1
|
Bongers R, Rochus CM, Houlahan K, Lynch C, Oliveira GA, Rojas de Oliveira H, van Staaveren N, Kelton DF, Miglior F, Schenkel FS, Baes CF. Estimation of genetic parameters and genome-wide association study for enzootic bovine leukosis resistance in Canadian Holstein cattle. J Dairy Sci 2025; 108:611-622. [PMID: 39343214 DOI: 10.3168/jds.2024-25196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (hereafter referred to as leukosis), frequently observed in North American dairy herds. Infection with BLV can lead to persistent lymphocytosis and tumors and is associated with decreased production, immunity. and fertility. With no available treatment or vaccine, reducing the prevalence of leukosis through management and culling has not yet been successful. Genetic selection could contribute to permanent improvement in dairy cattle resistance to leukosis. This study aimed to examine the prevalence and impact of leukosis in Canada and to assess the potential for including leukosis resistance in Canadian national genetic evaluations by characterizing the genetic architecture of leukosis resistance using pedigree and genomic information. A total of 117,349 milk ELISA test records on 96,779 Holstein cows from 950 Canadian herds taken between 2007 and 2021 were provided by Lactanet Canada (Guelph, ON, Canada). Each cow was classified as test-positive for leukosis or test-negative for leukosis. Leukosis was present in ∼77% of herds tested; within those herds, an average of 39% of cows tested were test-positive for leukosis. Heritabilities of 0.10 (SE = 0.001) and 0.07 (SE <0.001) were estimated for leukosis resistance using a linear animal model and BLUP or single-step GBLUP methodology, respectively. Breeding value correlations were estimated between leukosis resistance and economically important and phenotypically relevant traits. Most correlations between leukosis resistance and traits already included in Canadian genetic evaluations were favorable, with the exception of SCS. The candidate genes for leukosis resistance identified using a genome-wide association study were on chromosome 23, with some being part of the major histocompatibility complex. This study showed that genetic evaluation for leukosis resistance is possible, and could be considered for inclusion in Canadian national selection indices.
Collapse
Affiliation(s)
- Renee Bongers
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Christina M Rochus
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kerry Houlahan
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Colin Lynch
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Gerson A Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hinayah Rojas de Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nienke van Staaveren
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David F Kelton
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; Lactanet Canada, Guelph, ON N1K 1E5, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; Institute of Genetics, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern 3001, Switzerland.
| |
Collapse
|
2
|
Kobayashi K, Katakura Y, Ito Y, Kato M, Goto Y, Nakajima H. BoLA-DRB3 alleles influence proviral load and peripheral blood lymphocyte distribution in bovine leukaemia virus-infected cattle. Vet Rec 2024; 195:e4909. [PMID: 39660663 DOI: 10.1002/vetr.4909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Bovine leukaemia virus (BLV)-infected Holstein cattle carrying certain bovine leukocyte antigen (BoLA)-DRB3 alleles were previously shown to be resistant to BLV provirus multiplication, while those carrying other alleles were susceptible. This study aimed to determine whether the BoLA-DRB3 alleles carried by BLV-infected cattle could predict proviral load (PVL) and peripheral blood lymphocyte (PBL) count distribution (PVL/PBL distribution). METHODS Blood samples from Holstein cattle on four dairy farms were tested for the presence of BLV antibodies using a commercial ELISA. The PVL and PBL levels of the BLV-infected cattle were also measured, and genotyping was performed to identify the BoLA-DRB3 alleles they carried, impact of the various BoLA-DRB3 alleles on the PVL/PBL distribution was then investigated. RESULTS Of the 316 cattle tested, 114 were positive for BLV. BLV-infected cattle carrying BoLA-DRB3 alleles DRB3*009:02, DRB3*002:01 and DRB3*014:01:01 were classified as resistant (n = 43), those carrying DRB3*012:01 and DRB3*015:01 alleles were classified as susceptible (n = 42) and the remaining cattle were classified as nonsusceptible/nonresistant (n = 29). Multiple regression analysis revealed that PVL was positively correlated (p = 2.1 × 10-23) with PBL count and age was negatively correlated (p = 1.9 × 10-6) with PBL count. Cattle with DRB3*014:01:01 tended to have a lower PBL count (p = 0.031). LIMITATION The effects of the BoLA-DRB3 alleles DRB3*002:01, DRB3*009:02, DRB3*012:01 and DRB3*015:01 on PVL/PBL distribution were unclear due to the small numbers of BLV-infected animals carrying these alleles. CONCLUSION The BLV transmission risk in cattle can be estimated by examining their BoLA-DRB3 alleles.
Collapse
Affiliation(s)
| | - Yuki Katakura
- Nagano Prefecture Matsumoto Livestock Hygiene Service Center, Matsumoto, Japan
| | - Yui Ito
- Nagano Prefecture Matsumoto Livestock Hygiene Service Center, Matsumoto, Japan
| | - Masaki Kato
- Nagano Prefecture Matsumoto Livestock Hygiene Service Center, Matsumoto, Japan
| | - Yoshiaki Goto
- Nagano Prefecture Ina Livestock Hygiene Service Center, Ina, Japan
| | - Hiromi Nakajima
- Nagano Prefecture Saku Livestock Hygiene Service Center, Saku, Japan
| |
Collapse
|
3
|
Lombard JE, Garry FB. Biosecurity Practices for Mycobacterium aviun subspecies paratuberculosis Infection, Salmonellosis, and Bovine Leukemia Virus on Cattle Operations. Vet Clin North Am Food Anim Pract 2024:S0749-0720(24)00050-1. [PMID: 39632234 DOI: 10.1016/j.cvfa.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Mycobacterium avium subspecies paratuberculosis infection, salmonellosis, and bovine leukosis virus are important dairy and beef cattle diseases from a health perspective. For herds without infection, keeping the disease out through testing of source herds should be prioritized. For herds with infection, control programs should be instituted and followed to reduce the prevalence and ultimately eliminate the disease.
Collapse
Affiliation(s)
- Jason E Lombard
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, AgNext - College of Agriculture, Colorado State University, Fort Collins, CO 80523, USA.
| | - Franklyn B Garry
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Oviedo-Pastrana M, Doria-Ramos M, Mattar S, Oviedo-Socarras T, Vallejo-Timarán D. Seroprevalence of bovine leukemia virus and association with bovine infectious abortion in Creole breeds from tropical grazing herds in the Colombian Caribbean. Vet World 2024; 17:1715-1721. [PMID: 39328435 PMCID: PMC11422635 DOI: 10.14202/vetworld.2024.1715-1721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/09/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim In the Caribbean region of Colombia, the concomitance of endemic infectious agents is a common problem, and coinfections are possible, increasing the complexity of cattle herds' sanitary, reproductive, and productive problems. This study aimed to estimate the seroprevalence of bovine leukemia virus and its association with bovine infectious abortion in grazing Creole breeds from tropical herds in the Colombian Caribbean. Materials and Methods For the determination of bovine leukemia virus (BLV), bovine viral diarrhea virus (BVDV), bovine herpes virus-1 (BoHV-1), and Neospora Caninum (NC), the enzyme-linked immunosorbent assay technique was used. Matrix analysis was performed to represent multiple seroprevalence in the same cow. To explore the association between the seroprevalence of BLV and bovine infectious abortion agents, a multivariate logistic regression model was used. Results The seroprevalence was as follows: BLV 30.78%, BVDV 33.01%, BoHV-1 12.85%, and NC 8.96%. In the multivariate logistic regression model, seroprevalence of BVDV (OR 10.8; 95% CI: 7.5-15.6) and seroprevalence of BoHV-1 (OR 1.8; 95% CI: 1.1-3.0) were associated with the seroprevalence of BLV. Conclusion Animals infected with BLV are more susceptible to coinfections with BVDV and BoHV-1. Implementing healthy measures against these two immunosuppressive infections could enhance the hygiene of numerous cattle herds. This study was designed as a retrospective cross-sectional study, which limits the ability to confirm that BLV is the primary infection. Further studies to confirm the primary infection of BLV with an active viral coinfection are necessary and the factors associated with these phenomena.
