1
|
Pereira-Alves E, Machado-Pereira J, Monteiro A, Costa-Cordeiro R, Chandran V, Jurisica I, Prado E, Cameron LC. Caffeine Boosts Weight-Lifting Performance in Rats: A Pilot Study. Nutrients 2024; 16:2022. [PMID: 38999769 PMCID: PMC11243630 DOI: 10.3390/nu16132022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Caffeine is a well-described ergogenic aid used to enhance athletic performance. Using animal models can greatly increase our understanding of caffeine's mechanisms in performance. Here, we adapted an animal weight-lifting exercise model to demonstrate caffeine's ergogenic effect in rats. Male Wistar rats (315 ± 35 g) were randomly divided into two groups: one group received 5 mg·kg-1 of caffeine (0.5 mL; CEx; n = 5) and the other 0.9% NaCl (0.5 mL; PEx; n = 4) through an orogastric probe (gavage) one hour before exercise. Weight-lifting exercise sessions were performed over three subsequent days, and the number of complete squats performed was counted. Analyses of the area under the curve in all three experiments showed that the CEx group responded more to stimuli, performing more squats (1.7-, 2.0-, and 1.6-fold; p < 0.05) than the control group did. These three days' data were analyzed to better understand the cumulative effect of this exercise, and a hyperbolic curve was fitted to these data. Data fitting from the caffeine-supplemented group, CEx, also showed larger Smax and Kd (2.3-fold and 1.6-fold, respectively) than the PEx group did. Our study demonstrated an acute ergogenic effect of caffeine in an animal weight-lifting exercise model for the first time, suggesting potential avenues for future research.
Collapse
Affiliation(s)
- Emanuel Pereira-Alves
- Lorraine Protein Biochemistry Group, Graduate Program in Neurology, Gaffrée e Guinle University Hospital, Rio de Janeiro 20270-004, RJ, Brazil; (E.P.-A.); (J.M.-P.); (R.C.-C.)
| | - Julia Machado-Pereira
- Lorraine Protein Biochemistry Group, Graduate Program in Neurology, Gaffrée e Guinle University Hospital, Rio de Janeiro 20270-004, RJ, Brazil; (E.P.-A.); (J.M.-P.); (R.C.-C.)
| | - Anibal Monteiro
- Laboratory of Protein Biochemistry, The Federal University of the State of Rio de Janeiro, Rio de Janeiro 20290-250, RJ, Brazil;
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças 78605-091, MG, Brazil
| | - Roberto Costa-Cordeiro
- Lorraine Protein Biochemistry Group, Graduate Program in Neurology, Gaffrée e Guinle University Hospital, Rio de Janeiro 20270-004, RJ, Brazil; (E.P.-A.); (J.M.-P.); (R.C.-C.)
| | - Vinod Chandran
- Arthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
- Division of Rheumatology, Department of Medicine, Institute of Medical Science, Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
- Departments of Medical Biophysics and Computer Science and Faculty of Dentistry, University of Toronto, Toronto, ON M5G IL7, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Eduardo Prado
- Lorraine Protein Biochemistry Group, Graduate Program in Neurology, Gaffrée e Guinle University Hospital, Rio de Janeiro 20270-004, RJ, Brazil; (E.P.-A.); (J.M.-P.); (R.C.-C.)
- Laboratory for Research in Physical Exercise and Metabolism, Federal University of Alagoas, Maceió 57072-900, AL, Brazil
| | - L. C. Cameron
- Lorraine Protein Biochemistry Group, Graduate Program in Neurology, Gaffrée e Guinle University Hospital, Rio de Janeiro 20270-004, RJ, Brazil; (E.P.-A.); (J.M.-P.); (R.C.-C.)
- Arthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
| |
Collapse
|
2
|
Fernández-Sánchez J, Trujillo-Colmena D, Rodríguez-Castaño A, Lavín-Pérez AM, Del Coso J, Casado A, Collado-Mateo D. Effect of Acute Caffeine Intake on Fat Oxidation Rate during Fed-State Exercise: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:207. [PMID: 38257100 PMCID: PMC10819049 DOI: 10.3390/nu16020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pre-exercise intake of caffeine (from ~3 to 9 mg/kg) has been demonstrated as an effective supplementation strategy to increase fat oxidation during fasted exercise. However, a pre-exercise meal can alter the potential effect of caffeine on fat oxidation during exercise as caffeine modifies postprandial glycaemic and insulinemic responses. Hypothetically, the effect of caffeine on fat oxidation may be reduced or even withdrawn during fed-state exercise. The present systematic review aimed to meta-analyse investigations on the effect of acute caffeine intake on the rate of fat oxidation during submaximal aerobic exercise performed in the fed state (last meal < 5 h before exercise). A total of 18 crossover trials with randomised and placebo-controlled protocols and published between 1982 and 2021 were included, with a total of 228 participants (185 males and 43 females). Data were extracted to compare rates of fat oxidation during exercise with placebo and caffeine at the same exercise intensity, which reported 20 placebo-caffeine pairwise comparisons. A meta-analysis of the studies was performed, using the standardised mean difference (SMD) estimated from Hedges' g, with 95% confidence intervals (CI). In comparison with the placebo, caffeine increased the rate of fat oxidation during fed-state exercise (number of comparisons (n) = 20; p = 0.020, SMD = 0.65, 95% CI = 0.20 to 1.20). Only studies with a dose < 6 mg/kg of caffeine (n = 13) increased the rate of fat oxidation during fed-state exercise (p = 0.004, SMD = 0.86, 95% CI = 0.27 to 1.45), while no such effect was observed in studies with doses ≥6 mg/kg (n = 7; p = 0.97, SMD = -0.03, 95% CI = -1.40 to 1.35). The effect of caffeine on fat oxidation during fed-state exercise was observed in active untrained individuals (n = 13; p < 0.001, SMD = 0.84, 95% CI = 0.39 to 1.30) but not in aerobically trained participants (n = 7; p = 0.27, SMD = 0.50, 95% CI = -0.39 to 1.39). Likewise, the effect of caffeine on fat oxidation was observed in caffeine-naïve participants (n = 9; p < 0.001, SMD = 0.82, 95% CI = 0.45 to 1.19) but not in caffeine consumers (n = 3; p = 0.54, SMD = 0.57, 95% CI = -1.23 to 2.37). In conclusion, acute caffeine intake in combination with a meal ingested within 5 h before the onset of exercise increased the rate of fat oxidation during submaximal aerobic exercise. The magnitude of the effect of caffeine on fat oxidation during fed-state exercise may be modulated by the dose of caffeine administered (higher with <6 mg/kg than with ≥6 mg/kg), participants' aerobic fitness level (higher in active than in aerobically trained individuals), and habituation to caffeine (higher in caffeine-naïve than in caffeine consumers).
