1
|
Akkou M, Titouche Y, Bentayeb L, Bes M, Laurent F, Ramdani-Bouguessa N. Risk factors for dairy cows mastitis in Algeria, antibiotic resistance and molecular typing of the causative Staphylococcus aureus. Vet Res Commun 2024; 48:3007-3018. [PMID: 38963470 DOI: 10.1007/s11259-024-10457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Adoption of a rational management in dairy farms would improve the milk quality and farmers' income. In the current study, we aimed to describe bovine mastitis in 32 dairy herds, identify the main cow- and herd-associated risk factors, and analyze both epidemiological along with molecular characteristics of Staphylococcus aureus infecting udders. Based on Californian Mastitis Test and clinical examination, the prevalence of mastitis in cows was 52.25% (116/222), of which 6.3% was clinical mastitis and 45.94% was subclinical mastitis. Overall, 218 (24.54%) quarters suffered from mastitis, whose 29.81% (65/218) infected with S. aureus. Mastitis was lowest in mid-lactation with OR = 0.371 with 95% confidence interval (CI) of 0.141-0.976, and in cows separated from their calves (OR = 0.164, 95% CI 0.056-0.477) than suckler cows. Similar results were obtained from S. aureus related mastitis. To assess the genetic lineages of S. aureus isolates, we determined clonal complexes (CC) using DNA microarray hybridization profiles and performed spa typing. The strains were assigned to nine clonal complexes, and 19 spa types; with CC97 (44.77%), and CC22 (40.29%) were the most predominant lineages and t223 (40.29%), t7136 (10.44%), t359 (8.95%) and t267 (5.97%) were the most common spa types. A total of 88.05% (n = 59) isolates were resistant to at least one tested antibiotic while only 4.47% were multi-drug resistant strains. Higher rates of resistance were observed for penicillin (86.5%) and tetracycline (14.9%) respectively. Our results show the need for adoption of feasible mastitis program with special emphasis on sub-clinical mastitis and associated risk factors.
Collapse
Affiliation(s)
- Madjid Akkou
- Laboratory of Biotechnologies Related to Animal Reproduction, Institute of Veterinary Science, University of Blida1, Blida, Algeria.
- Labotaory of Biology and Experimental Pharmacology, Yahia Farès University, Médéa, Algeria.
| | - Yacine Titouche
- Laboratory of Analytical Biochemistry and Biotechnology, University of Mouloud Mammeri, Tizi-Ouzou, Algeria
| | - Lamia Bentayeb
- Agro-food Department, Faculty of Natural and Life Science, University of Blida1, Blida, Algeria
| | - Michèle Bes
- Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Laurent
- Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | | |
Collapse
|
2
|
Xiong Y, Barkema HW, Yang J, Kastelic JP, Nobrega DB, Li X, Tong X, Fan Z, Gao J. Antimicrobial Resistance and Use on Chinese Dairy Farms: Awareness and Opinions Regarding Selective Treatments of Farm Managers. Antibiotics (Basel) 2024; 13:854. [PMID: 39335026 PMCID: PMC11429497 DOI: 10.3390/antibiotics13090854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND In China's expanding dairy industry, a lack of oversight regarding antimicrobial use and increasing antimicrobial resistance are evident. Selective treatments of dairy cows for clinical mastitis or dry cow therapy are proposed to promote judicious antimicrobial use without adversely impacting cattle health. These approaches have been successfully implemented on farms in other countries. METHODS On 28 October 2023, a 2-day in-person seminar was held in Beijing, China, on selective antimicrobial treatments of dairy cows for clinical mastitis or dry cow therapy on large Chinese dairy farms. Concurrently, a qualitative study involving 15 technical managers from the 13 largest Chinese dairy groups used focus group discussions and questionnaires to explore perspectives on selective treatments of dairy cows for clinical mastitis or dry cow therapy. The main outcomes assessed were opinions and concerns regarding implementing selective antimicrobial treatments. RESULTS Although there was diversity of cognition on AMR and selective treatments, the technical managers were generally positive regarding adoption of selective treatments. However, they expressed a need for more evidence and tools, including anticipated economic impacts, effects of delaying treatment until diagnosis, accurate interpretation of milk recording data, safe use of internal teat sealants, and spread of pathogens. Participants stressed the need for awareness, staff training, farm management, and China-specific standards, suggesting large-scale trials to assess efficacy of selective treatments. CONCLUSION The findings revealed key challenges and barriers currently impeding selective AMU practices. These insights could inform efforts to promote judicious AMU on farms through targeted treatment regimens, reducing mounting selective pressure driving resistance.
Collapse
Affiliation(s)
- Yindi Xiong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jingyue Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Diego B Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Xiaoping Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaofang Tong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhenying Fan
- Xianwei CARE Technology Platform, Beijing 100191, China
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Winther AR, Perrin A, Nordraak AOO, Kjos M, Porcellato D. An in vitro evaluation of the effect of antimicrobial treatment on bovine mammary microbiota. Sci Rep 2024; 14:18333. [PMID: 39112607 PMCID: PMC11306798 DOI: 10.1038/s41598-024-69273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Antimicrobial-resistant bacteria have been an increasing problem in human medicine and animal husbandry since the introduction of antimicrobials on the market in the 1940s. Over the last decades, efforts to reduce antimicrobial usage in animal husbandry have been shown to limit the development of resistant bacteria. Despite this, antimicrobial-resistant bacteria are still commonly detected and isolated worldwide. In this study, we investigated the presence of antimicrobial-resistant bacteria in bovine milk samples using a multiple approach based on culturing and amplicon sequencing. We first enriched milk samples obtained aseptically from bovine udders in the presence of two antimicrobials commonly used to treat mastitis and then described the resistant microbiota by amplicon sequencing and isolate characterization. Our results show that several commensal species and mastitis pathogens harbor antimicrobial resistance and dominate the enriched microbiota in milk in presence of antimicrobial agents. The use of the two different antimicrobials selected for different bacterial taxa and affected the overall microbial composition. These results provide new information on how different antimicrobials can shape the microbiota which is able to survive and reestablish in the udder and point to the fact that antimicrobial resistance is widely spread also in commensal species.
Collapse
Affiliation(s)
- Anja R Winther
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway.
| | - Aurelie Perrin
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway
- Institute Agro Dijon, 26 Bd Dr Petitjean, 21079, Dijon, France
| | - Anne O O Nordraak
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway
- Norwegian Defence Research Establishment, Kjeller, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway
| |
Collapse
|
4
|
de Souza MMS, Dubenczuk FC, Melo DA, Holmström TCN, Mendes MB, Reinoso EB, Coelho SMO, Coelho IS. Antimicrobial therapy approaches in the mastitis control driven by one health insights. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2024; 46:e002624. [PMID: 39104804 PMCID: PMC11299703 DOI: 10.29374/2527-2179.bjvm002624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024] Open
Abstract
The use of antimicrobials in the dairy production environment for mastitis control must take etiology, clinical signs, economic impacts, and regulatory frameworks into consideration. The objective of the present review is to highlight important aspects of the dynamics of antimicrobial use in dairy production and the potential impacts on the main pathogens circulating in this environment, considering the parameters set by the World Health Organization (WHO) regarding the priority of monitoring as well as control strategies for these agents, such as the methicillin-resistant Staphylococcus and the beta-lactamase-producing Escherichia coli. Understanding the animal-environment-pathogen triad is crucial for establishing control measures and preventing the spread of bacterial resistance. Implementing mastitis prevention and control measures in dairy farms, considering process flow and personnel qualification, enables a reduction in antimicrobial usage and contributes to prevent the spread of resistant bacterial agents in the dairy production environment, minimizing the relapses and the chronicity of the infectious process.
Collapse
Affiliation(s)
- Miliane Moreira Soares de Souza
- Veterinarian, DSc., Departamento de Microbiologia e Imunologia Veterinária (DMIV), Instituto de Veterinária (IV), Universidade Federal Rural do Rio de Janeiro (UFRRJ). Seropédica, RJ, Brazil.
| | - Felipe Carlos Dubenczuk
- Veterinarian, DSc. Programa de Pós-Graduação em Ciência e Tecnologia Agrária (PPGCTIA), DMIV, IV, UFRRJ. Seropédica, RJ, Brazil.
| | - Dayanne Araújo Melo
- Veterinarian, DSc., Programa de Pós-Graduação em Ciências Veterinárias (PPGCV), DMIV, IV, UFRRJ. Seropédica, RJ. Brazil.
| | | | | | | | | | | |
Collapse
|
5
|
Li X, Zhang B, Tong X, Zhou T, Li M, Barkema HW, Nobrega DB, Kastelic JP, Xu C, Han B, Gao J. Biological and genomic characterization of 4 novel bacteriophages isolated from sewage or the environment using non-aureus Staphylococci strains. Vet Microbiol 2024; 294:110133. [PMID: 38820726 DOI: 10.1016/j.vetmic.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Non-aureus staphylococci (NAS) are an essential group of bacteria causing antimicrobial resistant intramammary infections in livestock, particularly dairy cows. Therefore, bacteriophages emerge as a potent bactericidal agent for NAS mastitis. This study aimed to obtain NAS-specific bacteriophages using bacterial strains isolated from cows with mastitis, subsequently evaluating their morphological, genomic, and lytic characteristics. Four distinct NAS bacteriophages were recovered from sewage or the environment of Chinese dairy farms; PT1-1, PT94, and PT1-9 were isolated using Staphylococcus chromogenes and PT1-4 using Staphylococcus gallinarum. Both PT1-1 (24/54, 44 %) and PT94 (28/54, 52 %) had broader lysis than PT1-4 (3/54, 6 %) and PT1-9 (10/54, 19 %), but PT1-4 and PT1-9 achieved cross-species lysis. All bacteriophages had a short latency period and good environmental tolerance, including surviving at pH=4-10 and at 30-60℃. Except for PT1-9, all bacteriophages had excellent bactericidal efficacy within 5 h of co-culture with host bacteria in vitro at various multiplicity of infection (MOIs). Based on whole genome sequencing, average nucleotide identity (ANI) analysis of PT1-1 and PT94 can be classified as the same species, consistent with whole-genome synteny analysis. Although motifs shared by the 4 bacteriophages differed little from those of other bacteriophages, a phylogenetic tree based on functional proteins indicated their novelty. Moreover, based on whole genome comparisons, we inferred that cross-species lysis of bacteriophage may be related to the presence of "phage tail fiber." In conclusion 4 novel NAS bacteriophages were isolated; they had good biological properties and unique genomes, with potential for NAS mastitis therapy.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Baoling Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Xiaofang Tong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Tao Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Chengdu 611130, China
| | - Moli Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Diego B Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
6
|
Song X, Wang Y, Bai R, Pei X, Xu H, Zhu K, Wu C. Antimicrobial resistance profiles of common mastitis pathogens on large Chinese dairy farms. JDS COMMUNICATIONS 2024; 5:185-189. [PMID: 38646569 PMCID: PMC11026961 DOI: 10.3168/jdsc.2023-0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/18/2023] [Indexed: 04/23/2024]
Abstract
The primary objective of this study was to determine the antimicrobial resistance (AMR) profile of common mastitis pathogens on large Chinese dairy farms. A total of 673 isolates, including Staphylococcus aureus (14.41%, 97/673), coagulase-negative staphylococci (CNS, 52.30%, 352/673), Streptococcus agalactiae (5.64%, 38/673), non-agalactiae streptococci (7.42%, 50/673), Acinetobacter spp. (7.72%, 52/673), Escherichia spp. (6.39%, 43/673), and Klebsiella spp. (6.09%, 41/673), were collected from 15 large Chinese dairy farms in 12 provinces. The AMR profiles were measured using a microdilution method. Our results showed that more than 75% of Staph. aureus (87/97) and CNS (291/352) were resistant to penicillin (PEN). More than 30% of Escherichia spp. (15/43) showed resistance to ampicillin (AMP). However, less than 10% CNS and non-agalactiae streptococci showed resistance to amoxicillin/clavulanate (AMC; 1/352; 0/50), cephalexin (LEX; 1/352; 0/50), ceftiofur (EFT; 10/352; 0/50), and rifaximin (RIX; 21/352; 2/50); less than 10% Staph. aureus showed resistance to AMC (1/97), oxacillin (OX; 3/97), LEX (1/97), EFT (2/97), and RIX (2/97); less than 10% Strep. agalactiae showed resistance to PEN (3/38), AMC (0/38), LEX (0/38), EFT (0/38), and RIX (0/38); and less than 10% Escherichia spp. showed resistance to AMC (1/43) and EFT (4/43). These results suggested that most mastitis pathogens were susceptible to most antimicrobials with exceptions of Staph. aureus tested against penicillin or ampicillin and CNS against penicillin or oxacillin. To control the AMR threat in Chinese dairy farms, a nationwide surveillance program for AMR of bovine mastitis pathogens is needed.