Collapse
Affiliation(s)
- Misael Oviedo-Pastrana
- Colombian Agricultural Research Corporation - AGROSAVIA, Turipana Research Center, Montería, Colombia
| | - Matiluz Doria-Ramos
- Colombian Agricultural Research Corporation - AGROSAVIA, Turipana Research Center, Montería, Colombia
| | - Salim Mattar
- University of Córdoba, Institute of Biological Research of the Tropics, Montería, Colombia
| | - Teresa Oviedo-Socarras
- University of Córdoba, Veterinary Medicine and Animal Sciences Faculty, Department of Livestock Sciences, Montería, Colombia
| | - Darío Vallejo-Timarán
- Colombian Agricultural Research Corporation - AGROSAVIA, Obonuco Research Center, Pasto, Colombia
| |
Collapse
|
5
|
Medina JE, Castañeda S, Camargo M, Garcia-Corredor DJ, Muñoz M, Ramírez JD. Exploring viral diversity and metagenomics in livestock: insights into disease emergence and spillover risks in cattle. Vet Res Commun 2024; 48:2029-2049. [PMID: 38865041 DOI: 10.1007/s11259-024-10403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/01/2024] [Indexed: 06/13/2024]
Abstract
Cattle have a significant impact on human societies in terms of both economics and health. Viral infections pose a relevant problem as they directly or indirectly disrupt the balance within cattle populations. This has negative consequences at the economic level for producers and territories, and also jeopardizes human health through the transmission of zoonotic diseases that can escalate into outbreaks or pandemics. To establish prevention strategies and control measures at various levels (animal, farm, region, or global), it is crucial to identify the viral agents present in animals. Various techniques, including virus isolation, serological tests, and molecular techniques like PCR, are typically employed for this purpose. However, these techniques have two major drawbacks: they are ineffective for non-culturable viruses, and they only detect a small fraction of the viruses present. In contrast, metagenomics offers a promising approach by providing a comprehensive and unbiased analysis for detecting all viruses in a given sample. It has the potential to identify rare or novel infectious agents promptly and establish a baseline of healthy animals. Nevertheless, the routine application of viral metagenomics for epidemiological surveillance and diagnostics faces challenges related to socioeconomic variables, such as resource availability and space dedicated to metagenomics, as well as the lack of standardized protocols and resulting heterogeneity in presenting results. This review aims to provide an overview of the current knowledge and prospects for using viral metagenomics to detect and identify viruses in cattle raised for livestock, while discussing the epidemiological and clinical implications.
Collapse
Affiliation(s)
- Julián Esteban Medina
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Mosquera, Cundinamarca, Colombia
| | - Diego J Garcia-Corredor
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Shrestha S, Orsel K, Droscha C, Mijar S, van der Meer F. Removing bovine leukemia virus-infected animals with high proviral load leads to lower within-herd prevalence and new case reduction. J Dairy Sci 2024; 107:6015-6024. [PMID: 38554820 DOI: 10.3168/jds.2023-24484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024]
Abstract
Bovine leukosis is prevalent in the North American dairy industry, and its effect on animal health and production is widely documented. However, not all bovine leukemia virus (BLV)-infected animals transmit the virus equally. Animals with high proviral loads (HPL) of BLV are associated with higher transmission risks, and therefore, their removal may reduce transmission and eventually within-herd prevalence. We aimed to evaluate the impact of selectively removing HPL cows on the within-herd BLV prevalence and incidence rate of BLV infection in 10 dairy herds. Annual blood or milk samples (or both) were collected from adult cows over 3 yr. Positivity with BLV were determined by ELISA tests, and proviral loads in blood of BLV-positive animals were estimated with BLV SS1 quantitative PCR assays. Herd managers were encouraged to consider the proviral load when making culling decisions and implement BLV control practices. Cows with high proviral load had the highest relative risk of removal, indicating the farmers prioritized HPL cows for culling. The within-herd BLV prevalence decreased significantly in 4 herds, whereas BLV incidence rate decreased in 9 herds. Over the 3 yr, the proviral load demonstrated a relatively stable level, suggesting a single proviral load test in an adult cow may suffice to make culling decisions.
Collapse
Affiliation(s)
- Sulav Shrestha
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1.
| | - Karin Orsel
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Casey Droscha
- CentralStar Cooperative Inc., East Lansing, MI 48910
| | - Sanjaya Mijar
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
7
|
Benavides B, Monti G. Bovine leukemia virus transmission rates in persistent lymphocytotic infected dairy cows. Front Vet Sci 2024; 11:1367810. [PMID: 39086766 PMCID: PMC11288960 DOI: 10.3389/fvets.2024.1367810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Bovine leukemia virus (BLV) establishes a lifelong persistent infection in dairy cattle. White blood cell count (WBC) is correlated with proviral load in the blood and milk of BLV-infected cattle, and testing WBC can be used to assess both BLV infectiousness levels and risk of BLV transmission from different types of infected animals. The objective of the study was to compare effective transmission rates (β) and the basic reproduction ratio (R o) among two types of BLV-infected dairy cows in Chile: those affected with persistent lymphocytosis (PL) vs. aleukemic (AL).The estimated (β) coefficient was higher in PL cattle [1.1; 95% Confidence interval (CI) (-1.6, 3.8)], compared to AL cattle (-3.1; 95% CI = -3.7, -2.5). In addition, the R o was higher in PL cattle (60.4; 95% CI = 3.5; 820.6), compared to AL cattle (1.5; 95% CI = 0.7, 3.1). The ratio between PL/AL expected rate of cases was 73.9. The estimated effective transmission rate and the Ro were higher in PL cattle compared to AL cattle. The WBC test is a convenient alternative that can be considered for risk identification and risk management of BLV infection in dairy herds; particularly in livestock regions where laboratory capacity is limited (e.g., use of PCR or gene sequencing techniques) and/or molecular tests are not cost-effective. Therefore, when prevalence of infection is high, the removal of PL cattle should be engaged to control BLV within-herds.
Collapse
Affiliation(s)
- Bibiana Benavides
- Animal Health Department, University of Nariño, San Juan de Pasto, Colombia
| | - Gustavo Monti
- Quantitative Veterinary Epidemiology Group, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
8
|
Strickland JM, Leite de Campos J, Gandy J, Mavangira V, Ruegg PL, Sordillo L. A randomized control trial to test the effect of pegbovigrastim treatment at dry-off on plasma and milk oxylipid profiles during early mammary gland involution and the postparturient period. J Dairy Sci 2024; 107:5070-5089. [PMID: 38246537 DOI: 10.3168/jds.2023-23879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
The early period of mammary gland involution is a critical juncture in the lactation cycle that can have significant effects on milk production and mammary gland health. Pegbovigrastim (PEG) administered 1 wk prior and on the day of parturition can enhance immune function and reduce the incidence of mastitis in the early postpartum period. Oxylipids are potent metabolites of polyunsaturated fatty acids (PUFA) and are important mediators of inflammation. The objective of this study was to evaluate effects of PEG given 1 wk before and at the day of dry-off (D0) on concentrations of oxylipids in plasma and milk from 7 d before D0 to 14 d after, as well as the effects during the first 14 d of the subsequent lactation. We hypothesized that both pro- and anti-inflammatory oxylipids would vary based on initiation of mammary gland involution and that pegbovigrastim would affect oxylipid concentrations, particularly those related to leukocytes. A complete randomized blocked design was used to enroll cows into either a PEG treatment group (n = 10) or control group (n = 10; CON). Blood samples were collected -7, -2, -1, 0, 1, 2, 4, 7, and 14 d relative to dry-off and 5, 10, and 14 d postcalving. Samples were analyzed for PUFA and oxylipids in milk and plasma by ultra-performance mass spectrometry and liquid chromatography tandem quadrupole mass spectrometry, respectively. Overall, 30 lipid mediators were measured in both milk and plasma. Repeated measures analyses revealed a significant interaction of treatment by time for milk 8-iso-keto-15-prostaglandin E2, prostaglandin F2α, plasma 8,12-iso-prostaglandin Fα-VI, 11-hydroxyeicosatetraenoic acid, and 12-hydroxyheptadecatienoic acid. The majority of milk PUFA and oxylipids differed significantly during early mammary gland involution and into the early postpartum period. This study demonstrated changes in oxylipids in milk secretions and plasma during early involution, and further investigation may illuminate multiple complex processes and reveal targets for optimization of mammary gland involution.
