: gamma-aminobutyric acid, galactose, butane-2,3-diol, fructose, 5-amino pentanoic acid, β-aminoisobutyric acid, ornithine, malonic acid, 3-hydroxy-3-methylbutyric acid, hexanoic acid, heptanoic acid, cadaverine, glycolic acid, β-alanine, 2-hydroxybutyric acid, methyl alanine, and alanine. In the SCFP group, compared with CON, the mean proportion of 14 predicted pathways based on metabolomics data was greater, whereas 10 predicted pathways were lower. Integrating metabolites and upregulated predicted enzymes (NADP+-dependent glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, serine: glyoxylate aminotransferase, and d-glycerate 3-kinase) indicated that the pentose phosphate pathway and photorespiration pathway were most upregulated by SCFP. Overall, SCFP during FR led to alterations in ruminal microbiota composition and key metabolic pathways. Among those, we identified a shift from the tricarboxylic acid cycle to the glyoxylate cycle, and nitrogenous base production was enhanced.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| | | | - Ahmed A Elolimy
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801; Livestock Production and Management, Department of Integrated Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 1551, United Arab Emirates
| | | | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801.
| |
Collapse
|
10
|
Wang H, Liu G, Zhou A, Yang H, Kang K, Ahmed S, Li B, Farooq U, Hou F, Wang C, Bai X, Chen Y, Ding Y, Jiang X. Effects of yeast culture on in vitro ruminal fermentation and microbial community of high concentrate diet in sheep. AMB Express 2024; 14:37. [PMID: 38622373 PMCID: PMC11018729 DOI: 10.1186/s13568-024-01692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024] Open
Abstract
This research aimed to investigate effects of different yeast culture (YC) levels on in vitro fermentation characteristics and bacterial and fungal community under high concentrate diet. A total of 5 groups were included in the experiment: control group without YC (CON), YC1 (0.5% YC proportion of substrate dry matter), YC2 (1%), YC3 (1.5%) and YC4 (2%). After 48 h of fermentation, the incubation fluids and residues were collected to analyze the ruminal fermentation parameters and bacterial and fungal community. Results showed that the ruminal fluid pH of YC2 and YC4 groups was higher (P < 0.05) than that of CON group. Compared with CON group, the microbial protein, propionate and butyrate concentrations and cumulative gas production at 48 h of YC2 group were significantly increased (P < 0.05), whereas an opposite trend of ammonia nitrogen and lactate was observed between two groups. Microbial analysis showed that the Chao1 and Shannon indexes of YC2 group were higher (P < 0.05) than those of CON group. Additionally, YC supplementation significantly decreased (P < 0.05) Succinivibrionaceae_UCG-001, Streptococcus bovis and Neosetophoma relative abundances. An opposite tendency of Aspergillus abundance was found between CON and YC treatments. Compared with CON group, the relative abundances of Prevotella, Succiniclasticum, Butyrivibrio and Megasphaera elsdenii were significantly increased (P < 0.05) in YC2 group, while Apiotrichum and unclassified Clostridiales relative abundances were decreased (P < 0.05). In conclusion, high concentrate substrate supplemented with appropriate YC (1%) can improve ruminal fermentation and regulate bacterial and fungal composition.
Collapse
Affiliation(s)
- Hongze Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- National key Laboratory for Exploitation and Utilization of Agricultural Microbial Resources, Yichang, 443003, China
| | - Guiqiong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aimin Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, China
| | - Huiguo Yang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China
| | - Kun Kang
- National key Laboratory for Exploitation and Utilization of Agricultural Microbial Resources, Yichang, 443003, China
| | - Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Biao Li
- National key Laboratory for Exploitation and Utilization of Agricultural Microbial Resources, Yichang, 443003, China
| | - Umar Farooq
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuqing Hou
- National Sheep Industry Technology System Shihezi Comprehensive Experimental Station, Shihezi, 832000, China
| | - Chaoli Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- National Sheep Industry Technology System Shihezi Comprehensive Experimental Station, Shihezi, 832000, China
| | - Xue Bai
- National Sheep Industry Technology System Shihezi Comprehensive Experimental Station, Shihezi, 832000, China
| | - Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Animal Husbandry, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China
- National Sheep Industry Technology System Shihezi Comprehensive Experimental Station, Shihezi, 832000, China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Animal Husbandry, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China.
- National Sheep Industry Technology System Shihezi Comprehensive Experimental Station, Shihezi, 832000, China.
| |
Collapse
|
11
|
Zhao X, Liu S, Li S, Jiang W, Wang J, Xiao J, Chen T, Ma J, Khan MZ, Wang W, Li M, Li S, Cao Z. Unlocking the power of postbiotics: A revolutionary approach to nutrition for humans and animals. Cell Metab 2024; 36:725-744. [PMID: 38569470 DOI: 10.1016/j.cmet.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Postbiotics, which comprise inanimate microorganisms or their constituents, have recently gained significant attention for their potential health benefits. Extensive research on postbiotics has uncovered many beneficial effects on hosts, including antioxidant activity, immunomodulatory effects, gut microbiota modulation, and enhancement of epithelial barrier function. Although these features resemble those of probiotics, the stability and safety of postbiotics make them an appealing alternative. In this review, we provide a comprehensive summary of the latest research on postbiotics, emphasizing their positive impacts on both human and animal health. As our understanding of the influence of postbiotics on living organisms continues to grow, their application in clinical and nutritional settings, as well as animal husbandry, is expected to expand. Moreover, by substituting postbiotics for antibiotics, we can promote health and productivity while minimizing adverse effects. This alternative approach holds immense potential for improving health outcomes and revolutionizing the food and animal products industries.
Collapse
Affiliation(s)
- Xinjie Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sumin Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wen Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Faculty of Veterinary and Animal Sciences, Department of Animal Breeding and Genetics, The University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Salah N, Legendre H, Nenov V, Briche M, Serieys F, Grossi S, Sgoifo Rossi CA. Does micro-granulated yeast probiotic ( Saccharomyces cerevisiae) supplementation in milk replacer affect health, growth, feed efficiency and economic gain of calves? Vet Anim Sci 2024; 23:100329. [PMID: 38222799 PMCID: PMC10787290 DOI: 10.1016/j.vas.2023.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
The goal of calf feeding systems is to provide calves with optimum nutrition to promote growth, health, and future milk production and to reduce antibiotic use which leads to a need for alternatives that reduce illness and promote growth in dairy calves. We hypothesized that feeding live yeast would improve gastrointestinal health and growth performance of calves. The aim of this study was then to evaluate the effects of supplementing a yeast probiotic Saccharomyces cerevisiae (CNCM I-4407, 1010 CFU/g, Actisaf® Sc47 powder; Phileo by Lesaffre, France) in milk replacers (MR), on health and growth of pre-weaned calves. Forty Holstein female calves were used during this trial. Each calf was weighed at 3 days of age and then introduced in the trial. Calves were randomly assigned to 2 groups (n = 20/group) and were fed MR without (control; CON) or with yeast probiotic at 1 g/calf/d (experimental; EXP). Milk replacer (12.5 % solids) was offered twice a day until 66 days of age (DOA). Body Weight (BW), wither height, hip width, body length and chest girth were collected in day 3 and day 66. Compared to CON, calves supplemented with yeast probiotic had better average daily gain (ADG, 0.456 ± 0.1 vs. 0.556 ± 0.09 kg/d, p < 0.05). There was no difference (p > 0.05) in both starter and MR intake between the two groups. Feed efficiency was better (p < 0.05) in the EXP group (2.18 ± 0.53) compared to CON (2.63 ± 0.78). No statistical differences were found between groups even if the lower total morbidity (40.91 % in the CON vs. 19.05 % in EXP) and incidence of gastrointestinal disorders (36.36 % in the CON vs. 14.29 % in EXP) were observed in calves supplemented with yeast probiotic. The severity of diarrhea was numerically lower in calves supplemented with yeast probiotic. No severe cases of respiratory disorders were highlighted in the present trial. The cost/kg of gain was higher (p < 0.05) in CON compared to EXP group. Total expenses linked to feeds and veterinary treatments were higher in CON compared to EXP group. During the study, the use 1 g/d of yeast probiotic allows to save 32.86 €/calf. It could be concluded that supplementing Actisaf® powder (Actisaf® SC 47 PWD) in MR improved health, growth performance, feed efficiency, and reduced the expenses linked to feeds and veterinary treatments.
Collapse
Affiliation(s)
- Nizar Salah
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq-en-Baroeul, France
| | - Héloïse Legendre
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq-en-Baroeul, France
| | - Valentin Nenov
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq-en-Baroeul, France
| | - Maxime Briche
- Phileo by Lesaffre, 137 rue Gabriel Péri, 59700 Marcq-en-Baroeul, France
| | - Flore Serieys
- l'INP ENSAT Avenue de l'Agrobiopole, 31326 Auzeville-Tolosane, France
| | - Silvia Grossi
- University of Milan, Department of Veterinary Science for Health, Animal Production and Food Safety, Via Dell'Università 1, 26900 Lodi, France
| | - Carlo Angelo Sgoifo Rossi
- University of Milan, Department of Veterinary Science for Health, Animal Production and Food Safety, Via Dell'Università 1, 26900 Lodi, France
| |
Collapse
|
13
|
Odunfa OA, Dhungana A, Huang Z, Yoon I, Jiang Y. Effects of a liquid and dry Saccharomyces cerevisiae fermentation product feeding program on ruminal fermentation, total tract digestibility, and plasma metabolome of Holstein steers receiving a grain-based diet. J Anim Sci 2024; 102:skae223. [PMID: 39096210 PMCID: PMC11405127 DOI: 10.1093/jas/skae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024] Open
Abstract
The study aimed to determine the effects of a postbiotic feeding program consisting of liquid and dry Saccharomyces cerevisiae fermentation product (SCFP) on ruminal fermentation, digestibility, and plasma metabolome of Holstein steers receiving a grain-based diet. Eight Holstein steers (body weight, BW, 467 ± 13.9 kg) equipped with rumen cannulas were used in a crossover design study, with 21 d per period and a 7-d washout period in between periods. Steers were stratified by initial BW and assigned to 1 of 2 treatments. The treatments were 1) Control, basal finishing diet only (CON); 2) SCFP, 1-d feeding of liquid SCFP (infused into the rumen via the cannula at 11 mL/100 kg BW) followed by daily feeding of dry SCFP (12 g/d, top-dressed). Feed and spot fecal samples were collected during days 17 to 20 for determination of digestibility and fecal excretion of N, P, Cu, and Zn. Digestibility was measured using acid-insoluble ash as an internal marker. Blood samples were collected on day 21 before the morning feeding. Rumen fluid samples were collected on days 0, 1, 2, 3, 5, and 21 via rumen cannula. Results were analyzed with the GLIMMIX procedure of SAS 9.4 (SAS, 2023). Treatment did not affect dry matter intake (P = 0.15) and digestibility (P ≥ 0.62). The fecal output and absorption of Zn, Cu, P, and N were not affected (P > 0.22) by treatment. On day 1, the liquid SCFP supplementation tended to reduce (P = 0.07) ruminal VFA concentration and increased (P < 0.01) the molar proportion of valerate. Feeding SCFP tended to increase total ruminal VFA on day 5 (P = 0.08) and significantly increased total VFA on day 21 (P = 0.05). Ruminal NH3-N was reduced (P = 0.02) on day 21 by supplementing SCFP. Treatment did not affect the production of proinflammatory cytokines, interleukin (IL)-1β (P > 0.19), and IL-6 (P > 0.12) in the whole blood in response to various toll-like receptor stimulants in vitro. Feeding SCFP enriched (P ≤ 0.05) plasma metabolic pathways, including citric acid cycle, pyrimidine metabolism, glycolysis/gluconeogenesis, retinol metabolism, and inositol phosphate metabolism pathways. In summary, supplementing liquid SCFP with subsequent dry SCFP enhanced ruminal total VFA production and reduced NH3-N concentration in the rumen. Furthermore, feeding SCFP enriched several important pathways in lipid, protein, and glucose metabolism, which may improve feed efficiency of energy and protein in Holstein steers.