Collapse
Affiliation(s)
- Xiangbin Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Shandong Center for Quality Control of Feed and Veterinary Drug, Jinan 250100, PR China
| | - Yaxin Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Rina Bai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Xiaoyan Pei
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co. Ltd., Hohhot 010110, PR China
| | - Hongyan Xu
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co. Ltd., Hohhot 010110, PR China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
7
|
Yang J, Xiong Y, Barkema HW, Tong X, Lin Y, Deng Z, Kastelic JP, Nobrega DB, Wang Y, Han B, Gao J. Comparative genomic analyses of Klebsiella pneumoniae K57 capsule serotypes isolated from bovine mastitis in China. J Dairy Sci 2024; 107:3114-3126. [PMID: 37944808 DOI: 10.3168/jds.2023-23721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
Klebsiella pneumoniae can cause severe clinical mastitis in dairy cows, with K. pneumoniae type K57 (K57-KP) being the most common capsular serotype. To identify virulence factors and antimicrobial-resistance (AMR) genes of K57-KP with varying virulence, Galleria mellonella (greater wax moth) larvae were infected as a screening model to characterize virulence of 90 K57-KP strains, with 10 and 11 strains defined as virulent or attenuated, respectively, based on larval survival rates. Next, virulence of these 21 isolates was subsequently confirmed in adhesion and lactate dehydrogenase release assays, using bovine mammary epithelial cells cultured in vitro. Finally, genes associated with virulence and AMR were characterize with whole-genome sequencing. These 21 K57-KP strains were designated into 16 sequence types based on multi-locus sequence typing and allocated in phylogenetic analysis based on single nucleotide polymorphisms. We found great genetic diversity among isolates. In addition, adhesion-associated genes (e.g., fimA, sfaA, and focA) aminoglycoside-resistance genes (aph(6)-Id, strAB) were associated with virulence. This study provided new knowledge regarding virulence of K57-KP associated with bovine mastitis, which may inform development of novel diagnostic tools and prevention strategies for bovine mastitis.
Collapse
Affiliation(s)
- Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yindi Xiong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Xiaofang Tong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yushan Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhaoju Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Diego B Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Yue Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Somrup S, Mitsuwan W, Bhumibhamon T, Pereira MDL, Paul AK, Nissapatorn V, Saengsawang P. Antibiograms, multidrug resistance, and milk-related parameters of bacteria isolated from milk of dairy cattle in Phatthalung, Thailand. Vet World 2024; 17:735-743. [PMID: 38798280 PMCID: PMC11111717 DOI: 10.14202/vetworld.2024.735-743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/01/2024] [Indexed: 05/29/2024] Open
Abstract
Background and Aim Milk, a nutritious food, is widely consumed in human diets; however, contamination by micro-organisms can negatively impact its quality and consumer health. Contamination by micro-organisms affects the quality of milk, which can affect the quality of the milk production chain. This study aimed to determine the changes in milk composition and antibiotic susceptibility related to bacteria isolated from dairy cow milk. Materials and Methods Raw milk samples were collected from 72 dairy cows. All milk samples were subjected to the California Mastitis Test (CMT) for CMT score determination. We also investigated milk composition, bacterial culture (BC), and antibiotic susceptibility. Results About 47.22% and 30.56% of dairy cattle were positive for CMT + BC and automatic somatic cell count (ASCC) + BC, respectively. Fecal appearance and animal age were found to be risk factors for ASCC + BC positivity in dairy cattle. Bacteria were found in approximately 76% of milk samples, with the most common isolated species being α-hemolytic Streptococcus spp., coagulase-negative Staphylococcus spp., and Escherichia coli. Of these, 70% are resistant to at least one antibiotic. Variation in the multidrug resistance pattern was high in Klebsiella spp. Conclusions Fecal appearance and animal age are risk factors for ASCC + BC positivity in dairy cattle. This study identified antibiotic and multidrug resistance patterns, which require comprehensive studies and effective surveillance systems. Remarkably, the use of antibiotic therapy in dairy cattle should be monitored.
Collapse
Affiliation(s)
- Supaporn Somrup
- Faculty of Technology and Community Development, Thaksin University, Phatthalung 93210, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Innovation of Essential Oils, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Teeraphun Bhumibhamon
- Veterinary Research and Development Center (Upper Southern Region), Nakhon Si Thammarat 80110, Thailand
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team, World Union for Herbal Drug Discovery, and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Phirabhat Saengsawang
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
9
|
Hoque MN, Faisal GM, Jerin S, Moyna Z, Islam MA, Talukder AK, Alam MS, Das ZC, Isalm T, Hossain MA, Rahman ANMA. Unveiling distinct genetic features in multidrug-resistant Escherichia coli isolated from mammary tissue and gut of mastitis induced mice. Heliyon 2024; 10:e26723. [PMID: 38434354 PMCID: PMC10904246 DOI: 10.1016/j.heliyon.2024.e26723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Escherichia coli is one of the major pathogens causing mastitis in lactating mammals. We hypothesized that E. coli from the gut and mammary glands may have similar genomic characteristics in the causation of mastitis. To test this hypothesis, we used whole genome sequencing to analyze two multidrug resistant E. coli strains isolated from mammary tissue (G2M6U) and fecal sample (G6M1F) of experimentally induced mastitis mice. Both strains showed resistance to multiple (>7) antibiotics such as oxacillin, aztreonam, nalidixic acid, streptomycin, gentamicin, cefoxitin, ampicillin, tetracycline, azithromycin and nitrofurantoin. The genome of E. coli G2M6U had 59 antimicrobial resistance genes (ARGs) and 159 virulence factor genes (VFGs), while the E. coli G6M1F genome possessed 77 ARGs and 178 VFGs. Both strains were found to be genetically related to many E. coli strains causing mastitis and enteric diseases originating from different hosts and regions. The G6M1F had several unique ARGs (e.g., QnrS1, sul2, tetA, tetR, emrK, blaTEM-1/105, and aph(6)-Id, aph(3″)-Ib) conferring resistance to certain antibiotics, whereas G2M6U had a unique heat-stable enterotoxin gene (astA) and 7192 single nucleotide polymorphisms. Furthermore, there were 43 and 111 unique genes identified in G2M6U and G6M1F genomes, respectively. These results indicate distinct differences in the genomic characteristics of E. coli strain G2M6U and G6M1F that might have important implications in the pathophysiology of mammalian mastitis, and treatment strategies for mastitis in dairy animals.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Golam Mahbub Faisal
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Shobnom Jerin
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Zannatara Moyna
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Md Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, 2310, Bangladesh
| | - Anup Kumar Talukder
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | | | - Ziban Chandra Das
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Tofazzal Isalm
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, 1706, Bangladesh
| | - M. Anwar Hossain
- Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Abu Nasar Md Aminoor Rahman
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| |
Collapse
|
10
|
Crippa BL, de Matos LG, Souza FN, Silva NCC. Non- aureus staphylococci and mammaliicocci (NASM): their role in bovine mastitis and One Health. J DAIRY RES 2024; 91:44-56. [PMID: 38584301 DOI: 10.1017/s0022029924000165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Non-aureus staphylococci (NAS) are gaining importance in mastitis and public health, and some NAS have been reclassified as mammaliicocci (NASM). Bovine milk production has a major influence on the world economy, being an essential source of income for small, medium and large producers, and bovine mastitis caused by NASM can cause an economic impact. Mastitis generates financial losses due to reduced revenue, increased veterinary costs and expenses associated with animal slaughter. However, it is also a public health issue involving animal health and welfare, human health and the ecosystem. Furthermore, it is an increasingly common infection caused by NASM, including antimicrobial-resistant strains. Despite all these adverse effects that NASM can cause, some studies also point to its protective role against mastitis. Therefore, this review article addresses the negative and positive aspects that NASM can cause in bovine mastitis, the virulence of the disease and resistance factors that make it difficult to treat and, through the One Health approach, presents a holistic view of how mastitis caused by NASM can affect both animal and human health at one and the same time.
Collapse
Affiliation(s)
- Bruna Lourenço Crippa
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Luiz Gustavo de Matos
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Lombardia, Italy
| | - Fernando Nogueira Souza
- Department of Clinical Science, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, Brazil
- Department of Veterinary Medicine, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Nathália Cristina Cirone Silva
- Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| |
Collapse
|
11
|
Hoque MN, Faisal GM, Moyna Z, Islam MS, Das ZC, Islam T. Draft genome sequence of a multidrug-resistant Klebsiella pneumoniae fecal isolate from a cow with clinical mastitis. Microbiol Resour Announc 2023; 12:e0073023. [PMID: 37902381 PMCID: PMC10652979 DOI: 10.1128/mra.00730-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/24/2023] [Indexed: 10/31/2023] Open
Abstract
Klebsiella pneumoniae is one of the most important mastitis-causing pathogens. The multidrug-resistant K. pneumoniae strain MNH_G2C5F was isolated from the feces of a cow with clinical mastitis. The MNH_G2C5F strain had a genome size of 5,381,832 bp (85.0× coverage) and typed as sequence type 273 (ST273).
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Golam Mahbub Faisal
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Zannatara Moyna
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Md. Sayedul Islam
- Department of Microbiology and Public Health, BSMRAU, Gazipur, Bangladesh
| | - Ziban Chandra Das
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, Bangladesh
| |
Collapse
|
12
|
Mr. Saddam, Khan M, Jamal M, Rahman SU, Qadeer A, Khan I, Mahmoud MH, Batiha GES, Shah SH. Nutritional analysis and characterization of carbapenemase producing-Klebsiella pneumoniae resistant genes associated with bovine mastitis infected cow's milk. PLoS One 2023; 18:e0293477. [PMID: 37889925 PMCID: PMC10610456 DOI: 10.1371/journal.pone.0293477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The current study was designed to analyze nutritional parameters and to characterize carbapenemase producing-Klebsiella pneumoniae isolates from bovine mastitic cow's milk. Out of 700 milk samples K. pneumoniae was identified by phenotypic and molecular techniques along with their antibiogram analysis and nutritional analysis was performed using the procedure of Association of Official Analytical Chemists. Carbapenemase-producing K. pneumoniae was detected by phenotypic CarbaNP test followed by molecular characterization of their associated resistant genes blaVIM, blaKPC, blaOXA-48, blaNDM, and blaIMP along with insertion sequence common region 1 (ISCR1) and integrons (Int1, Int2, and Int3) genes. Among nutritional parameters, fat content was observed (2.99%) followed by protein (2.78%), lactose (4.32%), and total solid (11.34%), respectively. The prevalence of K. pneumoniae among bovine mastitis was found 25.71%. Antibiogram analysis revealed that more effective antibiotics was ceftazidime (80%) followed by amikacin (72%), while highly resistant antibiotics was Fusidic acid (100%). Distribution of carbapenemase producer K. pneumoniae was found 44.4%. Among carbapenem resistant genes blaKPC was found 11.25%, blaVIM 2.75%, blaNDM 17.5%, and blaOXA-48 7.5%, while blaIMP gene was not detected. Furthermore, distribution of ISCR1 was found 40%, while integron 1 was found 61.2% followed by integron 2 (20%), and integron 3 (5%). In conclusion, the recent scenario of carbapenemase resistant K. pneumoniae isolates responsible for mastitis may affect not only the current treatment regime but also possess a serious threat to public health due to its food borne transmission and zoonotic potential.
Collapse
Affiliation(s)
- Mr. Saddam
- Department of Microbiology, Abdul Wali Khan University, Marden, Pakistan
| | - Muddasir Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Marden, Pakistan
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdul Qadeer
- Shanghai Tenth People’s Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Imad Khan
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| | - Syed Hussain Shah
- Department of Health and Biological Sciences, Abasyn University Peshawar, Peshawar, Pakistan
| |
Collapse
|
13
|
Zouharova M, Nedbalcova K, Matiaskova K, Slama P, Matiasovic J. Antimicrobial Susceptibility and Resistance Genes in Streptococcus uberis Isolated from Bovine Mastitis in the Czech Republic. Antibiotics (Basel) 2023; 12:1527. [PMID: 37887228 PMCID: PMC10604623 DOI: 10.3390/antibiotics12101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Streptococcus uberis is one of the most important causative agents of mastitis and is a common reason for the use of antimicrobials in dairy cows. In this study, we assessed the antimicrobial susceptibility of 667 S. uberis isolates originating from 216 Czech dairy farms collected between 2019 and 2023 using the broth microdilution method. We tested 140 of the isolates for the presence of antimicrobial genes using whole-genome sequencing and evaluated their relationship with phenotypic resistance. Streptococcus uberis isolates showed high levels of resistance to tetracycline (59%), followed by streptomycin (38%) and clindamycin (29%). Although all of the isolates were susceptible to beta-lactams, a relatively high percentage of intermediately susceptible isolates was recorded for ampicillin (44%) and penicillin (18%). The isolates were mainly resistant to tetracycline alone (31.3%); the second most frequent occurrence of the phenotypic profile was simultaneous resistance to tetracycline, streptomycin, and clindamycin (16.6%). The occurrence of antibiotic resistance genes did not always match the phenotypic results; in total, 36.8% of isolates that possessed the ant(6)-Ia gene did not show phenotypic resistance to streptomycin. To a lesser extent, silent genes were also detected in clindamycin and tetracycline. This study confirmed the high susceptibility of S. uberis to penicillins used as first-line antimicrobials for S. uberis mastitis treatment.