Collapse
Affiliation(s)
- Jaimie M Strickland
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824.
| | - Juliana Leite de Campos
- College of Agriculture and Natural Resources, Animal Science, Michigan State University, East Lansing, MI 48824
| | - Jeff Gandy
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| | - Vengai Mavangira
- College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Pamela L Ruegg
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| | - Lorraine Sordillo
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
9
|
Tomé-Poderti L, Olivero-Deibe N, Carrión F, Portela MM, Obal G, Cabrera G, Bianchi S, Lima A, Addiego A, Durán R, Moratorio G, Pritsch O. Characterization and application of recombinant Bovine Leukemia Virus Env protein. Sci Rep 2024; 14:12190. [PMID: 38806566 PMCID: PMC11133380 DOI: 10.1038/s41598-024-62811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
The Bovine Leukemia Virus (BLV) Envelope (Env) glycoprotein complex is instrumental in viral infectivity and shapes the host's immune response. This study presents the production and characterization of a soluble furin-mutated BLV Env ectodomain (sBLV-EnvFm) expressed in a stable S2 insect cell line. We purified a 63 kDa soluble protein, corresponding to the monomeric sBLV-EnvFm, which predominantly presented oligomannose and paucimannose N-glycans, with a high content of core fucose structures. Our results demonstrate that our recombinant protein can be recognized from specific antibodies in BLV infected cattle, suggesting its potential as a powerful diagnostic tool. Moreover, the robust humoral immune response it elicited in mice shows its potential contribution to the development of subunit-based vaccines against BLV.
Collapse
Affiliation(s)
- Lorena Tomé-Poderti
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay.
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses (MAVIVH), INSERM Unit 1259, Université de Tours and CHRU de Tours, Tours, France.
| | | | - Federico Carrión
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - María Magdalena Portela
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Gonzalo Obal
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Gleysin Cabrera
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Sergio Bianchi
- Laboratory of Molecular Biomarkers, Department of Physiopathology, University Hospital, Universidad de la República, 11600, Montevideo, Uruguay
- Functional Genomics Unit, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Analia Lima
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Andrés Addiego
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Experimental Evolution of Viruses, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Otto Pritsch
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Immunobiology Department School of Medicine, Universidad de la República, 11800, Montevideo, Uruguay
| |
Collapse
|
10
|
Lv G, Wang J, Lian S, Wang H, Wu R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals (Basel) 2024; 14:297. [PMID: 38254466 PMCID: PMC10812804 DOI: 10.3390/ani14020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the United States. BLV imposes a substantial economic burden on the cattle industry, particularly in dairy farming, as it leads to a decline in animal production performance and increases the risk of disease. Moreover, trade restrictions on diseased animals and products between countries and regions further exacerbate the problem. Recent studies have also identified fragments of BLV nucleic acid in human breast cancer tissues, raising concerns for public health. Due to the absence of an effective vaccine, controlling the disease is challenging. Therefore, it is crucial to accurately detect and diagnose BLV at an early stage to control its spread and minimize economic losses. This review provides a comprehensive examination of BLV, encompassing its genomic structure, epidemiology, modes of transmission, clinical symptoms, detection methods, hazards, and control strategies. The aim is to provide strategic information for future BLV research.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
11
|
Shrestha S, Orsel K, Barkema HW, Martins L, Shrestha S, van der Meer F. Effects of bovine leukemia virus seropositivity and proviral load on milk, fat, and protein production of dairy cows. J Dairy Sci 2024; 107:530-539. [PMID: 37709045 DOI: 10.3168/jds.2023-23695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
The objective was to evaluate the effects of bovine leukemia virus (BLV) infection, as determined by BLV seropositivity and proviral load, on 305-d milk, fat, and protein production of dairy cows. A cross-sectional study was conducted among 1,712 cows from 9 dairy herds in Alberta, Canada. The BLV status was assessed using an antibody ELISA, whereas BLV proviral load in BLV-seropositive cattle was determined with quantitative PCR. Dairy Herd Improvement 305-d milk, fat, and protein production data were obtained for all enrolled cattle. Differences in these milk end points were assessed in 2 ways: first, by categorizing cows based on BLV serostatus (i.e., BLV positive or negative), and second, by categorizing based on BLV proviral load (i.e., BLV negative, low proviral load [LPL] BLV positive, and high proviral load [HPL] BLV positive). A mixed-effect multivariable linear regression model was used to assess differences in milk parameters. We found that BLV positivity, adjusted for parity and natural log-transformed somatic cell count (SCC), was not associated with reduction in 305-d milk, fat, or protein production. However, significant reductions in 305-d milk, fat, and protein yield occurred in HPL cows, but not in LPL cows, compared with BLV-negative cows, when adjusted for parity number and natural log-transformed SCC. In summary, BLV proviral load may predict effects of BLV infection on milk, fat, and protein production.
Collapse
Affiliation(s)
- Sulav Shrestha
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1.
| | - Karin Orsel
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Larissa Martins
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Samita Shrestha
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
12
|
Borjigin L, Watanuki S, Hamada R, Bai L, Hirose T, Sato H, Yoneyama S, Yasui A, Yasuda S, Yamanaka R, Mimura M, Baba M, Inokuma M, Fujita K, Shinozaki Y, Tanaka N, Takeshima SN, Aida Y. Effectiveness of integrated bovine leukemia virus eradication strategies utilizing cattle carrying resistant and susceptible major histocompatibility complex class II DRB3 alleles. J Dairy Sci 2023; 106:9393-9409. [PMID: 37641252 DOI: 10.3168/jds.2023-23524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023]
Abstract
Bovine leukemia virus (BLV) has spread worldwide and causes serious problems in the cattle industry owing to the lack of effective treatments and vaccines. Bovine leukemia virus is transmitted via horizontal and vertical infection, and cattle with high BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk, are considered major infectious sources within herds. The PVL strongly correlates with highly polymorphic bovine lymphocyte antigen (BoLA)-DRB3 alleles. The BoLA-DRB3*015:01 and *012:01 alleles are known susceptibility-associated markers related to high PVL, and cattle with susceptible alleles may be at a high risk of BLV transmission via direct contact with healthy cows. In contrast, the BoLA-DRB3*009:02 and *014:01:01 alleles comprise resistant markers associated with the development of low PVL, and cattle with resistant alleles may be low-risk spreaders for BLV transmission and disrupt the BLV transmission chain. However, whether polymorphisms in BoLA-DRB3 are useful for BLV eradication in farms remains unknown. Here, we conducted a validation trial of the integrated BLV eradication strategy to prevent new infection by resistant cattle and actively eliminate susceptible cattle in addition to conventional BLV eradication strategies to maximally reduce the BLV prevalence and PVL using a total of 342 cattle at 4 stall-barn farms in Japan from 2017 to 2019. First, we placed the resistant milking cattle between the BLV-positive and BLV-negative milking cattle in a stall barn for 3 yr. Interestingly, the resistant cattle proved to be an effective biological barrier to successfully block the new BLV infections in the stall-barn system among all 4 farms. Concomitantly, we actively eliminated cattle with high PVL, especially susceptible cattle. Indeed, 39 of the 60 susceptible cattle (65%), 76 of the 140 neutral cattle (54%), and 20 of the 41 resistant cattle (48.8%) were culled on 4 farms for 3 years. Consequently, BLV prevalence and mean PVL decreased in all 4 farms. In particular, one farm achieved BLV-free status in May 2020. By decreasing the number of BLV-positive animals, the revenue-enhancing effect was estimated to be ¥5,839,262 ($39,292.39) for the 4 farms over 3 yr. Our results suggest that an integrated BLV eradication program utilization of resistant cattle as a biological barrier and the preferential elimination of susceptible cattle are useful for BLV infection control.
Collapse
Affiliation(s)
- Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Sonoko Watanuki
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Rania Hamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoya Hirose
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuji Yoneyama
- Kenou Livestock Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan
| | - Anna Yasui
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Sohei Yasuda
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Risa Yamanaka
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Munehito Mimura
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Miho Baba
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | | | - Keisuke Fujita
- Chuo Livestock Hygiene Service Center, Chiba 262-0011, Japan
| | - Yasuo Shinozaki
- Nanbu Livestock Hygiene Service Center, Kamogawa, Chiba 296-0033, Japan
| | - Naoko Tanaka
- Nanbu Livestock Hygiene Service Center, Kamogawa, Chiba 296-0033, Japan
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Food and Nutrition, Jumonji University, Niiza, Saitama 352-8510, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan..
| |
Collapse
|
13
|
Wu X, Notsu K, Matsuura Y, Mitoma S, El Daous H, Norimine J, Sekiguchi S. Development of droplet digital PCR for quantification of bovine leukemia virus proviral load using unpurified genomic DNA. J Virol Methods 2023; 315:114706. [PMID: 36849053 DOI: 10.1016/j.jviromet.2023.114706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Bovine leukemia virus (BLV) is the causative agent of a B-cell tumor called enzootic bovine leukosis. Preventing BLV spreading is required to reduce economic loss related to BLV infection of livestock. To quantify proviral load (PVL) more easily and rapidly, we developed a quantification system of PVL using droplet digital PCR (ddPCR). This method uses a multiplex TaqMan assay of the BLV provirus and housekeeping gene RPP30 for the quantification of BLV in BLV-infected cells. Furthermore, we combined ddPCR with DNA purification-free sample preparation (unpurified genomic DNA). The percentage of BLV-infected cells based on unpurified genomic DNA was highly correlated with that based on purified genomic DNA (correlation coefficient: 0.906). Thus, this new technique is a suitable method to quantify PVL of BLV-infected cattle in a large sample number.