Collapse
Affiliation(s)
- Javier Fernández-Sánchez
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Daniel Trujillo-Colmena
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Adrián Rodríguez-Castaño
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Ana Myriam Lavín-Pérez
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
- GO fitLAB, Ingesport, 28003 Madrid, Spain
| | - Juan Del Coso
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Arturo Casado
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| | - Daniel Collado-Mateo
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Madrid, Spain; (J.F.-S.); (D.T.-C.); (A.R.-C.); (A.C.); (D.C.-M.)
| |
Collapse
|
3
|
Mohajer F, Mohammadi Ziarani G, Badiei A. Encapsulation of porous materials. PRINCIPLES OF BIOMATERIALS ENCAPSULATION : VOLUME TWO 2023:93-114. [DOI: 10.1016/b978-0-12-824345-9.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
4
|
Shaddel R, Akbari-Alavijeh S, Cacciotti I, Yousefi S, Tomas M, Capanoglu E, Tarhan O, Rashidinejad A, Rezaei A, Bhia M, Jafari SM. Caffeine-loaded nano/micro-carriers: Techniques, bioavailability, and applications. Crit Rev Food Sci Nutr 2022; 64:4940-4965. [PMID: 36412258 DOI: 10.1080/10408398.2022.2147143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Caffeine, as one of the most consumed bioactive compounds globally, has gained considerable attention during the last years. Considering the bitter taste and adverse effects of high levels of caffeine consumption, it is crucial to apply a strategy for masking the caffeine's bitter taste and facilitating its programmable deliverance within a long time. Other operational parameters such as food processing parameters, exposure to sunlight and oxygen, and gastrointestinal digestion could also degrade the phenolic compounds in general and caffeine in special. To overcome these challenges, various nano/micro-platforms have been fabricated, including lipid-based (e.g., nanoliposomal vehicles; nanoemulsions, double emulsions, Pickering emulsions; microemulsions; niosomal vehicles; solid lipid nanoparticles and nanostructured lipid carriers), as well as biopolymeric (e.g., nanoparticles; hydrogels, organogels, oleogels; nanofibers and nanotubes; protein-polysaccharide nanocomplexes, conjugates; cyclodextrin inclusion complexes) and inorganic (e.g., gold and silica nanoparticles) nano/micro-structures. In this review, the findings on various caffeine-loaded nano/micro-carriers and their potential applications in functional food products/supplements will be discussed. Also, the controlled release and bioavailability of encapsulated caffeine will be given, and finally, the toxicity and safety of encapsulated caffeine will be presented.
Collapse
Affiliation(s)
- Rezvan Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma, Italy
| | - Shima Yousefi
- Department of Agriculture and Food Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Esra Capanoglu
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Ozgur Tarhan
- Department of Food Engineering, Engineering Faculty, Uşak University, Uşak, Turkey
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammed Bhia
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
5
|
Borah AK, Sharma P, Singh A, Kalita KJ, Saha S, Chandra Borah J. Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114410. [PMID: 34273447 DOI: 10.1016/j.jep.2021.114410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyto-preparations and phyto-compounds, by their natural origin, easy availability, cost-effectiveness, and fruitful traditional uses based on accumulated experiences, have been extensively explored to mitigate the global burden of obesity. AIM OF THIS REVIEW The review aimed to analyse and critically summarize the prospect of future anti-obesity drug leads from the extant array of phytochemicals for mitigation of obesity, using adipose related targets (adipocyte formation, lipid metabolism, and thermogenesis) and non-adipose targets (hepatic lipid metabolism, appetite, satiety, and pancreatic lipase activity). Phytochemicals as inhibitors of adipocyte differentiation, modulators of lipid metabolism, and thermogenic activators of adipocytes are specifically discussed with their non-adipose anti-obesogenic targets. MATERIALS AND METHODS PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets. The taxonomically accepted name of each plant in this review has been vetted from "The Plant List" (www.theplantlist.org) or MPNS (http://mpns.kew.org). RESULTS Available knowledge of a large number of phytochemicals, across a range of adipose and non-adipose targets, has been critically analysed and delineated by graphical and tabular depictions, towards mitigation of obesity. Neuro-endocrinal modulation in non-adipose targets brought into sharp dual focus, both non-adipose and adipose targets as the future of anti-obesity research. Numerous phytochemicals (Berberine, Xanthohumol, Ursolic acid, Guggulsterone, Tannic acid, etc.) have been found to be effectively reducing weight through lowered adipocyte formation, increased lipolysis, decreased lipogenesis, and enhanced thermogenesis. They have been affirmed as potential anti-obesity drugs of future because of their effectiveness yet having no threat to adipose or systemic insulin sensitivity. CONCLUSION Due to high molecular diversity and a greater ratio of benefit to risk, plant derived compounds hold high therapeutic potential to tackle obesity and associated risks. This review has been able to generate fresh perspectives on the anti-diabetic/anti-hyperglycemic/anti-obesity effect of phytochemicals. It has also brought into the focus that many phytochemicals demonstrating in vitro anti-obesogenic effects are yet to undergo in vivo investigation which could lead to potential phyto-molecules for dedicated anti-obesity action.
Collapse
Affiliation(s)
- Anuj Kumar Borah
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Pranamika Sharma
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Archana Singh
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Kangkan Jyoti Kalita
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Sougata Saha
- Dept. of Biotechnology, NIT Durgapur, West Bengal, 713209, India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
6
|
El Rabey HA, Rezk SM, Sakran MI, Mohammed GM, Bahattab O, Balgoon MJ, Elbakry MA, Bakry N. Green coffee methanolic extract and silymarin protect against CCl4-induced hepatotoxicity in albino male rats. BMC Complement Med Ther 2021; 21:19. [PMID: 33413326 PMCID: PMC7792057 DOI: 10.1186/s12906-020-03186-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND During the last few decades, patients worldwide have been interested in using alternative medicine in treating diseases to avoid the increased side effects of chemical medications. Green coffee is unroasted coffee seeds that have higher amounts of chlorogenic acid compared to roasted coffee. Green coffee was successfully used to protect against obesity, Alzheimer disease, high blood pressure and bacterial infection. METHODS This study aimed to investigate the probable protective activity of the green coffee methanolic extract, silymarin and their combination on CCl4-induced liver toxicity in male rats. Thirty Sprague - Dawley male albino rats were divided into 5 groups; control negative (G1) just got the vehicle (olive oil) and the other four groups received CCl4 dissolved in olive oil through an intraperitoneal injection and were divided into untreated control positive group (G2), the third group (G3) was treated with green coffee methanolic extract, the fourth group (G4) was treated with silymarin, and the fifth group (G5) was treated with a combination of green coffee methanolic extract and silymarin. RESULTS In the positive control group treated with CCl4 (G2), the CCl4-induced toxicity increased lipid peroxidation, IL-6, kidney function parameters, liver function enzymes, total cholesterol, triglycerides and low-density lipoproteins, and decreased irisin, antioxidants, CYP450 and high-density lipoprotein levels. Hepatic tissues were also injured. However, treating the injured rats in G3, G4 and G5 significantly improved the altered parameters and hepatic tissues. CONCLUSIONS Green coffee methanolic extract, silymarin, and their combination succeeded in protecting the male rats against CCl4 hepatotoxicity due to their antioxidant activity. Effect of green coffee methanolic extract mixed with silymarin in G5 was more efficient than that of green coffee methanolic extract in G3 or silymarin in G4.