Collapse
Affiliation(s)
- Oluwaseun A Odunfa
- School of Agriculture and Natural Resources, Kentucky State University, Frankfort, KY 40601, USA
- Department of Animal and Dairy Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anjan Dhungana
- School of Agriculture and Natural Resources, Kentucky State University, Frankfort, KY 40601, USA
| | - Zhengyan Huang
- Markey Cancer Center, College of Medicine, Lexington, KY 40536, USA
| | | | - Yun Jiang
- School of Agriculture and Natural Resources, Kentucky State University, Frankfort, KY 40601, USA
- Department of Animal and Dairy Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Wang H, Su M, Wang C, Li D, Li Q, Liu Z, Qi X, Wu Y, Zhao Y, Li T, Ma Y. Yeast culture repairs rumen epithelial injury by regulating microbial communities and metabolites in sheep. Front Microbiol 2023; 14:1305772. [PMID: 38107864 PMCID: PMC10722269 DOI: 10.3389/fmicb.2023.1305772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
This study delves into the impact of yeast culture (YC) on rumen epithelial development, microbiota, and metabolome, with the aim of investigating YC's mechanism in regulating rumen fermentation. Thirty male lambs of Hu sheep with similar age and body weight were selected and randomly divided into three groups with 10 lambs in each group. Lambs were fed a total mixed ration [TMR; rough: concentrate (R:C) ratio ≈ 30:70] to meet their nutritional needs. The experiment adopted completely randomized design (CRD). The control group (CON) was fed the basal diet with high concentrate, to which 20 g/d of YC was added in the low dose YC group (LYC) and 40 g/d of YC in the high dose YC group (HYC). The pretrial period was 14 days, and the experimental trial period was 60 days. At the end of a 60-day trial, ruminal epithelial tissues were collected for histomorphological analysis, and rumen microorganisms were analyzed by 16S rDNA sequencing and rumen metabolites by untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics techniques. The results showed that YC improved rumen papilla development and increased rumen papilla length (p < 0.05), while decreased cuticle thickness (p < 0.05). The 16S rDNA sequencing results showed that YC reduced the relative abundance of Prevotella_1 (p < 0.05), while significantly increased the relative abundance of Ruminococcaceae_UCG-005, uncultured_bacterium_f_Lachnospiraceae, and Ruminococcus_1 genus (p < 0.05). Metabolomics analysis showed that YC changed the abundance of metabolites related to amino acid metabolism, lipid metabolism and vitamin metabolism pathways in the rumen. In summary, YC might maintain rumen health under high-concentrate diet conditions by changing rumen microbiota structure and fermentation patterns, thereby affecting rumen metabolic profiles and repairing rumen epithelial injury.
Collapse
Affiliation(s)
- Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Manchun Su
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
- School of Agriculture and Forestry Technology, Longnan Teachers College, Chengxian, China
| | - Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Dengpan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Zilong Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingcai Qi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yi Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
15
|
Umaña Sedó SG, Winder CB, Renaud DL. Graduate Student Literature Review: The problem of calf mortality on dairy farms. J Dairy Sci 2023; 106:7164-7176. [PMID: 37210372 DOI: 10.3168/jds.2022-22795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
Calf mortality can be used as an indicator of animal health and welfare on dairy farms. However, several challenges surround the estimation and reporting of this metric, specifically: (1) lack of records or reliable data, (2) methods of data collection, and (3) inconsistencies in calculation and definitions used. Therefore, despite its importance, the lack of consensus on a definition of calf mortality makes it difficult to compare mortality rates between dairy farms or studies. Monitoring factors associated with calf mortality is vital to create preventative strategies. Although common strategies have been set about how to raise dairy calves and manage dairy calves, discrepancies among studies evaluating factors associated with calf mortality still exist. This review summarizes research on the evaluation of calf mortality and associated risk factors, specifically, the lack of reliable data and standardization of the definition of calf mortality. In addition, current strategies to monitor and prevent calf mortality will be presented in this review.
Collapse
Affiliation(s)
- S G Umaña Sedó
- Department of Population Medicine, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - C B Winder
- Department of Population Medicine, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - D L Renaud
- Department of Population Medicine, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
16
|
Liu Y, Xiao Y, Ma T, Diao Q, Tu Y. Candida tropicalis as a novel dietary additive to reduce methane emissions and nitrogen excretion in sheep. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82661-82671. [PMID: 37329373 DOI: 10.1007/s11356-023-28245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
The goal of this study was to investigate Candida tropicalis as a kind of environmentally friendly dietary additive to manipulate ruminal fermentation patterns, reduce methane emissions and nitrogen excretion, and to screen the appropriate dose for sheep. Twenty-four Dorper × thin-tailed Han crossbred ewes (51.12 kg ± 2.23 kg BW) were selected and randomly divided into four groups which were fed Candida tropicalis at dose of 0 (control), 4 × 108 (low dose), 4 × 109 (medium dose), and 4 × 1010 (high dose) colony-forming units (CFU)/d per head, respectively. The experiment lasted 33 days with 21 days for adaptation and 12 days for nutrient digestibility trial and respiratory gases sampling. The results showed that nutrients intake was not affected by Candida tropicalis supplementation (P > 0.05), whereas apparent digestibility of nutrients significantly increased compared with the control group (P < 0.05). Nitrogen and energy utilization increased with Candida tropicalis supplementation (P < 0.05). Compared with the ewes of the control group, rumen fluid pH and NH3-N concentration were not affected (P > 0.05), whereas total volatile fatty acid concentration and molar proportion of propionate were greater (P < 0.05), and molar proportion of acetate and the ratio of acetate to propionate were less (P < 0.05) when the ewes were fed Candida tropicalis. Daily total CH4 production (L/d) and CH4 emissions yield (L/d of CH4 per kg of dry matter intake, metabolic weight, or digestibility dry matter intake) were decreased at the low dose group (P < 0.05). The abundance of total bacteria, methanogen, and protozoa in rumen fluid was significantly higher at medium dose and high dose of Candida tropicalis supplementation (P < 0.05) compared with low dose and the control group. In summary, Candida tropicalis supplementation has a potential to reduce CH4 emissions and nitrogen excretion, and the optimal dose should be 4 × 108 CFU/d per head.
Collapse
Affiliation(s)
- Yunlong Liu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China
| | - Yi Xiao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China
| | - Tao Ma
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China.
| |
Collapse
|
17
|
Katsumata S, Hayashi Y, Oishi K, Tsukahara T, Inoue R, Obata A, Hirooka H, Kumagai H. Effects of liquefied sake lees on growth performance and faecal and blood characteristics in Japanese Black calves. Animal 2023; 17:100873. [PMID: 37399705 DOI: 10.1016/j.animal.2023.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Liquefied sake lees, a by-product of Japanese sake, is rich in Saccharomyces cerevisiae, proteins, and prebiotics derived from rice and yeast. Previous studies have reported that Saccharomyces cerevisiae fermentation products improved the health, growth, and faecal characteristics of preweaning calves. This study investigated the effects of adding liquefied sake lees to milk replacer on the growth performance, faecal characteristics, and blood metabolites of preweaning Japanese Black calves from 6 to 90 days of age. Twenty-four Japanese Black calves at 6 days of age were randomly assigned to one of three treatments: No liquefied sake lees (C, n = 8), 100 g/d (on a fresh matter basis) liquefied sake lees mixed with milk replacer (LS, n = 8), and 200 g/d (on a fresh matter basis) liquefied sake lees mixed with milk replacer (HS, n = 8). The intake of milk replacer and calf starter, as well as, the average daily gain did not differ between the treatments. The number of days counted with faecal score 1 in LS was higher than in HS (P < 0.05), while the number of days with diarrhoea medication in LS and C was lower than HS (P < 0.05). The faecal n-butyric acid concentration tended to be higher in LS compared to C (P = 0.060). The alpha diversity index (Chao1) was higher in HS than in C and LS at 90 days of age (P < 0.05). The principal coordinate analysis (PCoA) using weighted UniFrac distance showed that the bacterial community structures in faeces among the treatments at 90 days of age were significantly different (P < 0.05). The plasma β-hydroxybutyric acid concentration, an indicator of rumen development, was higher for LS than in C throughout the experiment (P < 0.05). These results suggested that adding liquefied sake lees up to 100 g/d (on a fresh matter basis) might promote rumen development in preweaning Japanese Black calves.
Collapse
Affiliation(s)
- S Katsumata
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan.
| | - Y Hayashi
- Shiga Prefectural Livestock Production Technology Promotion Center, Hino, Shiga 529-1651, Japan
| | - K Oishi
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - T Tsukahara
- Kyoto Institute of Nutrition and Pathology, Ujitawara, Kyoto 610-0231, Japan
| | - R Inoue
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - A Obata
- Shiga Prefectural Livestock Production Technology Promotion Center, Hino, Shiga 529-1651, Japan
| | - H Hirooka
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - H Kumagai
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
18
|
Du W, Wang X, Hu M, Hou J, Du Y, Si W, Yang L, Xu L, Xu Q. Modulating gastrointestinal microbiota to alleviate diarrhea in calves. Front Microbiol 2023; 14:1181545. [PMID: 37362944 PMCID: PMC10286795 DOI: 10.3389/fmicb.2023.1181545] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
The calf stage is a critical period for the development of heifers. Newborn calves have low gastrointestinal barrier function and immunity before weaning, making them highly susceptible to infection by various intestinal pathogens. Diarrhea in calves poses a significant threat to the health of young ruminants and may cause serious economic losses to livestock farms. Antibiotics are commonly used to treat diarrhea and promote calf growth, leading to bacterial resistance and increasing antibiotic residues in meat. Therefore, finding new technologies to improve the diarrhea of newborn calves is a challenge for livestock production and public health. The operation of the gut microbiota in the early stages after birth is crucial for optimizing immune function and body growth. Microbiota colonization of newborn animals is crucial for healthy development. Early intervention of the calf gastrointestinal microbiota, such as oral probiotics, fecal microbiota transplantation and rumen microbiota transplantation can effectively relieve calf diarrhea. This review focuses on the role and mechanisms of oral probiotics such as Lactobacillus, Bifidobacterium and Faecalibacterium in relieving calf diarrhea. The aim is to develop appropriate antibiotic alternatives to improve calf health in a sustainable and responsible manner, while addressing public health issues related to the use of antibiotics in livestock.
