1
|
Mirzavand ZG, Chaji M. Investigating the chemical composition, digestion and fermentation of Alternanthera sessilis red plant and its effect on the performance of fattening lambs. Trop Anim Health Prod 2024; 56:304. [PMID: 39347997 DOI: 10.1007/s11250-024-04151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
The present experiment was conducted to evaluate the nutritional value of red Alternanthera sessilis for fattening lambs when they were replaced with alfalfa forage. Forty growing lambs with an average weight of 21.12 kg and an age of 5 months were randomly assigned to four experimental treatments. Growth performance, nutrient digestibility, rumen fermentation parameters, protozoa population, blood parameters, and composition of carcass components were evaluated. The results of this experiment showed that the use of Alternanthera sessilis in the diet significantly reduced feed intake, increased the average daily weight gain, and improved the feed conversion ratio compared to the control treatment (P < 0.05). The digestibility of dry matter and protein was significantly increased (P < 0.05), while the digestibility of neutral detergent fiber, acid detergent fiber, and organic matter showed a numerical increase. Diets containing different levels of the Alternanthera sessilis plant did not affect pH, but the increase in the amount of this plant in the diet led to an increase ammonia nitrogen concentration and rumen protozoa population (P < 0.05). The addition of Alternanthera sessilis to the diet significantly reduced the concentration of blood glucose and cholesterol and increased the concentration of blood urea nitrogen (P < 0.05). Except for the weight of the thigh and neck, the effect of experimental treatments on other carcass components was not significant. Overall, the results of this experiment showed that using the Alternanthera sessilis plant in the rations of fattened lambs as a substitute for alfalfa forage not only had no negative effect on the studied parameters but also improved them in some cases. Therefore, Alternanthera sessilis can be used in rations of fattened lambs as a substitute for part of alfalfa forage.
Collapse
Affiliation(s)
- Zahra Ghashang Mirzavand
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources, University of Khuzestan, P.O. Box 63517-73637, Mollasani, Ahvaz, Iran
| | - Morteza Chaji
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources, University of Khuzestan, P.O. Box 63517-73637, Mollasani, Ahvaz, Iran.
| |
Collapse
|
2
|
Kjeldsen MH, de Evan Rozada T, Noel SJ, Schönherz A, Hellwing ALF, Lund P, Weisbjerg MR. Phenotypic traits related to methane emissions from Holstein dairy cows challenged by low or high forage proportion. J Dairy Sci 2024:S0022-0302(24)01111-1. [PMID: 39245171 DOI: 10.3168/jds.2024-24848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024]
Abstract
Limited literature is available identifying phenotypical traits related to enteric methane (CH4) production from dairy cows, despite its relevance in relation to breeding for animals with a low CH4 yield (g/kg DMI), and the derived consequences hereof. This study aimed to investigate the relationships between CH4 yield and different animal phenotypes when 16 2nd parity dairy cows, fitted with a ruminal cannula, were fed 2 diets differing in forage:concentrate ratio in a crossover design. The diets had either a low forage proportion (35% on DM basis, F35) or a high forage proportion (63% on DM basis, F63). Gas exchange was measured by means of indirect calorimetry. Spot samples of feces were collected, and indigestible NDF (INDF) was used as an internal marker to determine total-tract digestibility. In addition, ruminal evacuations, monitoring of chewing activity, determination of ruminal VFA concentration, analysis of relative abundance of methanogens, and measurement of liquid passage rate were performed. Statistical differences were analyzed by a linear mixed model with diet, days in milk, and period as fixed effects, and cow as random effect. The random cow estimates (RCE) were extracted from the model to get the Pearson correlations (r) between RCE of CH4 yield with RCE of all other variables measured, to identify possible phenotypes related to CH4 yield. Significant correlations were observed between RCE of CH4 yield and RCE of OM digestibility (r = 0.63) and ruminal concentration of valeric acid (r = -0.61), acetic acid (r = 0.54), ammonium (r = 0.55), and lactic acid (r = ‒0.53). Additionally, tendencies were observed for correlations between RCE of CH4 yield and RCE of H2 yield in g/kg DM (r = 0.47, P = 0.07), and ruminal isobutyric acid concentration (r = 0.43, P = 0.09). No correlations were observed between RCE of CH4 yield and RCE of ruminal pool sizes, milk data, urinary measurements, or chewing activity. Cows had a lower DMI and ECM, when they were fed F63 compared with F35. Cows fed F63 had higher NDF digestibility, CH4 emissions (g/d, g/kg of DMI, and g/kg of ECM), ruminal concentration of acetic acid, ruminal pH, degradation rate of digestible NDF (DNDF, %/h), and longer rumen retention time (h). Also, rumination and total chewing time (min/kg DMI) were higher for cows fed F63. The results in the present study emphasize the positive relation between cow's ability to digest OM and their CH4 emissions. The derived consequences of breeding for lower CH4 emission might be cows with lower ability to digest OM, but more studies are warranted for further documentation of this relationship.
Collapse
Affiliation(s)
- Maria H Kjeldsen
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, Blichers Allé 20, 8830 DK-Tjele, Denmark.
| | - Trinidad de Evan Rozada
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, Blichers Allé 20, 8830 DK-Tjele, Denmark
| | - Samantha J Noel
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, Blichers Allé 20, 8830 DK-Tjele, Denmark
| | - Anna Schönherz
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, Blichers Allé 20, 8830 DK-Tjele, Denmark
| | - Anne Louise F Hellwing
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, Blichers Allé 20, 8830 DK-Tjele, Denmark
| | - Peter Lund
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, Blichers Allé 20, 8830 DK-Tjele, Denmark
| | - Martin R Weisbjerg
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, Blichers Allé 20, 8830 DK-Tjele, Denmark
| |
Collapse
|
3
|
Choi Y, Kim J, Bang G, Kim N, Thirugnanasambantham K, Lee S, Kim KH, Bharanidharan R. Effect of sodium formate and lactic acid bacteria treated rye silage on methane yield and energy balance in Hanwoo steers. PeerJ 2024; 12:e17920. [PMID: 39247542 PMCID: PMC11380838 DOI: 10.7717/peerj.17920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
This study was performed to evaluate the effects of rye silage treated with sodium formate (Na-Fa) and lactic acid bacteria (LAB) inoculants on the ruminal fermentation characteristics, methane yield and energy balance in Hanwoo steers. Forage rye was harvested in May 2019 and ensiled without additives (control) or with either a LAB inoculant or Na-Fa. The LAB (Lactobacillus plantarum) were inoculated at 1.5 × 1010 CFU/g fresh matter, and the inoculant was sprayed onto the forage rye during wrapping at a rate of 4 L/ton of fresh rye forage. Sixteen percent of the Na-Fa solution was sprayed at a rate of approximately 6.6 L/ton. Hanwoo steers (body weight 275 ± 8.4 kg (n = 3, group 1); average body weight 360 ± 32.1 kg (n = 3, group 2)) were allocated into two pens equipped with individual feeding gates and used in duplicated 3 × 3 Latin square design. The experimental diet was fed twice daily (09:00 and 18:00) during the experimental period. Each period comprised 10 days for adaptation to the pen and 9 days for measurements in a direct respiratory chamber. The body weights of the steers were measured at the beginning and at the end of the experiment. Feces and urine were collected for 5 days after 1 day of adaptation to the chamber, methane production was measured for 2 days, and ruminal fluid was collected on the final day. In the LAB group, the ratio of acetic acid in the rumen fluid was significantly lower (p = 0.044) and the ratio of propionic acid in the rumen fluid was significantly higher (p = 0.017). Methane production per DDMI of the Na-FA treatment group was lower than that of the other groups (p = 0.052), and methane production per DNDFI of the LAB treatment group was higher than that of the other groups (p = 0.056). The use of an acid-based additive in silage production has a positive effect on net energy and has the potential to reduce enteric methane emissions in ruminants.
Collapse
Affiliation(s)
- Yongjun Choi
- School of Animal Life Convergence Science, Hankyung National University, Anseong, Gyeonggi-do, South Korea
| | - Jayeon Kim
- Cargill Agri Purina Inc., Pyeongtaek, Gyeonggi-do, South Korea
| | - Geumhwi Bang
- Farmsco Co., Ltd., Anseong, Gyeonggi-do, South Korea
| | - Nayeon Kim
- Asia Pacific Ruminant Institute, Icheon, Gyeonggi-do, South Korea
| | - Krishnaraj Thirugnanasambantham
- Pondicherry Centre for Biological Science and Educational Trust, Puducherry, India
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Sangrak Lee
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Kyoung Hoon Kim
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gwangwon-do, South Korea
- Department of Eco-friendly Livestock Science, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gwangwon-do, South Korea
| | - Rajaraman Bharanidharan
- Department of Eco-friendly Livestock Science, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gwangwon-do, South Korea
| |
Collapse
|
4
|
Guo J, Zhang Z, Guan LL, Yoon I, Plaizier JC, Khafipour E. Postbiotics from Saccharomyces cerevisiae fermentation stabilize microbiota in rumen liquid digesta during grain-based subacute ruminal acidosis (SARA) in lactating dairy cows. J Anim Sci Biotechnol 2024; 15:101. [PMID: 39085941 PMCID: PMC11293205 DOI: 10.1186/s40104-024-01056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/28/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Subacute ruminal acidosis (SARA) is a common metabolic disorder of high yielding dairy cows, and it is associated with dysbiosis of the rumen and gut microbiome and host inflammation. This study evaluated the impact of two postbiotics from Saccharomyces cerevisiae fermentation products (SCFP) on rumen liquid associated microbiota of lactating dairy cows subjected to repeated grain-based SARA challenges. A total of 32 rumen cannulated cows were randomly assigned to 4 treatments from 4 weeks before until 12 weeks after parturition. Treatment groups included a Control diet or diets supplemented with postbiotics (SCFPa, 14 g/d Original XPC; SCFPb-1X, 19 g/d NutriTek; SCFPb-2X, 38 g/d NutriTek, Diamond V, Cedar Rapids, IA, USA). Grain-based SARA challenges were conducted during week 5 (SARA1) and week 8 (SARA2) after parturition by replacing 20% DM of the base total mixed ration (TMR) with pellets containing 50% ground barley and 50% ground wheat. Total DNA from rumen liquid samples was subjected to V3-V4 16S rRNA gene amplicon sequencing. Characteristics of rumen microbiota were compared among treatments and SARA stages. RESULTS Both SARA challenges reduced the diversity and richness of rumen liquid microbiota, altered the overall composition (β-diversity), and its predicted functionality including carbohydrates and amino acids metabolic pathways. The SARA challenges also reduced the number of significant associations among different taxa, number of hub taxa and their composition in the microbial co-occurrence networks. Supplementation with SCFP postbiotics, in particular SCFPb-2X, enhanced the robustness of the rumen microbiota. The SCFP supplemented cows had less fluctuation in relative abundances of community members when exposed to SARA challenges. The SCFP supplementation promoted the populations of lactate utilizing and fibrolytic bacteria, including members of Ruminococcaceae and Lachnospiraceae, and also increased the numbers of hub taxa during non-SARA and SARA stages. Supplementation with SCFPb-2X prevented the fluctuations in the abundances of hub taxa that were positively correlated with the acetate concentration, and α- and β-diversity metrics in rumen liquid digesta. CONCLUSIONS Induction of SARA challenges reduced microbiota richness and diversity and caused fluctuations in major bacterial phyla in rumen liquid microbiota in lactating dairy cows. Supplementation of SCFP postbiotics could attenuate adverse effects of SARA on rumen liquid microbiota.
Collapse
Affiliation(s)
- Junfei Guo
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zhengxiao Zhang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Present Address: College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Le Luo Guan
- Department of Agriculture, Food and Nutrition Department, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ilkyu Yoon
- Diamond V, Cedar Rapids, IA, 52404, United States
| | - Jan C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
- Present Address: Cargill Animal Nutrition, 15407 McGinty Road West, Wayzata, MN, 55391, USA.
| |
Collapse
|
5
|
Lobo RR, Almeida E, Monteiro A, da Silva SS, Salas-Solis G, Coronella CJ, Hiibel SR, Faciola AP. Replacing soybean meal with microalgae biomass in diets with contrasting carbohydrate profiles can reduce in vitro methane production and improve short-chain fatty acid production. J Dairy Sci 2024; 107:5542-5555. [PMID: 38395394 DOI: 10.3168/jds.2023-24025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/20/2024] [Indexed: 02/25/2024]
Abstract
The objective of this study was to evaluate the interaction of dietary carbohydrate profile and soybean meal (SBM) replacement with either Chlorella pyrenoidosa (CHL) or Spirulina platensis (SPI) on in vitro fermentation. This experiment was conducted as a randomized complete block design, with fermentation run (3 runs) considered as blocks. The treatments were arranged in a 2 × 5 factorial design, where the first factor was the carbohydrate profile, which was composed of diets containing 42.5% neutral detergent fiber (NDF) and 26.8% starch (HF-LS) or 26.8% NDF and 40.6% starch (LF-HS), and the second factor was the protein source, in which a control diet (100% SBM), partial replacement of SBM with CHL (1/2CHL) or SPI (1/2SPI), or total replacement of SBM with CHL or SPI were used. All experimental diets were formulated to have 17% crude protein. The ruminal fluid was collected from 2 lactating Holstein cows, buffered with Van Soest medium at a ratio of 1:2 and added to serum bottles containing 0.50 g of the experimental diets. Bottles were incubated at 39°C for 24 and 48 h in triplicate; headspace pressure was measured, along with gas collection for methane (CH4) quantification at 0, 2, 4, 8, 16, 24, 36, and 48 h after incubation. The final medium was used to measure pH, ammonia, and VFA. After incubation, feed bags were recovered and used for estimation of dry matter (DM), NDF, and organic matter (OM) degradability. Statistical analysis was carried out using the MIXED procedure of SAS, with carbohydrate profile, protein source, assay, and their interactions as fixed effects, with run and bottle as random effects. Orthogonal contrasts were used to compare carbohydrate profile, algae species, carbohydrate profile × algae interaction, and linear and quadratic effects of SBM replacement with CHL or SPI. There was no interaction effect between carbohydrate profile and algae source. The LF-HS improved gas production, degradability of nutrients, and VFA, mainly increasing the production of butyrate and propionate. When compared with CHL, SPI had a greater degradability of nutrients and branched VFA, along with reduction in total gas production and tended to reduce total CH4 yield. The replacement of SBM with algae linearly reduced the degradability of nutrients, along with a linear reduction in gas production. When replacement of SBM with only SPI was evaluated, SPI slightly reduced the degradability of nutrients; however, it promoted a linear reduction in CH4 yield, as well as reduction in CH4 yield by unit of degraded DM, NDF, and OM. In summary, there was no interaction of carbohydrate profile and protein source, which means that SBM replacement had a similar effect, regardless of dietary carbohydrate profile. Spirulina may be a more suitable algae source than Chlorella due to the potential to reduce CH4.