Collapse
Affiliation(s)
- Haddad A El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia. .,Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| | - Samar M Rezk
- Clinical Nutrition Department, Mahalla Hepatology Teaching Hospital, Gharbyia, El-Mahalla El-Kubra, Egypt
| | - Mohamed I Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.,Biochemistry section, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ghena M Mohammed
- Department of Nutrition and Food Science, Faculty of Home Economics, University of Tabuk, Tabuk, Saudi Arabia
| | - Omar Bahattab
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Maha J Balgoon
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A Elbakry
- Biochemistry section, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Nadia Bakry
- Bone Marrow Transplantation and Cord Blood Unit, Mansoura University Children Hospital, Mansoura, Egypt
| |
Collapse
|
7
|
Ruiz-Moreno C, Gutiérrez-Hellín J, Amaro-Gahete FJ, González-García J, Giráldez-Costas V, Pérez-García V, Del Coso J. Caffeine increases whole-body fat oxidation during 1 h of cycling at Fatmax. Eur J Nutr 2020; 60:2077-2085. [PMID: 33025051 DOI: 10.1007/s00394-020-02393-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE The ergogenic effect of caffeine on exercise of maximum intensity has been well established. However, there is controversy regarding the effect of caffeine on shifting substrate oxidation at submaximal exercise. The aim of this study was to investigate the effect of acute caffeine ingestion on whole-body substrate oxidation during 1 h of cycling at the intensity that elicits maximal fat oxidation (Fatmax). METHODS In a double-blind, randomized, and counterbalanced experiment, 12 healthy participants (VO2max = 50.7 ± 12.1 mL/kg/min) performed two acute experimental trials after ingesting either caffeine (3 mg/kg) or a placebo (cellulose). The trials consisted of 1 h of continuous cycling at Fatmax. Energy expenditure, fat oxidation rate, and carbohydrate oxidation rate were continuously measured by indirect calorimetry. RESULTS In comparison to the placebo, caffeine increased the amount of fat oxidized during the trial (19.4 ± 7.7 vs 24.7 ± 9.6 g, respectively; P = 0.04) and decreased the amount of carbohydrate oxidized (94.6 ± 30.9 vs 73.8 ± 32.4 g; P = 0.01) and the mean self-perception of fatigue (Borg scale = 11 ± 2 vs 10 ± 2 arbitrary units; P = 0.05). In contrast, caffeine did not modify total energy expenditure (placebo = 543 ± 175; caffeine = 559 ± 170 kcal; P = 0.60) or mean heart rate (125 ± 13 and 127 ± 9 beats/min; P = 0.30) during exercise. Before exercise, caffeine increased systolic and diastolic blood pressure whilst it increased the feelings of nervousness and vigour after exercise (P < 0.05). CONCLUSION These results suggest that a moderate dose of caffeine (3 mg/kg) increases the amount of fat oxidized during 1 h of cycling at Fatmax. Thus, caffeine might be used as an effective strategy to enhance body fat utilization during submaximal exercise. The occurrence of several side effects should be taken into account when using caffeine to reduce body fat in populations with hypertension or high sensitivity to caffeine.
Collapse
Affiliation(s)
- Carlos Ruiz-Moreno
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| | | | | | | | - Verónica Giráldez-Costas
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain.,Department of Physical Education, Sport and Human Movement, Autonomus University of Madrid, Madrid, Spain
| | | | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Camino del Molino, s/n, 28943, Fuenlabrada, Spain.
| |
Collapse
|
8
|
Aguiar AS, Speck AE, Canas PM, Cunha RA. Neuronal adenosine A 2A receptors signal ergogenic effects of caffeine. Sci Rep 2020; 10:13414. [PMID: 32770138 PMCID: PMC7415152 DOI: 10.1038/s41598-020-69660-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
Caffeine is one of the most used ergogenic aid for physical exercise and sports. However, its mechanism of action is still controversial. The adenosinergic hypothesis is promising due to the pharmacology of caffeine, a nonselective antagonist of adenosine A1 and A2A receptors. We now investigated A2AR as a possible ergogenic mechanism through pharmacological and genetic inactivation. Forty-two adult females (20.0 ± 0.2 g) and 40 male mice (23.9 ± 0.4 g) from a global and forebrain A2AR knockout (KO) colony ran an incremental exercise test with indirect calorimetry (V̇O2 and RER). We administered caffeine (15 mg/kg, i.p., nonselective) and SCH 58261 (1 mg/kg, i.p., selective A2AR antagonist) 15 min before the open field and exercise tests. We also evaluated the estrous cycle and infrared temperature immediately at the end of the exercise test. Caffeine and SCH 58621 were psychostimulant. Moreover, Caffeine and SCH 58621 were ergogenic, that is, they increased V̇O2max, running power, and critical power, showing that A2AR antagonism is ergogenic. Furthermore, the ergogenic effects of caffeine were abrogated in global and forebrain A2AR KO mice, showing that the antagonism of A2AR in forebrain neurons is responsible for the ergogenic action of caffeine. Furthermore, caffeine modified the exercising metabolism in an A2AR-dependent manner, and A2AR was paramount for exercise thermoregulation.
Collapse
Affiliation(s)
- Aderbal S Aguiar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Biology of Exercise Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, SC, 88905-120, Brazil.
| | - Ana Elisa Speck
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Biology of Exercise Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, SC, 88905-120, Brazil
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- FMUC - Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| |
Collapse
|
9
|
Milkova V, Goycoolea FM. Encapsulation of caffeine in polysaccharide oil-core nanocapsules. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04653-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Mafra FFP, Macedo MM, Lopes AV, do Nascimento Orphão J, Teixeira CDB, Gattai PP, Boim MA, Torres da Silva R, do Nascimento FD, Bjordal JM, Lopes-Martins RÁB. 904 nm Low-Level Laser Irradiation Decreases Expression of Catabolism-Related Genes in White Adipose Tissue of Wistar Rats: Possible Roles of Laser on Metabolism. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 38:11-18. [PMID: 31846390 DOI: 10.1089/photob.2018.4609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Adipose tissue is the main energy storage tissue in the body. Its catabolic and anabolic responses depend on several factors, such as nutritional status, metabolic profile, and hormonal signaling. There are few studies addressing the effects of laser photobiomodulation (PBM) on adipose tissue and results are controversial. Objective: Our purpose was to investigate the metabolic effects of PBM on adipose tissue from Wistar rats supplemented or not with caffeine. Materials and methods: Wistar rats were divided into four groups: control (CTL), laser-treated [CTL (L)], caffeine (CAF), and caffeine+PBM [CAF (L)]. Blood was extracted for quantification of triglyceride and cholesterol levels and white adipose tissues were collected for analysis. We evaluated gene expression in the adipose tissue for the leptin receptor, lipase-sensitive hormone, tumor necrosis factor alpha, and beta adrenergic receptor. Results: We demonstrated that the low-level laser irradiation was able to increase the feed intake of the animals and the relative mass of the adipose tissue in the CTL (L) group compared with CTL. Laser treatment also increases serum triglycerides [CTL = 46.99 ± 5.87; CTL (L) = 57.46 ± 14.38; CAF = 43.98 ± 5.17; and CAF (L) = 56.9 ± 6.12; p = 0.007] and total cholesterol (CTL = 70.62 ± 6.80; CTL (L) = 79.41 ± 13.07; CAF = 71.01 ± 5.52; and CAF (L) = 79.23 ± 6.881; p = 0.003). Conclusions: Laser PBM decreased gene expression of the studied genes in the adipose tissue, indicating that PBM is able to block the catabolic responses of this tissue. Interestingly, the CAF (L) and CAF animals presented the same CLT (L) phenotype, however, without increasing the feed intake and the relative weight of the adipose tissue. The description of these phenomena opens a new perspective for the study of the action of low-level laser in adipose tissue.