Collapse
Affiliation(s)
- Xinyue Wu
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Kousuke Notsu
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Yuichi Matsuura
- Division of Infectious Animal Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305-0856, Japan.
| | - Shuya Mitoma
- Division of Immunology, Department of Infectious disease, Faculty of Medicine, University of Miyazaki, Japan.
| | - Hala El Daous
- Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Junzo Norimine
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan.
| | - Satoshi Sekiguchi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan.
| |
Collapse
|
14
|
Taxis TM, Harbowy RM, Niles D, Sporer KR, Bartlett PC. Controlling bovine leukemia virus in a large dairy herd by selective culling based on diagnostic testing. APPLIED ANIMAL SCIENCE 2023. [DOI: 10.15232/aas.2022-02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Abstract
In the transmission control of chronic and untreatable livestock diseases such as bovine leukemia virus (BLV) infection, the removal of viral superspreaders is a fundamental approach. On the other hand, selective breeding of cattle with BLV-resistant capacity is also critical for reducing the viral damage to productivity by keeping infected cattle. To provide a way of measuring BLV proviral load (PVL) and identifying susceptible/resistant cattle simply and rapidly, we developed a fourplex droplet digital PCR method targeting the BLV pol gene, BLV-susceptible bovine major histocompatibility complex (BoLA)-DRB3*016:01 allele, resistant DRB3*009:02 allele, and housekeeping RPP30 gene (IPATS-BLV). IPATS-BLV successfully measured the percentage of BLV-infected cells and determined allele types precisely. Furthermore, it discriminated homozygous from heterozygous carriers. Using this method to determine the impact of carrying these alleles on the BLV PVL, we found DRB3*009:02-carrying cattle could suppress the PVL to a low or undetectable level, even with the presence of a susceptible heterozygous allele. Although the population of DRB3*016:01-carrying cattle showed significantly higher PVLs compared with cattle carrying other alleles, their individual PVLs were highly variable. Because of the simplicity and speed of this single-well assay, our method has the potential of being a suitable platform for the combined diagnosis of pathogen level and host biomarkers in other infectious diseases satisfying the two following characteristics of disease outcomes: (i) pathogen level acts as a critical maker of disease progression; and (ii) impactful disease-related host genetic biomarkers are already identified. IMPORTANCE While pathogen-level quantification is an important diagnostic of disease severity and transmissibility, disease-related host biomarkers are also useful in predicting outcomes in infectious diseases. In this study, we demonstrate that combined proviral load (PVL) and host biomarker diagnostics can be used to detect bovine leukemia virus (BLV) infection, which has a negative economic impact on the cattle industry. We developed a fourplex droplet digital PCR assay for PVL of BLV and susceptible and resistant host genes named IPATS-BLV. IPATS-BLV has inherent merits in measuring PVL and identifying susceptible and resistant cattle with superior simplicity and speed because of a single-well assay. Our new laboratory technique contributes to strengthening risk-based herd management used to control within-herd BLV transmission. Furthermore, this assay design potentially improves the diagnostics of other infectious diseases by combining the pathogen level and disease-related host genetic biomarker to predict disease outcomes.
Collapse
|
16
|
Nakada S, Fujimoto Y, Kohara J, Makita K. Economic losses associated with mastitis due to bovine leukemia virus infection. J Dairy Sci 2022; 106:576-588. [DOI: 10.3168/jds.2021-21722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
|
17
|
John EE, Droscha C, Cameron M, Stryhn H, Keefe G, McClure JT. Development of a predictive model for bovine leukemia virus proviral load. Vet Med (Auckl) 2022; 36:1827-1836. [PMID: 35950569 PMCID: PMC9511096 DOI: 10.1111/jvim.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
Background There is currently no commercially available method in Canada to identify bovine leukemia virus (BLV)‐positive cows with high proviral load (PVL). Objectives First, develop a model to predict PVL using common, commercially available, cost‐effective diagnostic tests. Second, investigate the relationship between lymphocyte count and PVL in BLV‐positive cows. Animals A total of 339 BLV‐positive and 62 BLV‐seronegative cows on 15 dairy farms. Methods Cross‐sectional study. Blood and milk samples were collected from all lactating BLV‐positive cows on each farm and 5 to 10 BLV‐seronegative cows depending on herd size. Blood and milk samples were tested for anti‐BLV antibodies using enzyme‐linked immunosorbent assay (ELISA). Complete blood counts were performed on blood samples, and standard components analyses were obtained for milk samples. Proviral load was determined by quantitative polymerase chain reaction for each cow. Results The inverse of lymphocyte count, the square of the inverse of lymphocyte count, and milk ELISA percent positivity were positively associated with increasing PVL in BLV‐positive cows. For BLV‐positive cows, lymphocyte count >5.2 × 109/L predicted a high PVL (BLV:Bovine DNA of >1 in blood) with a sensitivity of 92.4% and a specificity of 79.8%. For BLV‐positive cows, white blood cell count >10.8 × 109/L predicted a high PVL, with a sensitivity of 85.5% and a specificity of 83.6%. Conclusions and Clinical Importance Based on these results, producers can implement commonly available diagnostic tests to identify cows with high probability of having high PVL, which may help in designing effective disease control strategies for BLV‐positive herds.
Collapse
Affiliation(s)
- Emily E John
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Casey Droscha
- CentralStar Cooperative, Inc., Lansing, Michigan, USA
| | - Marguerite Cameron
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Henrik Stryhn
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Greg Keefe
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - J Trenton McClure
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
18
|
Benavides B, Monti G. Assessment of Natural Transmission of Bovine Leukemia Virus in Dairies from Southern Chile. Animals (Basel) 2022; 12:1734. [PMID: 35804632 PMCID: PMC9264828 DOI: 10.3390/ani12131734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that affects cattle worldwide. A longitudinal study was conducted with the aim to (a) estimate the incidence rate of the BLV infection of dairy farms in the regions of Los Ríos and Los Lagos (Chile), and (b) describe the frequency and epidemiological association of risk management practices related to new cases in cattle on dairy farms in Southern Chile. Infection status was based on commercial blocking ELISA results, on serum and milk. Individual information on animals and management practices was extracted from farm records, and then the most likely date of infection for new cases was estimated. The number of new infections was used to calculate the within-herd incidence rate. Adult animals had an incidence rate of 1.16 (95% CI 0.96; 1.20) cases per 100 cow-months at risk, while for young animals it was 0.64 (95% CI 0.44; 1.00) cases per 100 animal-months at risk. Rectal palpation, artificial insemination, and injections were the most common practices related to infection. Further studies are needed to determine if these are the only practices that facilitate spreading or if there are other practices that can be handled better in order to reduce the spread of BLV.
Collapse
Affiliation(s)
- Bibiana Benavides
- Animal Health Department, University of Nariño, San Juan de Pasto 52001, Colombia;
| | - Gustavo Monti
- Quantitative Veterinary Epidemiology Group, Animal Sciences Department, Wageningen University and Research, 6702 PB Wageningen, The Netherlands
| |
Collapse
|
19
|
Horalskyi LP, Sokulskyi IM, Gutyj BV, Goralskaya IY, Kolesnik NL. Pathogenetic aspects of retroviral infections. UKRAINIAN JOURNAL OF VETERINARY AND AGRICULTURAL SCIENCES 2022. [DOI: 10.32718/ujvas5-1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bovine leukemia and equine infectious anemia are registered in most regions of Ukraine and in many countries worldwide. This is accompanied by economic losses and reduced quality of livestock products, which determines the relevance of the study of retroviral infections, their diagnosis, and pathogenesis. The goal of our research was to find and improve the methodological foundations of the development of the pathological process for a more in-depth study of the etiology, pathogenesis, treatment, and prevention of retroviral infections. The object of the study was blood, lymph nodes, spleen, heart, lungs, liver, and kidneys for bovine leukemia and equine infectious anemia. Hematological, anatomical, histological, histochemical, morphometric, and statistical research methods were used for their study. The research group included 304 cattle aged 4–9 years and 42 horses, of which 25 were infected with the virus, and 17 were in the control group. It has been established that bovine leukemia and infectious anemia of horses is an irreversible pathological process characterized by slow progression, the presence of a latent or persistent form, with damage to cells, organs, and systems of the body, which leads to death. Infectious anemia of horses differs from leukemia of cattle by the hidden course of the pathological process. The pathogenesis of leukemia occurs in six stages, which we have identified and conventionally named.
