1
|
Verschuur AS, King R, Tax CMW, Boomsma MF, van Wezel-Meijler G, Leemans A, Leijser LM. Methodological considerations on diffusion MRI tractography in infants aged 0-2 years: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03463-2. [PMID: 39143201 DOI: 10.1038/s41390-024-03463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Diffusion MRI (dMRI) enables studying the complex architectural organization of the brain's white matter (WM) through virtual reconstruction of WM fiber tracts (tractography). Despite the anticipated clinical importance of applying tractography to study structural connectivity and tract development during the critical period of rapid infant brain maturation, detailed descriptions on how to approach tractography in young infants are limited. Over the past two decades, tractography from infant dMRI has mainly been applied in research settings and focused on diffusion tensor imaging (DTI). Only few studies used techniques superior to DTI in terms of disentangling information on the brain's organizational complexity, including crossing fibers. While more advanced techniques may enhance our understanding of the intricate processes of normal and abnormal brain development and extensive knowledge has been gained from application on adult scans, their applicability in infants has remained underexplored. This may partially be due to the higher technical requirements versus the need to limit scan time in young infants. We review various previously described methodological practices for tractography in the infant brain (0-2 years-of-age) and provide recommendations to optimize advanced tractography approaches to enable more accurate reconstructions of the brain WM's complexity. IMPACT: Diffusion tensor imaging is the technique most frequently used for fiber tracking in the developing infant brain but is limited in capability to disentangle the complex white matter organization. Advanced tractography techniques allow for reconstruction of crossing fiber bundles to better reflect the brain's complex organization. Yet, they pose practical and technical challenges in the fast developing young infant's brain. Methods on how to approach advanced tractography in the young infant's brain have hardly been described. Based on a literature review, recommendations are provided to optimize tractography for the developing infant brain, aiming to advance early diagnosis and neuroprotective strategies.
Collapse
Affiliation(s)
- Anouk S Verschuur
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands.
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada.
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Regan King
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerda van Wezel-Meijler
- Department of Neonatology, Isala Women and Children's Hospital Zwolle, Zwolle, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lara M Leijser
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Farrher E, Grinberg F, Khechiashvili T, Neuner I, Konrad K, Shah NJ. Spatiotemporal Patterns of White Matter Maturation after Pre-Adolescence: A Diffusion Kurtosis Imaging Study. Brain Sci 2024; 14:495. [PMID: 38790472 PMCID: PMC11119177 DOI: 10.3390/brainsci14050495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Diffusion tensor imaging (DTI) enables the assessment of changes in brain tissue microstructure during maturation and ageing. In general, patterns of cerebral maturation and decline render non-monotonic lifespan trajectories of DTI metrics with age, and, importantly, the rate of microstructural changes is heterochronous for various white matter fibres. Recent studies have demonstrated that diffusion kurtosis imaging (DKI) metrics are more sensitive to microstructural changes during ageing compared to those of DTI. In a previous work, we demonstrated that the Cohen's d of mean diffusional kurtosis (dMK) represents a useful biomarker for quantifying maturation heterochronicity. However, some inferences on the maturation grades of different fibre types, such as association, projection, and commissural, were of a preliminary nature due to the insufficient number of fibres considered. Hence, the purpose of this follow-up work was to further explore the heterochronicity of microstructural maturation between pre-adolescence and middle adulthood based on DTI and DKI metrics. Using the effect size of the between-group parametric changes and Cohen's d, we observed that all commissural fibres achieved the highest level of maturity, followed by the majority of projection fibres, while the majority of association fibres were the least matured. We also demonstrated that dMK strongly correlates with the maxima or minima of the lifespan curves of DTI metrics. Furthermore, our results provide substantial evidence for the existence of spatial gradients in the timing of white matter maturation. In conclusion, our data suggest that DKI provides useful biomarkers for the investigation of maturation spatial heterogeneity and heterochronicity.
Collapse
Affiliation(s)
- Ezequiel Farrher
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52425 Jülich, Germany; (F.G.); (T.K.); (I.N.); (N.J.S.)
| | - Farida Grinberg
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52425 Jülich, Germany; (F.G.); (T.K.); (I.N.); (N.J.S.)
- Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Tamara Khechiashvili
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52425 Jülich, Germany; (F.G.); (T.K.); (I.N.); (N.J.S.)
| | - Irene Neuner
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52425 Jülich, Germany; (F.G.); (T.K.); (I.N.); (N.J.S.)
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
- JARA—BRAIN—Translational Medicine, 52074 Aachen, Germany;
| | - Kerstin Konrad
- JARA—BRAIN—Translational Medicine, 52074 Aachen, Germany;
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry and Psychotherapy, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Neuroscience and Medicine 3, INM-3, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52425 Jülich, Germany; (F.G.); (T.K.); (I.N.); (N.J.S.)
- Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
- JARA—BRAIN—Translational Medicine, 52074 Aachen, Germany;
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
3
|
Zhang C, Zhu Z, Wang K, Moon BF, Zhang B, Shen Y, Wang Z, Zhao X, Zhang X. Assessment of brain structure and volume reveals neurodevelopmental abnormalities in preterm infants with low-grade intraventricular hemorrhage. Sci Rep 2024; 14:5709. [PMID: 38459090 PMCID: PMC10923809 DOI: 10.1038/s41598-024-56148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
There is increasing evidence of abnormal neurodevelopmental outcomes in preterm infants with low-grade intraventricular hemorrhage (IVH). The purpose of the study was to explore whether brain microstructure and volume are associated with neuro-behavioral outcomes at 40 weeks corrected gestational age in preterm infants with low-grade IVH. MR imaging at term-equivalent age (TEA) was performed in 25 preterm infants with mild IVH (Papile grading I/II) and 40 control subjects without IVH. These subjects all had neonatal behavioral neurological assessment (NBNA) at 40 weeks' corrected age. Microstructure and volume evaluation of the brain were performed by using diffusion kurtosis imaging (DKI) and Synthetic MRI. Correlations among microstructure parameters, volume, and developmental outcomes were explored by using Spearman's correlation. In preterm infants with low-grade IVH, the volume of brain parenchymal fraction (BPF) was reduced. In addition, mean kurtosis (MK), fractional anisotropy (FA), radial kurtosis (RK), axial kurtosis (AK) in several major brain regions were reduced, while mean diffusivity (MD) was increased (P < 0.05). BPF, RK in the cerebellum, MK in the genu of the corpus callosum, and MK in the thalamus of preterm infants with low-grade IVH were associated with lower NBNA scores (r = 0.831, 0.836, 0.728, 0.772, P < 0.05). DKI and Synthetic MRI can quantitatively evaluate the microstructure alterations and brain volumes in preterm infants with low-grade IVH, which provides clinicians with a more comprehensive and accurate neurobehavioral assessment of preterm infants with low-grade IVH.
Collapse
Affiliation(s)
- Chunxiang Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | | | - Kaiyu Wang
- GE Healthcare, MR Research China, Beijing, China
| | - Brianna F Moon
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bohao Zhang
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yanyong Shen
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zihe Wang
- Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Xiaoan Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Reveley C, Ye FQ, Leopold DA. Diffusion kurtosis MRI tracks gray matter myelin content in the primate cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584058. [PMID: 38496676 PMCID: PMC10942417 DOI: 10.1101/2024.03.08.584058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Diffusion magnetic resonance imaging (dMRI) has been widely employed to model the trajectory of myelinated fiber bundles in white matter. Increasingly, dMRI is also used to assess local tissue properties throughout the brain. In the cerebral cortex, myelin content is a critical indicator of the maturation, regional variation, and disease related degeneration of gray matter tissue. Gray matter myelination can be measured and mapped using several non-diffusion MRI strategies; however, first order diffusion statistics such as fractional anisotropy (FA) show only weak spatial correlation with cortical myelin content. Here we show that a simple higher order diffusion parameter, the mean diffusion kurtosis (MK), is strongly correlated with the laminar and regional variation of myelin in the primate cerebral cortex. We carried out ultra-high resolution, multi-shelled dMRI in ex vivo marmoset monkey brains and compared dMRI parameters from a number of higher order models (diffusion kurtosis, NODDI and MAP MRI) to the distribution of myelin obtained using histological staining, and via Magnetization Transfer Ratio MRI (MTR), a non-diffusion MRI method. In contrast to FA, MK closely matched the myelin content assessed by histology and by MTR in the same sample. The parameter maps from MAP-MRI and NODDI also showed good correspondence with cortical myelin content. The results demonstrate that dMRI can be used to assess the variation of local myelin content in the primate cortical cortex, which may be of great value for assessing tissue integrity and tracking disease in living human patients.
Collapse
Affiliation(s)
- Colin Reveley
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU, UK
| | - Frank Q Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Voltin J, Nunn LM, Watson Z, Brasher ZE, Adisetiyo V, Hanlon CA, Nietert PJ, McRae-Clark AL, Jensen JH. Comparison of three magnetic resonance imaging measures of brain iron in healthy and cocaine use disorder participants. NMR IN BIOMEDICINE 2024; 37:e5072. [PMID: 38009303 PMCID: PMC10922943 DOI: 10.1002/nbm.5072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023]
Abstract
Several magnetic resonance imaging (MRI) measures for quantifying endogenous nonheme brain iron have been proposed. These correspond to distinct physical properties with varying sensitivities and specificities to iron. Moreover, they may depend not only on tissue iron concentration, but also on the intravoxel spatial pattern of iron deposition, which is complex in many brain regions. Here, the three MRI brain iron measures of R 2 * , magnetic field correlation (MFC), and magnetic susceptibility are compared in several deep gray matter regions for both healthy participants (HPs) and individuals with cocaine use disorder (CUD). Their concordance is assessed from their correlations with each other and their relative dependencies on age. In addition, associations between the iron measures and microstructure in adjacent white matter regions are investigated by calculating their correlations with diffusion MRI measures from the internal capsule, and associations with cognition are determined by using results from a battery of standardized tests relevant to CUD. It is found that all three iron measures are strongly correlated with each other for the considered gray matter regions, but with correlation coefficients substantially less than one indicating important differences. The age dependencies of all three measures are qualitatively similar in most regions, except for the red nucleus, where the susceptibility has a significantly stronger correlation with age than R 2 * . Weak to moderate correlations are seen for the iron measures with several of the diffusion and cognitive measures, with the strongest correlations being obtained for R 2 * . The iron measures differ little between the HP and CUD groups, although susceptibility is significantly lower in the red nucleus for the CUD group. For the comparisons made, the iron measures behave similarly in most respects, but with notable quantitative differences. It is suggested that these differences may be, in part, attributable to a higher sensitivity to the spatial pattern of iron deposition for R 2 * and MFC than for susceptibility. This is supported most strongly by a sharp contrast between the values of the iron measures in the globus pallidus relative to those in the red nucleus. The observed correlations of the iron measures with diffusion and cognitive scores point to possible connections between gray matter iron, white matter microstructure, and cognition.
Collapse
Affiliation(s)
- Joshua Voltin
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Lisa M. Nunn
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Zoe Watson
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Zoe E. Brasher
- Department of Behavioral Science and Neuroscience, Duke University Medical Center, Durham, North Carolina
| | - Vitria Adisetiyo
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Colleen A. Hanlon
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Paul J. Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Aimee L. McRae-Clark
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Jens H. Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
6
|
DiPiero M, Rodrigues PG, Gromala A, Dean DC. Applications of advanced diffusion MRI in early brain development: a comprehensive review. Brain Struct Funct 2023; 228:367-392. [PMID: 36585970 PMCID: PMC9974794 DOI: 10.1007/s00429-022-02605-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Brain development follows a protracted developmental timeline with foundational processes of neurodevelopment occurring from the third trimester of gestation into the first decade of life. Defining structural maturational patterns of early brain development is a critical step in detecting divergent developmental trajectories associated with neurodevelopmental and psychiatric disorders that arise later in life. While considerable advancements have already been made in diffusion magnetic resonance imaging (dMRI) for pediatric research over the past three decades, the field of neurodevelopment is still in its infancy with remarkable scientific and clinical potential. This comprehensive review evaluates the application, findings, and limitations of advanced dMRI methods beyond diffusion tensor imaging, including diffusion kurtosis imaging (DKI), constrained spherical deconvolution (CSD), neurite orientation dispersion and density imaging (NODDI) and composite hindered and restricted model of diffusion (CHARMED) to quantify the rapid and dynamic changes supporting the underlying microstructural architectural foundations of the brain in early life.