Collapse
Affiliation(s)
- Monika Zouharova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic; (K.N.); (K.M.); (J.M.)
| | - Katerina Nedbalcova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic; (K.N.); (K.M.); (J.M.)
| | - Katarina Matiaskova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic; (K.N.); (K.M.); (J.M.)
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University, 613 00 Brno, Czech Republic;
| | - Jan Matiasovic
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic; (K.N.); (K.M.); (J.M.)
| |
Collapse
|
14
|
Liang B, Han B, Shi Y, Li X, Zhao W, Kastelic J, Gao J. Effective of phage cocktail against Klebsiella pneumoniae infection of murine mammary glands. Microb Pathog 2023; 182:106218. [PMID: 37422172 DOI: 10.1016/j.micpath.2023.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Phage therapy has potential to combat antibiotic-resistant bacteria causing bovine mastitis. Our objective was to use 3 Klebsiella lytic phages to create a phage cocktail, and to compare bactericidal activity of this phage cocktail versus an individual phage, both in vitro and in vivo. Based on transmission electron microscopy, phage CM_Kpn_HB154724 belonged to Podoviridae and on double agar plates, it formed translucent plaques on the bacterial lawn of Klebsiella pneumoniae KPHB154724. In one-step growth curves, this phage had a latent period of 40 min, an outbreak period of 40 min, a burst size of 1.2 × 107 PFU/mL, and an optimal multiplicity of infection (MOI) of 1. Furthermore, it was inactivated under extreme conditions (pH ≤ 3.0 or ≥ 12.0 and temperatures of 60 or 70 °C). It had a host range of 90% and had 146 predicted genes (Illumine NovaSeq). Based on histopathology and expression of inflammatory factors interleukin-1β, tumor necrosis factor-α, interleukin-6, and prostaglandin, phage cocktail therapy had better efficiency than an individual phage in K. pneumoniae-infected murine mammary glands. In conclusion, we used 3 Klebsiella lytic phages to create a phage cocktail and confirmed its effectiveness against K. pneumoniae both in vitro (bacterial lawn) and in vivo (infected murine mammary glands).
Collapse
Affiliation(s)
- Bingchun Liang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing, 100193, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing, 100193, China
| | - Yuxiang Shi
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei, 056038, China
| | - Xiaoping Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing, 100193, China
| | - Wenpeng Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing, 100193, China
| | - John Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
15
|
Okello E, ElAshmawy WR, Williams DR, Lehenbauer TW, Aly SS. Effect of dry cow therapy on antimicrobial resistance of mastitis pathogens post-calving. Front Vet Sci 2023; 10:1132810. [PMID: 37546337 PMCID: PMC10399697 DOI: 10.3389/fvets.2023.1132810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
The aim of this study was to evaluate the effect of dry cow therapy (DCT) on the antimicrobial resistance (AMR) profile of mastitis pathogens post-calving. A repository of isolates based on a DCT trial was utilized for the current study. A stratified random survey sample of cows from the trial were identified within the strata of season, herd, and trial treatment resulting in 382 cows. All isolates from the 382 cows were selected for the current study, which identified 566 isolates from milk samples collected at dry off (S1), post-calving (S2), and at the first clinical mastitis event up to 150 days in milk (S3). The AMR profiles were determined using broth microdilution method. Less than 10% of the coagulase-negative Staphylococcus species (CNS) isolates (n = 421) were resistant to tetracycline, ceftiofur, penicillin/novobiocin or erythromycin, while higher proportions of resistance to sulfadimethoxine (72%) and penicillin (28%) were observed. All Staphylococcus aureus (S. aureus) isolates (n = 4) were susceptible to all tested AMD except sulfadimethoxine, to which all isolates were resistant. Similarly, all Streptococcus spp. (n = 37) were susceptible to penicillin, penicillin/novobiocin, and ampicillin while resistant to tetracycline (17%). All coliforms (n = 21) were susceptible to ceftiofur, but resistance was recorded for sulfadimethoxine (70%), cephalothin (56%), and tetracycline (43%). The increased resistance percent from S1 to S2 was observed in CNS isolates from AMD-treated cows, with the highest increase recorded for penicillin (12.2%). Parametric survival interval regression models were used to explore the association between antimicrobial drug (AMD) therapy at dry off and the AMR phenotype post-calving. The accelerated failure-time metric was adopted to minimum inhibitory concentration measurements to permit interpretation of model exponentiated coefficients. Models for cows with CNS isolated at both S1 and S2 showed increased resistance against cephalothin, oxacillin, and ceftiofur in cows that received DCT from the same drug class, or a class with a shared resistance mechanism. In contrast, resistance of CNS isolates to tetracycline were associated with any AMD therapy at dry off. Resistance of CNS isolates to Penicillin decreased in CNS isolates in cows that received any AMD therapy at dry off compared to those that didn't. The study provided evidence that dry-cow IMM AMD was associated with AMR post-calving.
Collapse
Affiliation(s)
- Emmanuel Okello
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Wagdy R. ElAshmawy
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Deniece R. Williams
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
| | - Terry W. Lehenbauer
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sharif S. Aly
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Shrinet G, Chhabra R, Sharma A, Batra K, Talukdar SJ, Maan S. High throughput Luminex beads based multiplex assay for identification of six major bacterial pathogens of mastitis in dairy animals. Front Cell Infect Microbiol 2023; 13:1125562. [PMID: 37533933 PMCID: PMC10390833 DOI: 10.3389/fcimb.2023.1125562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Bovine mastitis is caused by over 150 different microorganisms. Specific identification and quantification of multiple bacteria in a single milk sample becomes essential for rapid intervention. Methods In the present study a Luminex beads based multiplex assay emphasizing on the precise identification of six major bacterial pathogens of mastitis was developed. Assay was developed in two triplex sets, triplex 1 comprised of Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus uberis while triplex 2 consisted of Staphylococcus aureus, E. coli and Klebsiella pneumoniae. Results The analytical sensitivity was 10 6 copies per reaction mixture for all the six bacteria. A 100% analytical specificity was observed for simultaneous detection of these bacteria. Clinical milk samples from 100 bovine quarters were tested for validation. Discussion The analytical sensitivity was similar to the findings reported earlier in real time PCR multiplex assay targeting the DNA of the 11 most common bacterial species or groups in mastitis. The analytical specificity of the optimized assay was 100% similar to reported earlier for simultaneous detection of Mycoplasma spp. and for seven entric viruses of humans.The developed assay indicates a concept proof of a rapid, cost effective high throughput diagnostic tool for identification of major bacteria causing mastitis.
Collapse
Affiliation(s)
- Garima Shrinet
- Department of Veterinary Microbiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Rajesh Chhabra
- College Central Laboratory, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Archana Sharma
- Department of Veterinary Microbiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Kanisht Batra
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Saurabh Jyoti Talukdar
- College Central Laboratory, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Sushila Maan
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
17
|
Shoaib M, He Z, Geng X, Tang M, Hao R, Wang S, Shang R, Wang X, Zhang H, Pu W. The emergence of multi-drug resistant and virulence gene carrying Escherichia coli strains in the dairy environment: a rising threat to the environment, animal, and public health. Front Microbiol 2023; 14:1197579. [PMID: 37520353 PMCID: PMC10382034 DOI: 10.3389/fmicb.2023.1197579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023] Open
Abstract
Escherichia coli is a common inhabitant of the intestinal microbiota and is responsible for udder infection in dairy cattle and gastro-urinary tract infections in humans. We isolated E. coli strains from a dairy farm environment in Xinjiang, China, and investigated their epidemiological characteristics, phenotypic and genotypic resistance to antimicrobials, virulence-associated genes, and phylogenetic relationship. A total of 209 samples were collected from different sources (feces, slurry, water, milk, soil) and cultured on differential and selective agar media (MAC and EMB). The presumptive identification was done by the VITEK2 system and confirmed by 16S rRNA gene amplification by PCR. Antimicrobial susceptibility testing was done by micro-dilution assay, and genomic characterization was done by simple and multiplex polymerase chain reaction (PCR). A total of 338 E. coli strains were identified from 141/209 (67.5%) of the samples. Most of the E. coli strains were resistant to sulfamethoxazole/trimethoprim (62.43%), followed by cefotaxime (44.08%), ampicillin (33.73%), ciprofloxacin (31.36%), tetracycline (28.99%), and a lesser extent to florfenicol (7.99%), gentamicin (4.44%), amikacin (1.77%), and fosfomycin (1.18%). All of the strains were susceptible to meropenem, tigecycline, and colistin sulfate. Among the resistant strains, 44.4% were identified as multi-drug resistant (MDR) showing resistance to at least one antibiotic from ≥3 classes of antibiotics. Eighteen out of 20 antibiotic-resistance genes (ARGs) were detected with sul2 (67.3%), blaTEM (56.3%), gyrA (73.6%), tet(B) (70.4%), aph(3)-I (85.7%), floR (44.4%), and fosA3 (100%, 1/1) being the predominant genes among different classes of antibiotics. Among the virulence-associated genes (VAGs), ompA was the most prevalent (86.69%) followed by ibeB (85.0%), traT (84.91%), ompT (73.96%), fyuA (23.1%), iroN (23.1%), and irp2 gene (21.9%). Most of the E. coli strains were classified under phylogenetic group B1 (75.45%), followed by A (18.34%), C (2.96%), D (1.18%), E (1.18%), and F (0.30%). The present study identified MDR E. coli strains carrying widely distributed ARGs and VAGs from the dairy environment. The findings suggested that the dairy farm environment may serve as a source of mastitis-causing pathogens in animals and horizontal transfer of antibiotic resistance and virulence genes carrying bacterial strains to humans via contaminated milk and meat, surface water and agricultural crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
18
|
Yang F, Shi W, Meng N, Zhao Y, Ding X, Li Q. Antimicrobial resistance and virulence profiles of staphylococci isolated from clinical bovine mastitis. Front Microbiol 2023; 14:1190790. [PMID: 37455736 PMCID: PMC10344457 DOI: 10.3389/fmicb.2023.1190790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Staphylococci, mainly including Staphylococcus aureus and coagulase-negative staphylococci (CNS), are one of the most common pathogens causing bovine mastitis worldwide. In this study, we investigated the antimicrobial resistance and virulence profiles of staphylococci from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. Antimicrobial resistance was determined by disc diffusion combined with E-test method. Genes of antimicrobial resistance and virulence factors were determined by PCR. A total of 332 staphylococcal isolates were confirmed from 1,519 mastitic milk samples, including 172 S. aureus and 160 CNS isolates. Fifteen CNS species were identified, with S. chromogenes being the most frequent found (49.4%), followed by S. equorum (13.8%). Noticeably, 2 S. agnetis isolates were found among the CNS isolates. To our knowledge, this is the first report documenting the presence of S. agnetis from bovine mastitis in China. The S. aureus and CNS isolates showed high resistance against penicillin, followed by erythromycin and tetracycline. Multidrug resistance was found in 11.6 and 16.3% of the S. aureus and CNS isolates, respectively. Resistance to penicillin was attributed to the presence of blaZ, erythromycin resistance to ermC (alone or combined with ermB) and tetracycline resistance to tetK (alone or combined with tetM). Notably, one S. equorum isolate and one S. saprophyticus isolate were both methicillin-resistant and mecA positive. Additionally, all S. aureus isolates carried the adhesin genes fnbpA, clfA, clfB, and sdrC, and most of them contained cna and sdrE. Conversely, only a few of the CNS isolates carried clfA, cna, and fnbA. Regarding toxin genes, all S. aureus isolates harbored hlb, and most of them were hlg positive. The lukE-lukD, lukM, sec, sed, sei, sen, seo, tst, seg, seh, and sej were also detected with low frequencies. However, no toxin genes were observed in CNS isolates. This study reveals high species diversity of staphylococci from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. The findings for the genetic determinants of antimicrobial resistance and virulence factor provide valuable information for control and prevention of staphylococcal bovine mastitis.