Collapse
|
20
|
De Brun ML, Cosme B, Petersen M, Alvarez I, Folgueras-Flatschart A, Flatschart R, Panei CJ, Puentes R. Development of a droplet digital PCR assay for quantification of the proviral load of bovine leukemia virus. J Vet Diagn Invest 2022; 34:439-447. [PMID: 35369822 PMCID: PMC9254064 DOI: 10.1177/10406387221085581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Droplet digital PCR (ddPCR) is a highly sensitive tool developed for the detection and quantification of short-sequence variants—a tool that offers unparalleled precision enabling measurement of smaller-fold changes. We describe here the use of ddPCR for the detection of Bovine leukemia virus (BLV) DNA provirus. Serum samples and whole blood from experimentally infected sheep and naturally infected cattle were analyzed through ddPCR to detect the BLV gp51 gene, and then compared with serologic and molecular tests. The ddPCR assay was significantly more accurate and sensitive than AGID, ELISA, nested PCR, and quantitative PCR. The limit of detection of ddPCR was 3.3 copies/µL, detecting positive experimentally infected sheep beginning at 6 d post-infection. The ddPCR methodology offers a promising tool for evaluating the BLV proviral load, particularly for the detection of low viral loads.
Collapse
Affiliation(s)
- María L. De Brun
- Instituto de Patobiología, Unidad de Microbiología, Facultad de Veterinaria–Universidad de la República, Montevideo, Uruguay
| | - Bruno Cosme
- Instituto Nacional de Metrología, Calidad y Tecnología (Inmetro), Rio de Janeiro, Brazil
| | - Marcos Petersen
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas (IVIT), Buenos Aires, Argentina
| | - Irene Alvarez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas (IVIT), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Roberto Flatschart
- Instituto Nacional de Metrología, Calidad y Tecnología (Inmetro), Rio de Janeiro, Brazil
| | - Carlos Javier Panei
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de la Plata (FCV-UNLP), La Plata, Argentina
| | - Rodrigo Puentes
- Instituto de Patobiología, Unidad de Microbiología, Facultad de Veterinaria–Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
21
|
Nakanishi R, Takashima S, Wakihara Y, Kamatari YO, Kitamura Y, Shimizu K, Okada A, Inoshima Y. Comparing microRNA in milk small extracellular vesicles among healthy cattle and cattle at high risk for bovine leukemia virus transmission. J Dairy Sci 2022; 105:5370-5380. [DOI: 10.3168/jds.2021-20989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
|
22
|
Molecular Characterization of Bovine Leukemia Virus with the Evidence of a New Genotype Circulating in Cattle from Kazakhstan. Pathogens 2022; 11:pathogens11020180. [PMID: 35215125 PMCID: PMC8875264 DOI: 10.3390/pathogens11020180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leukosis (EBL) and has worldwide distribution. Infections with BLV have been reported in cattle from Kazakhstan but the virus has not yet been thoroughly characterized. In this study, we detect and estimate the level of BLV proviral DNA by qPCR in DNA samples from 119 cattle naturally infected with BLV, from 18 farms located in four different geographical regions of Kazakhstan. Furthermore, we conducted the phylogenetic and molecular analysis of 41 BLV env-gp51 gene sequences from BLV infected cattle. Phylogenetic analysis showed the affiliation of sequences to two already known genotypes G4 and G7 and also to a new genotype, classified as genotype G12. In addition, a multivariate method was employed for analysis of the association between proviral load and different variables such as the geographical location of the herd, cattle breeds, age of animals, and the presence of particular BLV genotypes. In summary, the results of this study provide the first evidence on molecular characterization of BLV circulating in cattle from Kazakhstan.
Collapse
|
23
|
Notsu K, El Daous H, Mitoma S, Norimine J, Sekiguchi S. A pooled testing system to rapidly identify cattle carrying the elite controller BoLA-DRB3*009:02 haplotype against bovine leukemia virus infection. HLA 2021; 99:12-24. [PMID: 34837483 PMCID: PMC9543338 DOI: 10.1111/tan.14502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
As genetically resistant individuals, the “elite controllers” (ECs) of human immunodeficiency virus infection have been focused on as the keys to developing further functional treatments in medicine. In the livestock production field, identifying the ECs of bovine leukemia virus (BLV) infection in cattle is desired to stop BLV transmission chains on farms. Cattle carrying the bovine leukocyte antigen (BoLA)‐DRB3*009:02 allele (DRB3*009:02) have a strong possibility of being BLV ECs. Most of cattle carrying this allele maintain undetectable BLV proviral loads and do not shed virus even when infected. BLV ECs can act as transmission barriers when placed between uninfected and infected cattle in a barn. To identify cattle carrying DRB3*009:02 in large populations more easily, we developed a pooled testing system. It employs a highly sensitive, specific real‐time PCR assay and TaqMan MGB probes (DRB3*009:02‐TaqMan assay). Using this system, we determined the percentage of DRB3*009:02‐carrying cattle on Kyushu Island, Japan. Our pooled testing system detected cattle carrying the DRB3*009:02 allele from a DNA pool containing one DRB3*009:02‐positive animal and 29 cattle with other alleles. Its capacity is sufficient for herd‐level screening for DRB3*009:02‐carrying cattle. The DRB3*009:02‐TaqMan assay showed high‐discriminative sensitivity and specificity toward DRB3*009:02, making it suitable for identifying DRB3*009:02‐carrying cattle in post‐screening tests on individuals. We determined that the percentage of DRB3*009:02‐carrying cattle in Kyushu Island was 10.56%. With its ease of use and reliable detection, this new method strengthens the laboratory typing for DRB3*009:02‐carrying cattle. Thus, our findings support the use of BLV ECs in the field.
Collapse
Affiliation(s)
- Kosuke Notsu
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hala El Daous
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan.,Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Shuya Mitoma
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Junzo Norimine
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Satoshi Sekiguchi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
24
|
Nakada S, Fujimoto Y, Kohara J, Adachi Y, Makita K. Estimation of economic loss by carcass weight reduction of Japanese dairy cows due to infection with bovine leukemia virus. Prev Vet Med 2021; 198:105528. [PMID: 34773833 DOI: 10.1016/j.prevetmed.2021.105528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/10/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
Bovine leukemia virus (BLV) infection is endemic in Japanese dairy farms. To promote the participation of farmers in BLV infection control in Japan, it is important to provide estimates of the economic losses caused by this infection. We hypothesized that decreased immune function due to BLV infection would increase visceral abnormalities, in turn reducing carcass weight. We employed mediation analysis to estimate the annual economic loss due to carcass weight reduction caused by BLV infection. Culled Holstein cows from 12 commercial dairy farms in the Nemuro and Kushiro regions of Hokkaido, Japan, were traced. Information on age and the last delivery day were collected. A non-infected culled cow was defined as a cow from which BLV provirus was not detected. A high-proviral-load (H-PVL) cow was defined as a cow whose PVL titer was above 2465 copies/50 ng DNA or 56,765 copies/105 cells. A BLV-infected cow with PVL titer lower than the thresholds was categorized as low-proviral load (L-PVL). Post-mortem examination results for culled cows were collected from a meat inspection center. The hypothesis was tested by three models, using data from 222 culled dairy cows. Model 1, a generalized linear mixed-effects model, selected carcass weight as an outcome variable, BLV status and the potential confounders (lactation stage and age) as explanatory variables, and herd as a random effect. Model 2 additionally included the number of abnormal findings in the post-mortem examination (AFPE) as an explanatory variable. Model 3 applied a Bayesian generalized linear mixed model, which employed a mediator separately modeled for AFPE, to estimate the amount of direct, indirect, and total carcass weight loss with adjustment for known confounding factors. Compared to the mean carcass weight for the non-infected culled cows, the carcass weight for H-PVL culled cows was significantly decreased by 30.4 kg on average. For each increase of one in the number of AFPE, the mean carcass weight was decreased by 8.6 kg. Only the indirect effect of BLV H-PVL status on carcass weight loss through AFPE was significant, accounting for 21.6 % of the total effect on carcass weight reduction. In 2017, 73,650 culled dairy cows were slaughtered in Hokkaido, and the economic loss due to carcass weight loss caused by BLV infection that year was estimated to be US $1,391,649. In summary, unlike L-PVL cows, H-PVL status was associated with carcass weight reduction, which was partially mediated by an increase in the number of visceral abnormalities.