Collapse
Affiliation(s)
- R R Lobo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608
| | - E Almeida
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608; Department of Animal Science, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | - A Monteiro
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608; Animal Nutrition Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP 13400-970, Brazil
| | - S S da Silva
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608
| | - G Salas-Solis
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608
| | - C J Coronella
- Department of Chemical and Materials Engineering, University of Nevada, Reno, NV 89557
| | - S R Hiibel
- Department of Chemical and Materials Engineering, University of Nevada, Reno, NV 89557
| | - A P Faciola
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608.
| |
Collapse
|
6
|
Hackmann TJ. New biochemical pathways for forming short-chain fatty acids during fermentation in rumen bacteria. JDS COMMUNICATIONS 2024; 5:230-235. [PMID: 38646572 PMCID: PMC11026938 DOI: 10.3168/jdsc.2023-0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/01/2023] [Indexed: 04/23/2024]
Abstract
Short-chain fatty acids (SCFA) are essential to cattle as a source of energy and for other roles in metabolism. These molecules are formed during fermentation by microbes in the rumen, but even after decades of study, the biochemical pathways responsible for forming them are not always clear. Here we review recent advances in this area and their importance for improving animal productivity. Studies of bacterial genomes have pointed to unusual biochemical pathways in rumen organisms. One study found that 8% of rumen organisms forming acetate, a major SCFA, had genes for a pathway previously unknown in bacteria. The existence of this pathway was subsequently confirmed biochemically in propionibacteria. The pathway was shown to involve 2 enzymes that convert acetyl-coenzyme A to acetate. Similar studies have revealed new enzymatic steps for forming propionate and butyrate, other major SCFA. These new steps and pathways are significant for controlling fermentation. With more precise control over SCFA, cows can be fed more precisely and potentially reach higher productivity.
Collapse
Affiliation(s)
- Timothy J. Hackmann
- Department of Animal Science, University of California, Davis, Davis, CA 95168
| |
Collapse
|
7
|
Ma F, Liu J, Li S, Sun P. Effects of Lonicera japonica Extract with Different Contents of Chlorogenic Acid on Lactation Performance, Serum Parameters, and Rumen Fermentation in Heat-Stressed Holstein High-Yielding Dairy Cows. Animals (Basel) 2024; 14:1252. [PMID: 38672400 PMCID: PMC11047513 DOI: 10.3390/ani14081252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This examined the effects of Lonicera japonica extract (LJE) with different chlorogenic acid (CGA) contents on lactation performance, antioxidant status and immune function and rumen fermentation in heat-stressed high-yielding dairy cows. In total, 45 healthy Chinese Holstein high-yielding dairy cows, all with similar milk yield, parity, and days in milk were randomly allocated to 3 groups: (1) the control group (CON) without LJE; (2) the LJE-10% CGA group, receiving 35 g/(d·head) of LJE-10% CGA, and (3) the LJE-20% CGA group, receiving 17.5 g/(d·head) of LJE-20% CGA. The results showed that the addition of LJE significantly reduced RT, and enhanced DMI, milk yield, milk composition, and improved rumen fermentation in high-yielding dairy cows experiencing heat stress. Through the analysis of the serum biochemical, antioxidant, and immune indicators, we observed a reduction in CREA levels and increased antioxidant and immune function. In this study, while maintaining consistent CGA content, the effects of addition from both types of LJE are similar. In conclusion, the addition of LJE at a level of 4.1 g CGA/(d·head) effectively relieved heat stress and improved the lactation performance of dairy cows, with CGA serving as the effective ingredient responsible for its anti-heat stress properties.
Collapse
Affiliation(s)
- Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhao Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.M.)
| |
Collapse
|
8
|
Sawado R, Osawa R, Sobajima H, Hayashi N, Nonaka I, Terada F, Mitsumori M. Analysis of the relationship between energy balance and properties of rumen fermentation of primiparous dairy cows during the perinatal period. Anim Sci J 2024; 95:e13988. [PMID: 39165081 DOI: 10.1111/asj.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
Short-chain fatty acids (SCFAs) produced in the rumen are key factors affecting dairy cows' energy balance (EB). This study aimed to quantitatively evaluate the effects of SCFAs production on EB in dairy cows. Primiparous dairy cows were divided into high non-esterified fatty acid (NEFA; group H) and low NEFA (group L) groups based on their blood NEFA levels at week 3 postpartum, which served as an indicator of EB. The amounts of SCFAs produced in the rumen, including acetate, propionate, and butyrate (SCFAsP), were calculated using the predicted rumen volume. Because there were no differences between the groups in SCFAsP/dry matter intake, whereas 4% fat-corrected milk (FCM)/SCFAsP was significantly higher in group H, it was suggested that more body fat was mobilized for milk production in group H. However, group L, which showed better EB, had propionate dominant and lower FCM/SCFAsP and milk energy/SCFAs energy at 3 and 7 weeks postpartum, indicating that group L had a better energy supply for milk production. These results suggest that SCFAsP produced by rumen fermentation and the composition of SCFAs in the rumen affect milk production and EB.
Collapse
Affiliation(s)
- Rie Sawado
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Ryo Osawa
- Agricultural Technology Research Center, Saitama, Japan
| | - Hideo Sobajima
- Swine and Poultry Research Department, Livestock Research Institute, Gifu, Japan
| | | | - Itoko Nonaka
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | | | - Makoto Mitsumori
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| |
Collapse
|
9
|
Hruby Weston A, Li MM, Huang X, Campos LM, Prestegaard-Wilson JM, Pilonero T, Budde A, Hanigan MD. Effects of dietary starch and ruminally undegraded protein on glucogenic precursors in lactating dairy cows. Animal 2023; 17 Suppl 5:100893. [PMID: 37468351 DOI: 10.1016/j.animal.2023.100893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023] Open
Abstract
Gluconeogenesis is a large contributor to the blood supply of glucose carbons. The impact of varying dietary starch and ruminally degraded protein (RDP) on glucose entry, and the contributions of propionate and lactate to total plasma glucose entry were evaluated. Six cannulated, lactating, Holstein cows were fed one of four treatment diets arranged as a 2 × 2 factorial within a 4 × 4 partially replicated Latin Square design: (1) 8% RDP (LRDP) and 16% starch (LSt), (2) LRDP and 30% starch (HSt), (3) 11% RDP (HRDP) and LSt, or (4) HRDP and HSt. On d 12 of each period, 2-[13C]-sodium propionate (0.15 g/h) was ruminally infused for 4 h; on d 13, 1,2-[13C2]-glucose (0.2 g/h) was infused into the jugular vein for 1 h followed by 1-[13C]-lactate (0.1 g/h) for 1 h. Blood samples were serially collected starting prior to the infusions, and analyzed for plasma glucose, propionate, and lactate isotopic ratios. A one-compartment, glucose carbon model with inputs from lactate, propionate, and other glucogenic precursors (Oth, primarily absorbed glucose plus amino acids) was fitted to the isotope ratio data to derive glucose entry rates and conversion of the precursors to glucose. Milk protein production additively increased when HSt and HRDP were fed (P = 0.05 and P = 0.02, respectively). Plasma glucose and propionate concentrations increased with HSt (P = 0.04 and P = 0.01, respectively) and LRDP (P = 0.02 and P < 0.01, respectively). Total glucose and Oth entry increased (P = 0.03 and P = 0.03, respectively) with HSt, indicating greater glucose absorption from the small intestine or conversion of amino acids to glucose in the liver. However, neither entry rate was affected by RDP. The lack of an RDP effect suggests the increase in microbial outflow in response to RDP did not significantly alter glucose precursor supplies. Entry rates of propionate and lactate carbon to glucose carbon were not affected by treatment suggesting that neither starch nor RDP significantly affected fermentation or lactate production. Derivation of absolute entry rates and contributions to glucose using isotopic tracers is complicated by single carbon removals in the pentose phosphate (PPP), tri-carboxylic acid (TCA), and gluconeogenic pathways, and label randomization with the PPP and TCA pathways. Multiple tracers must be used to avoid assumptions regarding the proportional entries. These results provide insights on glucose supply and contributors, and draw attention to significant label cycling when utilizing isotope techniques.
Collapse
Affiliation(s)
- A Hruby Weston
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
| | - M M Li
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - X Huang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - L M Campos
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | | | - T Pilonero
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - A Budde
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - M D Hanigan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
10
|
Sommai S, Wanapat M, Prachumchai R, Cherdthong A. Effect of Brazilian spinach (Alternanthera sissoo) pellet supplementation and dietary ratios on rumen characteristics, microorganisms, methane production, milk yield, and milk composition in dairy cows. J Anim Physiol Anim Nutr (Berl) 2023; 107:1336-1346. [PMID: 37129194 DOI: 10.1111/jpn.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/07/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
The aim of the previous research was to evaluate the effects of Brazilian spinach pellet (BSP) supplementation and dietary ratios on rumen characteristics, methane estimation, and milk production in dairy cows. Four crossbred Thai dairy cattle, with Holstein Friesian (HF) cows with a body weight of 442 ± 50 kg were assessed in a 2 × 2 factorial in a 4 × 4 Latin square design to obtain diets; factor A was the roughage (R) to concentrate (C) ratio at 40:60 and 30:70, and factor B was level of BSP supplantation at 2% and 6% of dry matter (basis) intake (DMI). R:C ratio and supplementation of BSP had no interaction effect on DMI and nutrient digestibility. On DM, organic matter (OM), crude protein (CP), and acid detergent fiber (ADF) intake, the R:C ratio increased (p < 0.05). The digestibility of OM improved (p < 0.05) when cows were fed a R:C ratio of 30:70. On pH, ammonia-nitrogen, protozoal population, and blood urea-nitrogen, there were no interactions between the R:C ratio and BSP supplementation. Increasing the BSP supplementation to 6% (p < 0.01) decreased the protozoal population. The R:C ratio of 30:70 increased total volatile fatty acid (VFA) and propionate (C3) concentrations while decreasing the acetate (C2) to C3 ratio and methane (CH4 ) estimation (p < 0.01). The average concentration of total VFA has increased by 114.46 mmol/L for 6% of BSP supplementation. Increased BSP supplementation increased the C3 concentration while decreasing the C2:C3 ratio and CH4 emissions (p < 0.05). The R:C ratio and BSP supplementation had no interaction effect on milk yield, 3.5% fat-corrected milk (FCM), or milk composition. The R:C ratio of 30:70 increased milk yield (p < 0.05) to the highest level of 12.18 kg/day. In conclusion, the diet containing a R:C ratio of 30:70 increased feed intake, milk yield, BUN, total VFA, and C3 concentration, and decreased the C2:C3 ratio and CH4 emission. BSP supplementation at 6% could increase TVFA and C3 concentrations while decreasing the protozoal population and CH4 estimation.
Collapse
Affiliation(s)
- Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Rittikeard Prachumchai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
11
|
Tan T, Luo Y, Sun W, Li X. Effects of Branched-Chain Fatty Acids Derived from Yak Ghee on Lipid Metabolism and the Gut Microbiota in Normal-Fat Diet-Fed Mice. Molecules 2023; 28:7222. [PMID: 37894700 PMCID: PMC10609089 DOI: 10.3390/molecules28207222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Branched-chain fatty acids (BCFAs) are natural components with a variety of biological activities. However, the regulation of lipid metabolism by BCFAs is unknown. It was dedicated to examining the impacts of BCFAs inferred from yak ghee on the expression of qualities related to lipid metabolism, natural pathways, and intestinal microbiota in mice. The treatment group (purified BCFAs from yak ghee) exhibited a decrease in cholesterol levels; a decrease in HMGCR levels; downregulation of FADS1, FADS2, ACC-α, FAS, GAPT4, GPAM, ACSL1, THRSP, A-FABP, and PPARα gene expression; and upregulation of SCD1, ACSS1, FABP1, CPT1, and DGAT-1 gene expression. Gut microbiota 16S rDNA sequencing analysis showed that the treatment group improved the gut microbiota by increasing the relative abundances and increasing the short-chain fatty acid levels produced by the genera Akkermansia, Clostridium, Lachnospiraceae, Lactobacillus, Anaerotaenia, and Prevotella. After adding BCFAs to cultured breast cancer cells, pathways that were downregulated were found to be related to fatty acid degradation and fatty acid metabolism, while 20 other pathways were upregulated. Our results suggest that BCFAs reduce body fat in mice by modulating intestinal flora and lipid metabolism and modulating fatty acid metabolism in breast cancer cells.