Collapse
Affiliation(s)
- Marissa DiPiero
- Department of Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Alyssa Gromala
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
7
|
Wang X, Liu X, Cheng M, Xuan D, Zhao X, Zhang X. Application of diffusion kurtosis imaging in neonatal brain development. Front Pediatr 2023; 11:1112121. [PMID: 37051430 PMCID: PMC10083282 DOI: 10.3389/fped.2023.1112121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
Background Deviations from the regular pattern of growth and development could lead to early childhood diseases, suggesting the importance of evaluating early brain development. Through this study, we aimed to explore the changing patterns of white matter and gray matter during neonatal brain development using diffusion kurtosis imaging (DKI). Materials and methods In total, 42 full-term neonates (within 28 days of birth) underwent conventional brain magnetic resonance imaging (MRI) and DKI. The DKI metrics (including kurtosis parameters and diffusion parameters) of white matter and deep gray matter were measured. DKI metrics from the different regions of interest (ROIs) were evaluated using the Kruskal-Wallis test and Bonferroni method. Spearman rank correlation analysis of the DKI metrics was conducted, and the age at the time of brain MRI acquisition was calculated. The subjects were divided into three groups according to their age at the time of brain MRI acquisition: the first group, neonates aged ≤7 days; the second group, neonates aged 8-14 days; and the third group, neonates aged 15-28 days. The rate of change in DKI metrics relative to the first group was computed. Results The mean kurtosis (MK), axial kurtosis (Ka), radial kurtosis (Kr), and fractional anisotropy (FA) values showed positive correlations, whereas mean diffusion (MD), axial diffusion (Da), and radial diffusion (Dr) values showed negative correlations with the age at the time of brain MRI acquisition. The absolute correlation coefficients between MK values of almost all ROIs (except genu of the corpus callosum and frontal white matter) and the age at the time of brain MRI acquisition were greater than other metrics. The kurtosis parameters and FA values of central white matter were significantly higher than that of peripheral white matter, whereas the MD and Dr values were significantly lower than that of peripheral white matter. The MK value of the posterior limb of the internal capsule was the highest among the white matter areas. The FA value of the splenium of the corpus callosum was significantly higher than that of the other white matter areas. The kurtosis parameters and FA values of globus pallidus and thalamus were significantly higher than those of the caudate nucleus and putamen, whereas the Da and Dr values of globus pallidus and thalamus were significantly lower than those of the caudate nucleus and putamen. The relative change rates of kurtosis parameters and FA values of all ROIs were greater than those of MD, Da, and Dr values. The amplitude of MK values of almost all ROIs (except for the genu of the corpus callosum and central white matter of the centrum semiovale level) was greater than that of other metrics. The relative change rates of the Kr values of most ROIs were greater than those of the Ka value, and the relative change rates of the Dr values of most ROIs were greater than those of the Da value. Conclusion DKI parameters showed potential advantages in detecting the changes in brain microstructure during neonatal brain development.
Collapse
Affiliation(s)
- Xueyuan Wang
- Department of Radiology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Xianglong Liu
- Department of Radiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Meiying Cheng
- Department of Radiology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Desheng Xuan
- Department of Radiology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- Department of Radiology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Correspondence: Xin Zhao Xiaoan Zhang
| | - Xiaoan Zhang
- Department of Radiology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Correspondence: Xin Zhao Xiaoan Zhang
| |
Collapse
|
8
|
Afzali M, Pieciak T, Jones DK, Schneider JE, Özarslan E. Cumulant expansion with localization: A new representation of the diffusion MRI signal. FRONTIERS IN NEUROIMAGING 2022; 1:958680. [PMID: 37555138 PMCID: PMC10406302 DOI: 10.3389/fnimg.2022.958680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 08/10/2023]
Abstract
Diffusion MR is sensitive to the microstructural features of a sample. Fine-scale characteristics can be probed by employing strong diffusion gradients while the low b-value regime is determined by the cumulants of the distribution of particle displacements. A signal representation based on the cumulants, however, suffers from a finite convergence radius and cannot represent the 'localization regime' characterized by a stretched exponential decay that emerges at large gradient strengths. Here, we propose a new representation for the diffusion MR signal. Our method provides not only a robust estimate of the first three cumulants but also a meaningful extrapolation of the entire signal decay.
Collapse
Affiliation(s)
- Maryam Afzali
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Tomasz Pieciak
- LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jürgen E. Schneider
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Aberrant cortico-striatal white matter connectivity and associated subregional microstructure of the striatum in obsessive-compulsive disorder. Mol Psychiatry 2022; 27:3460-3467. [PMID: 35618882 DOI: 10.1038/s41380-022-01588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
The striatum and its cortical circuits play central roles in the pathophysiology of obsessive-compulsive disorder (OCD). The striatum is subdivided by cortical connections and functions; however, the anatomical aberrations in different cortico-striatal connections and coexisting microstructural anomalies in striatal subregions of OCD patients are poorly understood. Thus, we aimed to elucidate the aberrations in cortico-striatal white matter (WM) connectivity and the associated subregional microstructure of the striatum in patients with OCD. From diffusion tensor/kurtosis imaging of 107 unmedicated OCD patients and 110 matched healthy controls (HCs), we calculated the cortico-striatal WM connectivity and segmented the striatum using probabilistic tractography. For the segmented striatal subregions, we measured average diffusion kurtosis values, which represent microstructural complexity. Connectivity and mean kurtosis values in each cortical target and associated striatal subregions were compared between groups. We identified significantly reduced orbitofrontal WM connectivity with its associated striatal subregion in patients with OCD compared to that in HCs. However, OCD patients exhibited significantly increased caudal-motor and parietal connectivity with the associated striatal subregions. The mean kurtosis values of the striatal subregions connected to the caudal-motor and parietal cortex were significantly decreased in OCD patients. Our results highlighted contrasting patterns of striatal WM connections with the orbitofrontal and caudal-motor/parietal cortices, thus supporting the cortico-striatal circuitry imbalance model of OCD. We suggest that aberrations in WM connections and the microstructure of their downstream regions in the caudal-motor-/parietal-striatal circuits may underlie OCD pathophysiology and further provide potential neuromodulation targets for the treatment of OCD.
Collapse
|
10
|
Liu T, Wu J, Zhao Z, Li M, Lv Y, Li M, Gao F, You Y, Zhang H, Ji C, Wu D. Developmental pattern of association fibers and their interaction with associated cortical microstructures in 0-5-month-old infants. Neuroimage 2022; 261:119525. [PMID: 35908606 DOI: 10.1016/j.neuroimage.2022.119525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Association fibers connect the cortical regions and experience rapid development involving myelination and axonal growth during infancy. Yet, the spatiotemporal patterns of microstructural changes along these tracts, as well as the developmental interaction between the white matter (WM) tracts and the cortical gray matter (cGM) connected to them, are mostly unknown during infancy. In this study, we performed a diffusion MRI-based tractography and microstructure study in a cohort of 89 healthy preterm-born infants with gestational age at birth between 28.1∼36.4 weeks and postmenstrual age at scan between 39.9∼59.9 weeks. Results revealed that several C-shaped fibers, such as the arcuate fasciculus, cingulum, and uncinate fasciculus, demonstrated symmetrical along-tract profiles; and the horizontally oriented running fibers, including the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus, demonstrated an anterior-posterior developmental gradient. This study characterized the along-tract profiles using fixel-based analysis and revealed that the fiber cross-section (FC) of all five association fibers demonstrated a fluctuating increase with age, while the fiber density (FD) monotonically increase with age. NODDI was utilized to analyze the microstructural development of cGM and indicated cGM connected to the anterior end of the association fibers developed faster than that of the posterior end during 0-5 months. Notably, a mediation analysis was used to explore the relation between the development of WM and associated cGM, and demonstrated a partial mediation effect of FD in WM on the development of intracellular volume (ICV) in cGM and a full mediation effect of ICV on the growth of FD in most fibers, suggesting a predominant mediation of cGM on the WM development. Furthermore, for assessing whether those results were biased by prematurity, we compared preterm- and term-born neonates with matched scan age, gender, and multiple births from the developing human connectome project (dHCP) dataset to assess the effect of preterm-birth, and the results indicated a similar developmental pattern of the association fibers and their attached cGM. These findings presented a comprehensive picture of the major association fibers during early infancy and deciphered the developmental interaction between WM and cGM in this period.
Collapse
Affiliation(s)
- Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jiani Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Ying Lv
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyan Li
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fusheng Gao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing You
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chai Ji
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
11
|
Kornaropoulos EN, Winzeck S, Rumetshofer T, Wikstrom A, Knutsson L, Correia MM, Sundgren PC, Nilsson M. Sensitivity of Diffusion MRI to White Matter Pathology: Influence of Diffusion Protocol, Magnetic Field Strength, and Processing Pipeline in Systemic Lupus Erythematosus. Front Neurol 2022; 13:837385. [PMID: 35557624 PMCID: PMC9087851 DOI: 10.3389/fneur.2022.837385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
There are many ways to acquire and process diffusion MRI (dMRI) data for group studies, but it is unknown which maximizes the sensitivity to white matter (WM) pathology. Inspired by this question, we analyzed data acquired for diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) at 3T (3T-DTI and 3T-DKI) and DTI at 7T in patients with systemic lupus erythematosus (SLE) and healthy controls (HC). Parameter estimates in 72 WM tracts were obtained using TractSeg. The impact on the sensitivity to WM pathology was evaluated for the diffusion protocol, the magnetic field strength, and the processing pipeline. Sensitivity was quantified in terms of Cohen's d for group comparison. Results showed that the choice of diffusion protocol had the largest impact on the effect size. The effect size in fractional anisotropy (FA) across all WM tracts was 0.26 higher when derived by DTI than by DKI and 0.20 higher in 3T compared with 7T. The difference due to the diffusion protocol was larger than the difference due to magnetic field strength for the majority of diffusion parameters. In contrast, the difference between including or excluding different processing steps was near negligible, except for the correction of distortions from eddy currents and motion which had a clearly positive impact. For example, effect sizes increased on average by 0.07 by including motion and eddy correction for FA derived from 3T-DTI. Effect sizes were slightly reduced by the incorporation of denoising and Gibbs-ringing removal (on average by 0.011 and 0.005, respectively). Smoothing prior to diffusion model fitting generally reduced effect sizes. In summary, 3T-DTI in combination with eddy current and motion correction yielded the highest sensitivity to WM pathology in patients with SLE. However, our results also indicated that the 3T-DKI and 7T-DTI protocols used here may be adjusted to increase effect sizes.