Collapse
Affiliation(s)
- Fernando F P Mafra
- Technology Research Center, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Michel M Macedo
- Technology Research Center, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Arthur Vecchi Lopes
- Technology Research Center, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | | | | | - Pedro P Gattai
- Renal Division, Molecular Biology Laboratory, Medicine Department, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | - Mirian A Boim
- Renal Division, Molecular Biology Laboratory, Medicine Department, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| | | | | | - Jan Magnus Bjordal
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Rodrigo Álvaro Brandão Lopes-Martins
- Laboratory of Biophotonics and Experimental Therapeutics, Institute of Research and Development, University of Vale do Paraíba-UNIVAP, São José dos Campos, São Paulo, Brazil.,Post-Graduate Program in Pharmacology, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
11
|
Yoshida Y, Tsutaki A, Tamura Y, Kouzaki K, Sashihara K, Nakashima S, Tagashira M, Tatsumi R, Nakazato K. Dietary apple polyphenols increase skeletal muscle capillaries in Wistar rats. Physiol Rep 2018; 6:e13866. [PMID: 30221842 PMCID: PMC6139724 DOI: 10.14814/phy2.13866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 11/24/2022] Open
Abstract
Dietary apple polyphenols (AP) have been shown to exhibit beneficial effects on muscle endurance. Fast-to-slow change in the composition of myosin heavy chains was known as one of the molecular mechanisms. Here, we examined the effects of dietary AP on the capillaries and mitochondria in the rat skeletal muscle to elucidate the mechanisms underlying muscular endurance enhancement. Twenty-four Wistar male rats were divided into three groups, namely, the control group, 0.5% AP group, and 5% AP group (n = 8 in each group). After a feeding period of 4 weeks, rats were dissected, gastrocnemius muscles were removed, and the density of capillaries and levels of mitochondrial proteins were analyzed. Capillary density of the gastrocnemius increased to 17.8% in rats fed with 5% AP as compared to the control rats. No significant change was observed in the mitochondrial content and dynamics (fusion/fission) of regulatory proteins. To investigate the mechanisms underlying the increase in the capillary density, positive (vascular endothelial cell growth factor, VEGF) and negative (thrombosponsin-1, TSP-1) factors of angiogenesis were analyzed. TSP-1 expression significantly decreased in rats fed with 0.5% AP and 5% AP by approximately 25% and 40%, respectively, as compared with the control rats. There were no significant differences in VEGF expression. Thus, dietary AP may increase the muscle capillary density by decreasing TSP-1 expression. We concluded that the increase in the capillary density and the fast-to-slow change in myosin heavy chains by AP feeding are the main causes for muscle endurance enhancement in Wistar rats.
Collapse
Affiliation(s)
- Yuki Yoshida
- Department of Exercise PhysiologyGraduate School of Health and Sport ScienceNippon Sport Science UniversitySetagaya‐kuTokyoJapan
| | - Arata Tsutaki
- Department of Exercise PhysiologyGraduate School of Health and Sport ScienceNippon Sport Science UniversitySetagaya‐kuTokyoJapan
| | - Yuki Tamura
- Department of Exercise PhysiologyGraduate School of Health and Sport ScienceNippon Sport Science UniversitySetagaya‐kuTokyoJapan
| | - Karina Kouzaki
- Department of Exercise PhysiologyGraduate School of Health and Sport ScienceNippon Sport Science UniversitySetagaya‐kuTokyoJapan
| | | | | | | | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource SciencesKyushu UniversityFukuokaJapan
| | - Koichi Nakazato
- Department of Exercise PhysiologyGraduate School of Health and Sport ScienceNippon Sport Science UniversitySetagaya‐kuTokyoJapan
| |
Collapse
|
12
|
Vieira JM, Gutierres JM, Carvalho FB, Pereira LB, Oliveira LS, Morsch VM, Schetinger MRC, Rodrigues MV, Leitemperger J, Loro V, Krewer CC, Vencato MS, Spanevello RM. Caffeine prevents changes in muscle caused by high-intensity interval training. Biomed Pharmacother 2017; 89:116-123. [DOI: 10.1016/j.biopha.2017.01.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 01/22/2023] Open
|
13
|
Claghorn GC, Thompson Z, Wi K, Van L, Garland T. Caffeine stimulates voluntary wheel running in mice without increasing aerobic capacity. Physiol Behav 2016; 170:133-140. [PMID: 28039074 DOI: 10.1016/j.physbeh.2016.12.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 12/23/2022]
Abstract
The "energy drink" Red Bull and the "sports drink" Gatorade are often marketed to athletes, with claims that they cause performance gains. However, both are high in sugars, and also consumed by non-athletes. Few studies have addressed the effects of these drinks or their biologically active components in rodent exercise models. We used three experiments to test effects on both voluntary exercise behavior and maximal aerobic capacity in lines of mice known to differ in "athletic" traits. Mice from four replicate High Runner (HR) lines have been selectively bred for voluntary running on wheels, and run approximately three times as many revolutions per day as do mice from four non-selected Control (C) lines. HR mice also have higher endurance and maximal oxygen consumption (VO2max) during forced treadmill exercise. In Experiment 1, we tested the hypothesis that Gatorade or Red Bull might cause or allow mice to increase their voluntary wheel running. On days 5 and 6 of 6days of wheel access, as is used to select breeders, HR mice ran 3.3-fold more than C, and females ran 1.2-fold more than males, with no linetype by sex interaction. On day 7, mice were administered Gatorade, Red Bull or tap water. During the subsequent 19-hour period, Gatorade had no statistical effect on running, but Red Bull significantly increased distance run by both sexes and in both HR and C lines. The increase in distance run caused by Red Bull was attributable to time spent running, not an increase in mean (or maximum) speed. As previous studies have found that sucrose alone does not generally increase wheel running, we tested two other active ingredients in Red Bull, caffeine and taurine, in Experiment 2. With a similar testing protocol, caffeine alone and caffeine+taurine increased running by about half the magnitude of Red Bull. In Experiment 3, we tested the hypothesis that Red Bull or caffeine alone can increase physiological performance ability during aerobic exercise, measured as VO2max. In a repeated-measures design spanning 6days, females were housed with water bottles containing Red Bull, caffeine or water in a randomized order, and tested for VO2max twice while receiving each fluid (6 total trials). Neither Red Bull nor caffeine significantly affected either VO2max or a measure of trial cooperativity (rated on a scale of 1-5), but both treatments significantly reduced tiredness (rated on a scale of 1-3) scored at the end of trials for both HR and C lines. Taken together, our results suggest that caffeine increases voluntary exercise levels of mice by delaying fatigue, rather than increasing aerobic capacity.