Collapse
Affiliation(s)
- Satoshi Nakada
- Veterinary Epidemiology Unit, Graduate School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan; Hokkaido Higashi Agriculture Mutual Aid Association, 109-28 Nishisyunbetsu, Betsukai, 088-2576, Japan
| | - Yuri Fujimoto
- Veterinary Epidemiology Unit, Graduate School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Junko Kohara
- Animal Research Center, Agricultural Research Department, Hokkaido Research Organization, Nishi 5-39, Shintoku, 081-0038, Japan
| | - Yasumoto Adachi
- Hayakita Meat Inspection Center, Iburi Sub-Prefectural Bureau, Hokkaido Prefectural Government, 695 Toasa, Abira Town, Yufutsu-Gun, Hokkaido, 059-1433, Japan
| | - Kohei Makita
- Veterinary Epidemiology Unit, Graduate School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan.
| |
Collapse
|
25
|
Marawan MA, Alouffi A, El Tokhy S, Badawy S, Shirani I, Dawood A, Guo A, Almutairi MM, Alshammari FA, Selim A. Bovine Leukaemia Virus: Current Epidemiological Circumstance and Future Prospective. Viruses 2021; 13:v13112167. [PMID: 34834973 PMCID: PMC8618541 DOI: 10.3390/v13112167] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bovine leukaemia virus (BLV) is a deltaretrovirus that is closely related to human T-cell leukaemia virus types 1 and 2 (HTLV-1 and -2). It causes enzootic bovine leukosis (EBL), which is the most important neoplastic disease in cattle. Most BLV-infected cattle are asymptomatic, which potentiates extremely high shedding rates of the virus in many cattle populations. Approximately 30% of them show persistent lymphocytosis that has various clinical outcomes; only a small proportion of animals (less than 5%) exhibit signs of EBL. BLV causes major economic losses in the cattle industry, especially in dairy farms. Direct costs are due to a decrease in animal productivity and in cow longevity; indirect costs are caused by restrictions that are placed on the import of animals and animal products from infected areas. Most European regions have implemented an efficient eradication programme, yet BLV prevalence remains high worldwide. Control of the disease is not feasible because there is no effective vaccine against it. Therefore, detection and early diagnosis of the disease are essential in order to diminish its spreading and the economic losses it causes. This review comprises an overview of bovine leukosis, which highlights the epidemiology of the disease, diagnostic tests that are used and effective control strategies.
Collapse
Affiliation(s)
- Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Suleiman El Tokhy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Sara Badawy
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Natural Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues Huazhong Agricultural University, Wuhan 430070, China
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad 2601, Afghanistan
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Infectious Diseases, Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Mashal M. Almutairi
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 22334, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Arar 73211, Saudi Arabia;
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| |
Collapse
|
26
|
Bulla-Castañeda DM, Díaz-Anaya AM, Garcia-Corredor DJ, Tobón-Torreglosa JC, Ortega DO, Pulido-Medellín MO. Seropositivity and risk factors associated with the presentation of bovine leukosis virus in Sotaquirá, Colombia. Vet World 2021; 14:2212-2218. [PMID: 34566341 PMCID: PMC8448640 DOI: 10.14202/vetworld.2021.2212-2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Enzootic bovine leukosis is a disease economically important to the dairy farming industry worldwide. The virus is of the Deltaretrovirus genus and is primarily transmitted iatrogenically. Most bovines infected with the virus remain asymptomatic with only 5-10% of cattle having lymphomas. This study aimed to determine the seroprevalence of bovine leukosis virus (BLV) in Sotaquirá, Boyacá, Colombia. Materials and Methods We conducted a descriptive, observational epidemiological cross-sectional study using the simple random sampling method with a sample size of 1000. Blood samples from random bovine were processed using the SERELISA® BLV Ab Mono Blocking indirect enzyme-linked immunosorbent assay kit (Zoetis, USA). The assay had a sensitivity of 97% and a specificity of 98%. The collected data were processed using Epi Info® (Centers for Disease Control and Prevention; Atlanta, Georgia). From the study, we could determine a high seroprevalence of BLV in Sotaquirá. Results We established a high seroprevalence on BLV in the municipality, with 31.1% apparent seroprevalence and 30.6% real seroprevalence rate. We found that male cattle more than 4 years old (39.4%) and the Ayrshire breed (45.5%) had the highest prevalence rates of the virus. In this study, we could establish statistically significant associations according to breed, age, and gender of the cattle under study. Moreover, we identified the risk factors for BLV infection. We found that in cattle aged <1 year and those older than 4 years of age and those of the Holstein breed, the presentation of infectious bovine rhinotracheitis, mucosal secretions, mastitis, fetal death, the presence of a corral, and the implementation of artificial insemination practices were risk factors for BLV infection. Conclusion Determining the prevalence of BLV within the herd and identifying the associated risk factors for the disease are fundamental in developing efficient programs for the control and eradication of BLV within herds.
Collapse
Affiliation(s)
- Diana M Bulla-Castañeda
- Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia
| | - Adriana M Díaz-Anaya
- Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia.,Doctoral Program in Biomedical and Pharmaceutical Sciences, University of Namur, Namur, Belgium
| | - Diego J Garcia-Corredor
- Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia.,Doctorado en Ciencias Biológicas y Ambientales (UPTC), Tunja, Colombia
| | | | - Diego Ortiz Ortega
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Mosquera, Colombia
| | - Martín O Pulido-Medellín
- Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia
| |
Collapse
|
27
|
Pavliscak LA, Nirmala J, Singh VK, Sporer KRB, Taxis TM, Kumar P, Goyal SM, Mor SK, Schroeder DC, Wells SJ, Droscha CJ. Tracing Viral Transmission and Evolution of Bovine Leukemia Virus through Long Read Oxford Nanopore Sequencing of the Proviral Genome. Pathogens 2021; 10:1191. [PMID: 34578223 PMCID: PMC8470207 DOI: 10.3390/pathogens10091191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Bovine leukemia virus (BLV) causes Enzootic Bovine Leukosis (EBL), a persistent life-long disease resulting in immune dysfunction and shortened lifespan in infected cattle, severely impacting the profitability of the US dairy industry. Our group has found that 94% of dairy farms in the United States are infected with BLV with an average in-herd prevalence of 46%. This is partly due to the lack of clinical presentation during the early stages of primary infection and the elusive nature of BLV transmission. This study sought to validate a near-complete genomic sequencing approach for reliability and accuracy before determining its efficacy in characterizing the sequence identity of BLV proviral genomes collected from a pilot study made up of 14 animals from one commercial dairy herd. These BLV-infected animals were comprised of seven adult dam/daughter pairs that tested positive by ELISA and qPCR. The results demonstrate sequence identity or divergence of the BLV genome from the same samples tested in two independent laboratories, suggesting both vertical and horizontal transmission in this dairy herd. This study supports the use of Oxford Nanopore sequencing for the identification of viral SNPs that can be used for retrospective genetic contact tracing of BLV transmission.
Collapse
Affiliation(s)
| | - Jayaveeramuthu Nirmala
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (J.N.); (V.K.S.); (S.M.G.); (S.K.M.)
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
| | - Vikash K. Singh
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (J.N.); (V.K.S.); (S.M.G.); (S.K.M.)
| | | | - Tasia M. Taxis
- Department of Large Animal Clinical Science, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Pawan Kumar
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
| | - Sagar M. Goyal
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (J.N.); (V.K.S.); (S.M.G.); (S.K.M.)
| | - Sunil Kumar Mor
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (J.N.); (V.K.S.); (S.M.G.); (S.K.M.)
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK
| | - Scott J. Wells
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (P.K.); (S.J.W.)
| | - Casey J. Droscha
- CentralStar Cooperative, Lansing, MI 48910, USA; (L.A.P.); (K.R.B.S.)