Collapse
Affiliation(s)
- Evgenios N. Kornaropoulos
- Clinical Sciences, Diagnostic Radiology, Lund University, Lund, Sweden
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Winzeck
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
- BioMedIA Group, Department of Computing, Imperial College London, London, United Kingdom
| | | | - Anna Wikstrom
- Clinical Sciences, Diagnostic Radiology, Lund University, Lund, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Marta M. Correia
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Pia C. Sundgren
- Clinical Sciences, Diagnostic Radiology, Lund University, Lund, Sweden
- Lund University BioImaging Center, Lund University, Lund, Sweden
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Markus Nilsson
- Clinical Sciences, Diagnostic Radiology, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Zhang F, Daducci A, He Y, Schiavi S, Seguin C, Smith RE, Yeh CH, Zhao T, O'Donnell LJ. Quantitative mapping of the brain's structural connectivity using diffusion MRI tractography: A review. Neuroimage 2022; 249:118870. [PMID: 34979249 PMCID: PMC9257891 DOI: 10.1016/j.neuroimage.2021.118870] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is an advanced imaging technique that enables in vivo reconstruction of the brain's white matter connections at macro scale. It provides an important tool for quantitative mapping of the brain's structural connectivity using measures of connectivity or tissue microstructure. Over the last two decades, the study of brain connectivity using dMRI tractography has played a prominent role in the neuroimaging research landscape. In this paper, we provide a high-level overview of how tractography is used to enable quantitative analysis of the brain's structural connectivity in health and disease. We focus on two types of quantitative analyses of tractography, including: 1) tract-specific analysis that refers to research that is typically hypothesis-driven and studies particular anatomical fiber tracts, and 2) connectome-based analysis that refers to research that is more data-driven and generally studies the structural connectivity of the entire brain. We first provide a review of methodology involved in three main processing steps that are common across most approaches for quantitative analysis of tractography, including methods for tractography correction, segmentation and quantification. For each step, we aim to describe methodological choices, their popularity, and potential pros and cons. We then review studies that have used quantitative tractography approaches to study the brain's white matter, focusing on applications in neurodevelopment, aging, neurological disorders, mental disorders, and neurosurgery. We conclude that, while there have been considerable advancements in methodological technologies and breadth of applications, there nevertheless remains no consensus about the "best" methodology in quantitative analysis of tractography, and researchers should remain cautious when interpreting results in research and clinical applications.
Collapse
Affiliation(s)
- Fan Zhang
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| | | | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia; The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| | - Robert E Smith
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | | |
Collapse
|
13
|
Li X, Li M, Wang M, Wu F, Liu H, Sun Q, Zhang Y, Liu C, Jin C, Yang J. Mapping white matter maturational processes and degrees on neonates by diffusion kurtosis imaging with multiparametric analysis. Hum Brain Mapp 2022; 43:799-815. [PMID: 34708903 PMCID: PMC8720196 DOI: 10.1002/hbm.25689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
White matter maturation has been characterized by diffusion tensor (DT) metrics. However, maturational processes and degrees are not fully investigated due to limitations of univariate approaches and limited specificity/sensitivity. Diffusion kurtosis imaging (DKI) provides kurtosis tensor (KT) and white matter tract integrity (WMTI) metrics, besides DT metrics. Therefore, we tried to investigate performances of DKI with the multiparametric analysis in characterizing white matter maturation. Developmental changes in metrics were investigated by using tract-based spatial statistics and the region of interest analysis on 50 neonates with postmenstrual age (PMA) from 37.43 to 43.57 weeks. Changes in metrics were combined into various patterns to reveal different maturational processes. Mahalanobis distance based on DT metrics (DM,DT ) and that combing DT and KT metrics (DM,DT-KT ) were computed, separately. Performances of DM,DT-KT and DM,DT were compared in revealing correlations with PMA and the neurobehavioral score. Compared with DT metrics, WMTI metrics demonstrated additional changing patterns. Furthermore, variations of DM,DT-KT across regions were in agreement with the maturational sequence. Additionally, DM,DT-KT demonstrated stronger negative correlations with PMA and the neurobehavioral score in more regions than DM,DT . Results suggest that DKI with the multiparametric analysis benefits the understanding of white matter maturational processes and degrees on neonates.
Collapse
Affiliation(s)
- Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengxuan Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Wu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heng Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qinli Sun
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yuli Zhang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Congcong Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chao Jin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Moss HG, Wolf LG, Coker-Bolt P, Ramakrishnan V, Aljuhani T, Yazdani M, Brown TR, Jensen JH, Jenkins DD. Quantitative Diffusion and Spectroscopic Neuroimaging Combined with a Novel Early-Developmental Assessment Improves Models for 1-Year Developmental Outcomes. AJNR Am J Neuroradiol 2022; 43:139-145. [PMID: 34949592 PMCID: PMC8757543 DOI: 10.3174/ajnr.a7370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE Preterm infants are at risk for overt and silent CNS injury, with developmental consequences that are difficult to predict. The novel Specific Test of Early Infant Motor Performance, administered in preterm infants at term age, is indicative of later developmental gross motor and cognitive scores at 12 months. Here, we assessed whether functional performance on this early assessment correlates with CNS integrity via MR spectroscopy or diffusional kurtosis imaging and whether these quantitative neuroimaging methods improve predictions for future 12-month developmental scores. MATERIALS AND METHODS MR spectroscopy and quantitative diffusion MR imaging data were acquired in preterm infants (n = 16) at term. Testing was performed at term and 3 months using the Specific Test of Early Infant Motor Performance and the Bayley Scales of Infant and Toddler Development, Third Edition, at 12 months. We modeled the relationship of MR spectroscopy and diffusion MR imaging data with both test scores via multiple linear regression. RESULTS MR spectroscopy NAA ratios at a TE of 270 ms in the frontal WM and basal ganglia and kurtosis metrics in major WM tracts correlated strongly with total Specific Test of Early Infant Motor Performance scores. The addition of MR spectroscopy and diffusion separately improved the functional predictions of 12-month outcomes. CONCLUSIONS Microstructural integrity of the major WM tracts and metabolism in the basal ganglia and frontal WM strongly correlate with early developmental performance, suggesting that the Specific Test of Early Infant Motor Performance reflects CNS integrity after preterm birth. This study demonstrates that combining quantitative neuroimaging and early functional movement improves the prediction of 12-month outcomes in premature infants.
Collapse
Affiliation(s)
- H G Moss
- From the Department of Neuroscience (H.G.M., J.H.J.)
- Center for Biomedical Imaging (H.G.M., T.R.B., J.H.J., D.D.J.)
| | - L G Wolf
- Department of Pediatrics (L.G.W., D.D.J.)
| | - P Coker-Bolt
- Division of Occupational Therapy (P.C.-B., T.A.), College of Health Sciences
| | | | - T Aljuhani
- Division of Occupational Therapy (P.C.-B., T.A.), College of Health Sciences
- Division of Public Health Sciences (V.R., T.A.)
| | - M Yazdani
- Department of Radiology and Radiological Science (M.Y., T.R.B., J.H.J.), Medical University of South Carolina, Charleston, South Carolina
| | - T R Brown
- Center for Biomedical Imaging (H.G.M., T.R.B., J.H.J., D.D.J.)
- Department of Radiology and Radiological Science (M.Y., T.R.B., J.H.J.), Medical University of South Carolina, Charleston, South Carolina
| | - J H Jensen
- From the Department of Neuroscience (H.G.M., J.H.J.)
- Center for Biomedical Imaging (H.G.M., T.R.B., J.H.J., D.D.J.)
- Department of Radiology and Radiological Science (M.Y., T.R.B., J.H.J.), Medical University of South Carolina, Charleston, South Carolina
| | - D D Jenkins
- Center for Biomedical Imaging (H.G.M., T.R.B., J.H.J., D.D.J.)
- Department of Pediatrics (L.G.W., D.D.J.)
| |
Collapse
|
15
|
Zhao X, Zhang C, Zhang B, Yan J, Wang K, Zhu Z, Zhang X. The Value of Diffusion Kurtosis Imaging in Detecting Delayed Brain Development of Premature Infants. Front Neurol 2021; 12:789254. [PMID: 34966352 PMCID: PMC8710729 DOI: 10.3389/fneur.2021.789254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Preterm infants are at high risk of the adverse neurodevelopmental outcomes. Our aim is to explore the value of diffusion kurtosis imaging (DKI) in diagnosing brain developmental disorders in premature infants. Materials and Methods: A total of 52 subjects were included in this study, including 26 premature infants as the preterm group, and 26 full-term infants as the control group. Routine MRI and DKI examinations were performed. Mean kurtosis (MK), radial kurtosis (RK), fractional anisotropy (FA), and mean diffusivity (MD) values were measured in the brain regions including posterior limbs of the internal capsule (PLIC), anterior limb of internal capsule (ALIC), parietal white matter (PWM), frontal white matter (FWM), thalamus (TH), caudate nucleus (CN), and genu of the corpus callosum (GCC). The chi-squared test, t-test, Spearman's correlation analysis, and receiver operating characteristic curve were used for data analyses. Results: In the premature infant group, the MK and RK values of PLIA, ALIC, and PWM were lower than those in the control group (p < 0.05). The FA values of PWM, FWM, and TH were also lower than those of the control group (p < 0.05). The area under curves of MK in PLIC and ALIC, MD in PWM, and FA in FWM were 0.813, 0.802, 0.842, and 0.867 (p < 0.05). In the thalamus and CN, the correlations between MK, RK values, and postmenstrual age (PMA) were higher than those between FA, MD values, and PMA. Conclusion: Diffusion kurtosis imaging can be used as an effective tool in detecting brain developmental disorders in premature infants.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunxiang Zhang
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohao Zhang
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Kaiyu Wang
- MRI Research, GE Healthcare, Beijing, China
| | | | - Xiaoan Zhang
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Abstract
This article discusses new diffusion-weighted imaging (DWI) sequences, diffusion tensor imaging (DTI), and fiber tractography (FT), as well as more advanced diffusion imaging in pediatric brain and spine. Underlying disorder and pathophysiology causing diffusion abnormalities are discussed. Multishot echo planar imaging (EPI) DWI and non-EPI DWI provide higher spatial resolution with less susceptibility artifact and distortion, which are replacing conventional single-shot EPI DWI. DTI and FT have established clinical significance in pediatric brain and spine. This article discusses advanced diffusion imaging, including diffusion kurtosis imaging, neurite orientation dispersion and density imaging, diffusion spectrum imaging, intravoxel incoherent motion, and oscillating-gradient spin-echo.
Collapse
Affiliation(s)
- Toshio Moritani
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2 A209K, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Zheng H, Lin J, Lin Q, Zheng W. Magnetic Resonance Image of Neonatal Acute Bilirubin Encephalopathy: A Diffusion Kurtosis Imaging Study. Front Neurol 2021; 12:645534. [PMID: 34512498 PMCID: PMC8425508 DOI: 10.3389/fneur.2021.645534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/16/2021] [Indexed: 01/31/2023] Open
Abstract
Background and Objective: The abnormal T1-weighted imaging of MRI can be used to characterize neonatal acute bilirubin encephalopathy (ABE) in newborns, but has limited use in evaluating the severity and prognosis of ABE. This study aims to assess the value of diffusion kurtosis imaging (DKI) in detecting ABE and understanding its pathogenesis. Method: Seventy-six newborns with hyperbilirubinemia were grouped into three groups (mild group, moderate group, and severe group) based on serum bilirubin levels. All the patients underwent conventional MRI and DKI serial, as well as 40 healthy full-term infants (control group). The regions of interest (ROIs) were the bilateral globus pallidus, dorsal thalamus, frontal lobe, auditory radiation, superior temporal gyrus, substantia nigra, hippocampus, putamen, and inferior olivary nucleus. The values of mean diffusivity (MD), axial kurtosis (AK), radial kurtosis (RK), and mean kurtosis (MK), and fractional anisotropy (FA), radial diffusivity (RD), and axis diffusivity (AD) of the ROIs were evaluated. All newborns were followed up and evaluated using the Denver Development Screening Test (DDST). According to the follow-up results, the patients were divided into the normal group, the suspicious abnormal group, and the abnormal group. Result: Compared with the control group, significant differences were observed with the increased MK of dorsal thalamus, AD of globus pallidus in the moderate group, and increased RD, MK, AK, and RK value of globus pallidus, dorsal thalamus, auditory radiation, superior temporal gyrus, and hippocampus in the severe group. The peak value of total serum bilirubin was moderately correlated with the MK of globus pallidus, dorsal thalamus, and auditory radiation and was positively correlated with the other kurtosis value. Out of 76 patients, 40 finished the DDST, and only 9 patients showed an abnormality. Compared with the normal group, the AK value of inferior olivary nucleus showed significant differences (p < 0.05) in the suspicious abnormal group, and the MK of globus pallidus, temporal gyrus, and auditory radiation; RK of globus pallidus, dorsal thalamus, and auditory radiation; and MD of globus pallidus showed significant differences (p < 0.05) in the abnormal group. Conclusion: DKI can reflect the subtle structural changes of neonatal ABE, and MK is a sensitive indicator to indicate the severity of brain damage.