Collapse
Affiliation(s)
- Gerald C Claghorn
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Zoe Thompson
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Kristianna Wi
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Lindsay Van
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
14
|
Zovico PVC, Curty VM, Leal MAS, Meira EF, Dias DV, Rodrigues LCDM, Meyrelles SDS, De Oliveira EM, Vassallo PF, Barauna VG. Effects of controlled doses of Oxyelite Pro on physical performance in rats. Nutr Metab (Lond) 2016; 13:90. [PMID: 27980599 PMCID: PMC5139112 DOI: 10.1186/s12986-016-0152-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/30/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND OxyElite Pro (OEP) is a dietary supplement to increase metabolism which contains as key stimulant the ingredient 1,3-dimethylamylamine (DMAA). Serious adverse effects have been reported after OEP consumption however, these effects are related to poisoning or overdose. To our knowledge, no one studied the effects of OEP at controlled doses. Thus, the aim of this study was to evaluate acute and chronic OEP affects, at controlled doses in Wistar rats, on physical performance, metabolic parameters, liver injury markers and oxidative stress markers and mitochondrial biogenesis in skeletal muscle. METHODS Rats were divided in control, 4.3 mg OEP/kg, 12.9 mg OEP/kg and 25.8 mg OEP/kg. All groups were submitted to supplementation with OEP for 4 weeks and the experimental protocols were performed 30 min after the first OEP administration (acute response) and 30 min after the last OEP administration at the end of the forth week (chronic response). RESULTS Running distance and running time increased after acute administration of 12.9 mg OEP/kg (2.6-fold) and 25.8 mg OEP/kg (2.8-fold). Since no effect on the exercise tolerance test was observed at the lower OEP dose (4.3 mg OEP/kg), this group was removed from further analyzes. On other hand, running distance and running time decreased after daily supplementation for 4 weeks also in both groups (64% in 12.9 mg OEP/kg and 72% in 25.8 mg OEP/kg). Chronic supplementation at both 12.9 and 25.8 mg OEP/kg decreased TBARS levels in soleus muscle (36 and 31%) and liver (43 and 25%). AOPP was also decreased by both doses in the liver (39 and 45%). Chronic administration of the highest dose, 25.8 mg OEP/kg, was able to reduce mRNA expression of PGC-1α in soleus muscle (25%). No effect was found in other analyses such as spontaneous physical activity, body weight, food and water intake, hepatic toxicity, cardiac oxidative stress and mitochondrial DNA amount. CONCLUSION Maximum and not recommended doses of OEP ingested acutely presented stimulating effect on the ability to exercise. However, its daily consumption for 4 weeks showed antioxidant effects in soleus muscle and liver which may have decreased the PGC-1α mRNA expression on soleus muscle and contributed to the impaired performance in the exercise tolerance test.
Collapse
Affiliation(s)
- Paulo Vinicios Camuzi Zovico
- Department of Physiological Sciences, University of Espírito Santo, Av. Marechal Campos, 1468 - Maruípe, Vitória, 29043-900 Brazil
| | - Victor Magalhães Curty
- Department of Physiological Sciences, University of Espírito Santo, Av. Marechal Campos, 1468 - Maruípe, Vitória, 29043-900 Brazil
| | - Marcos André Soares Leal
- Department of Physiological Sciences, University of Espírito Santo, Av. Marechal Campos, 1468 - Maruípe, Vitória, 29043-900 Brazil
| | - Eduardo Frizzera Meira
- Department of Physiological Sciences, University of Espírito Santo, Av. Marechal Campos, 1468 - Maruípe, Vitória, 29043-900 Brazil
| | | | - Lívia Carla de Melo Rodrigues
- Department of Physiological Sciences, University of Espírito Santo, Av. Marechal Campos, 1468 - Maruípe, Vitória, 29043-900 Brazil
| | - Silvana Dos Santos Meyrelles
- Department of Physiological Sciences, University of Espírito Santo, Av. Marechal Campos, 1468 - Maruípe, Vitória, 29043-900 Brazil
| | | | - Paula Frizera Vassallo
- Department of Physiological Sciences, University of Espírito Santo, Av. Marechal Campos, 1468 - Maruípe, Vitória, 29043-900 Brazil
| | - Valério Garrone Barauna
- Department of Physiological Sciences, University of Espírito Santo, Av. Marechal Campos, 1468 - Maruípe, Vitória, 29043-900 Brazil
| |
Collapse
|
15
|
Tsuda S, Egawa T, Kitani K, Oshima R, Ma X, Hayashi T. Caffeine and contraction synergistically stimulate 5'-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. Physiol Rep 2015; 3:3/10/e12592. [PMID: 26471759 PMCID: PMC4632959 DOI: 10.14814/phy2.12592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
5′-Adenosine monophosphate-activated protein kinase (AMPK) has been identified as a key mediator of contraction-stimulated insulin-independent glucose transport in skeletal muscle. Caffeine acutely stimulates AMPK in resting skeletal muscle, but it is unknown whether caffeine affects AMPK in contracting muscle. Isolated rat epitrochlearis muscle was preincubated and then incubated in the absence or presence of 3 mmol/L caffeine for 30 or 120 min. Electrical stimulation (ES) was used to evoke tetanic contractions during the last 10 min of the incubation period. The combination of caffeine plus contraction had additive effects on AMPKα Thr172 phosphorylation, α-isoform-specific AMPK activity, and 3-O-methylglucose (3MG) transport. In contrast, caffeine inhibited basal and contraction-stimulated Akt Ser473 phosphorylation. Caffeine significantly delayed muscle fatigue during contraction, and the combination of caffeine and contraction additively decreased ATP and phosphocreatine contents. Caffeine did not affect resting tension. Next, rats were given an intraperitoneal injection of caffeine (60 mg/kg body weight) or saline, and the extensor digitorum longus muscle was dissected 15 min later. ES of the sciatic nerve was performed to evoke tetanic contractions for 5 min before dissection. Similar to the findings from isolated muscles incubated in vitro, the combination of caffeine plus contraction in vivo had additive effects on AMPK phosphorylation, AMPK activity, and 3MG transport. Caffeine also inhibited basal and contraction-stimulated Akt phosphorylation in vivo. These findings suggest that caffeine and contraction synergistically stimulate AMPK activity and insulin-independent glucose transport, at least in part by decreasing muscle fatigue and thereby promoting energy consumption during contraction.