- Department of Large Animal Clinical Science, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
28
|
Diagnostic Measures of Disease Progression in Cattle Following Natural Infection with Bovine Leukemia Virus. Pathogens 2021; 10:pathogens10080987. [PMID: 34451451 PMCID: PMC8398158 DOI: 10.3390/pathogens10080987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
This study describes the longitudinal changes in bovine leukemia virus (BLV) ELISA antibodies, proviral load (PVL), and blood lymphocyte counts (LC) observed over a 2.5-year period in naturally infected cattle. The dataset utilized was from a BLV intervention field trial on three Midwestern dairy herds. Our analysis showed ELISA false negatives were more likely to occur in cattle with low PVL and normal LC. On average, negligible changes in LC were observed during six-month intervals. Periods of lymphocytosis, defined as >10,000 lymphocytes per uL of blood, were observed in 31.5% (68/216) of BLV test-positive cattle. In BLV test-positive cows, an average increase of 2900 to 3100 proviral copies per 100,000 cells was observed during each subsequent six-month sampling interval. The difference between the minimum and maximum PVL observed for an ELISA-positive cow with 3 or more observations ranged from 0 to 115,600 copies per 100,000 cells (median: 12,900; mean: 19,200). Therefore, following the identification of ELISA-positive cattle and the assessment of PVL and LC, subsequent semiannual tests to assess disease progression may not be needed. Further work is needed to determine how available diagnostic tests can be optimized to design cost-effective testing schemes for BLV control programs.
Collapse
|
29
|
Natural Infection of Dairy Cows with Bovine Leukemia Virus Affects Immunoglobulin Levels in Saliva and Serum but Not Milk. Pathogens 2021; 10:pathogens10070907. [PMID: 34358057 PMCID: PMC8308649 DOI: 10.3390/pathogens10070907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 11/26/2022] Open
Abstract
Bovine leukemia virus (BLV) is a retroviral infection that disrupts the immune function of infected animals. It is widespread among U.S. dairy cattle. In this pilot study, the average total IgA and IgM concentrations in milk, saliva, and serum samples from BLV ELISA-positive (ELISA+) dairy cows were compared against samples from BLV ELISA-negative (ELISA−) cows using the Kruskal–Wallis test (with ties). The results from ELISA+ cows were also stratified by lymphocyte count (LC) and proviral load (PVL). In milk and saliva from ELISA+ cows, the average total IgA and IgM concentrations were decreased compared to ELISA− cows, although this was only statistically significant for saliva IgM in cows with low PVL (p = 0.0424). Numerically, the average total IgA concentrations were 33.6% lower in milk and 23.7% lower in saliva, and the average total IgM concentrations were 42.4% lower in milk and 15.5% lower in saliva. No significant differences were observed in the total serum IgA concentrations, regardless of PVL and LC. The total serum IgM from ELISA+ cows was significantly decreased (p = 0.0223), with the largest decreases occurring in the highest PVL and LC subgroups. This pilot study is a first step in investigating the impact of BLV on mucosal immunity and will require further exploration in each of the various stages of disease progression.
Collapse
|
30
|
Lo CW, Takeshima SN, Wada S, Matsumoto Y, Aida Y. Bovine major histocompatibility complex (BoLA) heterozygote advantage against the outcome of bovine leukemia virus infection. HLA 2021; 98:132-139. [PMID: 33896123 DOI: 10.1111/tan.14285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/31/2022]
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leucosis. Host genetic heterozygosity at the major histocompatibility complex can enhance the ability to combat infectious diseases. However, heterozygote advantage is loci specific and depends on disease type. Bovine leukocyte antigen (BoLA)-DRB3 polymorphisms are related with BLV-infection outcome; however, whether BoLA-DRB3 heterozygotes have an advantage against BLV-induced lymphoma and proviral load (PVL) remains unclear. By analyzing 1567 BLV-infected individuals, we found that BoLA-DRB3 heterozygous status was significantly associated with lymphoma resistance irrespective of cattle breeds (p < 0.0001). Similarly, decreased PVL was observed in BoLA-DRB3 heterozygotes (p = 0.0407 for Holstein cows; p = 0.0889 for Japanese Black cattle). Our report provides first evidence of BoLA-DRB3 heterozygote advantage against BLV infection outcome.
Collapse
Affiliation(s)
- Chieh-Wen Lo
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Jumonji University, Saitama, Japan.,Viral Infectious Diseases Unit, RIKEN, Saitama, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Viral Infectious Diseases Unit, RIKEN, Saitama, Japan
| |
Collapse
|
31
|
Borjigin L, Lo CW, Bai L, Hamada R, Sato H, Yoneyama S, Yasui A, Yasuda S, Yamanaka R, Mimura M, Inokuma M, Shinozaki Y, Tanaka N, Takeshima SN, Aida Y. Risk Assessment of Bovine Major Histocompatibility Complex Class II DRB3 Alleles for Perinatal Transmission of Bovine Leukemia Virus. Pathogens 2021; 10:pathogens10050502. [PMID: 33922152 PMCID: PMC8143451 DOI: 10.3390/pathogens10050502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Perinatal transmission plays a critical role in the spread of bovine leukemia virus (BLV) infection in cattle herds. In the Holstein breed, we previously identified BLV resistant and susceptible bovine leukocyte antigen (BoLA)-DRB3 alleles, including BoLA-DRB3*009:02 and *014:01:01 with a low BLV proviral load (PVL), and *015:01 and *012:01 with a high PVL. Here, we evaluated the perinatal BLV transmission risk in dams with different BoLA-DRB3 alleles. BoLA-DRB3 alleles of 120 dam-calf pairs from five dairy farms in Japan were identified; their PVL was quantified using the BLV-Coordination of Common Motifs (CoCoMo)-qPCR-2 assay. Ninety-six dams were BLV-positive, and 29 gave birth to BLV-infected calves. Perinatal transmission frequency was 19% in dams with resistant alleles suppressed to a low PVL level, and 38% and 25% in dams with susceptible and neutral alleles that maintained high PVL levels, respectively. Notably, all calves with resistant alleles were BLV free, whereas 30% of calves with susceptible genes were infected. Thus, vertical transmission risk was extremely lower for dams and calves with resistant alleles compared to those with susceptible alleles. Our results can inform the development of effective BLV eradication programs under field conditions by providing necessary data to allow for optimal selection of dams for breeding.
Collapse
Affiliation(s)
- Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (L.B.); (L.B.); (H.S.)
- Baton Zone Program, Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chieh-Wen Lo
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (C.-W.L.); (R.H.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (L.B.); (L.B.); (H.S.)
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (C.-W.L.); (R.H.)
| | - Rania Hamada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (C.-W.L.); (R.H.)
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (L.B.); (L.B.); (H.S.)
- Baton Zone Program, Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuji Yoneyama
- Kenou Livestock Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan;
| | - Anna Yasui
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan; (A.Y.); (S.Y.); (R.Y.); (M.M.)
| | - Sohei Yasuda
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan; (A.Y.); (S.Y.); (R.Y.); (M.M.)
| | - Risa Yamanaka
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan; (A.Y.); (S.Y.); (R.Y.); (M.M.)
| | - Munehito Mimura
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan; (A.Y.); (S.Y.); (R.Y.); (M.M.)
| | | | - Yasuo Shinozaki
- Nanbu Livestock Hygiene Service Center, Kamogawa, Chiba 296-0033, Japan; (Y.S.); (N.T.)
| | - Naoko Tanaka
- Nanbu Livestock Hygiene Service Center, Kamogawa, Chiba 296-0033, Japan; (Y.S.); (N.T.)
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Jumonji University, Niiza, Saitama 352-8510, Japan;
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (L.B.); (L.B.); (H.S.)
- Baton Zone Program, Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence:
| |
Collapse
|
32
|
Kuczewski A, Orsel K, Barkema HW, Mason S, Erskine R, van der Meer F. Invited review: Bovine leukemia virus-Transmission, control, and eradication. J Dairy Sci 2021; 104:6358-6375. [PMID: 33741150 DOI: 10.3168/jds.2020-18925] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/21/2020] [Indexed: 11/19/2022]
Abstract
Bovine leukemia virus (BLV) infection, endemic in North American dairy herds, has production-limiting effects. A literature review of available papers published since 1995 concerning BLV transmission and its control was conducted. Although confirmed transmission routes were reviewed (blood, natural breeding, in utero, colostrum, and milk), there is still a lack of detailed information on other specific risks for transmission (e.g., contact transmission and hoof-trimming knives). Eradication of BLV has been achieved by combined management, segregation, and culling approaches. In contrast, although sole implementation of best management practices aimed at prevention of BLV transmission has decreased within-herd BLV prevalence, it has not eradicated BLV from a herd. Therefore, control and eradication of BLV by best management practices only should be further investigated. Additionally, the role of proviral load in infected cattle was investigated. Cattle with a high proviral load seem to be more likely to infect others, whereas those with a very low proviral load seem to have low risks of transmitting BLV. Information on proviral load could be taken into account when controlling BLV in high-prevalence herds. In conclusion, there is a need for detailed, large-scale studies investigating roles of specific transmission routes, knowing proviral load of infected individuals.