Collapse
Affiliation(s)
- Hongyi Zheng
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Jiefen Lin
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Qihuan Lin
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Wenbin Zheng
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| |
Collapse
|
18
|
Zhao X, Shi J, Dai F, Wei L, Zhang B, Yu X, Wang C, Zhu W, Wang H. Brain Development From Newborn to Adolescence: Evaluation by Neurite Orientation Dispersion and Density Imaging. Front Hum Neurosci 2021; 15:616132. [PMID: 33790750 PMCID: PMC8005551 DOI: 10.3389/fnhum.2021.616132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/22/2021] [Indexed: 11/15/2022] Open
Abstract
Neurite orientation dispersion and density imaging (NODDI) is a diffusion model specifically designed for brain magnetic resonance imaging. Despite recent studies suggesting that NODDI modeling might be more sensitive to brain development than diffusion tensor imaging (DTI), these studies were limited to a relatively small age range and mainly based on the manually operated region of interest analysis. Therefore, this study applied NODDI to investigate brain development in a large sample size of 214 subjects ranging in ages from 0 to 14. The whole brain was automatically segmented into 122 regions. The maturation trajectory of each region was characterized by the time course of diffusion metrics and further quantified using nonlinear regression. The NODDI-derived metrics, neurite density index (NDI) and orientation dispersion index (ODI), increased with age. And these two metrics were superior to the DTI-derived metrics in SVM regression models of age. The NDI in white matter exhibited a more rapid growth than that in gray matter (including the cortex and deep nucleus). These diffusion indicators experienced conspicuous increases during early childhood and the growth speed slowed down in adolescence. Region-specific maturation patterns were described throughout the brain, including white matter, cortical and deep gray matter. These development patterns were evaluated and discussed on the basis of NODDI’s model assumptions. To summarize, this study verified the high sensitivity of NODDI to age over a crucial developmental period from newborn to adolescence. Moreover, the existing knowledge of brain development has been complemented, suggesting that NODDI has a potential capability in the investigation of brain development.
Collapse
Affiliation(s)
- Xueying Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Jingjing Shi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Dai
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Lei Wei
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Boyu Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Xuchen Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Kühne F, Neumann WJ, Hofmann P, Marques J, Kaindl AM, Tietze A. Assessment of myelination in infants and young children by T1 relaxation time measurements using the magnetization-prepared 2 rapid acquisition gradient echoes sequence. Pediatr Radiol 2021; 51:2058-2068. [PMID: 34287663 PMCID: PMC8476383 DOI: 10.1007/s00247-021-05109-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Axonal myelination is an important maturation process in the developing brain. Increasing myelin content correlates with the longitudinal relaxation rate (R1=1/T1) in magnetic resonance imaging (MRI). OBJECTIVE By using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE) on a 3-T MRI system, we provide R1 values and myelination rates for infants and young children. MATERIALS AND METHODS Average R1 values in white and grey matter regions in 94 children without pathological MRI findings (age range: 3 months to 6 years) were measured and fitted by a saturating-exponential growth model. For comparison, R1 values of 36 children with different brain pathologies are presented. The findings were related to a qualitative evaluation using T2, magnetization-prepared rapid acquisition gradient echo (MP-RAGE) and MP2RAGE. RESULTS R1 changes rapidly in the first 16 months of life, then much slower thereafter. R1 is highest in pre-myelinated structures in the youngest subjects, such as the posterior limb of the internal capsule (0.74-0.76±0.04 s-1) and lowest for the corpus callosum (0.37-0.44±0.03 s-1). The myelination rate is fastest in the corpus callosum and slowest in the deep grey matter. R1 is decreased in hypo- and dysmyelination disorders. Myelin maturation is clearly visible on MP2RAGE, especially in the first year of life. CONCLUSION MP2RAGE permits a quantitative R1 mapping method with an examination time of approximately 6 min. The age-dependent R1 values for children without MRI-identified brain pathologies are well described by a saturating-exponential function with time constants depending on the investigated brain region. This model can serve as a reference for this age group and to search for indications of subtle pathologies. Moreover, the MP2RAGE sequence can also be used for the qualitative assessment of myelinated structures.
Collapse
Affiliation(s)
- Fabienne Kühne
- Department of Pediatric Neurology, Charité – University Medicine Berlin, Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – University Medicine Berlin, Berlin, Germany ,Institute of Neuroradiology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Philip Hofmann
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - José Marques
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Angela M. Kaindl
- Department of Pediatric Neurology, Charité – University Medicine Berlin, Berlin, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
20
|
Stephens RL, Langworthy BW, Short SJ, Girault JB, Styner MA, Gilmore JH. White Matter Development from Birth to 6 Years of Age: A Longitudinal Study. Cereb Cortex 2020; 30:6152-6168. [PMID: 32591808 DOI: 10.1093/cercor/bhaa170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/30/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
Human white matter development in the first years of life is rapid, setting the foundation for later development. Microstructural properties of white matter are linked to many behavioral and psychiatric outcomes; however, little is known about when in development individual differences in white matter microstructure are established. The aim of the current study is to characterize longitudinal development of white matter microstructure from birth through 6 years to determine when in development individual differences are established. Two hundred and twenty-four children underwent diffusion-weighted imaging after birth and at 1, 2, 4, and 6 years. Diffusion tensor imaging data were computed for 20 white matter tracts (9 left-right corresponding tracts and 2 commissural tracts), with tract-based measures of fractional anisotropy and axial and radial diffusivity. Microstructural maturation between birth and 1 year are much greater than subsequent changes. Further, by 1 year, individual differences in tract average values are consistently predictive of the respective 6-year values, explaining, on average, 40% of the variance in 6-year microstructure. Results provide further evidence of the importance of the first year of life with regard to white matter development, with potential implications for informing early intervention efforts that target specific sensitive periods.
Collapse
Affiliation(s)
- Rebecca L Stephens
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin W Langworthy
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah J Short
- Department of Educational Psychology, Center for Healthy Minds, University of Wisconsin, Madison, Madison, WI 53703, USA
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
De Tobel J, Bauwens J, Parmentier GIL, Franco A, Pauwels NS, Verstraete KL, Thevissen PW. Magnetic resonance imaging for forensic age estimation in living children and young adults: a systematic review. Pediatr Radiol 2020; 50:1691-1708. [PMID: 32734341 DOI: 10.1007/s00247-020-04709-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 03/03/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022]
Abstract
The use of MRI in forensic age estimation has been explored extensively during the last decade. The authors of this paper synthesized the available MRI data for forensic age estimation in living children and young adults to provide a comprehensive overview that can guide age estimation practice and future research. To do so, the authors searched MEDLINE, Embase and Web of Science, along with cited and citing articles and study registers. Two authors independently selected articles, conducted data extraction, and assessed risk of bias. They considered study populations including living subjects up to 30 years old. Fifty-five studies were included in qualitative analysis and 33 in quantitative analysis. Most studies had biases including use of relatively small European (Caucasian) populations, varying MR approaches and varying staging techniques. Therefore, it was not appropriate to pool the age distribution data. The authors found that reproducibility of staging was remarkably lower in clavicles than in any other anatomical structure. Age estimation performance was in line with the gold standard, radiography, with mean absolute errors ranging from 0.85 years to 2.0 years. The proportion of correctly classified minors ranged from 65% to 91%. Multifactorial age estimation performed better than that based on a single anatomical site. The authors found that more multifactorial age estimation studies are necessary, together with studies testing whether the MRI data can safely be pooled. The current review results can guide future studies, help medical professionals to decide on the preferred approach for specific cases, and help judicial professionals to interpret the evidential value of age estimation results.
Collapse
Affiliation(s)
- Jannick De Tobel
- Department of Diagnostic Sciences-Radiology, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Imaging and Pathology-Forensic Odontology, KU Leuven, Leuven, Belgium.
- Department of Oral Diseases and Maxillofacial Surgery, Maastricht UMC+, Maastricht, The Netherlands.
| | - Jeroen Bauwens
- Department of Diagnostic Sciences-Radiology, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Griet I L Parmentier
- Department of Diagnostic Sciences-Radiology, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Ademir Franco
- Department of Imaging and Pathology-Forensic Odontology, KU Leuven, Leuven, Belgium
| | - Nele S Pauwels
- Ghent Knowledge Centre for Health, Ghent University, Ghent, Belgium
| | - Koenraad L Verstraete
- Department of Diagnostic Sciences-Radiology, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Patrick W Thevissen
- Department of Imaging and Pathology-Forensic Odontology, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Zhu T, Peng Q, Ouyang A, Huang H. Neuroanatomical underpinning of diffusion kurtosis measurements in the cerebral cortex of healthy macaque brains. Magn Reson Med 2020; 85:1895-1908. [PMID: 33058286 DOI: 10.1002/mrm.28548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/23/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate the neuroanatomical underpinning of healthy macaque brain cortical microstructure measured by diffusion kurtosis imaging (DKI), which characterizes non-Gaussian water diffusion. METHODS High-resolution DKI was acquired from 6 postmortem macaque brains. Neurofilament density (ND) was quantified based on structure tensor from neurofilament histological images of a different macaque brain sample. After alignment of DKI-derived mean kurtosis (MK) maps to the histological images, MK and histology-based ND were measured at corresponding regions of interests characterized by distinguished cortical MK values in the prefrontal/precentral-postcentral and temporal cortices. Pearson correlation was performed to test significant correlation between these cortical MK and ND measurements. RESULTS Heterogeneity of cortical MK across different cortical regions was revealed, with significantly and consistently higher MK measurements in the prefrontal/precentral-postcentral cortex compared to those in the temporal cortex across all six scanned macaque brains. Corresponding higher ND measurements in the prefrontal/precentral-postcentral cortex than in the temporal cortex were also found. The heterogeneity of cortical MK is associated with heterogeneity of histology-based ND measurements, with significant correlation between cortical MK and corresponding ND measurements (P < .005). CONCLUSION These findings suggested that DKI-derived MK can potentially be an effective noninvasive biomarker quantifying underlying neuroanatomical complexity inside the cerebral cortical mantle for clinical and neuroscientific research.