Collapse
Affiliation(s)
- Satoshi Tsuda
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Tatsuro Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, 440-0016, Japan
| | - Kazuto Kitani
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Rieko Oshima
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Xiao Ma
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
16
|
Kurobe K, Nakao S, Nishiwaki M, Matsumoto N. Combined effect of coffee ingestion and repeated bouts of low-intensity exercise on fat oxidation. Clin Physiol Funct Imaging 2015; 37:148-154. [PMID: 26189608 DOI: 10.1111/cpf.12279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 06/03/2015] [Indexed: 12/22/2022]
Abstract
We investigated the effect of the combination of coffee ingestion and repeated bouts of low-intensity exercise on fat oxidation. Subjects were seven young, healthy male adults. They performed four trials: a single 30-min bout of exercise following ingestion of plain hot water (WS) or coffee (CS); a trial with three 10-min bouts of exercise separated by 10-min periods of rest following ingestion of plain hot water (WR) or coffee (CR). The coffee contained 5 mg kg-1 of caffeine. All trials were performed on a cycle ergometer at 40% maximal oxygen uptake for each subject an hour after beverage ingestion. Oxygen uptake in the CS and CR trials was higher compared with the WS and WR trials at 90 min after exercise (P<0·05). Respiratory exchange ratio (RER) in the CS and CR trials was decreased during the whole recovery period compared with baseline (P<0·05), whereas no significant decreases were observed in either the WS or WR trials. Moreover, RER was significantly lower at 30 min after exercise in the CR trial than in either the WS or WR trials (P<0·05 each). Similarly, it is notable that fat oxidation rate in the CR trial was significantly higher at 30 min after exercise compared to that in the WS and WR trials (P<0·05). These results suggest that the combination of coffee intake and repeated bouts of low-intensity exercise enhances fat oxidation in the period after exercise.
Collapse
Affiliation(s)
- Kazumichi Kurobe
- Faculty of Business, Sports Management Course, Hannan University, Osaka, Japan
| | - Saori Nakao
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Japan
| | - Masato Nishiwaki
- Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Naoyuki Matsumoto
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Japan
| |
Collapse
|
17
|
Cruz RSDO, de Aguiar RA, Turnes T, Guglielmo LGA, Beneke R, Caputo F. Caffeine Affects Time to Exhaustion and Substrate Oxidation during Cycling at Maximal Lactate Steady State. Nutrients 2015; 7:5254-64. [PMID: 26133971 PMCID: PMC4516996 DOI: 10.3390/nu7075219] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/08/2015] [Accepted: 06/15/2015] [Indexed: 11/24/2022] Open
Abstract
This study analyzed the effects of caffeine intake on whole-body substrate metabolism and exercise tolerance during cycling by using a more individualized intensity for merging the subjects into homogeneous metabolic responses (the workload associated with the maximal lactate steady state—MLSS). MLSS was firstly determined in eight active males (25 ± 4 years, 176 ± 7 cm, 77 ± 11 kg) using from two to four constant-load tests of 30 min. On two following occasions, participants performed a test until exhaustion at the MLSS workload 1 h after taking either 6 mg/kg of body mass of caffeine or placebo (dextrose), in a randomized, double-blinded manner. Respiratory exchange ratio was calculated from gas exchange measurements. There was an improvement of 22.7% in time to exhaustion at MLSS workload following caffeine ingestion (95% confidence limits of ±10.3%, p = 0.002), which was accompanied by decrease in respiratory exchange ratio (p = 0.001). These results reinforce findings indicating that sparing of the endogenous carbohydrate stores could be one of the several physiological effects of caffeine during submaximal performance around 1 h.
Collapse
Affiliation(s)
- Rogério Santos de Oliveira Cruz
- Santa Catarina State University, Human Performance Research Group, Rua Pascoal Simone, 358, Coqueiros, Florianópolis, Santa Catarina 88080-350, Brazil.
| | - Rafael Alves de Aguiar
- Santa Catarina State University, Human Performance Research Group, Rua Pascoal Simone, 358, Coqueiros, Florianópolis, Santa Catarina 88080-350, Brazil.
| | - Tiago Turnes
- Santa Catarina State University, Human Performance Research Group, Rua Pascoal Simone, 358, Coqueiros, Florianópolis, Santa Catarina 88080-350, Brazil.
| | | | - Ralph Beneke
- Abt. Medizin, Training und Gesundheit, Inst. Sportwissenschaft und Motologie, Philipps Universität Marburg, Marburg 35037, Germany.
| | - Fabrizio Caputo
- Santa Catarina State University, Human Performance Research Group, Rua Pascoal Simone, 358, Coqueiros, Florianópolis, Santa Catarina 88080-350, Brazil.
| |
Collapse
|
18
|
Zheng X, Takatsu S, Wang H, Hasegawa H. Acute intraperitoneal injection of caffeine improves endurance exercise performance in association with increasing brain dopamine release during exercise. Pharmacol Biochem Behav 2014; 122:136-43. [DOI: 10.1016/j.pbb.2014.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/17/2014] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
|
19
|
Akash MSH, Rehman K, Chen S. Effects of coffee on type 2 diabetes mellitus. Nutrition 2014; 30:755-63. [DOI: 10.1016/j.nut.2013.11.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 12/13/2022]
|
20
|
Tomita K, Okuhara Y, Shigematsu N, Suh H, Lim K. (−)-Hydroxycitrate Ingestion Increases Fat Oxidation during Moderate Intensity Exercise in Untrained Men. Biosci Biotechnol Biochem 2014; 67:1999-2001. [PMID: 14519990 DOI: 10.1271/bbb.67.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined the effects of (-)-Hydroxycitrate (HCA) ingestion on fat oxidation during moderate intensity exercise in untrained men. Six subjects ingested 500 mg of HCA or a placebo for 5 days and did endurance exercise. Blood FFA concentrations were significantly increased and respiratory exchange ratio (RER) decreased by HCA ingestion. These results suggested short-term HCA ingestion increases fat oxidation in untrained men.
Collapse
Affiliation(s)
- Kyoko Tomita
- Central Research Laboratory, Fancl Co., Yokohama, Japan.
| | | | | | | | | |
Collapse
|
21
|
Sinha RA, Farah BL, Singh BK, Siddique MM, Li Y, Wu Y, Ilkayeva OR, Gooding J, Ching J, Zhou J, Martinez L, Xie S, Bay BH, Summers SA, Newgard CB, Yen PM. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology 2014; 59:1366-1380. [PMID: 23929677 DOI: 10.1002/hep.26667] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/30/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity-related condition that recently has become the major cause of liver disease worldwide. Although caffeine is known to stimulate hepatic fat oxidation, its mechanism of action on lipid metabolism is still not clear. Here, we show that caffeine surprisingly is a potent stimulator of hepatic autophagic flux. Using genetic, pharmacological, and metabolomic approaches, we demonstrate that caffeine reduces intrahepatic lipid content and stimulates β-oxidation in hepatic cells and liver by an autophagy-lysosomal pathway. Furthermore, caffeine-induced autophagy involved down-regulation of mammalian target of rapamycin signaling and alteration in hepatic amino acids and sphingolipid levels. In mice fed a high-fat diet, caffeine markedly reduces hepatosteatosis and concomitantly increases autophagy and lipid uptake in lysosomes. CONCLUSION These results provide novel insight into caffeine's lipolytic actions through autophagy in mammalian liver and its potential beneficial effects in NAFLD.