Collapse
Affiliation(s)
- Feng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Wenli Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
19
|
Li X, Xu C, Liang B, Kastelic JP, Han B, Tong X, Gao J. Alternatives to antibiotics for treatment of mastitis in dairy cows. Front Vet Sci 2023; 10:1160350. [PMID: 37404775 PMCID: PMC10315858 DOI: 10.3389/fvets.2023.1160350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/26/2023] [Indexed: 07/06/2023] Open
Abstract
Mastitis is considered the costliest disease on dairy farms and also adversely affects animal welfare. As treatment (and to a lesser extent prevention) of mastitis rely heavily on antibiotics, there are increasing concerns in veterinary and human medicine regarding development of antimicrobial resistance. Furthermore, with genes conferring resistance being capable of transfer to heterologous strains, reducing resistance in strains of animal origin should have positive impacts on humans. This article briefly reviews potential roles of non-steroidal anti-inflammatory drugs (NSAIDs), herbal medicines, antimicrobial peptides (AMPs), bacteriophages and their lytic enzymes, vaccination and other emerging therapies for prevention and treatment of mastitis in dairy cows. Although many of these approaches currently lack proven therapeutic efficacy, at least some may gradually replace antibiotics, especially as drug-resistant bacteria are proliferating globally.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bingchun Liang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaofang Tong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Pangprasit N, Srithanasuwan A, Intanon M, Suriyasathaporn W, Chaisri W. Clinical field trial of parenteral amoxicillin for the treatment of clinical and subclinical mastitis in smallholder dairy farms in the upper region of Northern Thailand. Vet World 2023; 16:792-798. [PMID: 37235160 PMCID: PMC10206963 DOI: 10.14202/vetworld.2023.792-798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/09/2023] [Indexed: 05/28/2023] Open
Abstract
Background and Aim Mastitis, primarily caused by intramammary bacterial infection, is the most expensive disease in the global dairy industry due to its negative impact on milk composition and manufacturing properties. This study aimed to evaluate the efficacy of parenteral amoxicillin in the treatment of clinical and subclinical mastitis in smallholder dairy farms in Northern Thailand. Materials and Methods A total of 51 cows with clinical and subclinical mastitis from dairy cooperatives in Lamphun and Chiang Mai provinces, Northern Thailand, were enrolled in this study. Conventional bacteriological procedures were applied to identify the causative bacteria in milk samples from these cows before and 7 days after treatment, and antibiotic susceptibility tests were conducted using the disk diffusion method for all bacteria isolated before treatment. All cows with mastitis were administered 15 mg/kg of amoxicillin (LONGAMOX®, Syva Laboratories SA, Spain) intramuscularly every other day for 3 days. Results Environmental streptococcal bacteria (Streptococcus uberis and Streptococcus spp.) were commonly isolated from infected quarters and were highly susceptible to amoxicillin (100%). The clinical efficacy of amoxicillin treatment for clinical mastitis cases was 80.43%, and the bacteriological efficacy was 47.82%, with opportunistic staphylococcal bacteria (coagulase-negative staphylococci) and contagious streptococcal bacteria (Streptococcus agalactiae) being the most sensitive microorganisms (100%). In subclinical mastitis cases, the bacteriological efficacy of parenteral amoxicillin was 70.45%, with environmental streptococcal bacteria (S. uberis) being the most (100%) sensitive microorganisms. Conclusion Amoxicillin is highly efficacious and can be used to treat clinical and subclinical mastitis in dairy cows, particularly mastitis caused by environmental Streptococcus spp. These findings could be used to guide treatment regimens in veterinary practice in smallholder dairy farms in Thailand.
Collapse
Affiliation(s)
- Noppason Pangprasit
- Department of Livestock Clinics, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thamarat 80160, Thailand
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Anyaphat Srithanasuwan
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Montira Intanon
- Research Center of Producing and Development of Products and Innovations for Animal Health, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Witaya Suriyasathaporn
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Wasana Chaisri
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
21
|
Xie X, Pan Z, Yu Y, Yu L, Wu F, Dong J, Wang T, Li L. Prevalence, Virulence, and Antibiotics Gene Profiles in Lactococcus garvieae Isolated from Cows with Clinical Mastitis in China. Microorganisms 2023; 11:379. [PMID: 36838344 PMCID: PMC9965093 DOI: 10.3390/microorganisms11020379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Lactococcus garvieae (L. garvieae) is a pathogenic gram-positive, catalase-negative (GPCN) bacterium that causes bovine mastitis. A total of 49 L. garvieae isolates were identified from 1441 clinical mastitis (CM) samples. The pathogenic effects of L. garvieae were studied with two infection models: bovine mammary epithelial cells cultured in vitro and murine mammary infections in vivo. The overall farm prevalence was 15.5% (13/84 farms in 9/19 provinces) and sample prevalence was 3.40% (49/1441). Post-treatment somatic cell count (SCC) post L. garvieae infection was significantly higher than the other GPCN pathogens isolated, and the bacteriological cure fraction was 41.94% (13/31) after intramammary antibiotic treatment. All L. garvieae isolates were resistant to rifaximin, 12.24% of isolates were resistant to cephalexin, and 10.20% (5/49) were multidrug-resistant (MDR). The most prevalent virulence genes were Hemolysin 1 (hly1)(100%), Hemolysin 2 (hly2) (97.96%), NADH oxidase (NADHO) (100%), Superoxide dismutase (SOD) (100%), Adhesin Pav (Pav) (100%), Adhesin PsaA (PsaA) (100%), Enolase (eno) (100%), Adhesin cluster 1(AC1) (100%), Adhesin cluster 2 (AC2) (100%), and several exopolysaccharides. L. garvieae rapidly adhered to bovine mammary epithelial cells, resulting in an elevated lactate dehydrogenase release. Edema and congestion were observed in challenged murine mammary glands and bacteria were consistently isolated at 12, 24, 48, 72, and 120 h after infection. We concluded that L. garvieae had good adaptive ability in the bovine and murine mammary cells and tissue. Given the resistance profile, penicillin and ampicillin are potential treatments for CM cases caused by L. garvieae.
Collapse
Affiliation(s)
- Xinmei Xie
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lirong Yu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Fan Wu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Dong
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Tiancheng Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Lin Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
22
|
Popitool K, Wataradee S, Wichai T, Noitang S, Ajariyakhajorn K, Charoenrat T, Boonyaratanakornkit V, Sooksai S. Potential of Pm11 antimicrobial peptide against bovine mastitis pathogens. Am J Vet Res 2022; 84:ajvr.22.06.0096. [PMID: 36480332 DOI: 10.2460/ajvr.22.06.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate an alternative treatment for bovine mastitis by using Pm11 antimicrobial peptide. SAMPLE 5 bovine mastitis pathogens that were previously isolated from cows affected by either clinical or subclinical mastitis. PROCEDURES The current study introduces Pm11 antimicrobial peptide as an alternative treatment for bovine mastitis. The antibacterial activity of Pm11 was tested against Escherichia coli strain SCM1249, Klebsiella spp strain SCM1282, Staphylococcus aureus strain CM967, Streptococcus agalactiae strain SCM1084, and Streptococcus uberis strain SCM1310 using minimum bactericidal concentrations (MBCs) and time-kill kinetics. The pathogens' morphological changes were demonstrated using a scanning electron microscope (SEM). The cytotoxicity of Pm11 was assessed using the minimum hemolytic concentration assay. RESULTS MBCs ranged from 2.5 to 10 μM and IC50 ranged from 0.32 to 2.07 μM. Time-kill kinetics at MBC demonstrated that Pm11 reduced viable cell counts of S agalactiae strain SCM1084 and S uberis strain SCM1310 from 105 to 0 CFU/mL within 1 h. E coli strain SCM1249 and S aureus strain CM967 were reduced from 105 to 0 CFU/mL within 4 h. The average Pm11-induced hemolytic activity was < 10% for all Pm11 concentrations tested except at the maximum concentration tested (160 μM: 10.19 ± 2.29%). Based on SEM, Pm11 induced morphological and cellular changes in S aureus and E coli. CLINICAL RELEVANCE Pm11 antimicrobial peptide demonstrated in vitro antibacterial activity against the common bovine mastitis pathogens E coli, S aureus, S agalactiae, and S uberis, except Klebsiella spp, and should be further investigated in vivo.
Collapse
Affiliation(s)
- Kwantida Popitool
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Sirirat Wataradee
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanaporn Wichai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Sajee Noitang
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Kittisak Ajariyakhajorn
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Theppanya Charoenrat
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit, Pathum Thani, Thailand
| | - Viroj Boonyaratanakornkit
- Department of Clinical Chemistry and Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sarintip Sooksai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
23
|
Rychshanova R, Mendybayeva A, Miciński B, Mamiyev N, Shevchenko P, Bermukhametov Z, Orzechowski B, Miciński J. Antibiotic resistance and biofilm formation in Staphylococcus aureus isolated from dairy cows at the stage of subclinical mastitis in northern Kazakhstan. Arch Anim Breed 2022; 65:439-448. [PMID: 36756165 PMCID: PMC9901520 DOI: 10.5194/aab-65-439-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 10/25/2022] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is an important causative agent of subclinical bovine mastitis worldwide. The aim of this research was to study the ability of S. aureus to form biofilms. Additionally, we examined the genes involved in cell resistance and sensitivity to antibiotics. Samples were collected from December 2020 to May 2021 from Simmental and black-and-white cows. The study was carried out on a total number of 643 cows, of which 278 (23 %) were in the subclinical mastitis stage. Finally, 64 S. aureus isolates were isolated and identified. The highest level of phenotypic resistance was observed to antibiotics of the tetracycline (tetracycline - 48.4 %, doxycycline - 32.8 %) and β -lactam (ampicillin - 45.3 %, penicillin - 45.3 %) groups. The genes encoding antibiotic resistance were characterized with the polymerase chain reaction method: blaZ in 30 isolates, mecA in 1 isolate, ermC in 15 isolates, aph (3) in 2 isolates, tetK in 19 isolates, tetM in 9 isolates. The tested S. aureus isolates had the ability to form biofilms in 76.6 % ( 49 / 64 ) of cases. Of these, 69.4 % were resistant to at least one antibiotic. The obtained results have shown that S. aureus, identified in cows with subclinical mastitis, was resistant mainly to tetracycline and β -lactam antibiotics. In addition, S. aureus isolates expressed resistance genes to the above drugs and had the ability to form biofilm. This study will help to identify the extent of antibiotic resistance and monitor S. aureus contamination of raw milk.
Collapse
Affiliation(s)
- Raushan Rychshanova
- Institute of Applied Biotechnology, Baitursynov University,
Kostanay, Kazakhstan
| | - Anara Mendybayeva
- Institute of Applied Biotechnology, Baitursynov University,
Kostanay, Kazakhstan
| | - Bartosz Miciński
- Department of Clinical Physiology, Faculty of Veterinary Medicine,
University of Warmia and Mazury in Olsztyn, Oczapowskiego 5/150, 10-719
Olsztyn, Poland
| | - Nurlan Mamiyev
- Institute of Applied Biotechnology, Baitursynov University,
Kostanay, Kazakhstan
| | - Pavel Shevchenko
- Institute of Applied Biotechnology, Baitursynov University,
Kostanay, Kazakhstan
| | | | - Bartosz Orzechowski
- Department of Sheep and Goat Breeding, Faculty of Animal
Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5/150, 10-719 Olsztyn, Poland
| | - Jan Miciński
- Department of Sheep and Goat Breeding, Faculty of Animal
Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5/150, 10-719 Olsztyn, Poland
| |
Collapse
|
24
|
Analysis of Antimicrobial Resistance and Genetic Correlations of Escherichia Coli in Dairy Cow Mastitis. J Vet Res 2022; 66:571-579. [PMID: 36846038 PMCID: PMC9945000 DOI: 10.2478/jvetres-2022-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Escherichia coli is a widespread environmental pathogen frequently causing dairy cow mastitis. This bacterium is particularly capable of acquiring antimicrobial resistance, which can have severe impacts on animal food safety and human health. The objective of the study was to investigate antimicrobial resistance and genetic correlations of E. coli from dairy cow mastitis cases in northern China. Material and Methods Forty strains of E. coli from 196 mastitis milk samples were collected, susceptibility to 13 common antibiotics and the prevalence of resistance genes were tested in these strains, and the genetic characteristics were identified by multilocus sequence typing. Results The results showed that most isolates were multidrug resistant (MDR) (75%), and the resistance rates to cefazolin, trimethoprim-sulfamethoxazole and ampicillin were 77.5%, 55.0%, and 52.5%, respectively. The representative genes of the isolates were aadA (62.5%) and tet(B) (60.0%). Multilocus sequence typing showed 19 different sequence types (STs) and 5 clonal complexes (CCs) in the 40 isolates, mainly represented by ST10 and CC10. The strains of the same ST or CC showed a high level of genetic relatedness, but the characteristics of their antimicrobial resistance were markedly different. Conclusion Most E. coli isolates in the study were MDR strains. Some strains of the same ST or CC showed diverse resistance characteristics to common antimicrobials. Therefore, E. coli from dairy cow mastitis in northern China should be investigated to elucidate its antimicrobial resistance and genotypes.