Collapse
Affiliation(s)
| | - Yihao Luo
- Animal Science Department, College of Agriculture and Animal Husbandry, Qinghai University, Ning Da Road 251, Xining 810016, China; (T.T.); (W.S.); (X.L.)
| | | | | |
Collapse
|
12
|
Yuan N, Wang Y, Pan Q, Zhao L, Qi X, Sun S, Suolang Q, Ciren L, Danzeng L, Liu Y, Zhang L, Gao T, Basang Z, Lian H, Sun Y. From the perspective of rumen microbiome and host metabolome, revealing the effects of feeding strategies on Jersey Cows on the Tibetan Plateau. PeerJ 2023; 11:e16010. [PMID: 37719116 PMCID: PMC10501371 DOI: 10.7717/peerj.16010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Background Previous studies have discussed the effects of grazing and house feeding on yaks during the cold season when forage is in short supply, but there is limited information on the effects of these feeding strategies on Jersey cows introduced to the Tibetan Plateau. The objective of this study was to use genomics and metabolomics analyses to examine changes in rumen microbiology and organism metabolism of Jersey cows with different feeding strategies. Methods We selected 12 Jersey cows with similar body conditions and kept them for 60 days under grazing (n = 6) and house-feeding (n = 6) conditions. At the end of the experiment, samples of rumen fluid and serum were collected from Jersey cows that had been fed using different feeding strategies. The samples were analyzed for rumen fermentation parameters, rumen bacterial communities, serum antioxidant and immunological indices, and serum metabolomics. The results of the study were examined to find appropriate feeding strategies for Jersey cows during the cold season on the Tibetan plateau. Results The results of rumen fermentation parameters showed that concentrations of acetic acid, propionic acid, and ammonia nitrogen in the house-feeding group (Group B) were significantly higher than in the grazing group (Group G) (P < 0.05). In terms of the rumen bacterial community 16S rRNA gene, the Chao1 index was significantly higher in Group G than in Group B (P = 0.038), while observed species, Shannon and Simpson indices were not significantly different from the above-mentioned groups (P > 0.05). Beta diversity analysis revealed no significant differences in the composition of the rumen microbiota between the two groups. Analysis of serum antioxidant and immune indices showed no significant differences in total antioxidant capacity between Group G and Group B (P > 0.05), while IL-6, Ig-M , and TNF-α were significantly higher in Group G than in Group B (P < 0.05). LC-MS metabolomics analysis of serum showed that a total of 149 major serum differential metabolites were found in Group G and Group B. The differential metabolites were enriched in the metabolic pathways of biosynthesis of amino acids, protein digestion and absorption, ABC transporters, aminoacyl-tRNA biosynthesis, mineral absorption, and biosynthesis of unsaturated fatty acids. These data suggest that the house-feeding strategy is more beneficial to improve the physiological state of Jersey cows on the Tibetan Plateau during the cold season when forages are in short supply.
Collapse
Affiliation(s)
- Niuniu Yuan
- Henan Agricultural University, College of Animal Science and Technology, Zhengzhou, Henan, China
| | - Yicui Wang
- Henan University of Traditional Chinese Medicine, College of pharmacy, Zhengzhou, Henan, China
| | - Qihao Pan
- Henan Agricultural University, College of Animal Science and Technology, Zhengzhou, Henan, China
| | - Li Zhao
- Tibet Academy of Agricultural and Animal Husbandry Science, Institute of Animal Science, Lhasa, China
- State Key Labobatory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Xiao Qi
- National Animal Husbandry Service, Beijing, China
- Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Shihao Sun
- Henan Agricultural University, College of Animal Science and Technology, Zhengzhou, Henan, China
| | - Quji Suolang
- Tibet Academy of Agricultural and Animal Husbandry Science, Institute of Animal Science, Lhasa, China
- State Key Labobatory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Luobu Ciren
- Tibet Academy of Agricultural and Animal Husbandry Science, Institute of Animal Science, Lhasa, China
- State Key Labobatory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Luosang Danzeng
- Tibet Academy of Agricultural and Animal Husbandry Science, Institute of Animal Science, Lhasa, China
- State Key Labobatory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Yanxin Liu
- Henan University of Traditional Chinese Medicine, College of pharmacy, Zhengzhou, Henan, China
| | - Liyang Zhang
- Henan Agricultural University, College of Animal Science and Technology, Zhengzhou, Henan, China
| | - Tengyun Gao
- Henan Agricultural University, College of Animal Science and Technology, Zhengzhou, Henan, China
| | - Zhuza Basang
- Tibet Academy of Agricultural and Animal Husbandry Science, Institute of Animal Science, Lhasa, China
- State Key Labobatory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Hongxia Lian
- Henan Agricultural University, College of Animal Science and Technology, Zhengzhou, Henan, China
| | - Yu Sun
- Henan Agricultural University, College of Animal Science and Technology, Zhengzhou, Henan, China
- Tibet Academy of Agricultural and Animal Husbandry Science, Institute of Animal Science, Lhasa, China
- State Key Labobatory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| |
Collapse
|
13
|
Liang J, Ali S, Lv C, Yang H, Zhao X, Ni X, Li C, Danzeng B, Wang Y, Quan G. Dietary protein levels modulate the gut microbiome composition through fecal samples derived from lactating ewes. Front Endocrinol (Lausanne) 2023; 14:1194425. [PMID: 37621652 PMCID: PMC10446493 DOI: 10.3389/fendo.2023.1194425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 08/26/2023] Open
Abstract
In ruminants, the digestion and utilization of dietary proteins are closely linked to the bacterial populations that are present in the gastrointestinal tract. In the present study, 16S rDNA sequencing, together with a metagenomic strategy was used to characterize the fecal bacteria of ewes in the early lactation stage after feeding with three levels of dietary proteins 8.58%, 10.34%, and 13.93%, in three different groups (H_1), (H_m) and (H_h), respectively. A total of 376,278,516 clean data-points were obtained by metagenomic sequencing. Firmicutes and Bacteroidetes were the dominant phyla, regardless of the dietary protein levels. In the H_h group, the phyla Proteobacteria, Caldiserica, and Candidatus_Cryosericota were less abundant than those in the H_I group. In contrast, Lentisphaerae, Chlamydiae, and Planctomycetes were significantly more abundant in the H_h group. Some genera, such as Prevotella, Roseburia, and Firmicutes_unclassified, were less abundant in the H_h group than those in the H_I group. In contrast, Ruminococcus, Ruminococcaceae_noname, Anaerotruncus, Thermotalae, Lentisphaerae_noname, and Paraprevotella were enriched in the H_h group. The acquired microbial genes were mainly clustered into biological processes; molecular functions; cytosol; cellular components; cytoplasm; structural constituents of ribosomes; plasma membranes; translation; and catalytic activities. 205987 genes were significantly enriched in the H_h group. In contrast, 108129 genes were more abundant in the H_I group. Our findings reveal that dynamic changes in fecal bacteria and their genes are strongly influenced by the levels of dietary proteins. We discovered that differentially expressed genes mainly regulate metabolic activity and KEGG demonstrated the primary involvement of these genes in the metabolism of carbohydrates, amino acids, nucleotides, and vitamins. Additionally, genes responsible for metabolism were more abundant in the H_h group. Investigating fecal bacterial characteristics may help researchers develop a dietary formula for lactating ewes to optimize the growth and health of ewes and lambs.
Collapse
Affiliation(s)
- Jiachong Liang
- The Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Sikandar Ali
- The Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
- Zhejiang Vegamax Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Chunrong Lv
- The Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Hongyuan Yang
- The Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Xiaoqi Zhao
- The Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Xiaojun Ni
- The Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Chunyan Li
- The Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Baiji Danzeng
- The Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guobo Quan
- The Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| |
Collapse
|
14
|
Sujani S, White RR, Firkins JL, Wenner BA. Network analysis to evaluate complexities in relationships among fermentation variables measured within continuous culture experiments. J Anim Sci 2023; 101:skad085. [PMID: 37078886 PMCID: PMC10158529 DOI: 10.1093/jas/skad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023] Open
Abstract
The objective of this study was to leverage a frequentist (ELN) and Bayesian learning (BLN) network analyses to summarize quantitative associations among variables measured in 4 previously published dual-flow continuous culture fermentation experiments. Experiments were originally designed to evaluate effects of nitrate, defaunation, yeast, and/or physiological shifts associated with pH or solids passage rates on rumen conditions. Measurements from these experiments that were used as nodes within the networks included concentrations of individual volatile fatty acids, mM and nitrate, NO3-,%; outflows of non-ammonia nitrogen (NAN, g/d), bacterial N (BN, g/d), residual N (RN, g/d), and ammonia N (NH3-N, mg/dL); degradability of neutral detergent fiber (NDFd, %) and degradability of organic matter (OMd, %); dry matter intake (DMI, kg/d); urea in buffer (%); fluid passage rate (FF, L/d); total protozoa count (PZ, cells/mL); and methane production (CH4, mmol/d). A frequentist network (ELN) derived using a graphical LASSO (least absolute shrinkage and selection operator) technique with tuning parameters selected by Extended Bayesian Information Criteria (EBIC) and a BLN were constructed from these data. The illustrated associations in the ELN were unidirectional yet assisted in identifying prominent relationships within the rumen that were largely consistent with current understanding of fermentation mechanisms. Another advantage of the ELN approach was that it focused on understanding the role of individual nodes within the network. Such understanding may be critical in exploring candidates for biomarkers, indicator variables, model targets, or other measurement-focused explorations. As an example, acetate was highly central in the network suggesting it may be a strong candidate as a rumen biomarker. Alternatively, the major advantage of the BLN was its unique ability to imply causal directionality in relationships. Because the BLN identified directional, cascading relationships, this analytics approach was uniquely suited to exploring the edges within the network as a strategy to direct future work researching mechanisms of fermentation. For example, in the BLN acetate responded to treatment conditions such as the source of N used and the quantity of substrate provided, while acetate drove changes in the protozoal populations, non-NH3-N and residual N flows. In conclusion, the analyses exhibit complementary strengths in supporting inference on the connectedness and directionality of quantitative associations among fermentation variables that may be useful in driving future studies.
Collapse
Affiliation(s)
- Sathya Sujani
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Robin R White
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin A Wenner
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Wu Q, Xing Z, Liao J, Zhu L, Zhang R, Wang S, Wang C, Ma Y, Wang Y. Effects of Glutamine on Rumen Digestive Enzymes and the Barrier Function of the Ruminal Epithelium in Hu Lambs Fed a High-Concentrate Finishing Diet. Animals (Basel) 2022; 12:ani12233418. [PMID: 36496939 PMCID: PMC9735830 DOI: 10.3390/ani12233418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The present experiment aimed to research the effects of glutamine (Gln) on the digestive and barrier function of the ruminal epithelium in Hu lambs fed a high-concentrate finishing diet containing some soybean meal and cottonseed meal. Thirty healthy 3-month-old male Hu lambs were randomly divided into three treatments. Lambs were fed a high-concentrate diet and supplemented with 0, 0.5, and 1% Gln on diet for 60 days. The experimental results show that the Gln treatment group had lower pepsin and cellulase enzyme activity, propionate acid concentration, and IL-6, TNF-α, claudin-1, and ZO-1 mRNA expression in the ruminal epithelium (p < 0.05); as well as increases in lipase enzyme activity, the ratio of propionic acid to acetic acid, the IL-10 content in the plasma, and the mRNA expression of IL-2 and IL-10 in the ruminal epithelium, in contrast to the CON (control group) treatment (p < 0.05). Taken together, the findings of this present study support the addition of Gln to improve digestive enzyme activity, the ruminal epithelium’s barrier, and fermentation and immune function by supplying energy to the mononuclear cells, improving the ruminal epithelium’s morphology and integrity, and mediating the mRNA expression of tight junction proteins (TJs) and cytokines.
Collapse
|
16
|
Shu S, Fu C, Wang G, Peng W. The Effects of Postpartum Yak Metabolism on Reproductive System Recovery. Metabolites 2022; 12:1113. [PMID: 36422253 PMCID: PMC9694671 DOI: 10.3390/metabo12111113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 02/06/2024] Open
Abstract
The goal of this study was to determine the metabolism of multiparous female yaks during the late perinatal period and identify its effects on reproductive recovery in order to explain the low reproduction rate of yaks. Eight multiparous female yaks were randomly selected as the sample, and serum was collected from the yaks every 7 days from the day of delivery until 28 days after the delivery (five time points). The presence of serum metabolic profiles and reproductive hormones was identified using ELISA. The key metabolites were identified using liquid chromatography-mass spectrometry, and a dynamic metabolic network representation was created using bioinformatics analysis. A total of 117 different metabolites were identified by calculating the fold change of the metabolite expression at each time point. The dynamic metabolic network was created to represent the activities of the key metabolites, metabolic indexes and reproductive hormones. The initial efficiency of the glucose metabolism in the late perinatal period was found to be low, but it increased during the final period. The initial efficiencies of the lipid and amino acid metabolisms were high but decreased during the final period. We inferred that there was a postpartum negative energy balance in female yaks and that the synthesis and secretion of estrogen were blocked due to an excessive fatty acid mobilization. As a result, the reproductive hormone synthesis and secretion were maintained at a low level in the late perinatal period, and this was the main reason for the delayed recovery of the reproductive function postpartum. However, the specific mechanism needs to be further verified.