Collapse
Affiliation(s)
- Rohit A Sinha
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tea and coffee consumption in relation to vitamin D and calcium levels in Saudi adolescents. Nutr J 2012; 11:56. [PMID: 22905922 PMCID: PMC3478213 DOI: 10.1186/1475-2891-11-56] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 08/11/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Coffee and tea consumption was hypothesized to interact with variants of vitamin D-receptor polymorphisms, but limited evidence exists. Here we determine for the first time whether increased coffee and tea consumption affects circulating levels of 25-hydroxyvitamin D in a cohort of Saudi adolescents. METHODS A total of 330 randomly selected Saudi adolescents were included. Anthropometrics were recorded and fasting blood samples were analyzed for routine analysis of fasting glucose, lipid levels, calcium, albumin and phosphorous. Frequency of coffee and tea intake was noted. 25-hydroxyvitamin D levels were measured using enzyme-linked immunosorbent assays. RESULTS Improved lipid profiles were observed in both boys and girls, as demonstrated by increased levels of HDL-cholesterol, even after controlling for age and BMI, among those consuming 9-12 cups of coffee/week. Vitamin D levels were significantly highest among those consuming 9-12 cups of tea/week in all subjects (p-value 0.009) independent of age, gender, BMI, physical activity and sun exposure. CONCLUSION This study suggests a link between tea consumption and vitamin D levels in a cohort of Saudi adolescents, independent of age, BMI, gender, physical activity and sun exposure. These findings should be confirmed prospectively.
Collapse
|
23
|
3,4-Dihydroxycinnamic acid attenuates the fatigue and improves exercise tolerance in rats. Biosci Biotechnol Biochem 2012; 76:1025-7. [PMID: 22738980 DOI: 10.1271/bbb.111006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
3,4-Dihydroxycinnamic acid (3,4-DA) is a natural compound with high antioxidant potential found in various foods. This study found that animals administered with 3,4-DA had higher exercise tolerance, reduced blood lactate, and markers of hepatic oxidation. Blood glucose and antioxidant enzymes were not affected by this treatment. 3,4-DA may have applicability in reducing the fatigue associated with exercise.
Collapse
|
24
|
Abstract
Coffee consumption has been associated with a lower risk of type 2 diabetes. This association does not depend on race, gender, geographic distribution of the study populations, or the type of coffee consumed (i.e., caffeinated or decaffeinated). This review discusses the strength of this relationship, examines the possibility that the pattern of coffee consumption could influence the association, and evaluates the possible relationship between coffee consumption and other risk factors associated with diabetes. Particular attention is paid to the identification, on the basis of the scientific evidence, of the possible mechanisms by which coffee components might affect diabetes development, especially in light of the paradoxical effect of caffeine on glucose metabolism. In addition to the role of coffee in reducing the risk of developing type 2 diabetes, the possible role of coffee in the course of the illness is explored. Finally, the possibility that coffee can also affect the risk of other forms of diabetes (e.g., type 1 diabetes and gestational diabetes) is examined.
Collapse
Affiliation(s)
- Fausta Natella
- The National Research Institute on Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy.
| | | |
Collapse
|
25
|
Dietary exercise as a novel strategy for the prevention and treatment of metabolic syndrome: effects on skeletal muscle function. J Nutr Metab 2011; 2011:676208. [PMID: 21773023 PMCID: PMC3136207 DOI: 10.1155/2011/676208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/29/2011] [Accepted: 05/02/2011] [Indexed: 12/16/2022] Open
Abstract
A sedentary lifestyle can cause metabolic syndrome to develop. Metabolic syndrome is associated with metabolic function in the skeletal muscle, a major consumer of nutrients. Dietary exercise, along with an adequate diet, is reported to be one of the major preventive therapies for metabolic syndrome; exercise improves the metabolic capacity of muscles and prevents the loss of muscle mass. Epidemiological studies have shown that physical activity reduces the risk of various common diseases such as cardiovascular disease, diabetes, and cancer; it also helps in reducing visceral adipose tissue. In addition, laboratory studies have demonstrated the mechanisms underlying the benefits of single-bout and regular exercise. Exercise regulates the expression/activity of proteins associated with metabolic and anabolic signaling in muscle, leading to a change in phenotype. The extent of these changes depends on the intensity, the duration, and the frequency of the exercise. The effect of exercise is also partly due to a decrease in inflammation, which has been shown to be closely related to the development of various diseases. Furthermore, it has been suggested that several phytochemicals contained in natural foods can improve nutrient metabolism and prevent protein degradation in the muscle.
Collapse
|
26
|
Scientific Opinion on the substantiation of health claims related to caffeine and increased fat oxidation leading to a reduction in body fat mass (ID 735, 1484), increased energy expenditure leading to a reduction in body weight (ID 1487), increased alert. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
Minegishi Y, Haramizu S, Hase T, Murase T. Red grape leaf extract improves endurance capacity by facilitating fatty acid utilization in skeletal muscle in mice. Eur J Appl Physiol 2011; 111:1983-9. [PMID: 21249390 DOI: 10.1007/s00421-011-1826-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 01/03/2011] [Indexed: 01/24/2023]
Abstract
Improving endurance capacity leads to increased athletic performance and active lifestyles. The aim of this study was to investigate the effect of the intake of red grape leaf extract (RGLE), used as a traditional herbal medicine in the Mediterranean area, on endurance capacity in mice. Male BALB/c mice were divided into three experimental groups with similar swimming times and body weights; control group, 0.2% (w/w) and 0.5% RGLE group. Swimming times were measured for evaluation of endurance capacity once a week during the 10-week experimental period. Blood and tissues were collected from anesthetized mice immediately after 30 min of swimming exercise, and analyzed blood component and fatty acid oxidation enzyme activity, and gene expression in soleus muscle and mesenteric adipose tissue. Endurance capacity was improved by RGLE in a dose-related manner, and was significantly longer in the 0.5% RGLE group than in the control group at week 10. Plasma lactate levels after exercise in the 0.5% RGLE group were significantly lower than that in the control group. RGLE induced the upregulation of hormone-sensitive lipase mRNA in mesenteric adipose tissue, increased the plasma free fatty acid concentration after exercise, and enhanced fatty acid oxidation enzyme activity in the soleus muscle. Furthermore, peroxisome proliferator-activated receptor-gamma coactivator 1α (Pgc1α) and its downstream target genes were also significantly upregulated in the soleus muscle in the 0.5% RGLE group. Intake of RGLE upregulated Pgc1α expression and facilitated fatty acid oxidation in skeletal muscle, and these effects contributed, in part, to improve endurance capacity.