Collapse
|
25
|
Liang B, Zhao W, Han B, Barkema HW, Niu YD, Liu Y, Kastelic JP, Gao J. Biological and genomic characteristics of two bacteriophages isolated from sewage, using one multidrug-resistant and one non-multidrug-resistant strain of Klebsiella pneumoniae. Front Microbiol 2022; 13:943279. [PMID: 36312979 PMCID: PMC9608510 DOI: 10.3389/fmicb.2022.943279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Bovine mastitis caused by multi-drug resistant (MDR) Klebsiella pneumoniae is difficult to treat with antibiotics, whereas bacteriophages may be a viable alternative. Our objective was to use 2 K. pneumoniae strains, 1 MDR and the other non-MDR, to isolate phages from sewage samples and compare their biological and genomic characteristics. Additionally, phage infected mouse mammary gland was also analyzed by H&E staining and ELISA kits to compare morphology and inflammatory factors, respectively. Based on assessments with double agar plates and transmission electron microscopy, phage CM_Kpn_HB132952 had clear plaques surrounded by translucent halos on the bacterial lawn of K. pneumoniae KPHB132952 and belonged to Siphoviridae, whereas phage CM_Kpn_HB143742 formed a clear plaque on the bacterial lawn of K. pneumoniae KPHB143742 and belonged to Podoviridae. In 1-step growth curves, CM_Kpn_HB132952 and CM_Kpn_HB143742 had burst sizes of 0.34 and 0.73 log10 PFU/mL, respectively. The former had a latent period of 50 min and an optimal multiplicity of infection (MOI) of 0.01, whereas for the latter, the latent period was 30 min (MOI = 1). Phage CM_Kpn_HB132952 had better thermal and acid–base stability than phage CM_Kpn_HB143742. Additionally, both phages had the same host range rate but different host ranges. Based on Illumina NovaSeq, phages CM_Kpn_HB132952 and CM_Kpn_HB143742 had 140 and 145 predicted genes, respectively. Genomic sequencing and phylogenetic tree analysis indicated that both phages were novel phages belonging to the Klebsiella family. Additionally, the histopathological structure and inflammatory factors TNF-α and IL-1β were not significantly different among phage groups and the control group. In conclusion, using 1 MDR and 1 non-MDR strain of K. pneumoniae, we successfully isolated two phages from the same sewage sample, and demonstrated that they had distinct biological and genomic characteristics.
Collapse
Affiliation(s)
- Bingchun Liang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenpeng Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, Hospital Drive NW, University of Calgary, Calgary, AB, Canada
| | - Yan D. Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Hospital Drive NW, University of Calgary, Calgary, AB, Canada
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - John P. Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, Hospital Drive NW, University of Calgary, Calgary, AB, Canada
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Jian Gao,
| |
Collapse
|
26
|
Hoque MN, Talukder AK, Saha O, Hasan MM, Sultana M, Rahman ANMA, Das ZC. Antibiogram and virulence profiling reveals multidrug resistant
Staphylococcus aureus
as the predominant aetiology of subclinical mastitis in riverine buffaloes. Vet Med Sci 2022; 8:2631-2645. [DOI: 10.1002/vms3.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- M. Nazmul Hoque
- Department of Gynecology Obstetrics and Reproductive Health Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) Gazipur Bangladesh
| | - Anup Kumar Talukder
- Department of Gynecology Obstetrics and Reproductive Health Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) Gazipur Bangladesh
| | - Otun Saha
- Department of Microbiology Noakhali Science and Technology University Noakhali Bangladesh
- Department of Microbiology University of Dhaka Dhaka Bangladesh
| | - Mehedi Mahmudul Hasan
- Department of Fisheries and Marine Science Noakhali Science and Technology University Noakhali Bangladesh
| | - Munawar Sultana
- Department of Microbiology University of Dhaka Dhaka Bangladesh
| | - ANM Aminoor Rahman
- Department of Gynecology Obstetrics and Reproductive Health Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) Gazipur Bangladesh
| | - Ziban Chandra Das
- Department of Gynecology Obstetrics and Reproductive Health Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) Gazipur Bangladesh
| |
Collapse
|
27
|
Bai X, Wang X, Lin T, Dong W, Gao Y, Ji P, Zhang Y, Zhao X, Zhang Q. Toll-like Receptor 2 Is Associated with the Immune Response, Apoptosis, and Angiogenesis in the Mammary Glands of Dairy Cows with Clinical Mastitis. Int J Mol Sci 2022; 23:ijms231810717. [PMID: 36142648 PMCID: PMC9504312 DOI: 10.3390/ijms231810717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Toll-like receptor 2 (TLR2) plays a crucial role in bacterial recognition and the host immune response during infection. However, its function and downstream biological processes (BPs) in the mammary glands (MGs) of Holstein cows with clinical mastitis (CM) are not fully understood. This study aimed to comprehensively identify the BPs and differentially expressed proteins (DEPs) associated with the bacterial response and TLR2 using data-independent acquisition (DIA) proteomic data. A possible mechanism for the action of TLR2 was proposed, and the results suggested that the expression levels of TLR2 and caspase 8 (CASP8) were positively correlated with the apoptosis of MGs. The expression patterns of TLR2 and TEK receptor tyrosine kinase 2 (Tie2) were negatively correlated with angiogenesis. These results indicated that TLR2 might promote apoptosis in mammary epithelial cells (MECs) and vascular endothelial cells (VECs) via upregulation of CASP8 expression, and inhibition of angiogenesis in VECs via downregulation of Tie2 expression in dairy cows with CM. In conclusion, TLR2 is associated with inflammation, apoptosis, and angiogenesis in the MGs of dairy cows with bacteria-induced mastitis. These results contribute to a deeper understanding of the pathogenic mechanisms and provide the knowledge needed for developing the prevention and treatment of dairy mastitis.
Collapse
Affiliation(s)
- Xu Bai
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xueying Wang
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
| | - Ting Lin
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Weitao Dong
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Peng Ji
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
| | - Yong Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-2482
| |
Collapse
|
28
|
Comparison between Some Phenotypic and Genotypic Methods for Assessment of Antimicrobial Resistance Trend of Bovine Mastitis Staphylococcus aureus Isolates from Bulgaria. Vet Sci 2022; 9:vetsci9080401. [PMID: 36006316 PMCID: PMC9416698 DOI: 10.3390/vetsci9080401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary The aim of the study was to assess the resistance of bovine mastitis Staphylococcus aureus isolates to antimicrobials by comparison of laboratory methods and statistical analysis. For this, 546 mastitis milk samples at 14 farms from 9 districts in Bulgaria were examined. A total of 92 Staphylococcus aureus strains were isolated and identified. The results showed high resistance to sulfadimethoxine (87%), followed by resistance to penicillin (33.7%), erythromycin (13%), streptomycin (8.7%), tetracycline (6.5%) and gentamicin (1.1%). The comparison of the methods demonstrated more than 90% agreement for 9 tested antimicrobial drugs, hence proving reliability of results from monitoring of resistance. Considering the detected discrepancies for some of isolates, an integral evaluation through standard and modern molecular methods for Staphylococcus aureus is recommended. The results from this study add to the microbiology laboratory experience and strategies for mastitis prevention and control programmes. Abstract The aim of this study was to assess the resistance of bovine mastitis S. aureus isolates from farms in Bulgaria to different classes of chemotherapeutic drugs by comparison of some phenotypic and genotypic methods by means of Cohen’s kappa statistics. The study comprised 546 milk samples from subclinical and clinical mastitis at 14 farms from 9 districts in the country. A total of 92 Staphylococcus aureus strains were isolated from tested samples and identified by nuc PCR. The results demonstrated high levels of resistance to sulfadimethoxine (87%), followed by resistance to penicillin (33.7%), erythromycin (13%), streptomycin (8.7%), tetracycline (6.5%) and gentamicin (1.1%). The comparison of both phenotypic tests with respect to 9 antimicrobials revealed strong agreement with kappa coefficient 0.836. An almost complete agreement was evidenced between phenotypic resistance to penicillin and blaZ gene presence, to methicillin with mecA gene, to tetracycline with tet genes, but the agreement between erythromycin resistance and erm genes presence was moderate. This study was the first to demonstrate discrepancy between the behaviour to cefoxitin in the disk diffusion test and oxacillin in the MIC test for an isolate shown to carry the mecA gene in the subsequent genetic analysis. Considering the detected discrepancies for some of isolates, an integral evaluation through phenotypic and molecular methods for monitoring of antimicrobial resistance of Staphylococcus aureus is recommended.
Collapse
|
29
|
Goulart DB, Mellata M. Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front Microbiol 2022; 13:928346. [PMID: 35875575 PMCID: PMC9301288 DOI: 10.3389/fmicb.2022.928346] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mastitis is an inflammation of the udder tissue parenchyma that causes pathological changes in the glandular tissue and abnormalities in milk leading to significant economic losses to the dairy industry across the world. Mammary pathogenic Escherichia (E.) coli (MPEC) is one of the main etiologic agents of acute clinical mastitis in dairy cattle. MPEC strains have virulence attributes to resist the host innate defenses and thrive in the mammary gland environment. The association between specific virulence factors of MPEC with the severity of mastitis in cattle is not fully understood. Furthermore, the indiscriminate use of antibiotics to treat mastitis has resulted in antimicrobial resistance to all major antibiotic classes in MPEC. A thorough understanding of MPEC’s pathogenesis and antimicrobial susceptibility pattern is required to develop better interventions to reduce mastitis incidence and prevalence in cattle and the environment. This review compiles important information on mastitis caused by MPEC (e.g., types of mastitis, host immune response, diagnosis, treatment, and control of the disease) as well as the current knowledge on MPEC virulence factors, antimicrobial resistance, and the dilemma of MPEC as a new pathotype. The information provided in this review is critical to identifying gaps in knowledge that will guide future studies to better design diagnostic, prevent, and develop therapeutic interventions for this significant dairy disease.
Collapse
Affiliation(s)
- Débora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Débora Brito Goulart,
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Melha Mellata,
| |
Collapse
|
30
|
Liu K, Zhang L, Gu X, Qu W. The Prevalence of Klebsiella spp. Associated With Bovine Mastitis in China and Its Antimicrobial Resistance Rate: A Meta-Analysis. Front Vet Sci 2022; 9:757504. [PMID: 35812847 PMCID: PMC9263621 DOI: 10.3389/fvets.2022.757504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Understanding distribution of bovine mastitis pathogen Klebsiella spp. can contribute to the treatment decision and the control within programs of bovine mastitis, we conducted a meta-analysis to investigate the epidemiology and antimicrobial resistance rates of Klebsiella spp. associated with bovine mastitis in China. Three databases, namely, PubMed, Google scholar, and China National Knowledge Infrastructure database, were utilized to obtain relevant publications. According to PRISMA reporting standards, a total of 38 publications were included in the research, among them, 7 papers included an AMR test. The pooled prevalence of Klebsiella spp. was 5.41% (95% CI: 3.87–7.50%). Subgroup analysis revealed that the prevalence was higher in South China (8.55%, 95% CI: 3.57–19.09%) than in North China (4.22%, 95% CI: 2.46–7.14%), in 2010–2020 (7.45%, 95% CI: 5.29–110.40%) than in 2000–2010 (3.14%, 95% CI: 1.90–15.14%), and in the clinical bovine mastitis cases (7.49%, 95% CI: 3.71–14.54%) than in the subclinical cases (4.03%, 95% CI: 1.55–10.08%). The pooled AMR rate revealed that Klebsiella spp. were most resistant to sulfonamides (45.07%, 95% CI: 27.72–63.71%), followed by tetracyclines (36.18%, 95% CI: 23.36–51.34%), aminoglycosides (27.47%, 95% CI: 17.16–40.92%), β-lactams (27.35%, 95% CI: 16.90–41.05%), amphenicol (26.82%, 95% CI: 14.17–44.87%), lincosamides (21.24%, 95% CI: 7.65–46.75%), macrolides (20.98%, 95% CI: 7.20–47.58%), polypeptides (15.51%, 95% CI: 6.46–32.78%), and quinolones (7.8%, 95% CI: 3.25–17.56%). The climate difference between South and North China and the natural pathogenicity of Klebsiella spp. may be the primary reasons for its distribution, and the prevalence of Klebsiella spp. indicated that the genus is an increasing hazard to the dairy industry. The prevalence of AMR in China is commonly higher than in the European countries and Canada, this is a very important concern for strategy programs to control bovine mastitis caused by Klebsiella spp. in China.