Collapse
Affiliation(s)
- Tianjia Zhu
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qinmu Peng
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Austin Ouyang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
23
|
Xiao J, He X, Tian J, Chen H, Liu J, Yang C. Diffusion kurtosis imaging and pathological comparison of early hypoxic-ischemic brain damage in newborn piglets. Sci Rep 2020; 10:17242. [PMID: 33057162 PMCID: PMC7560608 DOI: 10.1038/s41598-020-74387-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 09/28/2020] [Indexed: 12/28/2022] Open
Abstract
To investigate the application value of magnetic resonance diffusion kurtosis imaging (DKI) in hypoxic–ischemic brain damage (HIBD) in newborn piglets and to compare imaging and pathological results. Of 36 piglets investigated, 18 were in the experimental group and 18 in the control group. The HIBD model was established in newborn piglets by ligating the bilateral common carotid arteries and placing them into hypoxic chamber. All piglets underwent conventional MRI and DKI scans at 3, 6, 9, 12, 16, and 24 h postoperatively. Mean kurtosis (MK) and mean diffusivity (MD) maps were constructed. Then, the lesions were examined using light and electron microscopy and compared with DKI images. The MD value of the lesion area gradually decreased and the MK value gradually increased in the experimental group with time. The lesion areas gradually expanded with time; MK lesions were smaller than MD lesions. Light microscopy revealed neuronal swelling in the MK- and MD-matched and mismatched regions. Electron microscopy demonstrated obvious mitochondrial swelling and autophagosomes in the MK- and MD-matched region but normal mitochondrial morphology or mild swelling in the mismatched region. DKI can accurately evaluate early ischemic–hypoxic brain injury in newborn piglets.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Xiaoning He
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Juan Tian
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Honghai Chen
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Jing Liu
- Dalian Medical University, No. 9, West Section, South Lvshun Road, Dalian, Liaoning, China
| | - Chao Yang
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China.
| |
Collapse
|
24
|
Postnatal Guinea Pig Brain Development, as Revealed by Magnetic Resonance and Diffusion Kurtosis Imaging. Brain Sci 2020; 10:brainsci10060365. [PMID: 32545593 PMCID: PMC7349860 DOI: 10.3390/brainsci10060365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
This study used in vivo magnetic resonance imaging (MRI) to identify age dependent brain structural characteristics in Dunkin Hartley guinea pigs. Anatomical T2-weighted images, diffusion kurtosis (DKI) imaging, and T2 relaxometry measures were acquired from a cohort of male guinea pigs from postnatal day (PND) 18–25 (juvenile) to PND 46–51 (adolescent) and PND 118–123 (young adult). Whole-brain diffusion measures revealed the distinct effects of maturation on the microstructural complexity of the male guinea pig brain. Specifically, fractional anisotropy (FA), as well as mean, axial, and radial kurtosis in the corpus callosum, amygdala, dorsal-ventral striatum, and thalamus significantly increased from PND 18–25 to PND 118–123. Age-related alterations in DKI measures within these brain regions paralleled the overall alterations observed in the whole brain. Age-related changes in FA and kurtosis in the gray matter-dominant parietal cerebral cortex and dorsal hippocampus were less pronounced than in the other brain regions. The regional data analysis revealed that between-age changes of diffusion kurtosis metrics were more pronounced than those observed in diffusion tensor metrics. The age-related anatomical differences reported here may be important determinants of the age-dependent neurobehavior of guinea pigs in different tasks.
Collapse
|
25
|
Registration-free analysis of diffusion MRI tractography data across subjects through the human lifespan. Neuroimage 2020; 214:116703. [PMID: 32151759 PMCID: PMC8482444 DOI: 10.1016/j.neuroimage.2020.116703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/21/2020] [Accepted: 03/02/2020] [Indexed: 02/05/2023] Open
Abstract
Diffusion MRI tractography produces massive sets of streamlines that need to be clustered into anatomically meaningful white-matter bundles. Conventional clustering techniques group streamlines based on their proximity in Euclidean space. We have developed AnatomiCuts, an unsupervised method for clustering tractography streamlines based on their neighboring anatomical structures, rather than their coordinates in Euclidean space. In this work, we show that the anatomical similarity metric used in AnatomiCuts can be extended to find corresponding clusters across subjects and across hemispheres, without inter-subject or inter-hemispheric registration. Our proposed approach enables group-wise tract cluster analysis, as well as studies of hemispheric asymmetry. We evaluate our approach on data from the pilot MGH-Harvard-USC Lifespan Human Connectome project, showing improved correspondence in tract clusters across 184 subjects aged 8-90. Our method shows up to 38% improvement in the overlap of corresponding clusters when comparing subjects with large age differences. The techniques presented here do not require registration to a template and can thus be applied to populations with large inter-subject variability, e.g., due to brain development, aging, or neurological disorders.
Collapse
|
26
|
Shi J, Yang S, Wang J, Huang S, Yao Y, Zhang S, Zhu W, Shao J. Detecting normal pediatric brain development with diffusional kurtosis imaging. Eur J Radiol 2019; 120:108690. [PMID: 31605964 DOI: 10.1016/j.ejrad.2019.108690] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE To characterise the pattern of change of diffusional kurtosis imaging (DKI) parameters (including kurtosis and diffusion parameters) in both white matter and gray matter in normal brain development with a large sample of subjects from term-born neonates to 14-years old children. METHODS Two hundred and eighteen normal children (136 male, 82 female) underwent conventional magnetic resonance imaging and DKI. Regions of interest (ROIs) were placed in 7 white matter areas and 4 gray matter areas. Then the DKI-derived parameters were automatically calculated, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), radial diffusivity (Dr), mean kurtosis (MK), axial kurtosis (Ka) and radial kurtosis (Kr). The correlation between the DKI parameters and ages were analyzed using nonlinear fit, and the rate of parameter change was computed compared to the baseline value of the neonates. RESULTS For all ROIs in the white matter and gray matter, the FA, MK, Kr, Ka values increased with age, while the MD and Dr values decreased with age. The correlations were good to excellent, which changed rapidly within the first 2 years and relatively slowly after 2 years. The Da values in peripheral white matters and some gray matter structures (caudate nucleus and putamen) decreased with age. The amplitude of kurtosis parameters variation was greater than that of the diffusion parameters in both white matter and gray matter. CONCLUSIONS The DKI parameters correlated well with age, and kurtosis parameters showed a potential advantage in detecting the normal brain development of children.
Collapse
Affiliation(s)
- Jingjing Shi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaowei Yang
- Department of Radiology, Children's Hospital, Wuhan, China
| | - Jian Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sui Huang
- Department of Radiology, Children's Hospital, Wuhan, China
| | - Yihao Yao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jianbo Shao
- Department of Radiology, Children's Hospital, Wuhan, China.
| |
Collapse
|
27
|
Reynolds JE, Grohs MN, Dewey D, Lebel C. Global and regional white matter development in early childhood. Neuroimage 2019; 196:49-58. [DOI: 10.1016/j.neuroimage.2019.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/08/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022] Open
|
28
|
Lebel C, Treit S, Beaulieu C. A review of diffusion MRI of typical white matter development from early childhood to young adulthood. NMR IN BIOMEDICINE 2019; 32:e3778. [PMID: 28886240 DOI: 10.1002/nbm.3778] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 05/24/2017] [Accepted: 07/05/2017] [Indexed: 05/05/2023]
Abstract
Understanding typical, healthy brain development provides a baseline from which to detect and characterize brain anomalies associated with various neurological or psychiatric disorders and diseases. Diffusion MRI is well suited to study white matter development, as it can virtually extract individual tracts and yield parameters that may reflect alterations in the underlying neural micro-structure (e.g. myelination, axon density, fiber coherence), though it is limited by its lack of specificity and other methodological concerns. This review summarizes the last decade of diffusion imaging studies of healthy white matter development spanning childhood to early adulthood (4-35 years). Conclusions about anatomical location, rates, and timing of white matter development with age are discussed, as well as the influence of image acquisition, analysis, age range/sample size, and statistical model. Despite methodological variability between studies, some consistent findings have emerged from the literature. Specifically, diffusion studies of neurodevelopment overwhelmingly demonstrate regionally varying increases of fractional anisotropy and decreases of mean diffusivity during childhood and adolescence, some of which continue into adulthood. While most studies use linear fits to model age-related changes, studies with sufficient sample sizes and age range provide clear evidence that white matter development (as indicated by diffusion) is non-linear. Several studies further suggest that maturation in association tracts with frontal-temporal connections continues later than commissural and projection tracts. The emerging contributions of more advanced diffusion methods are also discussed, as they may reveal new aspects of white matter development. Although non-specific, diffusion changes may reflect increases of myelination, axonal packing, and/or coherence with age that may be associated with changes in cognition.
Collapse
Affiliation(s)
- Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Sarah Treit
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Differential cortical microstructural maturation in the preterm human brain with diffusion kurtosis and tensor imaging. Proc Natl Acad Sci U S A 2019; 116:4681-4688. [PMID: 30782802 PMCID: PMC6410816 DOI: 10.1073/pnas.1812156116] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Delineating cortical microstructure differentiation is important for understanding complicated yet precisely organized patterns in early developing brain. Knowledge of cortical differentiation predominantly from histological studies is limited in localized and discrete cortical regions. We quantified the preterm brain cerebral cortical profile with microstructural complexity [indexed by mean kurtosis (MK)] and microstructural organization [indexed by fractional anisotropy (FA)] from advanced diffusion MRI. Cortical MK and FA maps revealed a heterogeneous maturation signature. Spatiotemporally distinctive disruption of radial glia and decrease of neuronal density among cortical regions were inferred by FA and MK decreases, respectively. These findings suggest that diffusion kurtosis metrics are significant imaging markers for microstructural differentiation of the developmental brain in health and disease. During the third trimester, the human brain undergoes rapid cellular and molecular processes that reshape the structural architecture of the cerebral cortex. Knowledge of cortical differentiation obtained predominantly from histological studies is limited in localized and small cortical regions. How cortical microstructure is differentiated across cortical regions in this critical period is unknown. In this study, the cortical microstructural architecture across the entire cortex was delineated with non-Gaussian diffusion kurtosis imaging as well as conventional diffusion tensor imaging of 89 preterm neonates aged 31–42 postmenstrual weeks. The temporal changes of cortical mean kurtosis (MK) or fractional anisotropy (FA) were heterogeneous across the cortical regions. Cortical MK decreases were observed throughout the studied age period, while cortical FA decrease reached its plateau around 37 weeks. More rapid decreases in MK were found in the primary visual region, while faster FA declines were observed in the prefrontal cortex. We found that distinctive cortical microstructural changes were coupled with microstructural maturation of associated white matter tracts. Both cortical MK and FA measurements predicted the postmenstrual age of preterm infants accurately. This study revealed a differential 4D spatiotemporal cytoarchitectural signature inferred by non-Gaussian diffusion barriers inside the cortical plate during the third trimester. The cytoarchitectural processes, including dendritic arborization and neuronal density decreases, were inferred by regional cortical FA and MK measurements. The presented findings suggest that cortical MK and FA measurements could be used as effective imaging markers for cortical microstructural changes in typical and potentially atypical brain development.
Collapse
|
30
|
Guan J, Ma X, Geng Y, Qi D, Shen Y, Shen Z, Chen Y, Wu E, Wu R. Diffusion Kurtosis Imaging for Detection of Early Brain Changes in Parkinson's Disease. Front Neurol 2019; 10:1285. [PMID: 31920913 PMCID: PMC6914993 DOI: 10.3389/fneur.2019.01285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/20/2019] [Indexed: 02/05/2023] Open
Abstract
We aimed to evaluate microscale changes in the bilateral red nucleus and substantia nigra of patients with Parkinson's disease (PD) using diffusion kurtosis imaging (DKI). Twenty-six patients with PD [mean age, 62.5 ± 8.7 years; Hoehn-Yahr stage, 0-4.0; Unified Parkinson's Disease Rating Scale (UPDRS) scores, 8-43] and 15 healthy controls (mean age, 59.5 ± 9.4 years) underwent DKI of the substantia nigra and red nucleus. Imaging was performed using a General Electric (GE) Signa 3.0-T MRI system. Patients with PD were divided into two groups consisting of 12 patients with UPDRS scores ≥ 30 and 14 patients with UPDRS scores < 30. All DKI data processing operations were performed with commercial workstations (GE, ADW 4.6) using Functool software to generate color-coded and parametric maps of mean kurtosis (MK), fractional anisotropy (FA), and mean diffusivity (MD). MK values in the bilateral substantia nigra were significantly lower in patients with early- and advanced-stage PD than in controls. Moreover, MK values in the left substantia nigra were significantly lower in patients with advanced-stage PD than in those with early-stage PD. Patients with advanced-stage PD also exhibited significant decreases in MK values in the bilateral red nucleus relative to controls. No significant differences in FA or MD values were observed between the PD and control groups. There were no significant correlations between MK, FA, or MD values and UPDRS scores. Our findings suggest that decreased MK values in the substantia nigra may aid in determining the severity of PD and help provide early diagnoses.