Collapse
Affiliation(s)
| | | | | | - Wei Peng
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| |
Collapse
|
17
|
Wu Q, Chen H, Zhang F, Wang W, Xiong F, Liu Y, Lv L, Li W, Bo Y, Yang H. Cysteamine Supplementation In Vitro Remarkably Promoted Rumen Fermentation Efficiency towards Propionate Production via Prevotella Enrichment and Enhancing Antioxidant Capacity. Antioxidants (Basel) 2022; 11:antiox11112233. [PMID: 36421419 PMCID: PMC9686782 DOI: 10.3390/antiox11112233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cysteamine (CS) is a vital antioxidant product and nutritional regulator that improves the productive performance of animals. A 2 × 4 factorial in vitro experiment was performed to determine the effect of the CS supplementation levels of 0, 20, 40, and 60 mg/g, based on substrate weight, on the ruminal fermentation, antioxidant capacity, and microorganisms of a high-forage substrate (HF, forage:corn meal = 7:3) in the Statistical Analysis System Institute. After 48 h of incubation, the in vitro dry matter disappearance and gas production in the LF group were higher when compared with a low-forage substrate (LF, forge hay:corn meal = 3:7), which was analyzed via the use of the MIXED procedure of the HF group, and these increased linearly with the increasing CS supplementation (p < 0.01). With regard to rumen fermentation, the pH and acetate were lower in the LF group compared to the HF group (p < 0.01). However, the ammonia N, microbial crude protein, total volatile fatty acids (VFA), and propionate in the LF group were greater than those in the HF group (p < 0.05). With the CS supplementation increasing, the pH, ammonia N, acetate, and A:P decreased linearly, while the microbial crude protein, total VFA, and propionate increased linearly (p < 0.01). Greater antioxidant capacity was observed in the LF group, and the increasing CS supplementation linearly increased the superoxide dismutase, catalase, glutathione peroxidase, total antioxidant capacity, glutathione, and glutathione reductase, while it decreased the malondialdehyde (p < 0.05). No difference occurred in the ruminal bacteria alpha diversity with the increasing CS supplementation, but it was higher in the LF group than in the HF group (p < 0.01). Based on the rumen bacterial community, a higher proportion of Bacteroidota, instead of Firmicutes, was in the LF group than in the HF group. Furthermore, increasing the CS supplementation linearly increased the relative abundance of Prevotella, norank_f_F082, and Prevotellaceae_UCG-001 under the two substrates (p < 0.05). Prevotella, norank_f_F082, and Prevotellaceae_UCG-001 were positively correlated with gas production, rumen fermentation, and antioxidant capacity in a Spearman correlation analysis (r > 0.31, p < 0.05). Overall, a CS supplementation of not less than 20 mg/g based on substrate weight enhanced the rumen fermentation and rumen antioxidant capacity of the fermentation system, and it guided the rumen fermentation towards glucogenic propionate by enriching the Prevotella in Bacteroidetes.
Collapse
Affiliation(s)
- Qichao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Hewei Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Weikang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Fengliang Xiong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Yingyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Liangkang Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Wenjuan Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
| | - Yukun Bo
- Animal Husbandry Technology Promotion Institution of Zhangjiakou, Zhangjiakou 075000, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agri-Cultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
18
|
Olijhoek D, Hellwing A, Noel S, Lund P, Larsen M, Weisbjerg M, Børsting C. Feeding up to 91% concentrate to Holstein and Jersey dairy cows: Effects on enteric methane emission, rumen fermentation and bacterial community, digestibility, production, and feeding behavior. J Dairy Sci 2022; 105:9523-9541. [DOI: 10.3168/jds.2021-21676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
|
19
|
Performance, fecal egg count and feeding behavior of lambs grazing elephant grass (Pennisetum purpureum Schum.) with increased levels of protein supplementation. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Effects of Solid-State Fermentation Pretreatment with Single or Dual Culture White Rot Fungi on White Tea Residue Nutrients and In Vitro Rumen Fermentation Parameters. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fermentation of agricultural by-products by white rot fungi is a research hotspot in the development of ruminant feed resources. The aim of this study was to investigate the potential of the nutritional value and rumen fermentation properties of white tea residue fermented at different times, using single and dual culture white rot fungal species. Phanerochaete chrysosporium, Pleurotus ostreatus, and Phanerochaete chrysosporium + Pleurotus ostreatus (dual culture) solid-state fermented white tea residue was used for 4 weeks, respectively. The crude protein content increased significantly in all treatment groups after 4 weeks. Total extractable tannin content was significantly decreased in all treatment groups (p < 0.01). P. chrysosporium and dual culture significantly reduced lignin content at 1 week. The content of NH3-N increased in each treatment group (p < 0.05). P. chrysosporium treatment can reduce the ratio of acetic to propionic and improve digestibility. Solid state fermentation of white tea residue for 1 week using P. chrysosporium was the most desirable.
Collapse
|
21
|
Matamoros C, Hao F, Tian Y, Patterson AD, Harvatine KJ. Interaction of sodium acetate supplementation and dietary fiber level on feeding behavior, digestibility, milk synthesis, and plasma metabolites. J Dairy Sci 2022; 105:8824-8838. [PMID: 36175230 DOI: 10.3168/jds.2022-21911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022]
Abstract
Acetate supplementation has been shown to increase milk fat yield in diets with low risk of biohydrogenation-induced milk fat depression. The interaction of acetate supplementation with specific dietary factors that modify rumen fermentation and short-chain fatty acid (FA) synthesis has not been investigated. The objective of this experiment was to determine the effect of acetate supplemented as sodium acetate at 2 dietary fiber levels. Our hypothesis was that acetate would increase milk fat production more in animals fed the low-fiber diet. Twelve lactating multiparous Holstein cows were arranged in a 4 × 4 Latin square design balanced for carryover effects with a 2 × 2 factorial arrangement of dietary fiber level and acetate supplementation with 21-d experimental periods. The high-fiber diet had 32% neutral detergent fiber and 21.8% starch, and the low-fiber diet had 29.5% neutral detergent fiber and 28.7% starch created by substitution of forages predominantly for ground corn grain. Acetate was supplemented in the diet at an average 2.8% of dry matter (DM) to provide approximately 10 mol/d of acetate as anhydrous sodium acetate. Acetate supplementation increased DM intake by 6%, with no effect on meal frequency or size. Furthermore, acetate supplementation slightly increased total-tract apparent DM digestibility and tended to increase organic matter digestibility. Acetate supplementation increased milk fat concentration and yield by 8.6 and 10.5%, respectively, but there was no interaction with dietary fiber. The increase in milk fat synthesis was associated with 46 and 85 g/d increases in the yield of de novo (<16C) and mixed source (16C) FA, respectively, with no changes in yield of preformed FA (>16C). There was a 9% increase in the concentration of milk mixed-source FA and a 7% decrease in milk preformed FA with acetate supplementation, regardless of dietary fiber level. Acetate supplementation also increased the concentrations of plasma acetate and β-hydroxybutyrate, major metabolic substrates for mammary lipogenesis. Overall, acetate supplementation increased milk fat yield regardless of dietary fiber level through an increase mostly caused by an increase in longer-chain de novo FA, suggesting stimulation of mammary lipogenesis. The heightened mammary de novo lipogenesis was supported by an increase in the concentration of metabolic substrates in plasma.
Collapse
Affiliation(s)
- C Matamoros
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - F Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park 16802
| | - Y Tian
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park 16802
| | - A D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park 16802
| | - K J Harvatine
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
22
|
Identification of Potential Biomarkers and Metabolic Pathways of Different Levels of Heat Stress in Beef Calves. Int J Mol Sci 2022; 23:ijms231710155. [PMID: 36077553 PMCID: PMC9456105 DOI: 10.3390/ijms231710155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Heat stress (HS) damages the global beef industry by reducing growth performance causing high economic losses each year. However, understanding the physiological mechanisms of HS in Hanwoo calves remains elusive. The objective of this study was to identify the potential biomarkers and metabolic pathways involving different levels of heat stress in Hanwoo calves. Data were collected from sixteen Hanwoo bull calves (169.6 ± 4.6 days old, BW of 136.9 ± 6.2 kg), which were maintained at four designated ranges of HS according to the temperature−humidity index (THI) including: threshold (22 to 24 °C, 60%; THI = 70 to 73), mild (26 to 28 °C, 60%; THI = 74 to 76), moderate (29 to 31 °C, 80%; THI = 81 to 83), and severe (32 to 34 °C, 80%; THI = 89 to 91) using climate-controlled chambers. Blood was collected once every three days to analyze metabolomics. Metabolic changes in the serum of calves were measured using GC-TOF-MS, and the obtained data were calculated by multivariate statistical analysis. Five metabolic parameters were upregulated and seven metabolic parameters were downregulated in the high THI level compared with the threshold (p < 0.05). Among the parameters, carbohydrates (ribose, myo-inositol, galactose, and lactose), organic compounds (acetic acid, urea, and butenedioic acid), fatty acid (oleic acid), and amino acids (asparagine and lysine) were remarkably influenced by HS. These novel findings support further in-depth research to elucidate the blood-based changes in metabolic pathways in heat-stressed Hanwoo beef calves at different levels of THI. In conclusion, these results indicate that metabolic parameters may act as biomarkers to explain the HS effects in Hanwoo calves.
Collapse
|
23
|
Matamoros C, Salfer IJ, Bartell PA, Harvatine KJ. Effect of the timing of sodium acetate infusion on the daily rhythms of milk synthesis and plasma metabolites and hormones in Holstein cows. J Dairy Sci 2022; 105:7432-7445. [PMID: 35931478 DOI: 10.3168/jds.2022-21912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022]
Abstract
Dairy cows have a daily pattern of feed intake which influences ruminal fermentation and nutrient absorption. Milk synthesis also exhibits a daily rhythm and is altered by the timing of feed availability. Nutrients can regulate physiological rhythms, but it is unclear which specific nutrients affect the rhythms of milk synthesis in the cow. The objective of this study was to determine the effect of the timing of acetate infusion on the daily rhythms of feed intake, milk synthesis, milk fatty acids, plasma insulin and metabolites, and core body temperature. Ten lactating ruminally cannulated Holstein cows (127 ± 24.6 d in milk; mean ± standard deviation) were arranged in a 3 × 3 Latin square design. Treatments were ruminal infusions of 600 g/d of acetate either continuously throughout the day (CON) or over 8 h/d during the day (day treatment, DT; 0900 to 1700 h) or the night (night treatment, NT; 2100 to 0500 h). Experimental periods were 14 d with a 7-d washout between periods. Cows were milked every 6 h during the final 7 d of each experimental period to determine the daily pattern of milk synthesis. Blood samples were taken to represent every 4 h across the day and plasma glucose, insulin, β-hydroxybutyrate, urea nitrogen, and acetate concentration were measured. An intravaginal temperature logger was used to measure core body temperature. Data were analyzed with cosinor-based rhythmometry to test the fit of a cosine function with a period of 24 h and to determine the acrophase (time at peak) and amplitude (peak to mean) of each rhythm. Milk yield fit a daily rhythm for all treatments and DT and NT phase-delayed the rhythm and DT increased the robustness of the rhythm. Milk protein concentration fit a daily rhythm for all treatments and DT increased robustness, whereas NT phase-delayed the rhythm. Plasma acetate concentration also fit a daily rhythm in all treatments. Plasma acetate peaked at ∼1600 h in CON and DT and at 0053 h in NT, reflecting the timing of treatment infusions. There was a daily rhythm in plasma β-hydroxybutyrate that reflected the plasma acetate rhythm. Core body temperature fit a rhythm for all treatments, but the amplitude of the rhythm was smaller than previously observed. In conclusion, the timing of acetate infusion influences peripheral rhythms of milk synthesis and plasma metabolites.
Collapse
Affiliation(s)
- C Matamoros
- Department of Animal Science, Pennsylvania State University, University Park 16802
| | - I J Salfer
- Department of Animal Science, Pennsylvania State University, University Park 16802; Department of Animal Science, University of Minnesota, St. Paul 55108
| | - P A Bartell
- Department of Animal Science, Pennsylvania State University, University Park 16802
| | - K J Harvatine
- Department of Animal Science, Pennsylvania State University, University Park 16802.
| |
Collapse
|
24
|
Daley V, Armentano L, Hanigan M. Models to predict milk fat concentration and yield of lactating dairy cows: A meta-analysis. J Dairy Sci 2022; 105:8016-8035. [DOI: 10.3168/jds.2022-21777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
|
25
|
Zhu X, Liu B, Xiao J, Guo M, Zhao S, Hu M, Cui Y, Li D, Wang C, Ma S, Shi Y. Effects of Different Roughage Diets on Fattening Performance, Meat Quality, Fatty Acid Composition, and Rumen Microbe in Steers. Front Nutr 2022; 9:885069. [PMID: 35799586 PMCID: PMC9253607 DOI: 10.3389/fnut.2022.885069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate different roughages on fatting performance, muscle fatty acids, rumen fermentation and rumen microbes of steers. Seventy-five Simmental crossbred steers were randomly divided into wheat straw group (WG), peanut vine group (PG) and alfalfa hay group (AG), with 5 replicates of 5 steers each. The results showed a highest average daily gain and lowest feed/gain ratio in AG group (P = 0.001). Steers fed alfalfa hay had the highest muscle marbling score and n-3 polyunsaturated fatty acid (PUFA), and also the rumen NH3-N and microbial protein (MCP) concentration among the three groups (P < 0.05). Correlation analysis showed that ruminal NH3-N and MCP were negatively correlated with muscle saturated fatty acid (SFA), while ruminal MCP was positively correlated with muscle PUFA and n-3 PUFA (P < 0.05). 16S rRNA analysis indicated that fed alfalfa hay decreased the abundance of Ruminococcaceae_UCG-001(P = 0.005). More importantly, muscle SFA deposition were positively correlated to the abundance of Ruminococcaceae_UCG-001 (P < 0.05), while the muscle PUFA and n-3 PUFA deposition were negatively correlated to it (P < 0.01). Therefore, alfalfa hay provides a better fattening effect on steers. Alfalfa rich in n-3 PUFA would reduce the abundance of Ruminococcaceae_UCG-001 involved in hydrogenation, increase the rumen protective effect of C18:3 n-3, which is beneficial to the deposition of muscle n-3 PUFA and PUFA.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Henan Agricultural University, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
| | - Boshuai Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Junnan Xiao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ming Guo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shumin Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Menglin Hu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yalei Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Henan Agricultural University, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
| | - Defeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Henan Agricultural University, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
| | - Chengzhang Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Henan Agricultural University, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
| | - Sen Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Henan Agricultural University, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
| | - Yinghua Shi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Grassland Resources Innovation and Utilization, Henan Agricultural University, Zhengzhou, China
- Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
26
|
Effects of Concentrate Supplementation on Growth Performance, Rumen Fermentation, and Bacterial Community Composition in Grazing Yaks during the Warm Season. Animals (Basel) 2022; 12:ani12111398. [PMID: 35681862 PMCID: PMC9179552 DOI: 10.3390/ani12111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the effects of concentrate supplementation on the growth performance, serum biochemical parameters, rumen fermentation, and bacterial community composition of grazing yaks during the warm season. Eight male yaks (body weight, 123.96 ± 7.43 kg; 3-years) were randomly allocated to two treatments groups: grazing (n = 4, GY) and concentrate supplement group (n = 4, GYS). Concentrate supplementation increased the average daily gain (ADG) (p < 0.05). Glucose (GLU), total protein (TP), and aspartate aminotransferase (AST) serum concentrations were significantly higher in the GYS group than in the GY group (p < 0.05). Ammonia-N, MCP: microbial protein, and total volatile fatty acid concentrations were significantly higher in the GYS group than in the GY group (p < 0.01), whereas the pH and acetate: propionate values were significantly decreased (p < 0.01). The relative abundance of Firmicutes in the rumen fluid was significantly higher in the GYS group than in the GY group (p < 0.01). At the genus level, the relative abundances of Succiniclasticum, Prevotellaceae_UCG_003, Prevotellaceae_UCG_005, and Ruminococcus_1 were significantly greater in the GY group than in the GYS group (p < 0.01). In conclusion, concentrate supplementation improved yaks’ growth potential during the warm season, improved ruminal fermentation, and altered core bacteria abundance.