Collapse
|
31
|
Zhao N, Yang Y, Xu H, Li L, Hu Y, Liu E, Cui J. Betaine protects bovine mammary epithelial cells against LPS-induced inflammatory response and oxidative damage via modulating NF-κB and Nrf2 signalling pathway. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2070035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nannan Zhao
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, People’s Republic of China
| | - Yuhang Yang
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, People’s Republic of China
| | - Haixu Xu
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, People’s Republic of China
| | - Lulu Li
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, People’s Republic of China
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Enqi Liu
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, People’s Republic of China
| | - Jue Cui
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, People’s Republic of China
| |
Collapse
|
32
|
Corona-Gómez L, Hernández-Andrade L, Mendoza-Elvira S, Ricardo-González DI, Pérez-Gerardo MD, Quintanar-Guerrero D. Effect of the in vitro activity of a component derived from Thymus vulgaris essential oil and tilmicosin on different strains of Staphylococcus sp, Streptococcus sp and Escherichia coli isolated from bovine mastitis. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2050314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Lysett Corona-Gómez
- Laboratorio de Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Izcalli 54740 México
| | - Laura Hernández-Andrade
- Departamento de Bacteriología del Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Cuajimalpa de Morelos, 05110, México
| | - Susana Mendoza-Elvira
- Laboratorio de Microbiología y Virología de las Enfermedades Respiratorias del Cerdo, FES-Cuautitlán, Universidad Nacional Autónoma de México, Izcalli 54740 México
| | - Daniel Israel Ricardo-González
- Departamento de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510 México
| | - Malva Dánae Pérez-Gerardo
- Departamento de Bacteriología del Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Cuajimalpa de Morelos, 05110, México
| | - David Quintanar-Guerrero
- Laboratorio de Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Izcalli 54740 México
| |
Collapse
|
33
|
Genetic characterization and comparative genomics of a multi drug resistant (MDR) Escherichia coli SCM-21 isolated from subclinical case of bovine mastitis. Comp Immunol Microbiol Infect Dis 2022; 85:101799. [DOI: 10.1016/j.cimid.2022.101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
|
34
|
Ouachinou JMAS, Dassou GH, Agbankpé AJ, Koudoro YA, Agbangnan P, Hidalgo Triana N, Favi GA, Djidohokpin D, Adomou AC. Variation of Secondary Metabolite Contents and Activities against Bovine Diarrheal Pathogens among Zygophyllaceae Species in Benin and Implications for Conservation. PLANTA MEDICA 2022; 88:292-299. [PMID: 35144288 DOI: 10.1055/a-1730-9475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Balanites aegyptiaca is a wild plant species largely used in folk medicine and a priority fruit tree in West Africa. In Benin, its overexploitation for ethnoveterinary uses could lead to its rarity or extinction in the long term. In this study, we evaluate the possibilities of its substitution by other Zygophyllaceae species. This study was based on optimal defense theory, which distinguished 2 categories of plants: K-strategist species and r-strategist species. Phytochemical screening was carried out based on aqueous extracts of the leafy stems of B. aegyptiaca and Guaiacum officinale (K-strategist species) and Tribulus terrestris and Kallstroemia pubescens (r-strategist species) for the identification of chemical compounds. The phenolic compounds were quantified by quercetin and vanillin methods. The extracts were tested against 5 bacterial strains responsible for severe diarrhea in bovines. Our results indicated the presence of many phytochemicals, such as alkaloids, flavonoids, saponosides, and tannins. The diversity in secondary metabolites is higher for r-strategist than K-strategist species. The contents of total polyphenols ranged from 4.82 ± 0.05 to 41.84 mg GAE/g of extract. The flavonoid contents varied from 30.64 ± 0.35 to 57.11 ± 0.13 mg QE/g of extract and those of the tannins from 0.04 ± 0.00 to 0.06 ± 0.01 mg PE/mL. The sensitivity of the bacterial strains showed a significant dependence on the extracts. Of the species, K. pubescens showed a bactericidal activity on the majority of strains tested and thus could be a potential substitute for B. aegyptiaca in the treatment of infectious diarrhea.
Collapse
Affiliation(s)
| | - Gbèwonmèdéa Hospice Dassou
- Laboratoire de Botanique et Ecologie Végétale, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Benin
| | - Alidehou Jerrold Agbankpé
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
| | - Yaya Alain Koudoro
- Laboratoire d'Etude et de Recherche en Chimie Appliquée, Ecole Polytechnique d'Abomey-Calavi, Université d'Abomey-Calavi, Benin
| | - Pascal Agbangnan
- Laboratoire d'Etude et de Recherche en Chimie Appliquée, Ecole Polytechnique d'Abomey-Calavi, Université d'Abomey-Calavi, Benin
| | - Noelia Hidalgo Triana
- Department of Botany and Plant Physiology, Faculty of Science, University of Malaga, Spain
| | - Gnimansou Abraham Favi
- Laboratoire de Botanique et Ecologie Végétale, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Benin
| | - Donald Djidohokpin
- Laboratoire de Botanique et Ecologie Végétale, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Benin
| | - Aristide Cossi Adomou
- Laboratoire de Botanique et Ecologie Végétale, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Benin
| |
Collapse
|
35
|
Bovine mastitis in northeastern Brazil: Occurrence of emergent bacteria and their phenotypic and genotypic profile of antimicrobial resistance. Comp Immunol Microbiol Infect Dis 2022; 85:101802. [DOI: 10.1016/j.cimid.2022.101802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
|
36
|
Liu K, Deng Z, Zhang L, Gu X, Liu G, Liu Y, Chen P, Gao J, Han B, Qu W. Biological Characteristics and Pathogenicity of Helcococcus ovis Isolated From Clinical Bovine Mastitis in a Chinese Dairy Herd. Front Vet Sci 2022; 8:756438. [PMID: 35224069 PMCID: PMC8874022 DOI: 10.3389/fvets.2021.756438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Helcococcus ovis (H. ovis) was first reported in ovine subclinical mastitis milk and post-mortem examination organs in Spain and the United Kingdom in 1999; subsequently, it appeared in cattle, horse, goat, and human. However, isolation and characterization of the pathogen from clinical bovine mastitis is unknown. The objective of this study was to identify the pathogen in clinical bovine mastitis. A total of four strains were isolated from bovine mastitis milk samples from a Chinese dairy farm, and they were identified as H. ovis by microscopic examination and 16S rRNA gene sequencing. Phylogenetic tree was constructed using 16S rRNA gene, and the isolates were closely related to other China strains and strains from Japan. The growth speed of the H. ovis isolated was relatively slower than Streptococcus agalactiae, and the phenotypic characteristics were similar to H. ovis CCUG37441 and CCUG39041 except to lactose. The isolates were sensitive to most of the common used antimicrobials. The H. ovis isolates could lead to mild murine mastitis alone and induce severe mastitis when co-infected with Trueperella pyogenes in the murine mammary infection model constructed.
Collapse
Affiliation(s)
- Kai Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhaoju Deng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Limei Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xiaolong Gu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
37
|
Surface molecularly imprinted solid-phase extraction for the determination of vancomycin and norvancomycin in milk by liquid chromatography coupled to tandem mass spectrometry. Food Chem 2022; 369:130886. [PMID: 34455320 DOI: 10.1016/j.foodchem.2021.130886] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/04/2021] [Accepted: 08/15/2021] [Indexed: 01/03/2023]
Abstract
A simple and sensitive method based on surface molecularly imprinted solid-phase extraction (SMISPE) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed to determine the residues of vancomycin (VCM) and norvancomycin (NVCM) in milk samples. The imprinted polymer prepared with teicoplanin as a virtual template can specifically recognize VCM and NVCM. The samples were purified with SMISPE and analyzed by LC-MS/MS in positive ionization mode. The results showed that the VCM and NVCM had a good linear correlation in the range of 0.5 μg/kg to 50 μg/kg. The recoveries of target analytes were from 83.3% to 92.1%, and the limits of quantification were both 1.0 μg/kg. The matrix effects of VCM and NVCM were -11.0% and -3.43%, respectively. The proposed method can efficiently eliminate the interference from matrix compounds and reduce baseline noise, which is useful for the monitoring of the residues of VCM and NVCM in milk samples.
Collapse
|
38
|
Dyson R, Charman N, Hodge A, Rowe SM, Taylor LF. A survey of mastitis pathogens including antimicrobial susceptibility in southeastern Australian dairy herds. J Dairy Sci 2021; 105:1504-1518. [PMID: 34955276 DOI: 10.3168/jds.2021-20955] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022]
Abstract
The objectives for this study were to (1) describe the pathogen profile in quarters from cows with clinical mastitis and in cows with subclinical mastitis in southeastern Australia; and (2) describe antimicrobial susceptibility among isolated pathogens. As a secondary objective, we aimed to compare antimicrobial resistance prevalence in pathogens isolated from clinical and subclinical mastitis samples. A convenience sample of dairy herds (n = 65) from 4 regions in southeastern Australia (Gippsland, Northern Victoria, Tasmania, Western Victoria) were invited to submit milk samples from cows with clinical and subclinical mastitis over a 14-mo period (January 2011 to March 2012). Farmers were instructed to collect aseptic quarter milk samples from the first 10 cases of clinical mastitis for each month of the study. In addition, farmers submitted composite milk samples from cows with subclinical mastitis at 1 or 2 sampling occasions during the study period. Aerobic culture and biochemical tests were used to identify isolates. Isolates were classified as susceptible, intermediate, or resistant to a panel of antimicrobial agents based on the zone of growth inhibition around antimicrobial-impregnated disks, with antimicrobial resistance (AMR) classified as nonsusceptibility by combining intermediate and resistant groups into a single category. Generalized linear mixed models were used to compare the prevalence of AMR between clinical and subclinical mastitis isolates. For clinical mastitis samples (n = 3,044), 472 samples (15.5%) were excluded for contamination. Of the remaining samples (n = 2,572), the most common results were Streptococcus uberis (39.2%), no growth (27.5%), Staphylococcus aureus (10.6%), Escherichia coli (8.4%), and Streptococcus dysgalactiae (6.4%). For subclinical mastitis samples (n = 1,072), 425 (39.6%) were excluded due to contamination. Of the remaining samples (n = 647), the most common results were no growth (29.1%), Staph. aureus (29.1%), and Strep. uberis (21.6%). The prevalence of AMR among common isolates was low for the majority of antimicrobial agents. Exploratory analysis found that the probability of Staph. aureus demonstrating resistance to penicillin was 5.16 times higher (95% confidence interval: 1.68, 15.88) in subclinical isolates relative to clinical Staph. aureus isolates. A similar association was observed for amoxicillin with subclinical Staph. aureus isolates being 4.70 times (95% confidence interval: 1.49, 14.75) more likely to be resistant than clinical Staph. aureus isolates. We concluded that the most common bacteria causing clinical mastitis in dairy herds in Australia is likely to be Strep. uberis, whereas Staph. aureus is likely to be the most common cause of subclinical mastitis. Despite decades of antimicrobial use to control these organisms, AMR appears to be uncommon.