Collapse
Affiliation(s)
- Jitian Guan
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States
| | - Xilun Ma
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yiqun Geng
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou, China
| | - Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States
| | - Yuanyu Shen
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhiwei Shen
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yanzi Chen
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States
- Department of Surgery, Texas A&M University Health Science Center College of Medicine, Temple, TX, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University Health Science Center, College Station, TX, United States
- Dell Medical School, LIVESTRONG Cancer Institute, The University of Texas at Austin, Austin, TX, United States
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Renhua Wu
| |
Collapse
|
31
|
Cho KIK, Kwak YB, Hwang WJ, Lee J, Kim M, Lee TY, Kwon JS. Microstructural Changes in Higher-Order Nuclei of the Thalamus in Patients With First-Episode Psychosis. Biol Psychiatry 2019; 85:70-78. [PMID: 29961564 DOI: 10.1016/j.biopsych.2018.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Disruption in the thalamus, such as volume, shape, and cortical connectivity, is regarded as an important pathophysiological mechanism in schizophrenia. However, there is little evidence of nuclei-specific structural alterations in the thalamus during early-stage psychosis, mainly because of the methodological limitations of conventional structural imaging in identifying the thalamic nuclei. METHODS A total of 37 patients with first-episode psychosis and 36 matched healthy control subjects underwent diffusion tensor imaging, diffusion kurtosis imaging, and T1-weighted magnetic resonance imaging. Connectivity-based segmentation of the thalamus was performed using diffusion tensor imaging, and averages of the diffusion kurtosis values, which represent microstructural complexity, were estimated using diffusion kurtosis imaging and were compared in each thalamic nucleus between the groups. RESULTS The mean kurtosis values in the thalamic regions with strong connections to the orbitofrontal cortex (F1,70 = 8.40, p < .01) and the lateral temporal cortex (F1,70 = 8.46, p < .01) were significantly reduced in patients with first-episode psychosis compared with those of the healthy control subjects. The mean kurtosis values in the thalamic region with strong connection to the orbitofrontal cortex showed a significant correlation with spatial working memory accuracy in patients with first-episode psychosis (r = .36, p < .05), whereas no significant correlation between these variables was observed in the healthy control subjects. CONCLUSIONS The observed pattern of reduced microstructural complexity in the nuclei not only highlights the involvement of the thalamus but also emphasizes the role of the higher-order nuclei in the pathophysiology beginning in the early stage of schizophrenia.
Collapse
Affiliation(s)
- Kang Ik K Cho
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junhee Lee
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Minah Kim
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Tae Young Lee
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea; Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Saadani-Makki F, Hagmann C, Balédent O, Makki MI. Early assessment of lateralization and sex influences on the microstructure of the white matter corticospinal tract in healthy term neonates. J Neurosci Res 2018; 97:480-491. [PMID: 30548647 DOI: 10.1002/jnr.24359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 11/12/2022]
Abstract
We assessed the sex and the lateralization differences in the corticospinal tract (CST) during the early postnatal period. Twenty-five healthy term neonates (13 girls, aged 39.2 ± 1.2 weeks, and 12 boys aged 38.6 ± 3.0 weeks) underwent Diffusion Tensor Imaging (DTI). Fiber tracking was performed to extract bilaterally the CST pathways and to quantify the parallel (E1 ) and perpendicular (E23 ) diffusions, the apparent diffusion coefficient (ADC), and fractional anisotropy (FA). The measurements were performed on the entire CST fibers and on four segments: base of the pons (CST-Po), cerebral peduncles (CST-CP), posterior limb of the internal capsule (CST-PLIC), and corona-radiata (CST-CR). Significantly higher E1 , lower E23, and higher FA in the right compared to the left were noted in the CST-PLIC of the girls. Significantly lower E23 and lower ADC with higher FA in the right compared to left were observed in the CST-CP of the boys. Moreover, the CST-PLIC of the boys had significantly higher E1 in the right compared to the left. There was a significant increase in left CST E1 of boys when compared with girls. Girls had a significantly lower E1 , lower E23 and, lower ADC in the left CST-CP compared with boys. In addition, girls had a significantly lower E23 and higher FA in the right CST-PLIC compared with boys. Sex differences and lateralization in structure-based segments of the CST were found in healthy term infants during early postnatal period. These findings are vital to understanding motor development of healthy term born neonates to better interpret newborn infants with abnormal neurodevelopment.
Collapse
Affiliation(s)
- Fadoua Saadani-Makki
- Unite de Traitement de l'Image, CHU Amiens-Picardie, Amiens, France.,CHIMERE EA 7516, Université de Picardie Jules Vernes, Amiens, France
| | - Cornelia Hagmann
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Olivier Balédent
- Unite de Traitement de l'Image, CHU Amiens-Picardie, Amiens, France.,CHIMERE EA 7516, Université de Picardie Jules Vernes, Amiens, France
| | - Malek I Makki
- MRI Research, CHU Amiens-Picardie, Amiens, France.,MRI Research, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Lebel C, Deoni S. The development of brain white matter microstructure. Neuroimage 2018; 182:207-218. [PMID: 29305910 PMCID: PMC6030512 DOI: 10.1016/j.neuroimage.2017.12.097] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/16/2017] [Accepted: 12/30/2017] [Indexed: 12/13/2022] Open
Abstract
Throughout infancy, childhood, and adolescence, our brains undergo remarkable changes. Processes including myelination and synaptogenesis occur rapidly across the first 2-3 years of life, and ongoing brain remodeling continues into young adulthood. Studies have sought to characterize the patterns of structural brain development, and early studies predominately relied upon gross anatomical measures of brain structure, morphology, and organization. MRI offers the ability to characterize and quantify a range of microstructural aspects of brain tissue that may be more closely related to fundamental neurodevelopmental processes. Techniques such as diffusion, magnetization transfer, relaxometry, and myelin water imaging provide insight into changing cyto- and myeloarchitecture, neuronal density, and structural connectivity. In this review, we focus on the growing body of literature exploiting these MRI techniques to better understand the microstructural changes that occur in brain white matter during maturation. Our review focuses on studies of normative brain development from birth to early adulthood (∼25 years), and places particular emphasis on longitudinal studies and newer techniques that are being used to study microstructural white matter development. All imaging methods demonstrate consistent, rapid microstructural white matter development over the first 3 years of life, suggesting increased myelination and axonal packing. Diffusion studies clearly demonstrate continued white matter maturation during later childhood and adolescence, though the lack of consistent findings in other modalities suggests changes may be mainly due to axonal packing. An emerging literature details differential microstructural development in boys and girls, and connects developmental trajectories to cognitive abilities, behaviour, and/or environmental factors, though the nature of these relationships remains unclear. Future research will need to focus on newer imaging techniques and longitudinal studies to provide more detailed information about microstructural white matter development, particularly in the childhood years.
Collapse
Affiliation(s)
- Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute and the Hotchkiss Brain Institute, Calgary, AB, Canada.
| | - Sean Deoni
- School of Engineering, Providence, RI, United States; Advanced Baby Imaging Lab at Memorial Hospital of Rhode Island, Pawtucket, RI, United States
| |
Collapse
|
34
|
Yoshimaru D, Takatsu Y, Suzuki Y, Miyati T, Hamada Y, Funaki A, Tabata A, Maruyama C, Shimada M, Tobari M, Nishino T. Diffusion kurtosis imaging in the assessment of liver function: Its potential as an effective predictor of liver function. Br J Radiol 2018; 92:20170608. [PMID: 30358410 DOI: 10.1259/bjr.20170608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES: We aimed to determine whether diffusion kurtosis imaging (DKI) analysis with the breath-hold technique can replace liver function results obtained from laboratory tests. METHODS: Patients (n = 79) suspected of having a hepatobiliary disease, and control group without liver diseases (n = 15) were examined with non-Gaussian diffusion-weighted imaging using a 3.0 T magnetic resonance imaging unit. Based on the findings of DKI, various blood serum parameters, including the indocyanine green (ICG) retention rate 15 min after an intravenous injection of ICG (ICG-R15) and mean kurtosis values and Child-Pugh and albumin-bilirubin (ALBI) scores, were calculated. In total, 17 patients were tested using ICG-R15. For evaluating liver function, correlations between the mean kurtosis value and the Child-Pugh score, ALBI score, and ICG-R15 value as indicators of liver function obtained from blood data were assessed using Spearman's rank correlation. In apparent diffusion coefficient as well, we assessed correlations with these indicators. RESULTS: The mean kurtosis value correlated with the Child-Pugh score (Spearman's rank-correlation coefficient, ρ = 0.3992; p < 0.0001). Moreover, the mean kurtosis value revealed a correlation with the ICG-R15 value (Spearman's rank-correlation coefficient, ρ = 0.5972; p = 0.00114). The correlation between the mean kurtosis value and the ALBI score was the poorest among these (Spearman's rank-correlation coefficient, ρ = 0.3395; p = 0.0008). CONCLUSION: Liver function correlating with the Child-Pugh score and ICG-R15 value can be quantitatively estimated using the mean kurtosis value obtained from DKI analysis. DKI analysis with the breath-hold technique can be used to determine liver function instead of performing laboratory tests. ADVANCES IN KNOWLEDGE: Previous studies have not evaluated liver function in vivo using DKI.
Collapse
Affiliation(s)
- Daisuke Yoshimaru
- 1 Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan.,2 Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kodatsuno , Kanazawa, Ishikawa , Japan
| | - Yasuo Takatsu
- 3 Department of Radiological Technology, Tokushima Bunri University , Kagawa , Japan
| | - Yuichi Suzuki
- 4 Department of Radiological Service, The University of Tokyo Hospital , Tokyo , Japan
| | - Toshiaki Miyati
- 2 Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kodatsuno , Kanazawa, Ishikawa , Japan
| | - Yuhki Hamada
- 1 Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan
| | - Ayumu Funaki
- 1 Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan
| | - Ayumi Tabata
- 1 Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan
| | - Chifumi Maruyama
- 1 Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan
| | - Masahiko Shimada
- 5 Department of gastroenterological medicine, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan
| | - Maki Tobari
- 5 Department of gastroenterological medicine, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan
| | - Takayoshi Nishino
- 5 Department of gastroenterological medicine, Tokyo Women's Medical University Yachiyo Medical Center , Yachiyo , Japan
| |
Collapse
|
35
|
Lancaster MA, Meier TB, Olson DV, McCrea MA, Nelson LD, Muftuler LT. Chronic differences in white matter integrity following sport-related concussion as measured by diffusion MRI: 6-Month follow-up. Hum Brain Mapp 2018; 39:4276-4289. [PMID: 29964356 DOI: 10.1002/hbm.24245] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/19/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
Recent studies demonstrated evidence of physiological changes in the brain following sport-related concussion (SRC) that persisted beyond the point at which athletes achieved full symptom recovery. Diffusion MRI techniques have been used to study brain white matter (WM) changes following SRC; however, longitudinal studies that follow injured athletes from the acute to chronic stages of injury are sparse. The current study explores potential persisting effects of the injury, which serves as a follow-up to our previous work that reported WM changes in the acute and subacute phase of SRC recovery. Concussed high school and collegiate football players (n = 17) and well-matched teammate controls (n = 20) were followed up at 6 months postinjury with diffusion tensor (DTI) and diffusion kurtosis imaging (DKI) as well as measures of self-reported symptoms, cognitive functioning, and balance. Results of tract-based spatial statistics (TBSS) analyses revealed continued widespread decreased mean and axial diffusivity compared to control subjects in 6-month follow-up scans. On the other hand, kurtosis metrics, which were significantly higher in concussed athletes in the acute phase, had normalized. WM tract regions-of-interest (ROIs) were created from significant clusters in the TBSS analysis, and linear mixed effects (LME) analyses were used to look at longitudinal changes in these ROIs over time. LME analyses revealed few time × group interactions indicating findings were relatively stable over time. In addition, acute concussion symptoms predicted diffusivity measures at 6 months postinjury. Findings indicate that DTI and DKI may be useful tools in assessing concussion severity, recovery, and possible long-term effects of concussion.