Collapse
Affiliation(s)
- Alessa Kuczewski
- Department of Ecosystem and Public Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Karin Orsel
- Department of Production Animal Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Herman W Barkema
- Department of Production Animal Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Steve Mason
- Agromedia International Inc., Calgary, AB T2L 0T6, Canada
| | - Ron Erskine
- Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Frank van der Meer
- Department of Ecosystem and Public Health, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| |
Collapse
|
33
|
Bartlett PC, Ruggiero VJ, Hutchinson HC, Droscha CJ, Norby B, Sporer KRB, Taxis TM. Current Developments in the Epidemiology and Control of Enzootic Bovine Leukosis as Caused by Bovine Leukemia Virus. Pathogens 2020; 9:E1058. [PMID: 33352855 PMCID: PMC7766781 DOI: 10.3390/pathogens9121058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023] Open
Abstract
Enzootic Bovine Leukosis (EBL) caused by the bovine leukemia virus (BLV) has been eradicated in over 20 countries. In contrast, the U.S. and many other nations are experiencing increasing prevalence in the absence of efforts to control transmission. Recent studies have shown that BLV infection in dairy cattle has a greater impact beyond the long-recognized lymphoma development that occurs in <5% of infected cattle. Like other retroviruses, BLV appears to cause multiple immune system disruptions, affecting both cellular and humoral immunity, which are likely responsible for increasingly documented associations with decreased dairy production and decreased productive lifespan. Realization of these economic losses has increased interest in controlling BLV using technology that was unavailable decades ago, when many nations eradicated BLV via traditional antibody testing and slaughter methods. This traditional control is not economically feasible for many nations where the average herd antibody prevalence is rapidly approaching 50%. The ELISA screening of cattle with follow-up testing via qPCR for proviral load helps prioritize the most infectious cattle for segregation or culling. The efficacy of this approach has been demonstrated in at least four herds. Breeding cattle for resistance to BLV disease progression also appears to hold promise, and several laboratories are working on BLV vaccines. There are many research priorities for a wide variety of disciplines, especially including the need to investigate the reports linking BLV and human breast cancer.
Collapse
Affiliation(s)
- Paul C. Bartlett
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (V.J.R.); (B.N.)
| | - Vickie J. Ruggiero
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (V.J.R.); (B.N.)
| | | | - Casey J. Droscha
- CentralStar Cooperative, East Lansing, MI 48910, USA; (C.J.D.); (K.R.B.S.)
| | - Bo Norby
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (V.J.R.); (B.N.)
| | - Kelly R. B. Sporer
- CentralStar Cooperative, East Lansing, MI 48910, USA; (C.J.D.); (K.R.B.S.)
| | - Tasia M. Taxis
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
34
|
Bovine leukemia virus detection and dynamics following experimental inoculation. Res Vet Sci 2020; 133:269-275. [PMID: 33039878 DOI: 10.1016/j.rvsc.2020.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Bovine leukemia virus (BLV) infects more than 40% of the United States cattle population and impacts animal health and production. Control programs aiming to reduce disease prevalence and incidence depend on the ability to detect the BLV provirus, anti-BLV antibodies, and differences in blood lymphocyte counts following infection. These disease parameters also can be indicative of long-term disease progression. The objectives of this study were to determine the timing and to describe early fluctuations of BLV-detection by qPCR, ELISA, and lymphocyte counts. Fifteen Holstein steers were experimentally inoculated with 100 μL of a blood saline inoculum. Three steers served as in-pen negative controls and were housed with the experimentally infected steers to observe the potential for contract transmission. Five additional negative controls were housed separately. Steers were followed for 147 days post-inoculation (DPI). Infections were detected in experimentally infected steers by qPCR and ELISA an average of 24- and 36 DPI, respectively. Significant differences in lymphocyte counts between experimentally infected and control steers were observed from 30 to 45 DPI. Furthermore, a wide variation in peak proviral load and establishment was observed between experimentally infected steers. The results of this study can be used to inform control programs focused on the detection and removal of infectious cattle.
Collapse
|
35
|
Saa LR, Guzmán LT, Fierro NC, Castro LM, Reyes-Bueno F, Carbonero A. Seroprevalence and risk factors associated with bovine leukemia virus (BLV) seropositivity in cattle herds from Ecuador. REV COLOMB CIENC PEC 2020. [DOI: 10.17533/udea.rccp.v34n3a01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). This disease mainly affects cattle, causing severe economic losses to producers. Objective: To establish individual and herd seroprevalence and determine the risk factors associated with BLV seropositivity for dairy and dual-purpose cattle herds in Ecuador. Methods: A total of 2,668 serum samples from 386 herds were collected. A questionnaire, including variables related to cattle health, management and the environment was completed by each herd. A commercial blocking enzyme-linked immunosorbent assay (ELISA) test was used to determine seropositivity. A generalized estimating equation model (GEE) was developed to determine the factors associated with BLV seropositivity. Results: Individual seroprevalence of BLV infection in Ecuador was 17.3% (CI95% = 15.86-18.74%). Herd prevalence was 37.8% (CI95% = 33.0-42.6%), and intra-herd prevalence ranged between 12.5 and 100% (median: 37.5%). The risk factors associated with BLV seropositivity were artificial insemination (OR: 2,215; CI95% = 1.402-3.501), concrete floors (OR: 2.178; CI95% = 1.217-3.889), presence of wild ruminants (OR: 2.998; CI95% = 1.788-5.027), and sampling season (wet; OR: 1.996; CI95% = 1.140-3.497). Conclusions: Results indicate that BLV is widespread in cattle herds in Ecuador. In addition, the study suggests that a control program to fight BLV infection should focus on controlling the risk factors identified.
Collapse
|
36
|
Benitez OJ, Norby B, Bartlett PC, Maeroff JE, Grooms DL. Impact of bovine leukemia virus infection on beef cow longevity. Prev Vet Med 2020; 181:105055. [PMID: 32593082 DOI: 10.1016/j.prevetmed.2020.105055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 11/19/2022]
Abstract
Bovine leukosis is a chronic lymphoproliferative disorder caused by bovine leukemia virus (BLV). Previous studies estimate that 38 % of cow-calf beef herds and 10.3 % of individual beef cows in the US are BLV seropositive. About 70 % of BLV infected animals are asymptomatic carriers of the virus, while less than 5% develop lymphosarcoma, the leading reason for carcass condemnation at the US slaughterhouses. Studies provide evidence that BLV infection leads to decreased immune function making animals more vulnerable to other diseases, which could shorten their productive lifespan and increase economic losses in the cattle industry. BLV seropositive dairy cows are reportedly more likely to be culled sooner compared with their uninfected herd mates. Beyond simple prevalence studies, little is known about the impact of BLV infection in beef cattle production or specifically on beef cow longevity. Our objective was to determine the association between BLV infection and cow longevity in beef cow-calf operations. Twenty-seven cow-calf herds from the Upper Midwest volunteered to participate in this study. Female beef cattle (n = 3146) were tested for serum BLV antibodies by ELISA. A subsample of 648 cows were also tested for BLV proviral load (PVL). Culling data was collected for the subsequent 24 months. Twenty-one herds (77.7 %) had at least one BLV-infected animal, and 29.2 % (930/3146) of tested animals were BLV seropositive. Of the BLV-positive cows, 33.7 % (318/943) were culled compared with 32.1 % (541/1682) of the seronegative cows. BLV status did not affect cows' longevity within herds (P = 0.062). However, cows with high BLV PVL had decreased survival within the herd compared with ELISA- negative cows (P = 0.01). Overall, infection with BLV did not impact beef cow longevity unless the disease had progressed to a point of high BLV PVL.
Collapse
Affiliation(s)
- Oscar J Benitez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Rd, East Lansing, MI 48895, United States.
| | - Bo Norby
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Rd, East Lansing, MI 48895, United States
| | - Paul C Bartlett
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Rd, East Lansing, MI 48895, United States
| | - Jacqueline E Maeroff
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Rd, East Lansing, MI 48895, United States
| | - Daniel L Grooms
- College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, Iowa 50014, United States
| |
Collapse
|