Collapse
|
27
|
Li S, Du M, Zhang C, Wang Y, Lee Y, Zhang G. Diet Type Impacts Production Performance of Fattening Lambs by Manipulating the Ruminal Microbiota and Metabolome. Front Microbiol 2022; 13:824001. [PMID: 35547127 PMCID: PMC9081845 DOI: 10.3389/fmicb.2022.824001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
The pelleted total mixed ration (PTMR) has a positive effect on the productivity of fattening lambs. However, whether the beneficial effects are underpinned by altering the rumen microbiota and metabolome that remain unclear. This study aimed to investigate correlations among growth performance, ruminal microbiota, and ruminal metabolome of lambs fed PTMR diet. A total of 100 crossbred (Dorper sheep × Fine-wool sheep) ram lambs at 55 days of age with similar body weight (BW) (13.2 ± 0.5 kg) were randomly allocated to 10 pens that were fed either PTMR (PTMR group) or unpelleted total mixed ration (UPTMR group) with the same dietary ingredients and nutritional contents. The average daily gain (ADG) and average daily feed intake (ADFI) were determined during the 62-day experimental period and ruminal pH, volatile fatty acid (VFA) concentrations, microbiota, and metabolome in the rumen of the lambs were examined at the end of the experiment. Compared to those of the UPTMR group, the PTMR group had greater ADFI (P = 0.002), ADG (P = 0.003), and feed efficiency (G/F) (P < 0.05). Similarly, feeding PTMR increased the concentration of total VFA (TVFA) and the molar proportion of propionate, but decreased the proportion of butyrate and acetate to propionate ratio in the rumen of lambs compared to that in lambs from the UPTMR group (P < 0.05). In addition, the PTMR group demonstrated lowered alpha-diversity of the ruminal microbiota and enhanced the relative abundance of Fibrobacter (P < 0.05), Veillonellaceae (P < 0.05), and the abundance of Rikenellaceae (P = 0.064) in the rumen compared with those in the UPTMR group. Feeding lambs with PTMR significantly upregulated the metabolic pathways involving tryptophan, histidine, cysteine and methionine, β-alanine, tyrosine metabolisms, and steroid biosynthesis. Moreover, the abundance of the microbiota strongly correlated with the altered performance, ruminal VFA, metabolites, and metabolic pathways of lambs. Taken together, feeding PTMR shaped the ruminal microbiota of lambs with decreased diversity, while improving relative abundance of some specific microbes and upregulating certain growth-related metabolic pathways, which contributed to the augmented growth performance and G/F of fattening lambs. Thus, feeding PTMR to fattening lambs for superior production performance and G/F is recommended.
Collapse
Affiliation(s)
- Siqi Li
- College of Animal Sciences and Technology, Shandong Agricultural University, Taian, China
| | - Meiyu Du
- College of Animal Sciences and Technology, Shandong Agricultural University, Taian, China
| | - Chongyu Zhang
- College of Animal Sciences and Technology, Shandong Agricultural University, Taian, China
| | - Yun Wang
- College of Animal Sciences and Technology, Shandong Agricultural University, Taian, China
| | - Yunkyoung Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Department of Food Science and Nutrition, Jeju National University, Jeju, South Korea
| | - Guiguo Zhang
- College of Animal Sciences and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
28
|
Kumar CA, Kumar DS, Raja Kishore K, Venkata Seshaiah C, Narendranath D, Reddy PR. De-oiled palm kernel cake for stall-fed buffaloes: effect on milk constituents, nutrient digestibility, biochemical parameters, and rumen fermentation. Trop Anim Health Prod 2022; 54:184. [PMID: 35536280 DOI: 10.1007/s11250-022-03187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Palm kernel cake, the main by-product of the palm kernel oil extraction process, is a highly available and low-priced agro-industrial by-product. However, several concerns exist to arriving at a safe inclusion level, especially for buffaloes. Two experiments were conducted to evaluate the effects of feeding de-oiled palm kernel cake (DPKC) to tropical buffaloes. In trial I, four fistulated Murrah buffaloes arranged in a 4 × 4 Latin square design were fed diets containing DPKC inclusions at 0, 15, 30, and 45% levels of compound feed to study their effects on rumen fermentation parameters. Trial II involves feeding twelve lactating buffaloes with DPKC inclusion levels at 0 or 15% of the compound feed to evaluate the effect of DPKC on the nutrient digestibility, serum biochemical constituents, rumen fermentation patterns, and lactation profile. The DPKC diets did not affect rumen pH, TCA-ppt nitrogen, and TVFA proportion; nevertheless, the NH3-N data revealed a decreased trend (P = 0.076). The acetate fraction decreased linearly (P < 0.05) with increased DPKC diets. Replacing the conventional protein sources with DPKC at a 15% level did not influence the nutrient intake and digestibility coefficients. No significant effects were observed for serum biochemical and mineral profiles of the lactating buffaloes fed the DPKC diet. Neither milk yield nor milk constituents (SNF, total solids, density, lactose, protein) were altered with the diets fed, except for milk fat%, which tended to increase (P = 0.092) on feeding DPKC diets. All the lactation parameters varied with time of collection, and diet × time interactions were noticed for fat, density, protein, 6% FCM yield, and butterfat yield. The feed efficiency tended to increase (P = 0.070) in the buffaloes fed DPKC diets. The profit margins were ₹6.07 and ₹1.63 for the DPKC included diets and feed cost per Kg 6% FCMY, respectively. In conclusion, the inclusion of DPKC in the diet decreases feed cost without affecting the nutrient intakes, digestibility coefficients, serum biochemical and mineral profile, and lactation parameters.
Collapse
Affiliation(s)
- C Anil Kumar
- Department of Livestock Farm Complex, NTR College of Veterinary Science, Sri Venkateswara Veterinary University, Gannavaram, Andhra Pradesh, India.
| | - D Srinivas Kumar
- Department of Animal Nutrition, NTR CVSc, Sri Venkateswara Veterinary University, Gannavaram, AP, India
| | - K Raja Kishore
- Department of Animal Nutrition, NTR CVSc, Sri Venkateswara Veterinary University, Gannavaram, AP, India
| | - Ch Venkata Seshaiah
- Department of Livestock Farm Complex, NTR College of Veterinary Science, Sri Venkateswara Veterinary University, Gannavaram, Andhra Pradesh, India
| | - D Narendranath
- Department of Poultry Science, NTR CVSc, Sri Venkateswara Veterinary University, Gannavaram, AP, India
| | - P Ravikanth Reddy
- Animal Husbandry Department, Veterinary Dispensary, Taticherla, Andhra Pradesh, India
| |
Collapse
|
29
|
Supplementing a Phytogenic Feed Additive Modulates the Risk of Subacute Rumen Acidosis, Rumen Fermentation and Systemic Inflammation in Cattle Fed Acidogenic Diets. Animals (Basel) 2022; 12:ani12091201. [PMID: 35565627 PMCID: PMC9105827 DOI: 10.3390/ani12091201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/23/2022] Open
Abstract
Feeding with high-concentrate diets increases the risk of subacute ruminal acidosis (SARA). This experiment was conducted to evaluate whether supplementing a phytogenic feed additive based on L-menthol, thymol, eugenol, mint oil (Mentha arvensis) and cloves powder (Syzygium aromaticum) (PHY) can amend the ruminal fermentation profile, modulate the risk of SARA and reduce inflammation in cattle. The experiment was designed as a crossover design with nine non-lactating Holstein cows, and was conducted in two experimental runs. In each run, cows were fed a 100% forage diet one week (wk 0), and were then transitioned stepwise over one week (0 to 65% concentrate, wk adapt.) to a high concentrate diet that was fed for 4 weeks. Animals were fed diets either with PHY or without (CON). The PHY group had an increased ruminal pH compared to CON, reduced time to pH < 5.8 in wk 3, which tended to decrease further in wk 4, reduced the ruminal concentration of D-lactate, and tended to decrease total lactate (wk 3). In wk 2, PHY increased acetate, butyrate, isobutyrate, isovalerate, and the acetate to propionate ratio compared to CON. Phytogenic supplementation reduced inflammation compared to CON in wk 3. Overall, PHY had beneficial effects on ruminal fermentation, reduced inflammation, and modulated the risk of SARA starting from wk 3 of supplementation.
Collapse
|
30
|
Bica R, Palarea-Albaladejo J, Lima J, Uhrin D, Miller GA, Bowen JM, Pacheco D, Macrae A, Dewhurst RJ. Methane emissions and rumen metabolite concentrations in cattle fed two different silages. Sci Rep 2022; 12:5441. [PMID: 35361825 PMCID: PMC8971404 DOI: 10.1038/s41598-022-09108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, 18 animals were fed two forage-based diets: red clover (RC) and grass silage (GS), in a crossover-design experiment in which methane (CH4) emissions were recorded in respiration chambers. Rumen samples obtained through naso-gastric sampling tubes were analysed by NMR. Methane yield (g/kg DM) was significantly lower from animals fed RC (17.8 ± 3.17) compared to GS (21.2 ± 4.61) p = 0.008. In total 42 metabolites were identified, 6 showing significant differences between diets (acetate, propionate, butyrate, valerate, 3-phenylopropionate, and 2-hydroxyvalerate). Partial least squares discriminant analysis (PLS-DA) was used to assess which metabolites were more important to distinguish between diets and partial least squares (PLS) regressions were used to assess which metabolites were more strongly associated with the variation in CH4 emissions. Acetate, butyrate and propionate along with dimethylamine were important for the distinction between diets according to the PLS-DA results. PLS regression revealed that diet and dry matter intake are key factors to explain CH4 variation when included in the model. Additionally, PLS was conducted within diet, revealing that the association between metabolites and CH4 emissions can be conditioned by diet. These results provide new insights into the methylotrophic methanogenic pathway, confirming that metabolite profiles change according to diet composition, with consequences for CH4 emissions.
Collapse
Affiliation(s)
- R Bica
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK.
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
- Institute National de La Recherche Agronomique (INRAE), 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France.
| | - J Palarea-Albaladejo
- Biomathematics and Statistics Scotland, JCMB, Peter Guthrie Tait Road, The King's Buildings, Edinburgh, EH9 3FD, UK
- Department of Computer Science, Applied Mathematics and Statistics, University of Girona, 17003, Girona, Spain
| | - J Lima
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - D Uhrin
- The University of Edinburgh, EaStCHEM School of Chemistry, The King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - G A Miller
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK
| | - J M Bowen
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK
| | - D Pacheco
- AgResearch Grasslands Research Centre, Tennent Drive, 11 Dairy Farm Road, Palmerston North, 4442, New Zealand
| | - A Macrae
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - R J Dewhurst
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK
| |
Collapse
|
31
|
Engelking LE, Ambrose DJ, Oba M. Effects of dietary butyrate supplementation and oral nonsteroidal anti-inflammatory drug administration on serum inflammatory markers and productivity of dairy cows during the calving transition. J Dairy Sci 2022; 105:4144-4155. [PMID: 35307174 DOI: 10.3168/jds.2021-21553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/07/2022] [Indexed: 01/12/2023]
Abstract
Dairy cattle experience inflammation during the calving transition period, and butyrate and nonsteroidal anti-inflammatory drugs (NSAID) are expected to reduce the inflammation. Our objective was to evaluate the effects of dietary butyrate supplementation and oral NSAID administration on feed intake, serum inflammatory markers, plasma metabolites, and milk production of dairy cows during the calving transition period. Eighty-three Holstein cows were used in the experiment with a 2 × 2 factorial arrangement of treatments. The cows were blocked by parity and calving date, and randomly assigned to a dietary butyrate or control supplement, and NSAID or a placebo oral administration. Experimental diets were iso-energetic containing calcium butyrate at 1.42% of diet dry matter (DM) or the control supplement (1.04% commercial fat supplement and 0.38% calcium carbonate of diet DM). The close-up diets contained 13.3% starch and 42.4% neutral detergent fiber on a DM basis, and were fed from 28 d before expected calving date until calving. The postpartum diets contained 22.1% starch and 34.1% neutral detergent fiber on a DM basis and were fed from calving to 24 d after calving. Oral NSAID (1 mg of meloxicam/kg of body weight) or placebo (food dye) was administered 12 to 24 h after calving. Dietary butyrate supplementation and oral NSAID administration did not affect milk yield or postpartum serum concentrations of amyloid A and haptoglobin. However, butyrate-fed cows increased plasma fatty acid concentration on d -4 relative to calving (501 vs. 340 μEq/L) and tended to increase serum haptoglobin concentration (0.23 vs. 0.10 mg/mL). There was a supplement by drug interaction effect on plasma glucose concentration on d 4; in cows administered the placebo drug, butyrate supplementation decreased plasma glucose concentration compared with control-fed cows (62.8 vs. 70.1 mg/dL). Butyrate-fed cows tended to have lower milk crude protein yield compared with cows fed the control diet (1.21 vs. 1.27 kg/d). Dietary butyrate supplementation and oral NSAID administration did not have overall positive effects on production performance of dairy cows during the calving transition period.