Collapse
Affiliation(s)
- Melissa A Lancaster
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel V Olson
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael A McCrea
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lindsay D Nelson
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Center for Imaging Research Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
36
|
Novikov DS, Kiselev VG, Jespersen SN. On modeling. Magn Reson Med 2018; 79:3172-3193. [PMID: 29493816 PMCID: PMC5905348 DOI: 10.1002/mrm.27101] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/22/2017] [Accepted: 01/01/2018] [Indexed: 01/17/2023]
Abstract
Mapping tissue microstructure with MRI holds great promise as a noninvasive window into tissue organization at the cellular level. Having originated within the realm of diffusion NMR in the late 1970s, this field is experiencing an exponential growth in the number of publications. At the same time, model-based approaches are also increasingly incorporated into advanced MRI acquisition and reconstruction techniques. However, after about two decades of intellectual and financial investment, microstructural mapping has yet to find a single commonly accepted clinical application. Here, we suggest that slow progress in clinical translation may signify unresolved fundamental problems. We outline such problems and related practical pitfalls, as well as review strategies for developing and validating tissue microstructure models, to provoke a discussion on how to bridge the gap between our scientific aspirations and the clinical reality. We argue for recalibrating the efforts of our community toward a more systematic focus on fundamental research aimed at identifying relevant degrees of freedom affecting the measured MR signal. Such a focus is essential for realizing the truly revolutionary potential of noninvasive three-dimensional in vivo microstructural mapping.
Collapse
Affiliation(s)
- Dmitry S Novikov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Valerij G Kiselev
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sune N Jespersen
- CFIN/MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
37
|
Bastiani M, Andersson JLR, Cordero-Grande L, Murgasova M, Hutter J, Price AN, Makropoulos A, Fitzgibbon SP, Hughes E, Rueckert D, Victor S, Rutherford M, Edwards AD, Smith SM, Tournier JD, Hajnal JV, Jbabdi S, Sotiropoulos SN. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project. Neuroimage 2018; 185:750-763. [PMID: 29852283 PMCID: PMC6299258 DOI: 10.1016/j.neuroimage.2018.05.064] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/29/2022] Open
Abstract
The developing Human Connectome Project is set to create and make available to the scientific community a 4-dimensional map of functional and structural cerebral connectivity from 20 to 44 weeks post-menstrual age, to allow exploration of the genetic and environmental influences on brain development, and the relation between connectivity and neurocognitive function. A large set of multi-modal MRI data from fetuses and newborn infants is currently being acquired, along with genetic, clinical and developmental information. In this overview, we describe the neonatal diffusion MRI (dMRI) image processing pipeline and the structural connectivity aspect of the project. Neonatal dMRI data poses specific challenges, and standard analysis techniques used for adult data are not directly applicable. We have developed a processing pipeline that deals directly with neonatal-specific issues, such as severe motion and motion-related artefacts, small brain sizes, high brain water content and reduced anisotropy. This pipeline allows automated analysis of in-vivo dMRI data, probes tissue microstructure, reconstructs a number of major white matter tracts, and includes an automated quality control framework that identifies processing issues or inconsistencies. We here describe the pipeline and present an exemplar analysis of data from 140 infants imaged at 38–44 weeks post-menstrual age. A comprehensive and automated pipeline to consistently analyse neonatal dMRI data. Optimised motion and distortions correction to address newborn specific challenges. The automated QC framework allows to detect issues and to quantify data quality. Automated white matter segmentation allows to extract tract-specific masks. Preliminary data analysis of 140 infants imaged at 38–44 weeks post-menstrual age.
Collapse
Affiliation(s)
- Matteo Bastiani
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK.
| | - Jesper L R Andersson
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | | | | | - Jana Hutter
- Centre for the Developing Brain, King's College London, UK
| | | | | | - Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | - Emer Hughes
- Centre for the Developing Brain, King's College London, UK
| | | | - Suresh Victor
- Centre for the Developing Brain, King's College London, UK
| | | | | | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | | | | | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | - Stamatios N Sotiropoulos
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK
| |
Collapse
|
38
|
Uddin LQ, Karlsgodt KH. Future Directions for Examination of Brain Networks in Neurodevelopmental Disorders. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY : THE OFFICIAL JOURNAL FOR THE SOCIETY OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY, AMERICAN PSYCHOLOGICAL ASSOCIATION, DIVISION 53 2018; 47:483-497. [PMID: 29634380 PMCID: PMC6842321 DOI: 10.1080/15374416.2018.1443461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodevelopmental disorders are associated with atypical development and maturation of brain networks. A recent focus on human connectomics research and the growing popularity of open science initiatives has created the ideal climate in which to make real progress toward understanding the neurobiology of disorders affecting youth. Here we outline future directions for neuroscience researchers examining brain networks in neurodevelopmental disorders, highlighting gaps in the current literature. We emphasize the importance of leveraging large neuroimaging and phenotypic data sets recently made available to the research community, and we suggest specific novel methodological approaches, including analysis of brain dynamics and structural connectivity, that have the potential to produce the greatest clinical insight. Transdiagnostic approaches will also become increasingly necessary as the Research Domain Criteria framework put forth by the National Institute of Mental Health permeates scientific discourse. During this exciting era of big data and increased computational sophistication of analytic tools, the possibilities for significant advancement in understanding neurodevelopmental disorders are limitless.
Collapse
Affiliation(s)
- Lucina Q. Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA 33124
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA 33136
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Katherine H. Karlsgodt
- Departments of Psychology and Psychiatry, University of California Los Angeles, Los Angeles, CA, USA 90095
| |
Collapse
|
39
|
Ouyang M, Dubois J, Yu Q, Mukherjee P, Huang H. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond. Neuroimage 2018; 185:836-850. [PMID: 29655938 DOI: 10.1016/j.neuroimage.2018.04.017] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/01/2018] [Accepted: 04/08/2018] [Indexed: 02/08/2023] Open
Abstract
Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating structural changes of the brain during early development provides new insights into the complicated processes of both typical development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional maturation gradients in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Minhui Ouyang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States
| | - Jessica Dubois
- INSERM, UMR992, CEA, NeuroSpin Center, University Paris Saclay, Gif-sur-Yvette, France
| | - Qinlin Yu
- Radiology Research, Children's Hospital of Philadelphia, PA, United States
| | - Pratik Mukherjee
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Hao Huang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, United States.
| |
Collapse
|
40
|
Tang S, Xu S, Gullapalli RP, Medina AE. Effects of Early Alcohol Exposure on Functional Organization and Microstructure of a Visual-Tactile Integrative Circuit. Alcohol Clin Exp Res 2018; 42:727-734. [PMID: 29438595 PMCID: PMC5880699 DOI: 10.1111/acer.13611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/08/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Children with fetal alcohol spectrum disorders (FASD) often have deficits associated with multisensory processing. Because ethanol (EtOH) disrupts activity-dependent neuronal plasticity, a process that is essential for refining connections during cortical development, we hypothesize that early alcohol exposure results in alterations in multisensory cortical networks, which could explain the multisensory processing deficits seen in FASD. Here, we use a gyrencephalic animal model to test the prediction that early alcohol exposure alters the functional connectivity and microstructural features of the rostral posterior parietal cortex (PPr), a visual-tactile integrative area. METHODS Ferrets were exposed to moderate doses of EtOH during the brain growth spurt period. Functional connectivity and microstructural features were assessed using resting-state functional magnetic resonance imaging and ex vivo diffusion kurtosis imaging (DKI), respectively, when the animals reached juvenile age and adulthood, respectively. RESULTS While the whole brain volume was smaller in alcohol-treated animals, the relative size of the frontal brain area was larger when compared to control animals. Altered functional connectivity was observed in alcohol-treated animals, where increased connectivity was observed between PPr and the region that provides its major visual inputs (the caudal portion of the parietal cortex), but not with the region that provides its major somatosensory inputs (tertiary somatosensory cortex). DKI revealed reduced microstructural tissue complexity in all investigated sensory areas of alcohol-treated animals. CONCLUSIONS In this study, we observed alterations in cortical functional connectivity and microstructural integrity in a cortical area involved in multisensory processing in a ferret FASD model. These findings indicate an alteration in cortical networks that may be related to the multisensory processing deficiencies observed in FASD.
Collapse
Affiliation(s)
- Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Core for Translational Research in Imaging @ Maryland (C-TRIM), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Core for Translational Research in Imaging @ Maryland (C-TRIM), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Core for Translational Research in Imaging @ Maryland (C-TRIM), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Alexandre E. Medina
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
41
|
de Almeida Martins JP, Topgaard D. Multidimensional correlation of nuclear relaxation rates and diffusion tensors for model-free investigations of heterogeneous anisotropic porous materials. Sci Rep 2018; 8:2488. [PMID: 29410433 PMCID: PMC5802831 DOI: 10.1038/s41598-018-19826-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/08/2018] [Indexed: 11/25/2022] Open
Abstract
Despite their widespread use in non-invasive studies of porous materials, conventional MRI methods yield ambiguous results for microscopically heterogeneous materials such as brain tissue. While the forward link between microstructure and MRI observables is well understood, the inverse problem of separating the signal contributions from different microscopic pores is notoriously difficult. Here, we introduce an experimental protocol where heterogeneity is resolved by establishing 6D correlations between the individual values of isotropic diffusivity, diffusion anisotropy, orientation of the diffusion tensor, and relaxation rates of distinct populations. Such procedure renders the acquired signal highly specific to the sample's microstructure, and allows characterization of the underlying pore space without prior assumptions on the number and nature of distinct microscopic environments. The experimental feasibility of the suggested method is demonstrated on a sample designed to mimic the properties of nerve tissue. If matched to the constraints of whole body scanners, this protocol could allow for the unconstrained determination of the different types of tissue that compose the living human brain.