Collapse
|
19
|
Belanche A, Arturo-Schaan M, Leboeuf L, Yáñez-Ruiz D, Martín-García I. Early life supplementation with a natural blend containing turmeric, thymol, and yeast cell wall components to optimize rumen anatomical and microbiological development and productivity in dairy goats. J Dairy Sci 2023:S0022-0302(23)00267-9. [PMID: 37225586 DOI: 10.3168/jds.2022-22621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/20/2023] [Indexed: 05/26/2023]
Abstract
Ruminants are born with an anatomically, microbiologically, and metabolically immature rumen. Optimizing the rearing of young ruminants represent an important challenge in intensive dairy farms. Therefore, the objective of this study was to evaluate the effects of dietary supplementation of young ruminants with a plant extract blend containing turmeric, thymol, and yeast cell wall components such as mannan oligosaccharides and β-glucans. One hundred newborn female goat kids were randomly allocated to 2 experimental treatments, which were unsupplemented (CTL) or supplemented with the blend containing plant extracts and yeast cell wall components (PEY). All animas were fed with milk replacer, concentrate feed, and oat hay, and were weaned at 8 wk of age. Dietary treatments lasted from wk 1 to 22 and 10 animals from each treatment were randomly selected to monitor feed intake, digestibility, and health-related indicators. These latter animals were euthanized at wk 22 of age to study the rumen anatomical, papillary, and microbiological development, whereas the remaining animals were monitored for reproductive performance and milk yield during the first lactation. Results indicated that PEY supplementation did not lead to feed intake or health issues because PEY animals tended to have a higher concentrate intake and lower diarrheal incidence than CTL animals. No differences between treatments were noted in terms of feed digestibility, rumen microbial protein synthesis, health-related metabolites, or blood cell counts. Supplementation with PEY promoted a higher rumen empty weight, and rumen relative proportion to the total digestive tract weight, than CTL animals. This was accompanied with a higher rumen papillary development in terms of papillae length and surface area in the cranial ventral and caudal ventral sacs, respectively. The PEY animals also had higher expression of the MCT1 gene, which is related to volatile fatty acid absorption by the rumen epithelium, than CTL animals. The antimicrobial effects of the turmeric and thymol could explain the decreased the rumen absolute abundance of protozoa and anaerobic fungi. This antimicrobial modulation led to a change in the bacterial community structure, a decrease in the bacteria richness, and to the disappearance (i.e., Prevotellaceae_UCG-004, Bacteroidetes_BD2-2, Papillibacter, Schwartzia, and Absconditabacteriales_SR1) or decline of certain bacterial taxa (i.e., Prevotellaceae_NK3B31_group, and Clostridia_UCG-014). Supplementation with PEY also decreased the relative abundance of fibrolytic (i.e., Fibrobacter succinogenes and Eubacterium ruminantium) and increased amylolytic bacteria (Selenomonas ruminantium). Although these microbial changes were not accompanied with significant differences in the rumen fermentation, this supplementation led to increased body weight gain during the preweaning period, higher body weight during the postweaning period, and higher fertility rate during the first gestation. On the contrary, no residual effects of this nutritional intervention were noted on the milk yield and milk components during the first lactation. In conclusion, supplementation with this blend of plant extracts and yeast cell wall component in early life could be considered as a sustainable nutritional strategy to increase body weight gain and optimize the rumen anatomical and microbiological development in young ruminants, despite having minor productive implications later in life.
Collapse
Affiliation(s)
- Alejandro Belanche
- Estación Experimental del Zaidín (CSIC), Prof. Albareda 1, 18008, Granada, Spain; Department of Animal Production and Food Sciences, University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain.
| | | | - Lara Leboeuf
- CCPA group, ZA Bois de Teillay, 35150, Janzé, France
| | - David Yáñez-Ruiz
- Estación Experimental del Zaidín (CSIC), Prof. Albareda 1, 18008, Granada, Spain
| | | |
Collapse
|
20
|
Ogbuewu IP, Mbajiorgu CA. Meta-analysis of Saccharomyces cerevisiae on enhancement of growth performance, rumen fermentation and haemato-biochemical characteristics of growing goats. Heliyon 2023; 9:e14178. [PMID: 36923902 PMCID: PMC10009197 DOI: 10.1016/j.heliyon.2023.e14178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The use of Saccharomyces cerevisiae (SC) feed additives to improve animal performance are on the increase; however, the results of the action of SC supplementation on goats performance indices are conflicting. Thus, the thrust of this meta-analysis was to examine the influence of dietary SC intervention on the growth performance, haemato-biochemical indices and ruminal fermentation characteristics of growing goats fed total mixed ration (TMR). The search conducted in Google Scholar, PubMed and Scopus databases using several keywords yielded 500 studies of which 16 full-text articles were utilised for study. Response variables were aggregated via a random-effects model. The results showed that goats fed SC experienced higher average daily gain (ADG) than the controls (as standardized mean difference, SMD = 2.14; 95% confidence interval, CI: 1.40 to 2.89). In converse, dietary SC intervention had a small impact on dry matter intake (DMI) and feed conversion ratio (FCR). Subgroup analysis demonstrated that SC type (active vs inactive) improved FCR and ADG in growing goats. Results suggested that SC preparation increased blood glucose, white blood cell (WBC), ruminal propionate and total volatile fatty acid levels. There is heterogeneity among the articles used in the study, and aspects of studied covariates explained the variation. In conclusion, this study indicated that dietary yeast can positively influence growth performance, haemato-biochemical indices, and rumen fermentation parameters of growing goats.
Collapse
Key Words
- ADG, average daily gain
- Blood characteristics
- CI, confidence interval
- DMI, dry matter intake
- ES, effect size
- FCR, feed conversion ratio
- Goats
- Hb, haemoglobin
- Meta-analysis
- NH3N, ammonia nitrogen
- Nfs, fail-safe number
- OpenMEE, open meta-analyst for ecology and evolution
- PCV, packed cell volume
- PICO, population intervention comparison outcome
- PRISMA, preferred reporting items for systematic reviews andmeta-analyses
- Performance
- RBC, red blood cell
- Ruminal parameters
- SC, saccharomyces cerevisiae
- SMD, standardised mean difference
- Saccharomyces cerevisiae
- TMR, total mixed ration
- TVFA, total volatile fatty acid
- VFA, volatile fatty acid
- WBC, white blood cell
- YC, yeast culture
Collapse
Affiliation(s)
- Ifeanyi Princewill Ogbuewu
- Department of Animal Science and Technology, Federal University of Technology, P.M.B. 1526, Owerri, Imo State, Nigeria.,Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Christian Anayo Mbajiorgu
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| |
Collapse
|
21
|
Centeno-Martinez RE, Dong W, Klopp RN, Yoon I, Boerman JP, Johnson TA. Effects of feeding Saccharomyces cerevisiae fermentation postbiotic on the fecal microbial community of Holstein dairy calves. Anim Microbiome 2023; 5:13. [PMID: 36803311 PMCID: PMC9938967 DOI: 10.1186/s42523-023-00234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/10/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND The livestock industry is striving to identify antibiotic alternatives to reduce the need to use antibiotics. Postbiotics, such as Saccharomyces cerevisiae fermentation product (SCFP), have been studied and proposed as potential non-antibiotic growth promoters due to their effects on animal growth and the rumen microbiome; however, little is known of their effects on the hind-gut microbiome during the early life of calves. The objective of this study was to measure the effect of in-feed SCFP on the fecal microbiome of Holstein bull calves through 4 months of age. Calves (n = 60) were separated into two treatments: CON (no SCFP added) or SCFP (SmartCare®, Diamond V, Cedar Rapids, IA, in milk replacer and NutriTek®, Diamond V, Cedar Rapids, IA, incorporated into feed), and were blocked by body weight and serum total protein. Fecal samples were collected on d 0, 28, 56, 84, and 112 of the study to characterize the fecal microbiome community. Data were analyzed as a completely randomized block design with repeated measures when applicable. A random-forest regression method was implemented to more fully understand community succession in the calf fecal microbiome of the two treatment groups. RESULTS Richness and evenness of the fecal microbiota increased over time (P < 0.001), and SCFP calves tended to increase the evenness of the community (P = 0.06). Based on random-forest regression, calf age as predicted by microbiome composition was significantly correlated with the calf physiological age (R2 = 0.927, P < 1 × 10-15). Twenty-two "age-discriminatory" ASVs (amplicon sequence variants) were identified in the fecal microbiome that were shared between the two treatment groups. Of these, 6 ASVs (Dorea-ASV308, Lachnospiraceae-ASV288, Oscillospira-ASV311, Roseburia-ASV228, Ruminococcaceae-ASV89 and Ruminoccocaceae-ASV13) in the SCFP group reached their highest abundance in the third month, but they reached their highest abundance in the fourth month in the CON group. All other shared ASVs reached their highest abundance at the same timepoint in both treatment groups. CONCLUSIONS Supplementation of SCFP altered the abundance dynamics of age discriminatory ASVs, suggesting a faster maturation of some members of the fecal microbiota in SCFP calves compared to CON calves. These results demonstrate the value of analyzing microbial community succession as a continuous variable to identify the effects of a dietary treatment.
Collapse
Affiliation(s)
| | - Wenxuan Dong
- Department of Animal Science, Purdue University, 270 S Russell St., West Lafayette, IN, USA
| | - Rebecca N Klopp
- Department of Animal Science, Purdue University, 270 S Russell St., West Lafayette, IN, USA
| | | | - Jacquelyn P Boerman
- Department of Animal Science, Purdue University, 270 S Russell St., West Lafayette, IN, USA
| | - Timothy A Johnson
- Department of Animal Science, Purdue University, 270 S Russell St., West Lafayette, IN, USA.
| |
Collapse
|
22
|
Shah AM, Bano I, Qazi IH, Matra M, Wanapat M. "The Yak"-A remarkable animal living in a harsh environment: An overview of its feeding, growth, production performance, and contribution to food security. Front Vet Sci 2023; 10:1086985. [PMID: 36814466 PMCID: PMC9940766 DOI: 10.3389/fvets.2023.1086985] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Yaks play an important role in the livelihood of the people of the Qinghai-Tibet Plateau (QTP) and contribute significantly to the economy of the different countries in the region. Yaks are commonly raised at high altitudes of ~ 3,000-5,400 m above sea level. They provide many important products, namely, milk, meat, fur, and manure, as well as social status, etc. Yaks were domesticated from wild yaks and are present in the remote mountains of the QTP region. In the summer season, when a higher quantity of pasture is available in the mountain region, yaks use their long tongues to graze the pasture and spend ~ 30-80% of their daytime grazing. The remaining time is spent walking, resting, and doing other activities. In the winter season, due to heavy snowfall in the mountains, pasture is scarce, and yaks face feeding issues due to pasture scarcity. Hence, the normal body weight of yaks is affected and growth retardation occurs, which consequently affects their production performance. In this review article, we have discussed the domestication of yaks, the feeding pattern of yaks, the difference between the normal and growth-retarded yaks, and also their microbial community and their influences. In addition, blood biochemistry, the compositions of the yaks' milk and meat, and reproduction are reported herein. Evidence suggested that yaks play an important role in the daily life of the people living on the QTP, who consume milk, meat, fur, use manure for fuel and land fertilizer purposes, and use the animals for transportation. Yaks' close association with the people's well-being and livelihood has been significant.
Collapse
Affiliation(s)
- Ali Mujtaba Shah
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand,Department of Livestock Production, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, Pakistan
| | - Iqra Bano
- Department of Veterinary Physiology and Biochemistry, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, Pakistan
| | - Izhar Hyder Qazi
- Department of Veterinary Anatomy, Histology, and Embryology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, Pakistan
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand,*Correspondence: Metha Wanapat ✉
| |
Collapse
|
23
|
Jin C, Su X, Wang P, Liang Z, Lei X, Bai H, Liang G, Li J, Cao Y, Yao J. Effects of rumen degradable starch on growth performance, carcass, rumen fermentation, and ruminal VFA absorption in growing goats. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
24
|
Zhang J, Yang Y, Lei X, Wang Y, Li Y, Li Z, Yao J. Active dry yeast supplementation benefits ruminal fermentation, bacterial community, blood immunoglobulins, and growth performance in young dairy goats, but not for intermittent supplementation. ANIMAL NUTRITION 2023; 13:289-301. [PMID: 37168451 PMCID: PMC10165222 DOI: 10.1016/j.aninu.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/10/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
This study evaluated the effects of active dry yeast (ADY) supplementation and supplementation strategies on ruminal fermentation, bacterial community, blood metabolites, and growth performance in young dairy goats. Sixty young female Guanzhong dairy goats of similar age (4.00 ± 0.50 months) and BW (19.65 ± 0.41 kg) were randomly divided into 3 groups (n = 20): (1) basal diet group (CON); (2) basal diet continuously supplemented with 3.0 g/goat per day commercial ADY (a proprietary strain of Saccharomyces cerevisiae with 5.0 × 109 cfu/g) group (CSY); (3) basal diet with intermittently supplemented ADY group (ISY; 5 d supplementation with ADY at 4.5 g/goat per day following 5 d of no supplementation). The experiment lasted 67 d with the first 7 d as an adaptive period. Rumen fluid and blood samples were collected bi-weekly. Data were analyzed using the MIXED procedure combined with the SLICE option in SAS. Specific orthogonal contrasts of ADY vs. CON and CSY vs. ISY were also analyzed. During the experimental period, ADY supplementation resulted in greater DMI (P = 0.03), ruminal acetate proportion (P < 0.01) and acetylesterase activity (P = 0.01), and blood contents of glucose (P = 0.01) and IgM (P = 0.02) and tended to have greater ADG (P = 0.05) and paunch girth (P = 0.06) than the CON, despite the propionate proportion (P = 0.03) and contents of total protein (P = 0.04) and IgA (P = 0.03) being lower. The lower ruminal NH3-N (P < 0.01) and blood urea nitrogen (P = 0.07) contents indicated greater nitrogen utilization with ADY supplementation. ADY supplementation showed persistent effects after it was stopped because the BW at 12 months of age (P = 0.03) and birth weight of lambs (P = 0.02) were greater than the CON. However, the ISY did not show those benefits and had significantly lower relative abundances of fiber-degrading related bacteria than the CSY. In conclusion, ADY supplementation, especially continuously supplemented, may enhance ADG and ADG:DMI ratio by improving DMI, ruminal cellulolytic bacteria abundance and enzyme activity, nitrogen utilization, and immune status. These findings provide a theoretical basis for the rational application of ADY and have important practical implications for the design of nutritional strategies in growing dairy goats.