Collapse
Affiliation(s)
- L E Engelking
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - D J Ambrose
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - M Oba
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
32
|
Supplementation of Oilseeds to an Herbage Diet High in Condensed Tannins Affects Methane Production with Minimal Impact on Ruminal Fermentation in Continuous Culture. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Condensed tannins (CT) have been observed to reduce enteric CH4 production when added to ruminant diets. However, high concentrations of CT in forages such as sericea lespedeza (SL; Lespedeza cuneata (Dum. Cours.) G. Don) may depress nutrient digestibility. Oilseed crops, high in lipid concentration, also reduce enteric CH4 via toxicity to methanogenic bacteria with less depression of nutrient digestibility. However, it is unclear whether combining these two feeds would result in even greater decreases in CH4 without impairing ruminal fermentation. This study used an in vitro continuous culture fermentor system to determine if supplementation of ground oilseeds would further reduce enteric CH4 production while improving nutrient digestibility of high-CT forages. The experimental design was a 4 × 4 Latin square, with four diets containing (dry matter basis) 45% orchardgrass (OCH; Dactylis glomerata L.), 45% sericea lespedeza (SL; Lespedeza cuneata (Dum. Cours.) G. Don), and 10% oilseed supplements, using canola (CAN; Brassica napus L.), soybean (SOY; Glycine max L.), sunflower (SUN; Helianthus annuus L.), or a mix of all three species (MIX; in equal proportions). Fermentors were fed 82 g of dry matter/d in four equal feedings over four 10 d periods. Methane was recorded every 10 min, and effluent samples were analyzed for pH, volatile fatty acids, dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber to determine apparent and true nutrient digestibilities. The CAN, SUN, and MIX diets had greater concentrations of crude fat (7–8 g/kg) than the SOY diet (5.7 g/kg), which contributed to the greater reduction in enteric CH4 production in those diets (13–27 mg/d) compared to the SOY diet (84 mg/d). Apparent and true nutrient digestibilities were not affected by the addition of ground oilseeds. While N intake increased concomitant with crude protein increases in the diets, there were no additional effects on N flows. While supplementing a high-CT diet with any of the three oilseeds (canola, soybean, sunflower, or a mixture of the three oilseeds) reduced total CH4 emission without depressing nutrient digestibility, canola and mixes containing canola were most effective. Further research is needed in vivo to evaluate whether these results translate to greater feed efficiency and animal production.
Collapse
|
33
|
Choi Y, Kim S, Lee S, Na Y. Effects of starch sugar by-product on rumen in vitro digestibility, in situ disappearance rate, and milking productivity of the lactating dairy cow. PeerJ 2022; 10:e12998. [PMID: 35223213 PMCID: PMC8877396 DOI: 10.7717/peerj.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/02/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The purpose of the present study was to determine the effects of starch sugar by-product (SSB) feeding on the rumen in-vitro digestibility, in situ disappearance rate, and lactating dairy cow. METHODS To determine the rumen in vitro digestibility, 50 mL of the buffer-rumen fluid mixture was dispensed into a 125 mL serum bottle containing 0.5 g of dry matter (DM) of substrates. Nitrogen gas (N2, 99.9% pure) was flushed into the serum bottles and three replications were incubated at 0, 2, 4, 8, 16, 24, and 48 h. To determine the in-situ disappearance rate, SSB was incubated for 0, 2, 4, 8, 16, 24, and 48 hours in nylon bags (5 × 10 cm, 45*m pore size) placed within the ventral sac of two cannulated Holstein cows.. A total of sixteen Holstein Friesian cows (60.5 ± 20.4 months old, 706.8 ± 3.4 kg initial body wieght) fed experimental diets during the experimental periods. The treatments were basal diet (control) and 3.0% DM of SSB, with the diet formulated according to national research council (NRC) nutrient requirements of dairy cattle guideline. An experiment was conducted with a randomized block design for six weeks based on body weight. RESULTS Soluble fraction (fraction a) of DM and crude protein (CP) was 28.99 and 11.92%DM, fraction b of DM and CP was 44.63 and 31.61% DM, and c value of DM and CP was 26.38 and 56.47%DM. As an increase SSB level in total mixed ration (TMR), there was a decrease in gas production at 0, 16, and 48 h (p < 0.05). As an increase SSB level in TMR, there was a decrease in acetate to propionate ratio at 8, 16, 24, and 48 h (p < 0.05). Dry matter intake, milk production, and milk composition did not differ between the treatments. All blood profile contents did not differ between treatments. CONCLUSION A diet containing 3.0% SSB could be fed to ruminants without adverse effects on rumen fermentation.
Collapse
Affiliation(s)
- Yongjun Choi
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Suhun Kim
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Sangrak Lee
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Youngjun Na
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea,Animal Data Lab., Antller Inc., Seoul, South Korea
| |
Collapse
|
34
|
Gleason CB, Beckett LM, White RR. Rumen fermentation and epithelial gene expression responses to diet ingredients designed to differ in ruminally degradable protein and fiber supplies. Sci Rep 2022; 12:2933. [PMID: 35190602 PMCID: PMC8861106 DOI: 10.1038/s41598-022-06890-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/08/2022] [Indexed: 12/02/2022] Open
Abstract
Although numerous studies exist relating ruminal volatile fatty acid (VFA) concentrations to diet composition and animal performance, minimal information is available describing how VFA dynamics respond to diets within the context of the whole rumen environment. The objective of this study was to characterize how protein and fiber sources affect dry matter intake, rumen pH, fluid dynamics, fermentation parameters, and epithelial gene expression. Four diet treatments (soybean meal or heat-treated soybean meal and beet pulp or timothy hay) were delivered to 10 wethers. The soybean meals served as crude protein (CP) sources while the beet pulp and timothy hay represented neutral detergent fiber (NDF) sources. Feed intake, rumen pH, fluid pool size, and fluid passage rate were unaffected by treatment. Butyrate synthesis and absorption were greater on the beet pulp treatment whereas synthesis and absorption of other VFA remained unchanged. Both CP and NDF treatment effects were associated with numerous VFA interconversions. Expression levels of rumen epithelial genes were not altered by diet treatment. These results indicate that rumen VFA dynamics are altered by changes in dietary sources of nutrients but that intake, rumen environmental parameters, and the rumen epithelium may be less responsive to such changes.
Collapse
Affiliation(s)
- C B Gleason
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - L M Beckett
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - R R White
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
35
|
Effect of calcium propionate level on the growth performance, carcass characteristics, and meat quality of feedlot ram lambs. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Kass M, Ramin M, Hanigan MD, Huhtanen P. Comparison of Molly and Karoline models to predict methane production in growing and dairy cattle. J Dairy Sci 2022; 105:3049-3063. [PMID: 35094851 DOI: 10.3168/jds.2021-20806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022]
Abstract
Numerous empirical and mechanistic models predicting methane (CH4) production are available. The aim of this work was to evaluate the Molly cow model and the Nordic cow model Karoline in predicting CH4 production in cattle using a data set consisting of 267 treatment means from 55 respiration chamber studies. The dietary and animal characteristics used for the model evaluation represent the range of diets fed to dairy and growing cattle. Feedlot diets and diets containing additives mitigating CH4 production were not included in the data set. The relationships between observed and predicted CH4 (pCH4) were assessed by regression analysis using fixed and mixed model analysis. Residual analysis was conducted to evaluate which dietary factors were related to prediction errors. The fixed model analysis showed that the Molly predictions were related to the observed data (± standard error) as CH4 (g/d) = 0.94 (±0.022) × pCH4 (g/d) + 31 (±6.9) [root mean squared prediction error (RMSPE) = 45.0 g/d (14.9% of observed mean), concordance correlation coefficient (CCC) = 0.925]. The corresponding equation for the Karoline model was CH4 (g/d) = CH4 (g/d) = 0.98 (±0.019) × pCH4 (g/d) + 7.0 (±6.0) [RMSPE = 35.0 g/d (11.6%), CCC = 0.953]. Proportions of mean squared prediction error attributable to mean and linear bias and random error were 10.6, 2.2, and 87.2% for the Molly model, and 1.3, 0.3, and 98.6% for the Karoline model, respectively. Mean and linear bias were significant for the Molly model but not for the Karoline model. With the mixed model regression analysis RMSPE adjusted for random study effects were 10.9 and 7.9% for the Molly model and the Karoline model, respectively. The residuals of CH4 predictions were more strongly related to factors associated with CH4 production (feeding level, digestibility, fat concentrations) with the Molly model compared with the Karoline model. Especially large mean (underprediction) and linear bias (overprediction of low digestibility diets relative to high digestibility diets) contributed to the prediction error of CH4 yield with the Molly model. It was concluded that both models could be used for prediction of CH4 production in cattle, but Karoline was more accurate and precise based on smaller RMSPE, mean bias, and slope bias, and greater CCC. The importance of accurate input data of key variables affecting diet digestibility is emphasized.
Collapse
Affiliation(s)
- M Kass
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Skogsmarksgränd, Umeå, Sweden; Chair of Animal Nutrition, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi Str. 46, 51006 Tartu, Estonia
| | - M Ramin
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Skogsmarksgränd, Umeå, Sweden
| | - M D Hanigan
- Department of Dairy Science, Virginia Tech, 3310 Litton Reaves, Blacksburg 24061
| | - P Huhtanen
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Skogsmarksgränd, Umeå, Sweden; Production Systems, Natural Resources Institute Finland (LUKE), 31600 Jokioinen, Finland.
| |
Collapse
|
37
|
Multi-omics Analysis Revealed Coordinated Responses of Rumen Microbiome and Epithelium to High-Grain-Induced Subacute Rumen Acidosis in Lactating Dairy Cows. mSystems 2022; 7:e0149021. [PMID: 35076273 PMCID: PMC8788321 DOI: 10.1128/msystems.01490-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Subacute ruminal acidosis (SARA) is a major metabolic disease in lactating dairy cows caused by the excessive intake of high-concentrate diets. Here, we investigated the synergistic responses of rumen bacteria and epithelium to high-grain (HG)-induced SARA. Eight ruminally cannulated lactating Holstein cows were randomly assigned to 2 groups for a 3-week experiment and fed either a conventional (CON) diet or an HG diet. The results showed that the HG-feeding cows had a thickened rumen epithelial papilla with edge injury and a decreased plasma β-hydroxybutyrate concentration. The 16S rRNA gene sequencing results demonstrated that HG feeding caused changes in rumen bacterial structure and composition, which further altered rumen fermentation and metabolism. Cooccurrence network analysis revealed that the distribution of the diet-sensitive bacteria responded to the treatment (CON or HG) and that all diet-sensitive amplicon sequence variants showed low to medium degrees of cooccurrence. Metabolomics analysis indicated that the endothelial permeability-increasing factor prostaglandin E1 and the polyamine synthesis by-product 5′-methylthioadenosine were enriched under HG feeding. Transcriptome analysis suggested that cholesterol biosynthesis genes were upregulated in the rumen epithelium of HG cows. The gene expression changes, coupled with more substrate being available (total volatile fatty acids), may have caused an enrichment of intracellular cholesterol and its metabolites. All of these variations could coordinately stimulate cell proliferation, increase membrane permeability, and trigger epithelial inflammation, which eventually disrupts rumen homeostasis and negatively affects cow health. IMPORTANCE Dairy cows are economically important livestock animals that supply milk for humans. The cow’s rumen is a complex and symbiotic ecosystem composed of diverse microorganisms, which has evolved to digest high-fiber diets. In modern dairy production, SARA is a common health problem due to overfeeding of high-concentrate diets for an ever-increasing milk yield. Although extensive studies have been conducted on SARA, it remains unclear how HG feeding affects rumen cross talk homeostasis. Here, we identified structural and taxonomic fluctuation for the rumen bacterial community, an enrichment of certain detrimental metabolites in rumen fluid, and a general upregulation of cholesterol biosynthesis genes in the rumen epithelium of HG-feeding cows by multi-omics analysis. Based on these results, we propose a speculation to explain cellular events of coordinated rumen bacterial and epithelial adaptation to HG diets. Our work provides new insights into the exploitation of molecular regulation strategies to treat and prevent SARA.
Collapse
|
38
|
Kidane A, Gregersen Vhile S, Ferneborg S, Skeie S, Olsen MA, Torunn Mydland L, Øverland M, Prestl Kken E. Cyberlindnera jadinii yeast as a protein source in early- to mid-lactation dairy cow diets: Effects on feed intake, ruminal fermentation, and milk production. J Dairy Sci 2022; 105:2343-2353. [PMID: 34998553 DOI: 10.3168/jds.2021-20139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 11/09/2021] [Indexed: 01/05/2023]
Abstract
We examined the effects of substituting soybean meal with either yeast protein from Cyberlindnera jadinii or barley in concentrate feeds on feed intake, ruminal fermentation products, milk production, and milk composition in Norwegian Red (NRF) dairy cows. The concentrate feeds were prepared in pellet form as soy-based (SBM; where soybean meal is included as a protein ingredient), yeast-based (YEA; soybean meal replaced with yeast protein), or barley-based (BAR; soybean meal replaced with barley). The SBM contained 7.0% soybean meal on a dry matter (DM) basis. This was replaced with yeast protein and barley in the YEA and BAR concentrate feeds, respectively. A total of 48 early- to mid-lactation [days in milk ± standard deviation (SD): 103 ± 33.5 d] NRF cows in their first to fourth parity and with initial milk yield of 32.6 kg (SD = 7.7) were allocated into 3 groups, using a randomized block design, after feeding a common diet [SBM and good-quality grass silage: crude protein (CP) and neutral detergent fiber (NDF) content of 181 and 532 g/kg of DM, respectively] for 14 d (i.e., covariate period). The groups (n = 16) were then fed one of the dietary treatments (SBM, YEA, or BAR) for a period of 56 d (i.e., experimental period). The concentrate feeds were offered in split portions from 3 automatic feeders using electronic identification, with ad libitum access to the same grass silage. Dietary treatments had no effect on daily silage intake, total DM intake, or total NDF intake. Dietary CP intake was lower and starch intake was higher in the BAR group compared with the other groups. Ruminal fluid pH, short-chain volatile fatty acid (VFA) concentrations, acetate-to-propionate ratio, and non-glucogenic to glucogenic VFA ratio were not affected by dietary treatments. No effects of the dietary treatments were observed on body weight change, body condition score change, milk yield, energy-corrected milk yield, milk lactose and fat percentages, or their yields. In conclusion, yeast protein can substitute conventional soybean meal in dairy cow diets without adverse effect on milk production and milk composition, given free access to good-quality grass silage.