Collapse
Affiliation(s)
- R Dyson
- Dairy Focus, 181 Wharparilla Drive, Echuca, Victoria, 3564, Australia
| | - N Charman
- Zoetis Australia, 5 Rider Blvd, Rhodes, New South Wales, 2138, Australia
| | - A Hodge
- Zoetis Australia, 5 Rider Blvd, Rhodes, New South Wales, 2138, Australia
| | - S M Rowe
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales 2570, Australia
| | - L F Taylor
- Zoetis Australia, 5 Rider Blvd, Rhodes, New South Wales, 2138, Australia.
| |
Collapse
|
39
|
Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortazar Schmidt C, Herskin M, Michel V, Miranda Chueca MA, Padalino B, Pasquali P, Roberts HC, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Dewulf J, Guardabassi L, Hilbert F, Mader R, Baldinelli F, Alvarez J. Assessment of animal diseases caused by bacteria resistant to antimicrobials: cattle. EFSA J 2021; 19:e06955. [PMID: 34938371 PMCID: PMC8662806 DOI: 10.2903/j.efsa.2021.6955] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this opinion, the antimicrobial resistant bacteria responsible for transmissible diseases that constitute a threat to the health of cattle have been assessed. The assessment has been performed following a methodology based on information collected by an extensive literature review and expert judgement. Details of the methodology used for this assessment are explained in a separate opinion. A global state of play on antimicrobial resistance in clinical isolates of Escherichia coli (non-VTEC), Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Pasteurella multocida, Mannheimia haemolytica, Histophilus somni, Mycoplasma bovis, Moraxella bovis, Fusobacterium necrophorum and Trueperella pyogenes is provided. Among those bacteria, EFSA identified E. coli and S. aureus with ≥ 66% certainty as being the most relevant antimicrobial resistant bacteria in cattle in the EU based on the available evidence. The animal health impact of these most relevant bacteria, as well as their eligibility for being listed and categorised within the animal health law framework will be assessed in separate scientific opinions.
Collapse
|
40
|
Al-Harbi H, Ranjbar S, Moore RJ, Alawneh JI. Bacteria Isolated From Milk of Dairy Cows With and Without Clinical Mastitis in Different Regions of Australia and Their AMR Profiles. Front Vet Sci 2021; 8:743725. [PMID: 34805335 PMCID: PMC8600363 DOI: 10.3389/fvets.2021.743725] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Mastitis is the most common disease in dairy cattle worldwide. The objectives of this study were to estimate the prevalence of different bacterial species associated with mastitis from dairy herds located in geographically and climatically distinct zones in Australia, and to evaluate the antimicrobial susceptibility of the isolated bacteria. Quarter-level milk samples (n = 419) were collected from 151 mastitis cases and 268 healthy controls originating from 18 dairy herds located in tropical (Northern Queensland), subtropical (Southeast Queensland) and temperate zones (Victoria) between March and June 2019. Milk samples were cultured, and the isolated bacteria were grouped into six groups: Enterobacteriaceae spp.; Streptococcus spp.; Staphylococcus aureus, non-aureus staphylococci (NAS); Bacillus spp.; and Others. Mixed effects conditional logistic regression models were applied to quantify the association between the prevalence of each bacterial group and the herd zone and bulk milk tank somatic cell counts (BMTSCC). Of the 205 isolates, 102 (50%) originated from mastitis cases, and 103 (50%) from controls. Staphylococci were the most prevalent (NAS 32% and S. aureus 11%). Contagious mastitis bacteria were more prevalent in Victoria compared to Queensland dairy herds. NAS species (P < 0.001) were less prevalent in herds with BMTSCC >300,000 cells/mL compared with herds with low BMTSCC ≤150,000 cells/mL. Enterobacteriaceae and Streptococcus spp. groups showed high resistance rates to 1 (51 and 47%, respectively), and 2 (11 and 23%, respectively), antimicrobials. More than one third of the Enterobacteriaceae (48%) and Others (43%) groups spp. were resistant to at least three antimicrobials. This study provided a unique opportunity to investigate the prevalence of mastitis-associated bacteria in clinical cases and in apparently healthy controls. The findings of this study help inform mastitis control and antimicrobial stewardship programs aimed to reduce the prevalence of mastitis and antimicrobial resistance in dairy herds.
Collapse
Affiliation(s)
- Hulayyil Al-Harbi
- Good Clinical Practice Research Group (GCPRG), School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia.,School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Shahab Ranjbar
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - John I Alawneh
- Good Clinical Practice Research Group (GCPRG), School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia.,School of Veterinary Medicine, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
41
|
Susceptibility to Nisin, Bactofencin, Pediocin and Reuterin of Multidrug Resistant Staphylococcus aureus, Streptococcus dysgalactiae and Streptococcus uberis Causing Bovine Mastitis. Antibiotics (Basel) 2021; 10:antibiotics10111418. [PMID: 34827356 PMCID: PMC8614789 DOI: 10.3390/antibiotics10111418] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Antibiotics are the most effective strategy to prevent and treat intramammary infections. However, their misuse has led to the dissemination of multidrug resistant bacteria (MDR) for both animals and humans. Efforts to develop new alternative strategies to control bacterial infections related to MDR are continuously on the rise. The objective of this study was to evaluate the antimicrobial activity of different bacteriocins and reuterin against MDR Staphylococcus and Streptococcus clinical isolates involved in bovine mastitis. A bacterial collection including S. aureus (n = 19), S. dysgalactiae (n = 17) and S. uberis (n = 19) was assembled for this study. Antibiotic resistance profiles were determined by the disk diffusion method. In addition, sensitivity to bacteriocins and reuterin was evaluated by determining minimum inhibitory concentrations (MIC). A total of 21 strains (37.5%) were MDR. MICs ranged from ≤1.0 μg/mL to ≥100 μg/mL for nisin and 2.0 to ≥250 μg/mL for bactofencin. Reuterin was active against all tested bacteria, and MICs vary between 70 and 560 μg/mL. Interestingly, 20 MDR strains were inhibited by bactofencin at a concentration of ≤250 μg/mL, while 14 were inhibited by nisin at an MIC of ≤100 μg/mL. Pediocin did not show an inhibitory effect.
Collapse
|
42
|
Shen J, Wu X, Yang Y, Lv Y, Li X, Ding X, Wang S, Yan Z, Yan Y, Yang F, Li H. Antimicrobial Resistance and Virulence Factor of Streptococcus dysgalactiae Isolated from Clinical Bovine Mastitis Cases in Northwest China. Infect Drug Resist 2021; 14:3519-3530. [PMID: 34511943 PMCID: PMC8418370 DOI: 10.2147/idr.s327924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Streptococcus dysgalactiae is a major pathogen in bovine mastitis. The purpose of this study was to survey the prevalence, antimicrobial resistance, as well as the spread of resistance and virulence-associated gene of S. dysgalactiae. Methods A total of 60 S. dysgalactiae strains were obtained from 830 milk samples from Holstein cows with clinical mastitis. Antimicrobial resistance was examined by the disk diffusion method. Antimicrobial resistance and virulence genes were investigated by PCR, agarose gel electrophoresis and 16S rRNA gene sequencing. Results All isolates were resistant to tetracycline and showed a high level of resistance to aminoglycoside antibiotics, where 81.67% of the strains were multi-resistant to these ten sorts of antibiotics. In addition, the most prevalent resistance gene in S. dysgalactiae was aphA-1 (98.33%), followed by blaTEM (96.67%), ermB (83.3%), aadA1/aadA2 (78.33%) and tetL (73.33%). Totally, seven virulence genes with 25 combination patterns were detected in these isolates, and each isolates harbored at least one virulence gene. 21.67% of the isolates carried three or more virulence genes, while one strain with seven virulence-related genes and belonged to cfb+lmb+eno+napr+bca+scpB+cyl. Conclusion These findings indicate that S. dysgalactiae isolated from clinical bovine mastitis cases in Northwest China show a variety of molecular ecology and are highly resistant to antibiotics commonly used in dairy farms. This research will help investigators better understand the pathophysiology S. dysgalactiae in bovine mastitis and choose the appropriate antibiotics to treat mastitis.
Collapse
Affiliation(s)
- Jirao Shen
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xiaohu Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Yayuan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Yanan Lv
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xinpu Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Shengyi Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Zuoting Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Yong Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Feng Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Hongsheng Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
43
|
Zhang T, Niu G, Boonyayatra S, Pichpol D. Antimicrobial Resistance Profiles and Genes in Streptococcus uberis Associated With Bovine Mastitis in Thailand. Front Vet Sci 2021; 8:705338. [PMID: 34485432 PMCID: PMC8416076 DOI: 10.3389/fvets.2021.705338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/14/2021] [Indexed: 12/04/2022] Open
Abstract
Streptococcus uberis is recognized as an environmental mastitis pathogen in dairy cattle. The varied success rate of antibiotic treatment for S. uberis intramammary infection may be associated with the antimicrobial resistance (AMR) of these bacteria. This observational study aimed to analyze 228 S. uberis strains associated with bovine mastitis in northern Thailand from 2010 to 2017. AMR and AMR genes were determined by the minimum inhibitory concentration (MIC) using a microdilution method and polymerase chain reaction, respectively. The majority of S. uberis strains were resistant to tetracycline (187/228, 82.02%), followed by ceftiofur (44/228, 19.30%), and erythromycin (19/228, 8.33%). The MIC50 and MIC90 of ceftiofur in 2017 were 2–4-fold higher than those in 2010 (P < 0.01). Resistance to tetracycline and ceftiofur significantly increased between 2010 and 2017 (P < 0.05). The most common gene detected in S. uberis was tetM (199/228, 87.28%), followed by ermB (151/228, 66.23 %) and blaZ (15/228, 6.58 %). The association between tetracycline resistance and tetM detection was statistically significant (P < 0.01). The detection rates of tetM significantly increased, while the detection rates of tetO and ermB significantly decreased during 2010–2017. AMR monitoring for bovine mastitis pathogens, especially S. uberis, is necessary to understand the trend of AMR among mastitis pathogens, which can help create an AMR stewardship program for dairy farms in Thailand.
Collapse
Affiliation(s)
- Tingrui Zhang
- Doctor of Philosophy Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Guoyi Niu
- Doctor of Philosophy Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sukolrat Boonyayatra
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Research Group for Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Duangporn Pichpol
- Research Group for Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
44
|
Incidence, Etiology, and Risk Factors of Clinical Mastitis in Dairy Cows under Semi-Tropical Circumstances in Chattogram, Bangladesh. Animals (Basel) 2021; 11:ani11082255. [PMID: 34438713 PMCID: PMC8388477 DOI: 10.3390/ani11082255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Bovine clinical mastitis is an inflammatory disease of the mammary gland associated with visual changes in the milk and/or the udder. We show that the incidence of clinical mastitis in commercial dairy farms in Bangladesh is high but with large variation between farms. Streptococci and non-aureus Staphylococci were the most frequently isolated bacteria from quarter milk samples. Staphylococcus aureus and non-aureus Staphylococci were often resistant against penicillin and oxacillin. This work suggests an urgent need for improved udder health management and specifically a more prudent use of antimicrobial agents following a treatment protocol. Abstract Clinical mastitis (CM) is an important production disease in dairy cows, but much of the knowledge required to effectively control CM is lacking, specifically in low-income countries where most farms are small and have specific dairy management, such as regular udder cleaning and practicing hand milking. Therefore, we conducted a 6-month-long cohort study to (a) estimate the incidence rate of clinical mastitis (IRCM) at the cow and quarter level, (b) identify risk factors for the occurrence of CM, (c) describe the etiology of CM, and (d) quantify antimicrobial susceptibility (AMS) against commonly used antimicrobial agents in S. aureus and non-aureus Staphylococcus spp. (NAS) in dairy farms in the Chattogram region of Bangladesh. On 24 farms, all cows were monitored for CM during a 6-month period. Cases of CM were identified by trained farmers and milk samples were collected aseptically before administering any antimicrobial therapy. In total, 1383 lactating cows were enrolled, which totaled 446 cow-years at risk. During the study period, 196 new cases of CM occurred, resulting in an estimated crude IRCM of 43.9 cases per 100 cow-years, though this varied substantially between farms. Among the tested CM quarter samples, Streptococci (22.9%) followed by non-aureus staphylococci (20.3%) were the most frequently isolated pathogens and resistance of S. aureus and NAS against penicillin (2 out of 3 and 27 out of 39 isolates, respectively) and oxacillin (2 out of 3 and 38 out of 39 isolates, respectively) was common. The IRCM was associated with a high milk yield, 28 to 90 days in milk, and a higher body condition score. Our results show that there is substantial room for udder health improvement on most farms.
Collapse
|
45
|
Ma T, Shen L, Wen Q, Lv R, Hou Q, Kwok LY, Sun Z, Zhang H. PacBio sequencing revealed variation in the microbiota diversity, species richness and composition between milk collected from healthy and mastitis cows. MICROBIOLOGY-SGM 2021; 167. [PMID: 34292863 DOI: 10.1099/mic.0.000968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mastitis is the economically most important disease of dairy cows. This study used PacBio single-molecule real-time sequencing technology to sequence the full-length 16S rRNAs from 27 milk samples (18 from mastitis and nine from healthy cows; the cows were at different stages of lactation). We observed that healthy or late stage milk microbiota had significantly higher microbial diversity and richness. The community composition of the microbiota of different groups also varied greatly. The healthy cow milk microbiota was predominantly comprised of Lactococcus lactis, Acinetobacter johnsonii, and Bacteroides dorei, while the milk from mastitis cows was predominantly comprised of Bacillus cereus. The prevalence of L. lactis and B. cereus in the milk samples was confirmed by digital droplets PCR. Differences in the milk microbiota diversity and composition could suggest an important role for some these microbes in protecting the host from mastitis while others associated with mastitis. The results of our research serve as useful references for designing strategies to prevent and treat mastitis.