Collapse
|
25
|
Wang L, Sun H, Gao H, Xia Y, Zan L, Zhao C. A meta-analysis on the effects of probiotics on the performance of pre-weaning dairy calves. J Anim Sci Biotechnol 2023; 14:3. [PMID: 36597147 PMCID: PMC9811714 DOI: 10.1186/s40104-022-00806-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Probiotics have been used in livestock production for many years, but information on their benefits during the early life of calves is inconsistent. This study aimed to assess the effects of probiotics on the performance of pre-weaning dairy calves and identify the factors influencing their effect sizes. RESULTS Forty-nine studies were selected for meta-analysis based on the inclusion and exclusion criteria. The study qualities were evaluated using a predefined risk assessment tool following GRADE guidelines. Meta-analysis results showed that probiotics increased the growth performance (body weight by 1.988 kg and average daily gain by 40.689 g/d), decreased digestibility and feed efficiency (feed conversion rate by 0.073), altered rumen parameter (decreased acetate by 2.815 mmol/L and increased butyrate by 0.788 mmol/L), altered blood parameter (decreased AST by 4.188 U/L, increased BHBA by 0.029 mmol/L and IgG by 0.698 g/L), increased faecal parameter (faecal bacteria counts by 0.680 log10 CFU/g), based on the strict criteria (PSMD < 0.05, I2 < 50%). Additionally, probiotics increased digestibility and feed efficiency (starter dry matter intake by 0.034 kg/d and total dry matter intake by 0.020 kg/d), altered blood parameter (increased IgA by 0.313 g/L, IgM by 0.262 g/L, and total antioxidant capacity by 0.441 U/mL, decreased MDA by 0.404 nmol/mL), decreased faecal parameter (faecal score by 0.052), based on the loose criteria (PSMD < 0.05, I2 > 50%). Regression and sub-group analyses showed that probiotic strains, supplementation dosage, and methods significantly affected the performance of calves. The probiotics supplied with more than 9.5 log10 CFU/d significantly increased IgA and IgM contents (PSMD < 0.05). Additionally, the compound probiotics significantly increased TDMI, IgA, and IgM (PSMD ≤ 0.001). Furthermore, probiotics supplemented in liquid (whole milk or milk replacer) significantly increased TDMI and decreased faecal score (PSMD < 0.05), while in whole milk, they significantly increased body weight, IgA, and IgM (PSMD < 0.001). CONCLUSIONS Probiotics could improve the growth performance, feed intake and efficiency, rumen fermentation, immune and antioxidant capacity, and health of pre-weaning calves. However, the effect sizes were related to the dosage, composition, and supplementation methods of probiotics.
Collapse
Affiliation(s)
- Liyun Wang
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Honghong Sun
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Haixu Gao
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Yaohui Xia
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Linsen Zan
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| | - Chunping Zhao
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi 712100 P. R. China
| |
Collapse
|
26
|
Jiang Q, Sherlock DN, Elolimy AA, Vailati-Riboni M, Yoon I, Loor JJ. Impact of a Saccharomyces cerevisiae fermentation product during an intestinal barrier challenge in lactating Holstein cows on ileal microbiota and markers of tissue structure and immunity. J Anim Sci 2023; 101:skad309. [PMID: 37721866 PMCID: PMC10630188 DOI: 10.1093/jas/skad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023] Open
Abstract
Feeding a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) during periods of metabolic stress is beneficial to the health of dairy cows partially through its effect on the gut microbiota. Whether SCFP alters the ileal microbiota in lactating cows during intestinal challenges induced by feed restriction (FR) is not known. We used 16S rRNA sequencing to assess if feeding SCFP during FR to induce gut barrier dysfunction alters microbiota profiles in the ileum. The mRNA abundance of key genes associated with tissue structures and immunity was also detected. Multiparous cows (97.1 ± 7.6 days in milk (DIM); n = 7 per treatment) fed a control diet or the control plus 19 g/d NutriTek for 9 wk were subjected to an FR challenge for 5 d, during which they were fed 40% of their ad libitum intake from the 7 d before FR. All cows were slaughtered at the end of FR. DNA extracted from ileal digesta was subjected to PacBio Full-Length 16S rRNA gene sequencing. High-quality amplicon sequence analyses were performed with Targeted Amplicon Diversity Analysis and MicrobiomeAnalyst. Functional analysis was performed and analyzed using PICRUSt and STAMP. Feeding SCFP did not (P > 0.05) alter dry matter intake, milk yield, or milk components during FR. In addition, SCFP supplementation tended (P = 0.07) to increase the relative abundance of Proteobacteria and Bifidobacterium animalis. Compared with controls, feeding SCFP increased the relative abundance of Lactobacillales (P = 0.03). Gluconokinase, oligosaccharide reducing-end xylanase, and 3-hydroxy acid dehydrogenase were among the enzymes overrepresented (P < 0.05) in response to feeding SCFP. Cows fed SCFP had a lower representation of adenosylcobalamin biosynthesis I (early cobalt insertion) and pyrimidine deoxyribonucleotides de novo biosynthesis III (P < 0.05). Subsets of the Firmicutes genus, Bacteroidota phylum, and Treponema genus were correlated with the mRNA abundance of genes associated with ileal integrity (GCNT3, GALNT5, B3GNT3, FN1, ITGA2, LAMB2) and inflammation (AOX1, GPX8, CXCL12, CXCL14, CCL4, SAA3). Our data indicated that the moderate FR induced dysfunction of the ileal microbiome, but feeding SCFP increased the abundance of some beneficial gut probiotic bacteria and other species related to tissue structures and immunity.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Danielle N Sherlock
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Ahmed A Elolimy
- Animal Production Department, National Research Center, Dokki, Giza 12622, Egypt
| | | | | | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Li Z, Fan Y, Bai H, Zhang J, Mao S, Jin W. Live yeast supplementation altered the bacterial community's composition and function in rumen and hindgut and alleviated the detrimental effects of heat stress on dairy cows. J Anim Sci 2023; 101:skac410. [PMID: 36534956 PMCID: PMC9841158 DOI: 10.1093/jas/skac410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The objective of this study was to investigate the effects of live yeast (LY, Saccharomyces cerevisiae) on the lactation performance, bacterial community, and functions in the rumen and hindgut of dairy cows under heat stress. Thirty-three multiparous (parity 3.9 ± 0.8) Holstein dairy cows (189.1 ± 6.6 d in milk at the beginning of the experiment) were randomly assigned to three groups (11 cows per treatment). Cows in the three groups were fed a diet without yeast (CON), with 10 g yeast/d/head (LY-10), and with 20 g yeast/d/head (LY-20). The yeast product contained 2.0 × 1010 CFU/g. Supplementing LY decreased the rectal temperature and respiratory rate of cows, and increased dry matter intake, milk yield, milk fat yield, milk protein yield, and milk lactose yield (P < 0.001), yet decreased milk urea nitrogen concentration (P = 0.035). Interaction effects of treatment × week were observed for rectal temperature (P < 0.05), respiratory rate (P < 0.05), milk yield (P = 0.015), milk urea nitrogen (P = 0.001), milk protein yield (P = 0.008), and milk lactose yield (P = 0.030). In rumen, LY increased the concentrations of acetate, isobutyrate, isovaterate, valerate, total volatile fatty acids (VFAs), and NH3-N (P < 0.05). Miseq sequencing of the 16S rRNA genes showed that LY increased the relative abundance of Prevotella and Prevotellaceae UCG-003 at the genus level with a series of enriched pathways in the metabolism of carbohydrates and protein. In fecal samples, LY did not affect the profile of VFAs (P > 0.05). Clostridium sensu stricto 1 (P = 0.013) and Actinobacillus (P = 0.011) increased in the relative abundance by LY, whereas Bacteroides (P = 0.016) and Oscillospirales UCG-010 (P = 0.005) decreased with a series of enriched pathways in carbohydrate metabolism, secondary bile acid biosynthesis. In summary, LY supplementation altered the bacterial community's composition and function in rumen and hindgut, and simultaneously alleviated the detrimental effects of heat stress on dairy cows. These findings provide extended insight into the effects of LY in the rumen and hindgut of dairy cows exposed to heat stress.
Collapse
Affiliation(s)
- Zihao Li
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Fan
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Bai
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiyou Zhang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Jin
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
28
|
Jiang Q, Palombo V, Sherlock DN, Vailati-Riboni M, D’Andrea M, Yoon I, Loor JJ. Alterations in ileal transcriptomics during an intestinal barrier challenge in lactating Holstein cows fed a Saccharomyces cerevisiae fermentation product identify potential regulatory processes. J Anim Sci 2023; 101:skad277. [PMID: 37616596 PMCID: PMC10576520 DOI: 10.1093/jas/skad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Stressors such as lack of access to feed, hot temperatures, transportation, and pen changes can cause impairment of ruminal and intestinal barrier function, also known as "leaky gut". Despite the known benefits of some nutritional approaches during periods of stress, little is understood regarding the underlying mechanisms, especially in dairy cows. We evaluated the effect of feeding a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) on the ileal transcriptome in response to feed restriction (FR), an established model to induce intestinal barrier dysfunction. Multiparous cows [97.1 ± 7.6 days in milk (DIM); n = 5/group] fed a control diet or control plus 19 g/d SCFP for 9 wk were subjected to an FR challenge for 5 d during which they were fed 40% of their ad libitum intake from the 7 d before FR. All cows were slaughtered at the end of FR, and ileal scrapping RNA was used for RNAseq (NovaSeq 6000, 100 bp read length). Statistical analysis was performed in R and bioinformatics using the KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO databases. One thousand six hundred and ninety-six differentially expressed genes (DEG; FDR-adjusted P ≤ 0.10) were detected in SCFP vs. control, with 451 upregulated and 1,245 downregulated. "Mucin type O-glycan biosynthesis" was the top downregulated KEGG pathway due to downregulation of genes catalyzing glycosylation of mucins (GCNT3, GALNT5, B3GNT3, GALNT18, and GALNT14). An overall downregulation of cell and tissue structure genes (e.g., extracellular matrix proteins) associated with collagen (COL6A1, COL1A1, COL4A1, COL1A2, and COL6A2), laminin (LAMB2), and integrins (ITGA8, ITGA2, and ITGA5) also were detected with SCFP. A subset of DEG enriched in the GO term "extracellular exosome" and "extracellular space". Chemokines within "Cytokine-cytokine receptor interaction pathways" such as CCL16, CCL21, CCL14, CXCL12, and CXCL14 were downregulated by SCFP. The "Glutathione metabolism" pathway was upregulated by SCFP, including GSTA1 and RRM2B among the top upregulated genes, and GSTM1 and GPX8 as top downregulated genes. There were 9 homeobox transcription factors among the top 50 predicted transcription factors using the RNAseq DEG dataset, underscoring the importance of cell differentiation as a potential target of dietary SCFP. Taken together, SCFP downregulated immune-, ECM-, and mucin synthesis-related genes during FR. Homeobox transcription factors appear important for the transcriptional response of SCFP.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| | | | - Danielle N Sherlock
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| | | | | | | | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| |
Collapse
|
29
|
Cancino-Padilla N, Gajardo F, Neves ALA, Kholif AE, Mele M, Huws SA, Loor JJ, Romero J, Vargas-Bello-Pérez E. Influence of dietary oils rich in omega-6 or omega-3 fatty acids on rumen microbiome of dairy cows. Transl Anim Sci 2023; 7:txad074. [PMID: 37483683 PMCID: PMC10362848 DOI: 10.1093/tas/txad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
The objective of this study was to compare the effect of supplementing dairy cow diets with contrasting sources of omega-6 (soybean oil) and omega-3 (fish oil) PUFA on rumen microbiome. For 63 d, 15 mid-lactating cows were fed a control diet (n = 5 cows; no fat supplement) or control diet supplemented with 2.9% dry matter (DM) of either soybean oil (SO; n = 5 cows) or fish oil (FO; n = 5 cows). Ruminal contents were collected on days 0, 21, 42, and 63 for 16S rRNA gene sequencing. Beta diversity and Shannon, Simpson and Chao1 diversity indices were not affected by dietary treatments. In terms of core microbiome, Succiniclasticum, Prevotella, Rikenellaceae_RC9_gut_group, and NK4A214_group were the most prevalent taxa regardless of treatments. Bifidobacterium was absent in SO diet, Acetitomaculum was absent in FO, and Sharpea was only detected in SO. Overall, results showed that at 2.9% DM supplementation of either SO or FO over 63 days in dairy cow diets does not cause major impact on bacterial community composition and thus is recommended as feeding practice.