Collapse
Affiliation(s)
- Alemayehu Kidane
- Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | | | - Sabine Ferneborg
- Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Siv Skeie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | - Martine Andrea Olsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Liv Torunn Mydland
- Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Margareth Øverland
- Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Egil Prestl Kken
- Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| |
Collapse
|
39
|
Krebs GL, De Rosa DW, White DM, Blake BL, Dods KC, May CD, Tai ZX, Clayton EH, Lynch EE. Intake, nutrient digestibility, rumen parameters, growth rate, carcase characteristics and cannabinoid residues of sheep fed pelleted rations containing hemp ( Cannabis sativa L.) stubble. Transl Anim Sci 2022; 5:txab213. [PMID: 34988375 PMCID: PMC8714185 DOI: 10.1093/tas/txab213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/26/2022] Open
Abstract
The feeding value and impact of hemp stubble in the diet of ruminants is unknown. Fifteen Merino castrated male sheep were maintained in individual pens and fed one of three pelletized experimental inclusion diets, as a 0% (Control), 28% (Hemp 1), and 56% (Hemp 2) pellet that delivered a diet meeting the nutrient requirements of the animals. Inclusion of hemp stubble had no effect (P > 0.05) on either DM intake, live weight gain or the feed to gain ratio but positively impacted (P < 0.05) on nutrient digestibility. Hemp stubble inclusion increased the concentration (but not molar proportions) of acetic and butyric acids and increased both the concentrations and molar proportions of iso-butyric, iso-valeric, hexanoic and heptanoic acids, possibly due to increased protein digestibility and/or changes in the composition of rumen cellulolytic bacteria. Tetrahydrocannabinolic acid (THCA) was the only cannabinoid found in plasma in the sheep fed the hemp-containing diets, and this was found at very low concentrations (<16 μg/L). The psychoactive cannabinoid delta-9-tetrahydrocannabinol (Δ 9-THC) was not detected in any plasma samples. THCA was detected in the liver of two sheep fed the Hemp 1 pellets and two sheep fed the Hemp 2 pellets. Cannabidiol (CBD) was detected in the liver of one sheep fed the Hemp 2 pellets (but no liver THCA was detected in this sheep). Δ 9-THC was detected in both the kidney fat and subcutaneous fat of all sheep fed hemp stubble, with the concentrations being higher (P < 0.05) in the sheep fed the Hemp 1 pellets. THCA was also detected in the subcutaneous fat of one of the sheep fed the Hemp 1 pellets. Four of the five sheep fed the Hemp 1 pellet and one of the five sheep fed Hemp 2 pellet had detectable levels of Δ 9-THC in the meat (loin). No other cannabinoids were detected in the meat. Current food standards regulations in Australia prohibit presence of any cannabinoid residues in commercial meat products; thus, determination of a withholding period is required to enable the safe feeding of hemp-stubble to sheep. Further research is also required to gain a greater understanding of the rumen metabolism of cannabinoids.
Collapse
Affiliation(s)
- Gaye L Krebs
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| | - Daniel W De Rosa
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| | - Dana M White
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| | - Bronwyn L Blake
- Department of Primary Industries and Regional Development, Bunbury, Western Australia 6230, Australia
| | - Kenneth C Dods
- ChemCentre, Bentley, Western Australia 6983, Australia.,NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, New South Wales 2650, Australia
| | | | - Zi X Tai
- ChemCentre, Bentley, Western Australia 6983, Australia
| | - E H Clayton
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, New South Wales 2650, Australia
| | - Emma E Lynch
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| |
Collapse
|
40
|
Jiang Y, Dai P, Dai Q, Ma J, Wang Z, Hu R, Zou H, Peng Q, Wang L, Xue B. Effects of the higher concentrate ratio on the production performance, ruminal fermentation, and morphological structure in male cattle-yaks. Vet Med Sci 2021; 8:771-780. [PMID: 34918881 PMCID: PMC8959305 DOI: 10.1002/vms3.678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The present study evaluated the effects of the different concentrate‐to‐forage ratio on the parameters of production, ruminal fermentation, blood biochemical indices, and ruminal epithelial morphological structure of the male cattle‐yaks. Methods Eight male cattle‐yaks (280 ± 10 kg of body weight) were randomly divided into the high concentrate (HighC, 70% concentrate feeds on a dry matter basis) and low concentrate (LowC, 50% concentrate feeds on a dry matter basis) groups. All the animals were regularly provided rations twice a day at 08:00 and 16:00 h and had free access to water. The experiment lasted for 37 days. Results The dry matter intake and average daily gain of the HighC group were higher (p < 0.05) than those of LowC group. Moreover, a high concentrate diet was found to significantly increase (p < 0.05) the total volatile fatty acid (TVFA) production, and the ratio of propionate and butyrate in TVFA. On the contrary, the ruminal pH, the ratio of isobutyrate and isovalerate, and the acetate‐to‐propionate were significantly decreased (p < 0.05) after high concentrate feeding. The lipopolysaccharide concentrations of the ruminal fluid and plasma in the HighC group were higher (p < 0.05) than those of the LowC group. The results of the ruminal histomorphology showed the rumen to possess an inflammatory reaction. Conclusion These findings revealed that upon higher dry matter intake and average daily gain, high concentrate feeding altered the rumen fermentation and morphology, inducing the ruminal inflammation of the cattle‐yak.
Collapse
Affiliation(s)
- Yahui Jiang
- College of Animal Science and Technology, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Peng Dai
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qindan Dai
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Rui Hu
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Quanhui Peng
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bai Xue
- Animal Nutrition Institute, Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
41
|
Hansen NP, Kristensen T, Johansen M, Hellwing ALF, Waldemar P, Weisbjerg MR. Shredding of grass-clover before ensiling: Effects on feed intake, digestibility, and methane production in dairy cows. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Rabee AE, Kewan KZ, Sabra EA, El Shaer HM, Lamara M. Rumen bacterial community profile and fermentation in Barki sheep fed olive cake and date palm byproducts. PeerJ 2021; 9:e12447. [PMID: 34820187 PMCID: PMC8605757 DOI: 10.7717/peerj.12447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
Rumen bacteria make the greatest contribution to rumen fermentation that enables the host animal to utilize the ingested feeds. Agro-industrial byproducts (AIP) such as olive cake (OC) and date palm byproducts (discarded dates (DD), and date palm fronds (DPF)) represent a practical solution to the deficiency in common feed resources. In this study, thirty-six growing Barki lambs were divided into three groups to evaluate the effect of untraditional diets including the AIP on the growth performance. Subsequently, nine adult Barki rams were used to evaluate the effect of experimental diets on rumen fermentation and rumen bacteria. Three rations were used: common concentrate mixture (S1), common untraditional concentrate mixture including OC and DD (S2), and the same concentrate mixture in S2 supplemented with roughage as DPF enriched with 15% molasses (S3). The animals in S2 group showed higher dry matter intake (DMI) and lower relative growth rate (RGR) as compared to the animals in S1 group. However, the animals in S3 group were the lowest in DMI but achieved RGR by about 87.6% of that in the S1 group. Rumen pH, acetic and butyric acids were more prevalent in animals of S3 group and rumen ammonia (NH3-N), total volatile fatty acids (TVFA), propionic acid were higher in S1. Rumen enzymes activities were higher in S1 group followed by S3 and S2. The bacterial population was more prevalent in S1 and microbial diversity was higher in the S3 group. Principal coordinate analysis revealed clusters associated with diet type and the relative abundance of bacteria varied between sheep groups. The bacterial community was dominated by phylum Bacteroidetes and Firmicutes; whereas, Prevotella, Ruminococcus, and Butyrivibrio were the dominant genera. Results indicate that diet S3 supplemented by OC, DD, and DPF could replace the conventional feed mixture.
Collapse
Affiliation(s)
- Alaa Emara Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Matariya, Cairo, Egypt
| | - Khalid Z Kewan
- Animal and Poultry Nutrition Department, Desert Research Center, Matariya, Cairo, Egypt
| | - Ebrahim A Sabra
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadate City, Menoufia, Egypt
| | - Hassan M El Shaer
- Animal and Poultry Nutrition Department, Desert Research Center, Matariya, Cairo, Egypt
| | - Mebarek Lamara
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, Canada
| |
Collapse
|
43
|
Lopes AL, Santos FAP, Meschiatti M, de Oliveira MO, Fernandes JJR, Drouillard JS, Cappellozza BI. Effects of Megasphaera elsdenii administration on performance and carcass traits of finishing Bos indicus feedlot cattle. Transl Anim Sci 2021; 5:txab091. [PMID: 34790892 PMCID: PMC8592045 DOI: 10.1093/tas/txab091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
This study evaluated the effects of Megasphaera elsdenii administration at the beginning of the feedlot period on performance of Bos taurus indicus bulls. On d 0, 383 Nellore bulls (initial shrunk body weight 384 ± 29.2 kg; initial age = 24 ± 2 mo) were assigned to treatments in a randomized complete block design. Treatments consisted of 1) 14 d adaptation diet and transition to a finishing diet (CONT), 2) CONT plus oral administration of 20 mL of Lactipro-NXT (M. elsdenii) on d 0 of the study (MEG-14), 3) CONT diet, consisting of 6 d of adaptation diet plus oral administration of 20 mL of Lactipro-NXT on d 0 of the study (MEG-6), and 4) No adaptation diet and oral administration of 20 mL of Lactipro-NXT on d 0 of the study (MEG-0). Experimental period lasted 119 d. No treatment effects were observed for any of the performance parameters evaluated herein (P ≥ 0.15). Nonetheless, a treatment × wk interaction was observed for DM, NEm, and NEg intakes (P < 0.0001). For all these parameters, MEG-0 and MEG-6 had a reduced intake vs. MEG-14 and CONT in the first wk of the study (P ≤ 0.05). For the carcass traits, no effects were observed for HCW (P ≥ 0.24), whereas MEG-6 had a greater REA when compared with MEG-0 and MEG-14 (quadratic effect; P = 0.04) and MEG-administered bulls tended to have a greater BFT vs. CONT (P = 0.08). In summary, M. elsdenii administration at the beginning of the feedlot period did not improve performance, whereas reducing the length of the adaptation period for 6 d improved REA of finishing Bos taurus indicus bulls.
Collapse
Affiliation(s)
- Ana Laura Lopes
- Universidade Federal do Goiás, Escola de Veterinária e Zootecnia, Goiânia, GO, 74690-900, Brazil
| | - Flávio A P Santos
- Universidade de São Paulo, Departamento de Zootecnia, Piracicaba, SP 13418-900, Brazil
| | - Murillo Meschiatti
- Universidade de São Paulo, Departamento de Zootecnia, Piracicaba, SP 13418-900, Brazil
| | | | - Juliano J R Fernandes
- Universidade Federal do Goiás, Escola de Veterinária e Zootecnia, Goiânia, GO, 74690-900, Brazil
| | - James S Drouillard
- Kansas State University, Department of Animal Sciences & Industry, Manhattan, KS 66506, USA
| | | |
Collapse
|
44
|
Zou D, Liu R, Shi S, Du J, Tian M, Wang X, Hou M, Duan Z, Ma Y. BHBA regulates the expressions of lipid synthesis and oxidation genes in sheep hepatocytes through the AMPK pathway. Res Vet Sci 2021; 140:153-163. [PMID: 34481206 DOI: 10.1016/j.rvsc.2021.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/31/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022]
Abstract
Pregnancy toxemia (PT) is the most frequent metabolic disease of sheep during late pregnancy, which can lead to enormous economic losses in sheep farm industry. However, the underlying mechanism of PT in sheep has not been fully elucidated. High levels of β-hydroxy butyric acid (BHBA) exist in PT sheep. The AMP-activated protein kinase (AMPK) pathway plays a major role in regulating liver function. The aim of this study was to explore the effects of gradient concentrations of BHBA on lipid metabolism of sheep hepatocytes and the underlying molecular mechanism in vitro. The results showed that 0.6, 1.2 mmol/L BHBA could activate AMPKα, promoted the expressions of peroxisome proliferator-activated receptor alpha (PPARα) and its target genes, and inhibited the expressions of sterol regulatory element binding protein-1c (SREBP-1c) as well as its downstream genes. When the concentration of BHBA was beyond 1.2 mmol/L, the expressions of the above-mentioned proteins and genes were just the opposite. However, the expressions of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) did not change significantly. The levels of very low density lipoprotein (VLDL), triglyceride (TG) and cholesterol (T-CHOL) showed a gradually increasing trend with the increase of BHBA concentration. According to the results above, it demonstrates that high levels of BHBA can inhibit the expression of the AMPK pathway and cause lipid metabolism disorders in sheep hepatocytes, which may lead to the occurrence of PT.