Collapse
Affiliation(s)
- Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Lingling Shen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Qiannan Wen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Ruirui Lv
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Lai Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, PR China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, PR China
| |
Collapse
|
46
|
Mbindyo CM, Gitao GC, Plummer PJ, Kulohoma BW, Mulei CM, Bett R. Antimicrobial Resistance Profiles and Genes of Staphylococci Isolated from Mastitic Cow's Milk in Kenya. Antibiotics (Basel) 2021; 10:antibiotics10070772. [PMID: 34202836 PMCID: PMC8300721 DOI: 10.3390/antibiotics10070772] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing numbers of potentially zoonotic multidrug-resistant (MDR) staphylococci strains, associated with mastitis in dairy cows, are being reported globally and threaten disease management in both animal and human health. However, the prevalence and antimicrobial resistance profiles of these strains, including methicillin-resistant staphylococci (MRS), in Kenya is not well known. This study investigated the drug resistance profiles and genes carried by 183 staphylococci isolates from 142 dairy cows representing 93 farms recovered from mastitis milk of dairy cows in two selected counties in Kenya. Staphylococci isolates were characterized by phenotypic characteristics, polymerase chain reaction (PCR) amplification, partial sequencing and susceptibility testing for 10 antimicrobial drugs. Detection of seven resistance genes to the various antimicrobial drugs was conducted using PCR. Overall, phenotypic resistance among the staphylococci ranged between 66.1% for ampicillin and 3.5% for fluoroquinolones. Twenty-five percent (25%) of S. aureus and 10.8% of the coagulase-negative staphylococci (CoNS) isolates, were methicillin-resistant staphylococci phenotypically (defined as resistance to cefoxitin disk diffusion). The most common genes found in S. aureus and CoNS were blaZ and strB at 44.3% and 26%, and 78% and 50%, respectively. MDR was observed in 29.67% and 16.3% of S. aureus and CoNS, respectively. These findings pose a threat to bovine mastitis treatment and management as well as human health.
Collapse
Affiliation(s)
- Christine M. Mbindyo
- Department of Veterinary Pathology, Microbiology and Parasitology, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya;
- Correspondence: or
| | - George C. Gitao
- Department of Veterinary Pathology, Microbiology and Parasitology, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya;
| | - Paul Joseph Plummer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- National Institute for Antimicrobial Resistance Research and Education, Ames, IA 50010, USA
| | - Benard W. Kulohoma
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Charles M. Mulei
- Department of Clinical Studies, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya;
| | - Rawlynce Bett
- Department of Animal Production, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya;
| |
Collapse
|
47
|
Lan R, Wan Z, Xu Y, Wang Z, Fu S, Zhou Y, Lin X, Han X, Luo Z, Miao J, Yin Y. Taurine Reprograms Mammary-Gland Metabolism and Alleviates Inflammation Induced by Streptococcus uberis in Mice. Front Immunol 2021; 12:696101. [PMID: 34177964 PMCID: PMC8222520 DOI: 10.3389/fimmu.2021.696101] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Streptococcus uberis (S. uberis) is an important pathogen causing mastitis, which causes continuous inflammation and dysfunction of mammary glands and leads to enormous economic losses. Most research on infection continues to be microbial metabolism-centric, and many overlook the fact that pathogens require energy from host. Mouse is a common animal model for studying bovine mastitis. In this perspective, we uncover metabolic reprogramming during host immune responses is associated with infection-driven inflammation, particularly when caused by intracellular bacteria. Taurine, a metabolic regulator, has been shown to effectively ameliorate metabolic diseases. We evaluated the role of taurine in the metabolic regulation of S. uberis-induced mastitis. Metabolic profiling indicates that S. uberis exposure triggers inflammation and metabolic dysfunction of mammary glands and mammary epithelial cells (the main functional cells in mammary glands). Challenge with S. uberis upregulates glycolysis and oxidative phosphorylation in MECs. Pretreatment with taurine restores metabolic homeostasis, reverses metabolic dysfunction by decrease of lipid, amino acid and especially energy disturbance in the infectious context, and alleviates excessive inflammatory responses. These outcomes depend on taurine-mediated activation of the AMPK–mTOR pathway, which inhibits the over activation of inflammatory responses and alleviates cellular damage. Thus, metabolic homeostasis is essential for reducing inflammation. Metabolic modulation can be used as a prophylactic strategy against mastitis.
Collapse
Affiliation(s)
- Riguo Lan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhixin Wan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenglei Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shaodong Fu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinguang Lin
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhenhua Luo
- School of Water, Energy & Environment, Cranfield University, Cranfield, United Kingdom
| | - Jinfeng Miao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yulong Yin
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center for Animal & Poultry Science, Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Changsha, China
| |
Collapse
|
48
|
Silva-Sanchez J, Barrios-Camacho H, Hernández-Rodriguez E, Duran-Bedolla J, Sanchez-Perez A, Martínez-Chavarría LC, Xicohtencatl-Cortes J, Hernández-Castro R, Garza-Ramos U. Molecular characterization of KPC-2-producing Klebsiella pneumoniae ST258 isolated from bovine mastitis. Braz J Microbiol 2021; 52:1029-1036. [PMID: 33580865 PMCID: PMC8105462 DOI: 10.1007/s42770-021-00445-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Bovine mastitis, an inflammation of the mammary gland of dairy cattle, is the most prevalent disease causing economically important losses, reduced milk production, early culling, veterinary expenses, and higher death rates. Bovine mastitis infections are the main cause for the use of antibiotics; however, the emergence of multidrug-resistant bacteria and the poor or nil response to antibiotics has become a critical global health problem. The goal of this study was the characterization of bacterial infections associated with clinical bovine mastitis. All the isolates were multidrug-resistant and were negative for the production of extended spectrum β-lactamases. However, all isolates were identified as carbapenemase-producing organisms by the Carba NP test. The carbapenemase identified was the product of the KPC-2 gene. The isolates were identified as Klebsiella pneumoniae and contained virulence genes for fimbriae, lipopolysaccharides, nitrogen starvation genes, and siderophores. Sixty-nine percent of the KPC-2-producing isolates had the same plasmid profile, although the genetic mobilization of resistance by bacterial conjugation was unsuccessful. The carbapenemase corresponded to the plasmid-borne KPC-2 gene identified by Southern blot hybridization. The assay showed a positive signal in the 90 kb (69% of the isolates), 165 kb (31% of the isolates), and 130 kb (6% of the isolates) plasmids. The IncFIIy and IncFIIk replicons were detected among these K. pneumoniae isolates. The PFGE and MLST analysis showed that all of the isolates are comprised by two clones (A and B) belonging to Sequence Type 258. This is the first report of K. pneumoniae producing carbapenemase KPC-2 isolated from bovine mastitis.
Collapse
Affiliation(s)
- Jesús Silva-Sanchez
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán. C.P, 62100, Cuernavaca, Morelos, México
| | - Humberto Barrios-Camacho
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán. C.P, 62100, Cuernavaca, Morelos, México
| | - Emmanuel Hernández-Rodriguez
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán. C.P, 62100, Cuernavaca, Morelos, México
| | - Josefina Duran-Bedolla
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán. C.P, 62100, Cuernavaca, Morelos, México
| | - Alejandro Sanchez-Perez
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán. C.P, 62100, Cuernavaca, Morelos, México
| | - Luary C Martínez-Chavarría
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, México
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México, Dr. Federico Gómez, Cuauhtémoc, 06720, Ciudad de México, México
| | - Rigoberto Hernández-Castro
- Departamento Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González", Calzada de Tlalpan 4800, 14080. Tlalpan, Cd de Mexico, Mexico.
| | - Ulises Garza-Ramos
- Laboratorio de Resistencia Bacteriana, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán. C.P, 62100, Cuernavaca, Morelos, México.
| |
Collapse
|
49
|
Subclinical Mastitis in Selected Bovine Dairy Herds in North Upper Egypt: Assessment of Prevalence, Causative Bacterial Pathogens, Antimicrobial Resistance and Virulence-Associated Genes. Microorganisms 2021; 9:microorganisms9061175. [PMID: 34072543 PMCID: PMC8229104 DOI: 10.3390/microorganisms9061175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Mastitis is a significant disease affecting dairy cattle farms in Egypt. The current study aimed to investigate the prevalence and major bacterial pathogens causing subclinical mastitis (SCM) in three bovine dairy herds, with a history of SCM, at three Governorates in North Upper Egypt. The antimicrobial resistance profiles and specific virulence-associated genes causing bovine SCM were investigated. One thousand sixty-quarter milk samples (QMS) were collected aseptically from 270 apparently healthy cows in three farms and examined. The total prevalence of SCM was 46% and 44.8% based on California Mastitis Test (CMT) and Somatic Cell Count (SCC), respectively. Bacteriological examination of CMT positive quarters revealed that the prevalence of bacterial isolation in subclinically mastitic quarters was 90.4% (26 and 64.3% had single and mixed isolates, respectively). The most frequent bacterial isolates were E. coli (49.8%), Staphylococcus aureus (44.9%), streptococci (44.1%) and non-aureus staphylococci (NAS) (37.1%). Antimicrobial susceptibility testing of isolates revealed a high degree of resistance to the most commonly used antimicrobial compound in human and veterinary medicine. Implementation of PCR revealed the presence of mecA and blaZ genes in 60% and 46.7% of S. aureus isolates and in 26.7% and 53.3% of NAS, respectively. Meanwhile 73.3% of streptococci isolates harbored aph(3’)-IIIa gene conferring resistance to aminoglycosides and cfb gene. All E. coli isolates harbored tetA gene conferring resistance to tetracycline and sul1 gene conferring resistance to sulfonamides. The fimH and tsh genes were found in 80% and 60%, respectively. A significant association between the phenotypes and genotypes of AMR in different bacteria was recorded. The presence of a high prevalence of SCM in dairy animals impacts milk production and milk quality. The coexistence of pathogenic bacteria in milk is alarming, threatens human health and has a public health significance. Herd health improvement interventions are required to protect human health and society.
Collapse
|
50
|
Zhuang C, Gao J, Liu G, Zhou M, Yang J, Wang D, Kastelic JP, Han B. Selenomethionine activates selenoprotein S, suppresses Fas/FasL and the mitochondrial pathway, and reduces Escherichia coli-induced apoptosis of bovine mammary epithelial cells. J Dairy Sci 2021; 104:10171-10182. [PMID: 34053755 DOI: 10.3168/jds.2020-20034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 01/12/2023]
Abstract
Escherichia coli is a major environmental pathogen causing bovine mastitis, characterized by cell death and mammary tissue damage. Apoptosis, a form of cell death, has an important role in the pathogenesis of mastitis. Selenium, an essential trace element, protects against mastitis by acting through several biochemical pathways, potentially including prevention of apoptosis. Our objective was to investigate whether selenomethionine (SeMet) attenuated E. coli-induced apoptosis in bovine mammary epithelial cells (bMEC). These cells were cultured in vitro and treated with 0, 5, 10, 20, and 40 μM SeMet for 12 h, with or without E. coli (multiplicity of infection of 5) for 8 h. Treatment with SeMet/Z-IE(OMe)TD(OMe)-FMK (ZIK)/Z-LE(OMe)HD(OMe)-FMK (ZLK, specific inhibitors of caspase-8 and -9, respectively) significantly counteracted effects of E. coli on bMEC. Specifically, SeMet upregulated selenoprotein S (SeS) and increased mitochondrial membrane potential and the ratio of Bcl-2 and Bax. Furthermore, it decreased protein expressions of Fas, FasL, FADD, cleaved caspase-8, cytochrome c, cleaved caspase-9, and cleaved caspase-3, namely, decreasing protein expression of the Fas/FasL and mitochondrial pathways. Furthermore, it downregulated total apoptosis indexes in E. coli-infected bMEC. Although ZIK and ZLK (specific inhibitors of caspases 8 and 9, respectively) significantly inhibited Fas/FasL and the mitochondrial apoptotic pathway and apoptosis indexes, respectively, substantial apoptosis still occurred. In conclusion, SeMet attenuated E. coli-induced apoptosis in bMEC by activating SeS, associated with Fas/FasL and mitochondrial pathways.
Collapse
Affiliation(s)
- Cuicui Zhuang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Dong Wang
- College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|