Collapse
Affiliation(s)
- Nathaly Cancino-Padilla
- Pontificia Universidad Católica de Chile, Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Santiago 4860, Chile
- Instituto de Investigaciones Agropecuarias, INIA Carillanca, Temuco, Chile
| | - Felipe Gajardo
- Universidad de Chile, Instituto de Nutrición y Tecnología de los Alimentos (INTA), El Líbano 5524, Macul, Santiago, Chile
| | - André Luis Alves Neves
- Department of Veterinary and Animal Sciences, University of Co-penhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | | | - Marcello Mele
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124 Pisa, Italy
| | - Sharon A Huws
- Queen’s University of Belfast, Institute for Global Food Security, School of Biological Sciences, Belfast, BT9 7BL, UK
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Mammalian NutriPhysioGenomics, Urbana 61801, USA
| | | | | |
Collapse
|
30
|
Rizwan HM, Usman M, Naeem MA, Farid MU, Younus M, Sajid MS, Tahir UB, Luqman N, Abbas H, Ateeq MK, Taseer MSA, Asif M. Prevalence of Ruminant Paramphistomosis and Comparative Histopathology of the Infected Rumens in Narowal District, Punjab, Pakistan. Helminthologia 2022; 59:377-384. [PMID: 36875675 PMCID: PMC9979068 DOI: 10.2478/helm-2022-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 02/05/2023] Open
Abstract
The present study reports the prevalence of Paramphistomum spp. in small and large ruminants and their association with the histopathology of the infected rumens. A total of 384 animals were screened for Paramphistomum spp. The animals found positive for Paramphistomum spp. were divided into three groups according to the worm load/5 cm2 (G1: 10 - 20 worms/5 cm2 = Low, G2: 20 - 40 worms/5 cm2 = Medium, and G3: >41 worms/5 cm2 = High). Tissue slides were prepared from samples of the rumen (1 cm2) taken from animals positive for ruminal fluke to determine the histological parameters, including epithelial length or thickness, length and width of the ruminal papilla, and thickness of tunica submucosa and mucularis externae. The overall prevalence of Paramphistomum spp. in the ruminant population of district Narowal was 56.25 % with a significant (P < 0.05) variation among different species of ruminants. The highest prevalence was in cattle, followed in order by buffalo, goat, and sheep. Epithelium thickness was significantly correlated with parasite load in large ruminants and the most significant (P < 0.05) decrease in epithelium thickness was in Group B (31.12 ± 1.82 μm) and Group C (31.07 ± 1.68 μm) and a same trend was recorded in small ruminants. Histopathological changes due to Paramphistomum spp. are reported for the first time, which explained the histomorphological and physiological changes in Paramphistomum-infected rumens which might be associated with lowered feed efficiency and productivity in ruminants.
Collapse
Affiliation(s)
- H. M. Rizwan
- Section of Parasitology, Department of Pathobiology, KBCMA College of Veterinary and Animal Sciences, Narowal, Sub-campus UVAS, Lahore, Pakistan
| | - M. Usman
- Section of Histology, Department of Basic Sciences, KBCMA College of Veterinary and Animal Sciences, Narowal, Sub-campus UVAS, Lahore, Pakistan
| | - M. A. Naeem
- Section of Pharmacology, Department of Basic Sciences, KBCMA College of Veterinary and Animal Sciences, Narowal, Sub-campus UVAS, Lahore, Pakistan
| | - M. U. Farid
- Section of Meat Science, Department of Animal Sciences, KBCMA College of Veterinary and Animal Sciences, Narowal, Sub-campus UVAS, Lahore, Pakistan
| | - M. Younus
- Section of Pathology, Department of Pathobiology, KBCMA College of Veterinary and Animal Sciences, Narowal, Sub-campus UVAS, Lahore, Pakistan
| | - M. S. Sajid
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - U. B. Tahir
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - N. Luqman
- Veterinary Research Institute, Department of Livestock and Dairy Development, Lahore, Punjab, Pakistan
| | - H. Abbas
- Section of Parasitology, Department of Pathobiology, KBCMA College of Veterinary and Animal Sciences, Narowal, Sub-campus UVAS, Lahore, Pakistan
| | - M. K. Ateeq
- Section of Histology, Department of Basic Sciences, KBCMA College of Veterinary and Animal Sciences, Narowal, Sub-campus UVAS, Lahore, Pakistan
| | - M. S. A. Taseer
- Section of Meat Science, Department of Animal Sciences, KBCMA College of Veterinary and Animal Sciences, Narowal, Sub-campus UVAS, Lahore, Pakistan
| | - M. Asif
- Section of Statistics and Math, Department of Social Sciences, KBCMA College of Veterinary and Animal Sciences, Narowal, Sub-campus UVAS, Lahore, Pakistan
| |
Collapse
|
31
|
Wang Y, Li Z, Jin W, Mao S. Isolation and Characterization of Ruminal Yeast Strain with Probiotic Potential and Its Effects on Growth Performance, Nutrients Digestibility, Rumen Fermentation and Microbiota of Hu Sheep. J Fungi (Basel) 2022; 8:jof8121260. [PMID: 36547593 PMCID: PMC9781649 DOI: 10.3390/jof8121260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Yeast strains are widely used in ruminant production. However, knowledge about the effects of rumen native yeasts on ruminants is limited. Therefore, this study aimed to obtain a rumen native yeast isolate and investigate its effects on growth performance, nutrient digestibility, rumen fermentation and microbiota in Hu sheep. Yeasts were isolated by picking up colonies from agar plates, and identified by sequencing the ITS sequences. One isolate belonging to Pichia kudriavzevii had the highest optical density among these isolates obtained. This isolate was prepared to perform an animal feeding trial. A randomized block design was used for the animal trial. Sixteen Hu sheep were randomly assigned to the control (CON, fed basal diet, n = 8) and treatment group (LPK, fed basal diet plus P. kudriavzevii, CFU = 8 × 109 head/d, n = 8). Sheep were housed individually and treated for 4 weeks. Compared to CON, LPK increased final body weight, nutrient digestibility and rumen acetate concentration and acetate-to-propionate ratio in sheep. The results of Illumina MiSeq PE 300 sequencing showed that LPK increased the relative abundance of lipolytic bacteria (Anaerovibrio spp. and Pseudomonas spp.) and probiotic bacteria (Faecalibacterium spp. and Bifidobacterium spp.). For rumen eukaryotes, LPK increased the genera associated with fiber degradation, including protozoan Polyplastron and fungus Pichia. Our results discovered that rumen native yeast isolate P. kudriavzevii might promote the digestion of fibers and lipids by modulating specific microbial populations with enhancing acetate-type fermentation.
Collapse
Affiliation(s)
- Yao Wang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zihao Li
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Jin
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
32
|
Yeast Products Mediated Ruminal Subenvironmental Microbiota, and Abnormal Metabolites and Digestive Enzymes Regulated Rumen Fermentation Function in Sheep. Animals (Basel) 2022; 12:ani12223221. [PMID: 36428448 PMCID: PMC9686794 DOI: 10.3390/ani12223221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Yeast products (YP) are commonly used as rumen regulators, but their mechanisms of action are still unclear. Based on our previous studies, we questioned whether yeast products would have an impact on rumen solid-associated (SA) and liquid-associated (LA) microorganisms and alter rumen fermentation patterns. Thirty 3-month-old male sheep weighing 19.27 ± 0.45 kg were selected and randomized into three groups for 60 days: (1) basal diet group (CON group), (2) basal diet add 20 g YP per day (low YP, LYP group) and (3) basal diet add 40 g YP per day (high YP, HYP group). The results demonstrated that the addition of YP increased rumen cellulase activity, butyrate and total volatile fatty acid (TVFA) concentrations (p < 0.05), while it decreased rumen amylase activity and abnormal metabolites, such as lactate, lipopolysaccharides (LPS) and histamine (HIS) (p < 0.05). Metagenomic analysis of rumen microorganisms in three groups revealed that YP mainly influenced the microbial profiles of the SA system. YP increased the relative abundance of R. flavefaciens and decreased methanogens in the SA system (p < 0.05). With the addition of YP, the abundance of only a few lactate-producing bacteria increased in the SA system, including Streptococcus and Lactobacillus (p < 0.05). However, almost all lactate-utilizing bacteria increased in the LA system, including Megasphaera, Selenomonas, Fusobacterium and Veillonella (p < 0.05). In addition, YP increased the abundance of certain GHs family members, including GH43 and GH98 (p < 0.05), but decreased the abundance of some KEGG metabolic pathways involved in starch and sucrose metabolism, biosynthesis of antibiotics and purine metabolism, among others. In conclusion, the addition of YP to high-concentrate diets can change the abundance of major functional microbiota in the rumen, especially in the solid fraction, which in turn affects rumen fermentation patterns and improves rumen digestibility.