Collapse
Affiliation(s)
| | - Daniel Topgaard
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
42
|
Lancaster MA, Olson DV, McCrea MA, Nelson LD, LaRoche AA, Muftuler LT. Acute white matter changes following sport-related concussion: A serial diffusion tensor and diffusion kurtosis tensor imaging study. Hum Brain Mapp 2018; 37:3821-3834. [PMID: 27237455 DOI: 10.1002/hbm.23278] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/05/2016] [Accepted: 05/23/2016] [Indexed: 01/23/2023] Open
Abstract
Recent neuroimaging studies have suggested that following sport-related concussion (SRC) physiological brain alterations may persist after an athlete has shown full symptom recovery. Diffusion MRI is a versatile technique to study white matter injury following SRC, yet serial follow-up studies in the very acute stages following SRC utilizing a comprehensive set of diffusion metrics are lacking. The aim of the current study was to characterize white matter changes within 24 hours of concussion in a group of high school and collegiate athletes, using Diffusion Tensor and Diffusion Kurtosis Tensor metrics. Participants were reassessed a week later. At 24 hours post-injury, the concussed group reported significantly more concussion symptoms than a well-matched control group and demonstrated poorer performance on a cognitive screening measure, yet these differences were nonsignificant at the 8-day follow-up. Similarly, within 24-hours after injury, the concussed group exhibited a widespread decrease in mean diffusivity, increased axial kurtosis and, to a lesser extent, decreased axial and radial diffusivities compared with control subjects. At 8 days post injury, the differences in these diffusion metrics were even more widespread in the injured athletes, despite improvement of symptoms and cognitive performance. These MRI findings suggest that the athletes might not have reached full physiological recovery a week after the injury. These findings have significant implications for the management of SRC because allowing an athlete to return to play before the brain has fully recovered from injury may have negative consequences. Hum Brain Mapp 37:3821-3834, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Melissa A Lancaster
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226.,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - Daniel V Olson
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - Michael A McCrea
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226.,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - Lindsay D Nelson
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226.,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - Ashley A LaRoche
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226.
| |
Collapse
|
43
|
Mohanty V, McKinnon ET, Helpern JA, Jensen JH. Comparison of cumulant expansion and q-space imaging estimates for diffusional kurtosis in brain. Magn Reson Imaging 2018; 48:80-88. [PMID: 29306048 DOI: 10.1016/j.mri.2017.12.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE To compare estimates for the diffusional kurtosis in brain as obtained from a cumulant expansion (CE) of the diffusion MRI (dMRI) signal and from q-space (QS) imaging. THEORY AND METHODS For the CE estimates of the kurtosis, the CE was truncated to quadratic order in the b-value and fit to the dMRI signal for b-values from 0 up to 2000s/mm2. For the QS estimates, b-values ranging from 0 up to 10,000s/mm2 were used to determine the diffusion displacement probability density function (dPDF) via Stejskal's formula. The kurtosis was then calculated directly from the second and fourth order moments of the dPDF. These two approximations were studied for in vivo human data obtained on a 3T MRI scanner using three orthogonal diffusion encoding directions. RESULTS The whole brain mean values for the CE and QS kurtosis estimates differed by 16% or less in each of the considered diffusion encoding directions, and the Pearson correlation coefficients all exceeded 0.85. Nonetheless, there were large discrepancies in many voxels, particularly those with either very high or very low kurtoses relative to the mean values. CONCLUSION Estimates of the diffusional kurtosis in brain obtained using CE and QS approximations are strongly correlated, suggesting that they encode similar information. However, for the choice of b-values employed here, there may be substantial differences, depending on the properties of the diffusion microenvironment in each voxel.
Collapse
Affiliation(s)
- Vaibhav Mohanty
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Emilie T McKinnon
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Joseph A Helpern
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
44
|
Yoshimaru D, Miyati T, Suzuki Y, Hamada Y, Mogi N, Funaki A, Tabata A, Masunaga A, Shimada M, Tobari M, Nishino T. Diffusion kurtosis imaging with the breath-hold technique for staging hepatic fibrosis: A preliminary study. Magn Reson Imaging 2017; 47:33-38. [PMID: 29158186 DOI: 10.1016/j.mri.2017.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE To evaluate the potential of diffusion kurtosis imaging (DKI) analysis with the breath-hold technique to assess the stage or classify hepatic fibrosis. MATERIALS AND METHODS Patients (n=67) suspected of having a disease of the hepatobiliary system examined by diffusion-weighted imaging (DWI) using a 3.0-T magnetic resonance imaging unit were enrolled in this study. To evaluate hepatic fibrosis, mean kurtosis, Mean apparent diffusion (MD) and apparent diffusion coefficient (ADC) values were compared between groups with varying fibrosis; F0-F1, F2-F3, and F4. The Steel-Dwass test was used for overall comparisons. Correlations between the fibrosis stage and mean kurtosis, MD or ADC values were assessed using Spearman's rank correlation. Discriminative capacities of DKI were evaluated using receiver operating characteristic (ROC) analysis. RESULTS There were significant differences in ADC, MD and mean kurtosis values between non-cirrhosis and cirrhosis groups. Moreover, the mean kurtosis value was statistically different between the F0-F1 and F2-F3, F0-F1 and F4, and F2-F3 and F4 groups (all P<0.05). MD value was statistically different between the F0-F1 and F4 groups, and F2-F3 and F4 groups (all P<0.05). However, there was no significant difference in ADC values for all groups (all P>0.05). In addition, mean kurtosis and MD values significantly correlated with the extent of hepatic fibrosis staging (Spearman's rank correlation coefficient, ρ=0.851 and -0.672; P<0.0001). However, ADC values did not reveal a correlation with the extent of hepatic fibrosis staging (ρ=-0.227; P=0.078). According to the ROC analysis for the assessment of no fibrosis (F0), fibrosis (≥F1), and advanced fibrosis (≥F2) and liver cirrhosis, the DKI cut-off values were 0.923, 0.955, and 1.11, respectively. CONCLUSION Using the DKI method with the breath-hold technique in the liver, the stage of hepatic fibrosis can be classified into normal and early hepatic fibrosis, substantial stages, and advanced hepatic fibrosis.
Collapse
Affiliation(s)
- Daisuke Yoshimaru
- Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan; Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kodatsuno, Kanazawa, Ishikawa, Japan.
| | - Toshiaki Miyati
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kodatsuno, Kanazawa, Ishikawa, Japan
| | - Yuichi Suzuki
- Department of Radiological Service, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuhki Hamada
- Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan
| | - Nozomi Mogi
- Department of Medical Technology, Tokyo Women's Medical University Medical Center East, Nishiogu, Arakawa-ku, Tokyo, Japan
| | - Ayumu Funaki
- Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan
| | - Ayumi Tabata
- Department of Medical Technology, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan
| | - Atsuko Masunaga
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan
| | - Masahiko Shimada
- Department of Gastroenterological Medicine, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan
| | - Maki Tobari
- Department of Gastroenterological Medicine, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan
| | - Takayoshi Nishino
- Department of Gastroenterological Medicine, Tokyo Women's Medical University Yachiyo Medical Center, Owada-shinden, Yachiyo, Chiba, Japan
| |
Collapse
|
45
|
Jelescu IO, Budde MD. Design and validation of diffusion MRI models of white matter. FRONTIERS IN PHYSICS 2017; 28:61. [PMID: 29755979 PMCID: PMC5947881 DOI: 10.3389/fphy.2017.00061] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the "biological accuracy" of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus.
Collapse
Affiliation(s)
- Ileana O Jelescu
- Centre d'Imagerie Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew D Budde
- Zablocki VA Medical Center, Dept. of Neurosurgery, Medical College Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
46
|
Hansen B, Khan AR, Shemesh N, Lund TE, Sangill R, Eskildsen SF, Østergaard L, Jespersen SN. White matter biomarkers from fast protocols using axially symmetric diffusion kurtosis imaging. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3741. [PMID: 28543843 PMCID: PMC5557696 DOI: 10.1002/nbm.3741] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 05/12/2023]
Abstract
White matter tract integrity (WMTI) can characterize brain microstructure in areas with highly aligned fiber bundles. Several WMTI biomarkers have now been validated against microscopy and provided promising results in studies of brain development and aging, as well as in a number of brain disorders. Currently, WMTI is mostly used in dedicated animal studies and clinical studies of slowly progressing diseases, and has not yet emerged as a routine clinical tool. To this end, a less data intensive experimental method would be beneficial by enabling high resolution validation studies, and ease clinical applications by speeding up data acquisition compared with typical diffusion kurtosis imaging (DKI) protocols utilized as part of WMTI imaging. Here, we evaluate WMTI based on recently introduced axially symmetric DKI, which has lower data demand than conventional DKI. We compare WMTI parameters derived from conventional DKI with those calculated analytically from axially symmetric DKI. We employ numerical simulations, as well as data from fixed rat spinal cord (one sample) and in vivo human (three subjects) and rat brain (four animals). Our analysis shows that analytical WMTI based on axially symmetric DKI with sparse data sets (19 images) produces WMTI metrics that correlate strongly with estimates based on traditional DKI data sets (60 images or more). We demonstrate the preclinical potential of the proposed WMTI technique in in vivo rat brain (300 μm isotropic resolution with whole brain coverage in a 1 h acquisition). WMTI parameter estimates are subject to a duality leading to two solution branches dependent on a sign choice, which is currently debated. Results from both of these branches are presented and discussed throughout our analysis. The proposed fast WMTI approach may be useful for preclinical research and e.g. clinical evaluation of patients with traumatic white matter injuries or symptoms of neurovascular or neuroinflammatory disorders.
Collapse
Affiliation(s)
- Brian Hansen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ahmad R. Khan
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Torben E. Lund
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ryan Sangill
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simon F. Eskildsen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sune N. Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
47
|
Takemura MY, Hori M, Yokoyama K, Hamasaki N, Suzuki M, Kamagata K, Kamiya K, Suzuki Y, Kyogoku S, Masutani Y, Hattori N, Aoki S. Alterations of the optic pathway between unilateral and bilateral optic nerve damage in multiple sclerosis as revealed by the combined use of advanced diffusion kurtosis imaging and visual evoked potentials. Magn Reson Imaging 2017; 39:24-30. [DOI: 10.1016/j.mri.2016.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 04/01/2016] [Accepted: 04/17/2016] [Indexed: 01/13/2023]
|
48
|
Zheng W, Wu C, Huang L, Wu R. Diffusion Kurtosis Imaging of Microstructural Alterations in the Brains of Paediatric Patients with Congenital Sensorineural Hearing Loss. Sci Rep 2017; 7:1543. [PMID: 28484279 PMCID: PMC5431550 DOI: 10.1038/s41598-017-01263-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/23/2017] [Indexed: 11/11/2022] Open
Abstract
Our aim was to assess microstructural alterations in the cerebrums of paediatric patients with congenital sensorineural hearing loss (SNHL) using diffusion kurtosis imaging (DKI). Seventy-two paediatric SNHL patients and 38 age-matched healthy volunteers were examined via DKI using a 3.0 T magnetic resonance (MR) imager. Fractional anisotropy (FA) and mean kurtosis (MK) values were computed for 12 cerebral regions in both the controls and the SNHL patients. Compared with patients below age 3, patients in the older age group were found to have more significant differences in MK than in FA, and these appeared in more major areas of the brain. In contrast, in 1- to 3-year-old children, a few major brain areas exhibited differences in FA, but none exhibited appreciable differences in MK. There were significant decreases in the FA or MK values (P < 0.05, all) in more areas of the brain in patients with lesions than in patients with normal-appearing brains. DKI offers comprehensive measurements for quantitative evaluation of age-related microstructural changes in both white and grey matter in SNHL patients. DKI scans of children with SNHL exhibiting significant decreases in MK might play an important role in evaluating the severity of developmental delay.
Collapse
Affiliation(s)
- Wenbin Zheng
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou, 515041, China
| | - Chunxiao Wu
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou, 515041, China
| | - Lexing Huang
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou, 515041, China
| | - Renhua Wu
- Department of Radiology, the Second Affiliated Hospital, Medical College of Shantou University, Shantou, 515041, China. .,China Provincial Key Laboratory of Medical Molecular Imaging, Guangdong, Shantou, 515041, China.
| |
Collapse
|
49
|
Grinberg F, Maximov II, Farrher E, Neuner I, Amort L, Thönneßen H, Oberwelland E, Konrad K, Shah NJ. Diffusion kurtosis metrics as biomarkers of microstructural development: A comparative study of a group of children and a group of adults. Neuroimage 2017; 144:12-22. [DOI: 10.1016/j.neuroimage.2016.08.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 07/21/2016] [Accepted: 08/17/2016] [Indexed: 01/08/2023] Open
|
50
|
Lanzafame S, Giannelli M, Garaci F, Floris R, Duggento A, Guerrisi M, Toschi N. Differences in Gaussian diffusion tensor imaging and non-Gaussian diffusion kurtosis imaging model-based estimates of diffusion tensor invariants in the human brain. Med Phys 2016; 43:2464. [DOI: 10.1118/1.4946819] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|