Collapse
Affiliation(s)
- Dongmin Zou
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ruonan Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Shujun Shi
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jinliang Du
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Mengyue Tian
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xing Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Mingyuan Hou
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhibian Duan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Yuzhong Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
45
|
Ma Y, Khan MZ, Liu Y, Xiao J, Chen X, Ji S, Cao Z, Li S. Analysis of Nutrient Composition, Rumen Degradation Characteristics, and Feeding Value of Chinese Rye Grass, Barley Grass, and Naked Oat Straw. Animals (Basel) 2021; 11:2486. [PMID: 34573452 PMCID: PMC8471469 DOI: 10.3390/ani11092486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
The current study was designed to investigate the chemical composition, rumen degradation characteristics, and feeding value of three roughages commonly used in Asia as ruminant feed, including Chinese rye grass (CRG), barley grass (BG), and naked oat straw (NO). Four Holstein Friesian cows equipped with permanent rumen fistulas were chosen for experimental trials in the current study. The nylon bag method was carried out to measure the crude protein (CP), acid detergent fiber (ADF), ruminal degradability of dry matter (DM), and neutral detergent fiber (NDF). Our analysis revealed that the contents of CP in the CRG (9.0%) and BG (8.9%) were higher than in the NO (5.94%). The contents of NDF in the CRG (64.97%) and NO (63.83%) were lower than in the BG (67.33%), and the content of ADF in the CRG (37.03%) was lower than in the BG (37.93%) and NO (38.28%). The ED values of DM in the NO and CRG were significantly higher (p < 0.001) than in the BG. The effective degradability (ED) values of NDF were the highest in the CRG and lowest in the NO (p < 0.001). In addition, the ED values of ADF were the highest in the CRG and lowest in the BG (p < 0.001). The ED value of CP in the CRG was significantly higher than that in the BG and NO (p < 0.001). The estimated total digestible nutrients (TDN) (54.56%) and DM degradation rate (DDM) (60.06%) of the CRG were higher than those of BG and NO. In addition, the expected DM intake (DMI), estimated relative feed value (RFV), and estimated relative feed quality (RFQ) of the BG were lower than those of the CRG and NO. Altogether, based on our findings, we concluded that the nutritional quality, feeding value and effective rumen degradation rate of CRG were better than of BG and NO.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (M.Z.K.); (Y.L.); (J.X.); (X.C.); (Z.C.)
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (M.Z.K.); (Y.L.); (J.X.); (X.C.); (Z.C.)
| | - Yanfang Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (M.Z.K.); (Y.L.); (J.X.); (X.C.); (Z.C.)
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (M.Z.K.); (Y.L.); (J.X.); (X.C.); (Z.C.)
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (M.Z.K.); (Y.L.); (J.X.); (X.C.); (Z.C.)
| | - Shoukun Ji
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (M.Z.K.); (Y.L.); (J.X.); (X.C.); (Z.C.)
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (M.Z.K.); (Y.L.); (J.X.); (X.C.); (Z.C.)
| |
Collapse
|
46
|
Theoretical Methane Emission Estimation from Volatile Fatty Acids in Bovine Rumen Fluid. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methane production from livestock farming is recognized as an important contributor to global GHGs. Volatile fatty acids (VFAs) found in bovine rumen may be utilized as a substrate for methanogens to form CH4, and thus improvement of quantitative VFA measurements can help facilitate greater understanding and mitigation of CH4 production. This study aims to contribute to the development of more accurate methods for the quantification and specification of VFAs in bovine rumen. The VFAs were analyzed using the conventional method and an alternative catalytic esterification reaction (CER) method. Substantial differences in the detected concentrations of the C3+ VFAs (chain length ≥ 3) were observed between both methods, especially for butyric acid. Evaluation of the sensitivity of both methods to detecting the VFA concentrations in standard solutions confirmed that the values resulting from the CER method were closer to the known concentrations of the standard solution than those from the conventional method. The results of this study provide the first quantitative proof to show the improved accuracy of the measurements of C3+ VFAs when using the CER method compared with the conventional method. Therefore, the CER method can be recommended to analyze the VFAs found in rumen, especially butyric acid and other C3+ VFAs.
Collapse
|
47
|
Rumen Fermentation Characteristics Require More Time to Stabilize When Diet Shifts. Animals (Basel) 2021; 11:ani11082192. [PMID: 34438652 PMCID: PMC8388484 DOI: 10.3390/ani11082192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Previous study revealed that the rumen bacterial community was in temporal dynamics, even after an adaptation of three months when diet shifted, while the dynamic rumen bacterial community is not necessarily in accord with varied rumen fermentation characteristics. Thus, no proper time for practical sampling frequency is available for conducting basal nutritional research in the long-term fattening stage of steers. This study aimed to evaluate the proper time for nutrient apparent digestibility, serum metabolic parameters, and rumen fermentation characteristics to stabilize when diet shifts. Results showed that nutrient apparent digestibility and serum metabolic parameters were stable across each collection month, while most rumen fermentation characteristics were affected by the interaction effects between collection period and dietary density. These results indicate that rumen fermentation characteristics require more time to stabilize when diet shifts, and it is recommended to collect ruminal digesta monthly to evaluate rumen fermentation characteristics. Abstract This study was conducted to explore the proper time required to achieve stabilization in digestibility, serum metabolism, and rumen fermentation characteristics when different diets shift, thus providing decision-making of practical sampling frequency for basal nutritional research. For these purposes, 12 Holstein steers (body weight 467 ± 34 kg, age 14 ± 0.5 months) were equally assigned to two dietary treatments: high-density (metabolizable energy (ME) = 2.53 Mcal/kg and crude protein (CP) = 119 g/kg; both ME and CP were expressed on a dry matter basis) or low-density (ME = 2.35 Mcal/kg and CP = 105 g/kg). The samples of feces, serum, and rumen contents were collected with a 30-day interval. All data involved in this study were analyzed using the repeated measures in mixed model of SPSS. Results showed that nutrient apparent digestibility and serum metabolic parameters were stable across each monthly collection, while most rumen fermentation characteristics, namely concentrations of acetate, propionate, isobutyrate, and valerate, were affected by the interaction effects between collection period and dietary density. These findings indicate that rumen fermentation characteristics require more time to stabilize when diet shifts. It is recommended to collect ruminal digesta monthly to evaluate rumen fermentation characteristics, while unnecessary to sample monthly for digestion trials and blood tests in the long-term fattening of Holstein steers. This study may provide insights into exploring the associations between detected parameters and stabilization time, and between diet type and stabilization time when diet shifts.
Collapse
|
48
|
Lee SS, Paradhipta DHV, Lee HJ, Joo YH, Noh HT, Choi JS, Ji KB, Kim SC. Application of lactic acid bacteria producing antifungal substance and carboxylesterase on whole crop rice silage with different dry matter. Anim Biosci 2021; 34:1029-1037. [PMID: 33152212 PMCID: PMC8100494 DOI: 10.5713/ajas.20.0545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 11/27/2022] Open
Abstract
Objective This study was conducted to investigate effects of antifungal substance and carboxylesterase-producing inoculant on fermentation indices and rumen degradation kinetics of whole crop rice (WCR) silage ensiled at different dry matter (DM) contents. Methods Dual-purpose inoculants, Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1, confirmed both activities of antifungal and carboxylesterase in the previous study. The WCR at mature stage was chopped, and then wilted to obtain three different DM contents consisting of 35.4%, 43.6%, and 51.5%. All WCR forages were applied distilled water (CON) or mixed inoculants with 1:1 ratio at 1×105 colony forming unit/g (INO), and ensiled into 20 L mini silo (5 kg) in quadruplicates for 108 d. Results The INO silages had lower lactate (p<0.001) and butyrate (p = 0.022) with higher acetate (p<0.001) and propionate (p<0.001) than those of CON silages. Ammonia-N (p<0.001), lactate (tendency; p = 0.068), acetate (p = 0.030), and butyrate (p<0.001) concentrations of INO silages decreased linearly with increasing DM content of WCR forage. The INO silages presented higher lactic acid bacteria (p<0.001) with lower molds (p< 0.001) than those of CON silages. Yeasts (p = 0.042) and molds (p = 0.046) of WCR silages decreased linearly with increasing DM content of WCR forage. In the rumen, INO silages had higher the total degradable fraction (p<0.001), total volatile fatty acid (tendency; p = 0.097), and acetate (p = 0.007), but lower the fractional degradation rate (p = 0.011) and propionate (p<0.001) than those of CON silage. The total degradable fraction (p<0.001), total volatile fatty acid (p = 0.001), iso-butyrate (p = 0.036), and valerate (p = 0.008) decreased linearly with increasing DM content of WCR forage, while the lag phase (p<0.001) was increased linearly. Conclusion This study concluded that application of dual-purpose inoculants on WCR silage confirmed antifungal and carboxylesterase activities by inhibiting mold and improving rumen digestibility, while increase of wilting times decreased organic acids production and rumen digestibility.
Collapse
|
49
|
Kim SH, Ramos SC, Jeong CD, Mamuad LL, Park KK, Cho YI, Son A, Lee SS. Growth performance and blood profiles of Hanwoo steers at fattening stage fed Korean rice wine residue. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 62:812-823. [PMID: 33987562 PMCID: PMC7721570 DOI: 10.5187/jast.2020.62.6.812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 12/01/2022]
Abstract
The aim of this study was to investigate the effects of Korean rice wine residue
(RWR) on the growth performance and blood profiles of Hanwoo steers in the
fattening stage. In situ and in vivo
experiments were conducted to analyze rumen fermentation characteristics and
total tract digestibility, respectively. Three cannulated Hanwoo steers (mean
body weight: 448 ± 30 kg) were used in both analyses. The growth
performance of 27 experimental animals in the fattening stage (initial body
weight: 353.58 ± 9.76 kg) was evaluated after 13 months of feeding. The
animals were divided into three treatment groups (n = 9/group). The treatments
comprised total mixed ration (TMR) only (CON), TMR + 10% RWR (10% RWR), and TMR
+ 15% RWR (15% RWR). The diets of equal proportions were fed daily at 08:00 and
18:00 h based on 2% of the body weight. The animals had free access to water and
trace mineral salts throughout the experiment. Supplementation of 15% RWR
significantly decreased (p < 0.05) the rumen fluid pH
compared with the control treatment, but there was no significant difference in
the total volatile fatty acid concentration. It also significantly increased
(p < 0.05) dry matter digestibility compared with
the other treatments. The total weight gain and average daily gain of the
animals in the RWR-supplemented groups were significantly higher
(p < 0.05) than those in the control group.
Furthermore, the feed intake and feed efficiency of the RWR-supplemented groups
were higher than those of the control group. Supplementation of RWR did not
affect the alcohol, albumin, glucose, total cholesterol, triglyceride, and
low-density lipoprotein concentrations, and aspartate aminotransferase and
alanine transaminase activities in the blood; these parameters were within the
normal range. The high-density lipoprotein and creatinine concentrations were
significantly higher in the 15% RWR group, whereas the blood urea nitrogen
concentration was significantly higher in the 10% RWR group than in the other
groups. These results suggest that TMR with 15% RWR can serve as an alternate
feed resource for ruminants.
Collapse
Affiliation(s)
- Seon Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Sonny C Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Chang Dae Jeong
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Lovelia L Mamuad
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Keun Kyu Park
- Animal Resources Research Center, School of Animal Life and Science, Konkuk University, Seoul 05029, Korea
| | - Yong Il Cho
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Arang Son
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
50
|
Beckett L, Gleason CB, Bedford A, Liebe D, Yohe TT, Hall MB, Daniels KM, White RR. Rumen volatile fatty acid molar proportions, rumen epithelial gene expression, and blood metabolite concentration responses to ruminally degradable starch and fiber supplies. J Dairy Sci 2021; 104:8857-8869. [PMID: 33985782 DOI: 10.3168/jds.2020-19622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/09/2021] [Indexed: 11/19/2022]
Abstract
The objective of this work was to characterize rumen volatile fatty acid (VFA) concentrations, rumen epithelial gene expression, and blood metabolite responses to diets with different starch and fiber sources. Six ruminally cannulated yearling Holstein heifers (body weight = 330 ± 11.3 kg) were arranged in a partially replicated Latin square experiment with 4 treatments consisting of different starch [barley (BAR) or corn (CRN)] and fiber [timothy hay (TH) or beet pulp (BP)] sources. Treatments were arranged as a 2 × 2 factorial. Beet pulp and TH were used to create relative changes in apparent ruminal fiber disappearance, whereas CRN and BAR were used to create relative changes in apparent ruminal starch disappearance. Each period consisted of 3 d of diet adaptation and 15 d of dietary treatment. In situ disappearance of fiber and starch were estimated from bags incubated in the rumen from d 10 to 14. From d 15 to 17, rumen fluid was collected every hour from 0500 to 2300 h. Rumen fluid samples were pooled by animal/period and analyzed for pH and VFA concentrations. On d 18, 60 to 80 papillae were biopsied from the epithelium and preserved for gene expression analysis. On d 18, one blood sample per heifer was collected from the coccygeal vessel. In situ ruminal starch disappearance rate (7.30 to 8.72%/h for BAR vs. 7.61 to 10.5%/h for CRN) and the extent of fiber disappearance (22.2 to 33.4% of DM for TH vs. 34.4 to 38.7% of DM for BP) were affected by starch and fiber source, respectively. Analysis of VFA molar proportions showed a shift from propionate to acetate, and valerate to isovalerate on TH diets compared with BP. Corn diets favored propionate over butyrate in comparison to BAR diets. Corn diets also had higher molar proportions of valerate. Expression of 1 gene (SLC9A3) were increased in BP diets and 2 genes (BDH1 and SLC16A4) tended to be increased in TH diets. Plasma acetate demonstrated a tendency for a starch by fiber interaction with BAR-BP diets having the highest plasma acetate, but other metabolites measured were not significant. These results suggest that TH has the greatest effect on shifts in VFA molar proportions and epithelial transporters, but does not demonstrate shifts in blood metabolite concentrations.
Collapse
Affiliation(s)
- L Beckett
- Department of Animal and Poultry Science, Virginia Tech, Blacksburg 24061
| | - C B Gleason
- Department of Animal and Poultry Science, Virginia Tech, Blacksburg 24061
| | - A Bedford
- Department of Animal and Poultry Science, Virginia Tech, Blacksburg 24061
| | - D Liebe
- Department of Animal and Poultry Science, Virginia Tech, Blacksburg 24061
| | - T T Yohe
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - M B Hall
- US Dairy Forage Research Center, US Department of Agriculture-Agricultural Research Service, Madison, WI 53706
| | - K M Daniels
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - R R White
- Department of Animal and Poultry Science, Virginia Tech, Blacksburg 24061.
| |
Collapse
|