Collapse
|
33
|
Ogbuewu IP, Mbajiorgu CA. Meta-analytic effect of Saccharomyces cerevisiae on dry matter intake, milk yield and components of lactating goats. Front Vet Sci 2022; 9:1014977. [PMID: 36467636 PMCID: PMC9715603 DOI: 10.3389/fvets.2022.1014977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
The results of investigations on the impact of Saccharomyces cerevisiae (SC) on performance characteristics of lactating goats are inconsistent. Thus, this study aimed to summarize available evidence on the effect of SC supplementation on dry matter intake (DMI), milk yield and composition in lactating goats using meta-analysis. A systematic search performed on Scopus, Google Scholar and PubMed databases yielded 1,368 studies of which 18 were used for the meta-analysis. Subgroup and meta-regression analyses were performed to explore the sources of heterogeneity in response to dietary SC supplementation. A random-effects model showed that SC had a moderate effect on milk yield [standardized mean differences (SMD) = 0.51; 95% CI: 0.20 to 0.82, p = 0.001] and milk fat (SMD = 0.30; 95% CI: 0.05 to 0.55, p = 0.02) in lactating goats when compared to the controls. Subgroup analysis by SC type indicated that live SC had a large to moderate effect on milk yield (SMD = 1.46; 95% CI: 0.96 to 1.96, p < 0.001) and milk fat (SMD = 0.51; 95% CI: 0.19 to 0.84, p = 0.002), whereas dead SC had a large negative effect on DMI (SMD = -0.82; 95% CI: -1.28 to -0.7, p < 0.001) and a moderate reduction effect on milk yield (SMD = -0.55; 95% CI: -0.99 to -1.96, p = 0.015). We found significant heterogeneity across studies that evaluated the effect of SC treatment on DMI and milk yield in lactating goats and meta-regression analysis explained most of the sources of heterogeneity. In conclusion, pooled results showed that dietary SC supplementation increased milk yield and fat in lactating goats. In addition, subgroup analysis revealed that both live and fermented SC increased milk yield and fat in lactating goats, while dead SC reduced DMI and milk yield.
Collapse
Affiliation(s)
- Ifeanyi Princewill Ogbuewu
- Department of Animal Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria,Department of Agriculture and Animal Health, University of South Africa, Florida, South Africa,*Correspondence: Ifeanyi Princewill Ogbuewu ;
| | | |
Collapse
|
34
|
Effect of Dietary Supplementation of Hydrolyzed Yeast on Growth Performance, Digestibility, Rumen Fermentation, and Hematology in Growing Beef Cattle. Animals (Basel) 2022; 12:ani12182473. [PMID: 36139332 PMCID: PMC9495054 DOI: 10.3390/ani12182473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
This experiment was conducted to assess the effect of hydrolyzed yeast (HY) on growth performance, nutrient digestibility, rumen fermentation, and hematology in growing crossbred Bos indicus cattle. Twenty crossbred beef cattle with an initial body weight (BW) of 142 ± 12 kg were randomly assigned to one of four treatments for 90 d in a randomized complete block design (RCBD) having five blocks based on a homogenous subpopulation of sex and BW. Cattle were fed with a total mixed ration (TMR) and supplemented with HY at 0, 1, 2, and 3 g/kg dry matter (DM), respectively. Supplementation with the HY did not change average daily gain (ADG), dry matter intake (DMI), and gain to feed ratio (G:F) (p ≥ 0.06). The addition of HY did not adversely affect nutrient intake (p ≥ 0.48), while the digestibility of crude protein (CP) increased quadratically (p= 0.03) in the cattle receiving HY. The addition of HY did not affect rumen pH, but NH3-N concentration increased linearly (p = 0.02) in the cattle. The total volatile fatty acid (total VFA) increased quadratically (p= 0.03) when cattle were fed with HY supplementation. The proportion of acetate decreased cubically (p= 0.03) while propionate increased cubically (p= 0.01), resulting in a decrease in the acetate to propionate ratio (p= 0.01) when cattle were fed with HY supplementation. In addition, acetate was the lowest, but total VFA and propionate were the highest in cattle fed the HY at 2 g/kg DM. Butyrate increased cubically (p = 0.02) with the addition of HY. The protozoal and fungal populations were similar among treatments (p ≥ 0.11), but the bacterial population increased linearly (p < 0.01) with the addition of HY. Supplementation of HY did not influence blood urea nitrogen (BUN), red blood cells (RBC), hemoglobin, hematocrit, white blood cells (WBC), lymphocytes, or eosinophils (p≥ 0.10). However, monocytes and neutrophils increased linearly (p = 0.04 and p = 0.01, respectively) by HY supplementation. In conclusion, supplementation of HY at 2 g/kg DM promotes CP digestibility, rumen fermentation efficiency, and hematology but does not affect the growth performance of growing beef cattle.
Collapse
|
35
|
Liu H, Li Z, Pei C, Degen A, Hao L, Cao X, Liu H, Zhou J, Long R. A comparison between yaks and Qaidam cattle in in vitro rumen fermentation, methane emission, and bacterial community composition with poor quality substrate. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Wu Y, Nie C, Xu C, Luo R, Chen H, Niu J, Bai X, Zhang W. Effects of dietary supplementation with multispecies probiotics on intestinal epithelial development and growth performance of neonatal calves challenged with Escherichia coli K99. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4373-4383. [PMID: 35066866 PMCID: PMC9303730 DOI: 10.1002/jsfa.11791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Probiotics exhibit antibiotic properties and are capable of treating certain bacterial infections, including diarrhea. Therefore, the aim of this study is to investigate the effects of dietary supplementation with multispecies probiotic (MSP) on diarrhea, average daily gain (ADG) and intestinal development of neonatal calves challenged with Escherichia coli K99. RESULTS Thirty-six neonatal Holstein calves were randomly assigned to three treatment groups. After E. coli K99 challenge, calves in the control (C) and MSP treatment groups had significantly higher ADG and feed efficiency, and significantly lower fecal scores than those of calves in the diarrhea (D) group. The mean time of diarrhea resolution was 4.5 and 3.1 days for calves in the D and MSP treatment groups, respectively. Furthermore, the structures of the various segments (duodenum, jejunum and ileum) of the small intestine of the calves, activities of several small intestinal enzymes, and expression of several energy metabolism-related genes in the small intestine segments were significantly affected by MSP treatments. CONCLUSION Dietary supplementation of MSP had a positive effect in treating calf diarrhea; it improved ADG and feed efficiency and promoted development of the small intestine. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan‐yan Wu
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Cun‐xi Nie
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Chunsheng Xu
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Rui‐qing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co. LtdShiheziChina
| | - Hong‐li Chen
- Xinjiang Tianshan Junken Animal Husbandry Co. LtdShiheziChina
| | - Jun‐li Niu
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Xue Bai
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| | - Wenju Zhang
- College of Animal Science and TechnologyShihezi UniversityShiheziChina
| |
Collapse
|
37
|
Reis M, de Toledo A, da Silva A, Poczynek M, Cantor M, Virgínío Júnior G, Greco L, Bittar C. Effect of supplementation with algae β-glucans on performance, health, and blood metabolites of Holstein dairy calves. J Dairy Sci 2022; 105:7998-8007. [DOI: 10.3168/jds.2022-21838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
|
38
|
Luo Z, Ma L, Zhou T, Huang Y, Zhang L, Du Z, Yong K, Yao X, Shen L, Yu S, Shi X, Cao S. Beta-Glucan Alters Gut Microbiota and Plasma Metabolites in Pre-Weaning Dairy Calves. Metabolites 2022; 12:687. [PMID: 35893252 PMCID: PMC9332571 DOI: 10.3390/metabo12080687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
The present study aims to evaluate the alterations in gut microbiome and plasma metabolites of dairy calves with β-glucan (BG) supplementation. Fourteen healthy newborn dairy calves with similar body weight were randomly divided into control (n = 7) and BG (n = 7) groups. All the calves were fed on the basal diet, while calves in the BG group were supplemented with oat BG on d 8 for 14 days. Serum markers, fecal microbiome, and plasma metabolites at d 21 were analyzed. The calves were weaned on d 60 and weighed. The mean weaning weight of the BG group was 4.29 kg heavier than that of the control group. Compared with the control group, the levels of serum globulin, albumin, and superoxide dismutase were increased in the BG group. Oat BG intake increased the gut microbiota richness and decreased the Firmicutes-to-Bacteroidetes ratio. Changes in serum markers were found to be correlated with the plasma metabolites, including sphingosine, trehalose, and 3-methoxy-4-hydroxyphenylglycol sulfate, and gut microbiota such as Ruminococcaceae_NK4A214, Alistipes, and Bacteroides. Overall, these results suggest that the BG promotes growth and health of pre-weaning dairy calves by affecting the interaction between the host and gut microbiota.
Collapse
Affiliation(s)
- Zhengzhong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China;
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Li Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Tao Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Yixin Huang
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Liben Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Zhenlong Du
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Kang Yong
- Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404100, China;
| | - Xueping Yao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Liuhong Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Shumin Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China;
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| |
Collapse
|
39
|
Zhang C, Zhang J, Yu Z, Zhou G, Yao J. Effects of supplementation with Saccharomyces cerevisiae products on dairy calves: A meta-analysis. J Dairy Sci 2022; 105:7386-7398. [PMID: 35879169 DOI: 10.3168/jds.2021-21519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
Saccharomyces cerevisiae products (SCP) have the potential to promote the growth and development of the gastrointestinal tract and immunity in young livestock animals. However, the effects of SCP supplementation on calves are inconsistent among the reported studies in the literature. Hence, we performed a meta-analysis to comprehensively assess the effects of SCP on the growth performance, ruminal fermentation parameters, nutrients digestibility, ruminal histological morphology, serum immune response, and fecal pathogen colony counts in calves. We searched the Web of Science, ScienceDirect, PubMed, and China National Knowledge Infrastructure for relevant studies published up to October 1, 2021. After screening against a set of criteria, the data of 36 studies were included in our meta-analysis (2,126 calves in total). We evaluated the quality of the data using sensitivity analysis and assessed publication bias. Our meta-analysis revealed several important findings. First, SCP supplementation increased the ruminal short-chain fatty acid concentration, ruminal papilla height, and fiber digestibility, pointing toward stimulation of the development of the rumen in calves. Second, SCP supplementation increased the serum concentrations of total protein, IgA, and IgG but decreased fecal pathogen colony counts, suggesting that SCP could help calves to promote immunity (especially maintaining circulating concentrations of immunoglobulins in preweaning calves) and resistance to pathogens. Third, a subgroup analysis between preweaning and postweaning calves showed that SCP increased average daily gain and dry matter intake preweaning but not postweaning, suggesting that SCP is better supplemented to preweaning calves to achieve the best results. Forth, based on the dose-response curve, 24 to 25 g/d might be the optimal dose range of SCP supplementation (into starter feed) preweaning to achieve the best overall effect, meanwhile, we need more studies to improve the consistency and accuracy of the dose-response curve prediction. Overall, SCP supplementation improved growth performance, rumen development, and immunocompetence in calves, particularly in preweaning calves.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - Guilian Zhou
- New Hope Liuhe Company Limited/Quality Control for Feed and Products of Livestock and Poultry Key Laboratory of Sichuan Province, Chengdu, 610023, Sichuan, China.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
40
|
Lucassen A, Hankel J, Finkler-Schade C, Osbelt L, Strowig T, Visscher C, Schuberth HJ. Feeding a Saccharomyces cerevisiae Fermentation Product (Olimond BB) Does Not Alter the Fecal Microbiota of Thoroughbred Racehorses. Animals (Basel) 2022; 12:ani12121496. [PMID: 35739833 PMCID: PMC9219515 DOI: 10.3390/ani12121496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Saccharomyces cerevisiae fermentation products (SCFP) are feed supplements and are widely used in animal nutrition to promote health. The biological effects of SCFP are based on prebiotic mechanisms that directly influence the microbial community of the gut microbiome or postbiotic factors that directly interact with host cells. To show whether the immunomodulatory effects of SCFP feeding are due to an altered composition of gut microbiota, we analyzed the fecal microbiota of racehorses. Horses were fed either the SCFP (Olimond BB) or a placebo product for six weeks, and fecal samples were collected for 16S rRNA gene sequencing. During this period, SCFP feeding only subtly affected the fecal microbiota in bacterial composition and diversity. SCFP and placebo horses differed significantly in the fecal bacterial diversity directly after intramuscular influenza vaccination. Altogether, the findings argue against a strong prebiotic effect of SCFP in racehorses. In contrast, the modulation of vaccine- and host-induced alterations of the microbiome suggests that the main effects of SCFP are due to contained or induced postbiotic components. Abstract Feed supplements such as Saccharomyces cerevisiae fermentation products (SCFP) alter immune responses in horses. The purpose of this study was to analyze whether a prebiotic activity of the SCFP alters the gut microbiome in horses. Racehorses were fed either SCFP (Olimond BB, OLI, n = 6) or placebo pellets (PLA, n = 5) for 43 days. Fecal microbiota analysis was performed using 16S rRNA gene sequencing. The numbers and function of circulating immune cell subpopulations were analyzed by flow cytometry. SCFP supplementation resulted in non-consistent differences in fecal microbiota between the PLA and OLI during the feeding period. Rather, the individual animal had the highest impact on fecal microbiota composition. OLI and PLA horses displayed the same changes in numbers of blood leukocyte subpopulations over time. One day after a booster vaccination against equine influenza during the feeding period, the alpha diversity of fecal microbiota of PLA horses was significantly higher compared to OLI horses. This suggests that SCFP feeding altered the vaccination-induced spectrum of released mediators, potentially affecting gut microbiota. The overall non-consistent findings argue against a strong prebiotic effect of Olimond BB on the microbiota in racehorses. Fecal microbiota differences between the groups were also noticed outside the feeding period and, hence, are most likely not caused by the SCFP additive.
Collapse
Affiliation(s)
- Alexandra Lucassen
- Institute of Immunology, University of Veterinary Medicine Foundation, 30559 Hannover, Germany;
| | - Julia Hankel
- Institute of Animal Nutrition, University of Veterinary Medicine Foundation, 30559 Hannover, Germany; (J.H.); (C.V.)
| | | | - Lisa Osbelt
- Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (L.O.); (T.S.)
- Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Till Strowig
- Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (L.O.); (T.S.)
- Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Christian Visscher
- Institute of Animal Nutrition, University of Veterinary Medicine Foundation, 30559 Hannover, Germany; (J.H.); (C.V.)
| | - Hans-Joachim Schuberth
- Institute of Immunology, University of Veterinary Medicine Foundation, 30559 Hannover, Germany;
- Correspondence: ; Tel.: +49-511-953-7921
| |
Collapse
|
41
|
Klopp R, Centeno-Martinez R, Yoon I, Johnson T, Boerman J. Effects of feeding Saccharomyces cerevisiae fermentation products on the health and growth performance of Holstein dairy calves. JDS COMMUNICATIONS 2022; 3:174-179. [PMID: 36338817 PMCID: PMC9623633 DOI: 10.3168/jdsc.2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/09/2022] [Indexed: 11/23/2022]
Abstract
Feeding dairy calves SCFP in milk replacer and solid feeds until 4 mo improved postweaning ADG and feed efficiency. SCFP reduced respiratory illness antibiotic treatments in calves. Feeding SCFP to calves did not affect daily fecal scores or preweaning growth.
It is essential to reduce antibiotic use in the livestock industry, which leads to a need for alternatives to antibiotics that reduce illness and promote growth in dairy calves. The objective of this study was to evaluate the effect of feeding dairy calves Saccharomyces cerevisiae fermentation products (SCFP) on average daily gain (ADG) and antibiotic use in dairy calves through 4 mo of age. Holstein bull calves (n = 60; 5 ± 3 d old) were blocked by body weight (BW) and serum total protein (STP) and assigned to 1 of 2 treatments. The control treatment (CON) fed a 24% crude protein (CP):17% fat milk replacer (MR), calf starter, grower #1, and grower #2 with no SCFP added. The SCFP treatment fed the same MR with 1 g/d of SCFP, calf starter with 0.8% (dry matter; DM) SCFP, grower #1 with 0.44% (DM) SCFP, and grower #2 with 0.275% (DM) SCFP. Calves were offered 2.84 L (12.5% solids) of MR twice daily (0630 and 1630 h) through d 51 and MR once daily (0630 h) from d 52 to 56, and were weaned on d 57. From d 1 to 56, calves also received ad libitum access to calf starter and water. On d 57, calves were switched to grower #1 and on d 84, calves were switched to grower #2, which contained a lower level of CP and a higher level of neutral detergent fiber (NDF). Individual calf BW, body condition score (BCS), hip height (HH), and hip width (HW) were measured biweekly from d 0 to 112. Feed intake was recorded daily, and feed efficiency (gain:feed) and ADG were calculated. Daily fecal and respiratory scores were recorded for each calf through d 56, and all medical interventions were recorded for the duration of the study and grouped based on illness. We found no effect of treatment on STP, BW, BCS, HH, or HW at d 0 or 56, nor effects on preweaning ADG and feed efficiency. No treatment effect was observed for BCS or HH at d 112; however, BW and HW were increased in SCFP calves at d 112. A treatment tendency was observed for postweaning ADG, with SCFP calves being larger than CON calves and SCFP calves having improved feed efficiency compared with CON calves after weaning. A treatment effect was observed for respiratory treatments postweaning, with SCFP calves being treated less frequently than CON calves. Our results suggest that feeding SCFP to calves improves postweaning growth and feed efficiency, and reduces postweaning respiratory disease interventions.
Collapse
Affiliation(s)
- R.N. Klopp
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | | | - I. Yoon
- Diamond V, Cedar Rapids, IA 52404
| | - T.A. Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - J.P. Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
- Corresponding author:
| |
Collapse
|
42
|
Jonova S, Ilgaza A, Ilgazs A, Zolovs M, Gatina L. The amount of ghrelin-immunoreactive cells in the abomasum and intestines of 13-14-week-old calves supplemented with Jerusalem artichoke flour alone or in combination with Saccharomyces cerevisiae yeast. Vet World 2022; 15:1080-1086. [PMID: 35698529 PMCID: PMC9178578 DOI: 10.14202/vetworld.2022.1080-1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: The use of antibiotics in animals for disease prevention and productivity has been banned in the European Union since 2006. Possible alternatives can be used prebiotics, probiotics, and synbiotics. These compounds can improve feed digestion and absorption in the gastrointestinal tract with identical nutrient uptake, while imparting the feeling of satiety, which reduces the activity of ghrelin-immunoreactive (IR) cells. The number of studies performed on the activity of ghrelin-IR cells in ruminants is insufficient. In particular, there are few such studies in calves during the transition period from being a relatively monogastric animal to a ruminant. The present study aimed to evaluate the effect of Jerusalem artichoke flour (containing ∼50% prebiotic inulin) and a new, commercially unavailable synbiotic (combination of Jerusalem artichoke flour and Saccharomyces cerevisiae strain 1026) on the amount of ghrelin-IR cells in the abomasum and intestines of 13-14-week-old calves.
Materials and Methods: Fifteen crossbreed, Holstein Friesian and Red Holstein calves (Bos taurus) (32±4 days, 72.1±11.34 kg) were used. Calves were allocated into three groups: Control group (CoG, n=5) received the standard diet, prebiotic group (PreG, n=5) received 12 g of flour of Jerusalem artichoke (Helianthus tuberosus) per head containing 6 g of prebiotic inulin in addition to the standard diet, and synbiotic group (SynG, n=5) received a synbiotic in addition to the standard diet which consisted of two different products: 12 g of flour of Jerusalem artichoke per head containing 6 g of prebiotic inulin and probiotic 5 g of a yeast S. cerevisiae strain 1026. Feed additives were added to the concentrate once a day for 56 days. On days 1, 28, and 56, the live weight of the calves was determined. On day 56 of the experiment, three calves from each group were slaughtered. Histological samples were collected from the two parts of each calf abomasum: Pars pylorica and pars fundalis and the middle part of the duodenum and jejunum. Immunohistochemical tissue staining methods were used to detect ghrelin-IR cells.
Results: The live weight of the slaughtered calves on day 56 was 115.3±21.73 kg in CoG, 130.0±17.32 kg in PreG, and 119.0±7.94 kg in SynG. Ghrelin-IR cells were more abundantly localized in the cytoplasm of the abomasum muscle gland cells in pars fundalis and pars pylorica, and to a lesser extent in the duodenum and jejunum. The number of ghrelin-IR cells in the abomasal fundic gland area was significantly higher in the CoG, than in the PreG and SynG (p=0.0001), while the difference between the PreG and SynG was not significant (p=0.700).
Conclusion: The addition of Jerusalem artichoke flour and its combination with the yeast S.cerevisiae stain 1026 in calves resulted in a lower number of ghrelin-IR cells in the abomasum, duodenum, and jejunum and, although insignificantly, increased live weight (p=0.491), suggesting that calves in these groups with the same feed intake as the CoG had a better breakdown of nutrients, thus having a longer feeling of satiety.
Collapse
Affiliation(s)
- S. Jonova
- Preclinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - A. Ilgaza
- Preclinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - A. Ilgazs
- Clinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - M. Zolovs
- Department of Biosystematics, Institute of Life Sciences and Technology, Daugavpils University, Daugavpils, Latvia; Statistics Unit, Riga Stradins University, Riga, Latvia
| | - L. Gatina
- Preclinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| |
Collapse
|
43
|
Wang L, Qi W, Mao S, Zhu W, Liu J. Effects of whole corn high-grain diet feeding on ruminal bacterial community and epithelial gene expression related to VFA absorption and metabolism in fattening lambs. J Anim Sci 2022; 100:6537127. [PMID: 35213698 PMCID: PMC9030220 DOI: 10.1093/jas/skac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/24/2022] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to investigate the effects of whole corn high-grain diet feeding on growth performance, ruminal bacterial community, and epithelial morphology and gene expression related to VFA absorption and metabolism in fattening lambs. Fourteen male (castrated) lambs were randomly assigned to either a group fed a ground corn high-grain diet (50.4% grain; HGC, n = 7) or a group fed a whole corn high-grain diet (50.4% grain; HWC, n = 7). After 7 wk of feeding, HWC group increased the average daily gain (ADG) (P = 0.036) and decreased the feed: gain value (P = 0.010) significantly. HWC group had a greater crude protein apparent digestibility (P = 0.028) in the third week and dry matter and neutral detergent fiber apparent digestibility (P < 0.05) in the seventh week. Pyrosequencing of the 16S ribosomal RNA gene revealed that HWC feeding increased the relative abundance of genera Anaerovibrio, Schwartzia and Unclassified Veillonellaceae in the rumen content and Howardella, Schwartzia and Unclassified Veillonellaceae in the rumen epithelia (P<0.05), while decreased the proportion of Lachnospira and Unclassified Synergistaceae in the rumen content and Anaerovorax, Papillibacter, Ruminococcus, Fibrobacter, Unclassified Lachnospiraceae, Unclassified Bacteroidales and Unclassified Prevotellaceae in the rumen epithelia (P < 0.05). HWC group increased the rumen papilla length (P = 0.001) and surface area (P = 0.002). Furthermore, HWC diet feeding up-regulated the relative mRNA expression of putative anion transporter isoform 1 (PAT1) (P = 0.032) in the rumen epithelia. In summary, compared with ground corn high-grain diet feeding, whole corn high-grain diet feeding improved animal performance, changed ruminal bacterial composition and diversity, and increased VFA absorption of epithelial papilla in fattening lambs. These findings provided theoretical guidance for the actual application of whole corn high-grain diet in ruminants.
Collapse
Affiliation(s)
- Lu Wang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China,Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Weibiao Qi
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China,Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China,Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Weiyun Zhu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China,Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Junhua Liu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China,Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China,Corresponding author:
| |
Collapse
|
44
|
Lu Q, Niu J, Wu Y, Zhang W. Effects of Saccharomyces cerevisiae var. boulardii on growth, incidence of diarrhea, serum immunoglobulins, and rectal microbiota of suckling dairy calves. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Active dry yeast supplementation improves the growth performance, rumen fermentation, and immune response of weaned beef calves. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:1352-1359. [PMID: 34786508 PMCID: PMC8577086 DOI: 10.1016/j.aninu.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022]
Abstract
The objective of this experiment was to investigate the potential benefits of active dry yeast (ADY) on the growth performance, rumen fermentation, nutrient digestibility, and serum parameters of weaned beef calves. Thirty Simmental crossbred male calves (body weight = 86.47 ± 4.41 kg and 70 ± 4 d of age) were randomly divided into 2 groups: control (CON) (fed basal ration) and ADY (fed basal ration and 5 g/d ADY per calf). The dietary concentrate-to-roughage ratio was 35:65. All the calves were regularly provided rations 3 times a day at 07:00, 13:00, and 19:00 and had free access to water. The experiment lasted for 60 d. The average daily gain of ADY group was higher (P = 0.007) than that of the CON group, and the ratio of feed intake to average daily gain in the ADY group was reduced (P = 0.022) as compared to the CON group. The concentration of ruminal ammonia-N was higher (P = 0.023) in the CON group than that in the ADY group, but an opposite trend of microbial protein was found between the 2 groups. Also, the ruminal concentrations of propionate and butyrate were higher (P < 0.05) in the ADY group than those in the CON group. Calves fed ADY exhibited higher (P < 0.05) crude protein and neutral detergent fiber digestibility. Supplementation of ADY increased (P < 0.05) the contents of glucose, glutathione peroxidase, superoxide dismutase, immunoglobulin A, immunoglobulin M, and interleukin 10 in the serum of calves, but an opposite trend was observed in malondialdehyde, interleukin 1 beta, and tumor necrosis factor alpha contents between the 2 groups. In conclusion, dietary supplementation with ADY could improve the growth performance, rumen fermentation, nutrient digestibility, antioxidant ability, and immune response of weaned beef calves.
Collapse
|
46
|
Klopp RN, Yoon I, Eicher S, Boerman JP. Effects of feeding Saccharomyces cerevisiae fermentation products on the health of Holstein dairy calves following a lipopolysaccharide challenge. J Dairy Sci 2021; 105:1469-1479. [PMID: 34802742 DOI: 10.3168/jds.2021-20341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/13/2021] [Indexed: 11/19/2022]
Abstract
Before weaning, dairy calves are at high risk for illness, especially respiratory and digestive diseases, which reduces average daily gain, age at first calving, and first-lactation milk production. Although these illnesses are commonly treated with antibiotics, efforts are being made to reduce antibiotic use, due to concerns about antibiotic-resistant bacteria. The objective was to evaluate the effects of Saccharomyces cerevisiae fermentation products (SCFP) on the immune status of calves, following a lipopolysaccharide (LPS) challenge administered just before weaning. Thirty Holstein bull calves were blocked based on initial body weight and then assigned to 1 of 2 study treatments. The control group (CON) was fed a 24% crude protein:17% fat milk replacer (MR) and calf starter with no SCFP added. The SCFP treatment was fed the same 24% crude protein:17% fat MR with 1 g/d of SmartCare (Diamond V) and calf starter with 0.8% NutriTek (Diamond V). SmartCare and NutriTek are both produced from anaerobic fermentation of S. cerevisiae. Calves were offered 2.84 L (12.5% solids) of MR twice daily at 0630 and 1630 h through d 51; from d 52 to 56, calves were fed MR once daily at 0630 h; and calves were weaned on d 57. Calves also received ad libitum access to a texturized calf starter and water. On d 50, a subset of calves (n = 20, 10 calves per treatment) were enrolled in an LPS challenge. At -1.5, -0.5, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, and 24 h relative to dosing with LPS, 20 mL of blood was collected, and rectal temperature and respiration rate were measured for each calf. Blood serum samples were analyzed for interleukin 6, TNF-α (tumor necrosis factor-α), interferon-gamma, haptoglobin, serum amyloid-A, fibrinogen, nonesterified fatty acid, cortisol, and glucose. This study observed increased concentrations of TNF-α at 1 h and 1.5 h and glucose at 0.5 h after dosing with LPS in SCFP calves compared with CON. Calves supplemented with SCFP also had an increase in respiration rate 0.5 h after dosing with LPS and reduced feed intake the day of the challenge compared with CON calves. These results suggest that dairy calves supplemented with SCFP exhibit an increased acute immune response, as observed by increased TNF-α, glucose, and respiration rate immediately after dosing with LPS, compared with CON calves.
Collapse
Affiliation(s)
- Rebecca N Klopp
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | | | - Susan Eicher
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN 47907
| | | |
Collapse
|
47
|
Arne A, Ilgaza A. Prebiotic and synbiotic effect on rumen papilla length development and rumen pH in 12-week-old calves. Vet World 2021; 14:2883-2888. [PMID: 35017835 PMCID: PMC8743768 DOI: 10.14202/vetworld.2021.2883-2888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Europe and the USA have banned antibiotics use as growth promoters. There is a need for alternative products that can ensure production and health protection. Prebiotics has been proposed as alternatives because these materials have wide-ranging physiological effects on gut function, activity of the large intestinal microflora, mineral absorption, and immunity. The aim of this study was to determine the effect of three different doses of inulin, a prebiotic, in combination with probiotic Enterococcus faecium (a new synbiotic) on postnatal rumen development by comparing rumen papilla length, width, muscle layer thickness, and content pH level. MATERIALS AND METHODS Randomly selected 23 (±5)-days-old healthy male Holstein crossbreed calves, weighing 50 kg (±5 kg), were randomly allocated to seven groups, ten in each group. The calves were kept in a pen of 5, under the same conditions and were fed twice a day, ~3.5 liters of whole milk per feeding. Control group (C n=10) was fed with whole milk only (no additives were added). The six other groups (three prebiotics and three synbiotics) received food additives with their morning milk feeding. The source of prebiotics, Jerusalem artichoke powder concentrate (JAPC) contained 50% of inulin. JAPC in doses of 6 g, 12 g, or 24 g were added to the milk. Formed prebiotic groups were denoted as PreG6, PreG12, and PreG24. To evaluate if the addition of the probiotic E. faecium 2×109 colony forming unit g-1 to manufacturer recommended dose of 0.25 g improves inulin effect on rumen, it was added to all their JAPC doses. The new content synbiotic groups were denoted as SynG6, SynG12, and SynG24. On day 57 of the study, when all calves were approximately 12 weeks old, they were slaughtered in a certified slaughterhouse. Tissue cultures for histological analysis were obtained from Saccus dorsalis and Saccus ventralis of the rumen. Tissue culture staining for histology was carried out using hematoxylin and eosin staining method. Rumen histological samples were used to measure papilla length, width, and muscle layer thickness. Each sample was used to make five measurements on the present rumen papilla. RESULTS The results showed that by adding 12 g of inulin to whole milk when feeding calves improves rumen papilla development, which is seen by increased length and width of papilla, especially in the Saccus ventralis region. By combing this dose of inulin with 0.25 g of E. faecium, a significant increase of papilla is achieved. Saccus ventralis muscle layer in the rumen is thicker than it is in Saccus dorsalis regardless of addition of prebiotics or synbiotics. CONCLUSION The addition of inulin to whole milk can influence the pH of the rumen by making it more alkaline. The addition of prebiotic inulin and a novel synbiotic (inulin combined with E. faecium) can accelerate postnatal rumen development and improve its functionality.
Collapse
Affiliation(s)
- A. Arne
- Department of Anatomy and Physiology, Preclinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - A. Ilgaza
- Department of Anatomy and Physiology, Preclinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| |
Collapse
|
48
|
Addition of Active Dry Yeast Could Enhance Feed Intake and Rumen Bacterial Population While Reducing Protozoa and Methanogen Population in Beef Cattle. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Urea–lime-treated rice straw fed to Thai native beef cattle was supplemented with dry yeast (DY) (Saccharomyces cerevisiae) to assess total feed intake, nutrient digestibility, rumen microorganisms, and methane (CH4) production. Sixteen Thai native beef cattle at 115 ± 10 kg live weight were divided into four groups that received DY supplementation at 0, 1, 2, and 3 g/hd/d using a randomized completely block design. All animals were fed concentrate mixture at 0.5% of body weight, with urea–lime-treated rice straw fed ad libitum. Supplementation with DY enhanced total feed intake and digestibility of neutral detergent fiber and acid detergent fiber (p < 0.05), but dry matter, organic matter and crude protein were similar among treatments (p > 0.05). Total volatile fatty acid (VFA) and propionic acid (C3) increased (p < 0.05) with 3 g/hd/d DY supplementation, while acetic acid (C2) and butyric acid (C4) decreased. Protozoal population and CH4 production in the rumen decreased as DY increased (p < 0.05). Populations of F. succinogenes and R. flavefaciens increased (p < 0.05), whereas methanogen population decreased with DY addition at 3 g/hd/d, while R. albus was stable (p > 0.05) throughout the treatments. Thus, addition of DY to cattle feed increased feed intake, rumen fermentation, and cellulolytic bacterial populations.
Collapse
|
49
|
Dai Q, Ma J, Cao G, Hu R, Zhu Y, Li G, Zou H, Wang Z, Peng Q, Xue B, Wang L. Comparative study of growth performance, nutrient digestibility, and ruminal and fecal bacterial community between yaks and cattle-yaks raised by stall-feeding. AMB Express 2021; 11:98. [PMID: 34191139 PMCID: PMC8245608 DOI: 10.1186/s13568-021-01259-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/17/2021] [Indexed: 12/22/2022] Open
Abstract
The experiment was conducted to compare the growth performance, rumen fermentation, nutrient digestibility, and ruminal and fecal bacterial community between yaks and cattle-yaks. Ten male yaks (36-month-old) were used as the yak (YAK) group and 10 male cattle-yaks with similar age were selected as the cattle-yak (CAY) group. All the animals were fed same ration and the experiment lasted for 60 days. The results showed that the average daily gain and dry matter intake of CAY group were higher (P < 0.05) than those of YAK group. The ruminal concentrations of total volatile fatty acids, acetate, and butyrate were higher (P < 0.05) in CAY group than those in YAK group. However, the neutral detergent fiber and acid detergent fiber digestibility exhibited an opposite between two groups. In the rumen, the relative abundances of Prevotella 1 and Prevotellaceae UCG-001 were higher (P < 0.05) and Succiniclasticum and Butyrivibrio 2 were lower (P < 0.05) in YAK group compared to CAY group. In the feces, the unclassified Lachnospiraceae, Lachnospiraceae NK4A136 group, and Lachnospiraceae AC2044 group were significantly enriched (P < 0.05) in YAK group, whereas the Ruminococcaceae UCG-010, Ruminococcaceae UCG-013, and Succiniclasticum were significantly enriched (P < 0.05) in CAY group. Overall, under the same diet, the yaks have higher fiber utilization and cattle-yaks have higher energy utilization.
Collapse
|
50
|
Ma J, Shah AM, Wang Z, Fan X. Potential protective effects of thiamine supplementation on the ruminal epithelium damage during subacute ruminal acidosis. Anim Sci J 2021; 92:e13579. [PMID: 34173303 DOI: 10.1111/asj.13579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 03/21/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
In ruminants, the ruminal epithelium not only has the function of absorbing nutrients but also is an important tissue to prevent harmful substances in the rumen from entering the blood circulation. Thus, the normal function of ruminal epithelium is critical for ruminants. However, subacute ruminal acidosis induced by high-concentrate diets often damages the barrier function of ruminal epithelium in ruminants. Recently, many studies have shown that dietary supplementation with thiamine is an effective method to alleviate subacute ruminal acidosis. In order to provide theoretical reference for the in-depth study of subacute ruminal acidosis and the application of thiamine in the future, this review introduces the effects of subacute ruminal acidosis on morphological structure, inflammatory response, and tight junction of ruminal epithelium. In addition, this paper summarizes the role of thiamine in maintaining ruminal epithelial function of ruminants during subacute ruminal acidosis challenge.
Collapse
Affiliation(s)
- Jian Ma
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ali Mujtaba Shah
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xue Fan
- College of Animal Science, Xinjiang Agricultural University, Urumchi, China
| |
Collapse
|