Collapse
Affiliation(s)
- Yoshihiko Minegishi
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | | | | | | |
Collapse
|
28
|
Kazemi F, Gaeini AA, Kordi MR, Rahnama N. The acute effects of two energy drinks on endurance performance in female athlete students. SPORT SCIENCES FOR HEALTH 2010. [DOI: 10.1007/s11332-009-0077-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
|
30
|
Roberts MD, Dalbo VJ, Hassell SE, Stout JR, Kerksick CM. Efficacy and safety of a popular thermogenic drink after 28 days of ingestion. J Int Soc Sports Nutr 2008; 5:19. [PMID: 18950510 PMCID: PMC2579279 DOI: 10.1186/1550-2783-5-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/24/2008] [Indexed: 11/10/2022] Open
Abstract
Background We have recently demonstrated that consuming a thermogenic drink (TD) acutely increases energy expenditure and serum markers of lipolysis in healthy, college-aged individuals. The purpose of this study was to determine if consuming TD over 28 days affects its acute thermogenic and lipolytic effects as well as body composition and clinical chemistry safety markers. Methods Sixty healthy, males (mean ± SE; 23 ± 1 years, 177 ± 2 cm, 81.7 ± 2.1 kg, 22.8 ± 1.4% body fat; n = 30) and females (23 ± 1 years, 166 ± 2 cm, 62.1 ± 1.8 kg, 28.3 ± 1.4% body fat; n = 30) reported to the laboratory on day 0 (T1) for determination of body composition, resting energy expenditure (REE) as well as glycerol and free fatty acid (FFA) levels before and after ingesting either 336 ml of TD or a non-caloric, non-caffeinated placebo (PLA) drink. Following day 0, participants supplemented daily with 336 ml·day-1 of either TD or PLA and repeated identical testing procedures on day 28 (T2). Day 28 area under the curve (AUC) values were calculated for REE, FFA, and glycerol. Day 28 acute data and prolonged AUC comparisons between groups were analyzed using ANOVAs with repeated measures. Results Percent body fat (p = 0.02) and fat mass (p = 0.01) decreased in the TD group compared to the PLA group after 28 days. Day 28 FFA AUC values (p = 0.048) were greater in the TD group compared to the PLA group. There was no significant difference in day 28 REE AUC values (p = 0.30) or glycerol AUC values (p = 0.21), although a significant increase in REE values in the PLA group may have confounded these findings. There were no differences between groups concerning blood and clinical safety markers. Conclusion Within-group elevations in FFA and REE values in the TD group were still evident following a 28-day supplementation period which may contribute to the observed decrements in %BF. Further, prolonged TD supplementation did not alter the assessed clinical safety markers. Future studies should examine the synergistic and independent effects of the active ingredients in addition to effects of longer ingestion periods of TD ingestion with or without exercise at promoting and sustaining changes in body composition.
Collapse
Affiliation(s)
- Michael D Roberts
- Department of Health and Exercise Science, University of Oklahoma, 1401 Asp Ave, Norman, OK, USA.
| | | | | | | | | |
Collapse
|
31
|
Dalbo VJ, Roberts MD, Stout JR, Kerksick CM. Acute effects of ingesting a commercial thermogenic drink on changes in energy expenditure and markers of lipolysis. J Int Soc Sports Nutr 2008; 5:6. [PMID: 18289388 PMCID: PMC2276475 DOI: 10.1186/1550-2783-5-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 02/20/2008] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND To determine the acute effects of ingesting a thermogenic drink (Celsius, Delray Beach, FL) (TD) on changes in metabolism and lipolysis. METHODS Healthy college-aged male (23.2 +/- 4.0 y, 177.2 +/- 6.1 cm, 81.7 +/- 11.3 kg, 22.8 +/- 7.3 % fat; n = 30) and female (23.4 +/- 3.1 y, 165.6 +/- 8.7 cm, 62.1 +/- 9.9 kg, 28.3 +/- 7.4 % fat; n = 30) participants were matched according to height and weight to consume 336 ml of the TD or a non-caloric, non-caffeinated placebo (PLA). After a 12 h fast, participants reported for pre-consumption measures of height, weight, heart rate, blood pressure, resting energy expenditure (REE), respiratory exchange ratio (RER), glycerol and free-fatty acid (FFA) concentrations. REE and RER were determined at 60, 120, and 180 min post-consumption. Serum glycerol and FFA concentrations were determined at 30, 60, 120 and 180 min post-consumption. RESULTS When compared to PLA, TD significantly increased REE at 60, 120 and 180 min (p < 0.05). FFA concentrations were significantly greater in TD compared to PLA at 30, 60, 120 and 180 min post-consumption (p < 0.05). No between-group differences were found in RER. CONCLUSION Acute TD ingestion significantly increased REE, FFA and glycerol appearance. If sustained, these changes may help to promote weight loss and improve body composition; however, these findings are currently unknown as are the general safety and efficacy of prolonged consumption.
Collapse
Affiliation(s)
- Vincent J Dalbo
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Michael D Roberts
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Jeffrey R Stout
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Chad M Kerksick
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
32
|
Zhang G, Higuchi T, Shirai N, Suzuki H, Shimizu E. Effect of Erabu Sea Snake (Laticauda semifasciata) Lipids on the Swimming Endurance of Mice. ANNALS OF NUTRITION AND METABOLISM 2007; 51:281-7. [PMID: 17622788 DOI: 10.1159/000105450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Accepted: 12/27/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM This study was designed to investigate the effect of Erabu sea snake (Laticauda semifasciata) lipids on the swimming endurance of mice. METHOD Twelve-week-old male Crlj: CD-1 (ICR) mice were fed one of three experimental diets containing 6% lard, fish oil or sea snake lipids for 16 weeks. Swimming exercise was conducted in an acrylic plastic tank filled with 25 cm of water maintained at 23 degrees C. Every 4 weeks, the mice were made to perform swimming exercises with loads attached to their tails, corresponding to approximately 1 or 2% of their body weights. RESULTS The group fed the sea snake lipid diet exhibited significantly improved swimming endurance compared with the lard diet group (p < 0.05); however, this result was not observed in the fish oil diet group. In the sea snake lipid diet group, plasma and muscle lactates were significantly lower, and plasma glucose and muscle glycogen were significantly higher than in the lard diet group (p < 0.05). CONCLUSION These results suggest that the intake of sea snake lipids enhanced the swimming endurance of the mice by delaying the accumulation of lactate during swimming exercise.
Collapse
Affiliation(s)
- Guihua Zhang
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu City, Japan
| | | | | | | | | |
Collapse
|
33
|
Abstract
Several prospective epidemiologic studies over the past 4 y concluded that ingestion of caffeinated and decaffeinated coffee can reduce the risk of diabetes. This finding is at odds with the results of trials in humans showing that glucose tolerance is reduced shortly after ingestion of caffeine or caffeinated coffee and suggesting that coffee consumption could increase the risk of diabetes. This review discusses epidemiologic and laboratory studies of the effects of coffee and its constituents, with a focus on diabetes risk. Weight loss may be an explanatory factor, because one prospective epidemiologic study found that consumption of coffee was followed by lower diabetes risk but only in participants who had lost weight. A second such study found that both caffeine and coffee intakes were modestly and inversely associated with weight gain. It is possible that caffeine and other constituents of coffee, such as chlorogenic acid and quinides, are involved in causing weight loss. Caffeine and caffeinated coffee have been shown to acutely increase blood pressure and thereby to pose a health threat to persons with cardiovascular disease risk. One short-term study found that ground decaffeinated coffee did not increase blood pressure. Decaffeinated coffee, therefore, may be the type of coffee that can safely help persons decrease diabetes risk. However, the ability of decaffeinated coffee to achieve these effects is based on a limited number of studies, and the underlying biological mechanisms have yet to be elucidated.
Collapse
Affiliation(s)
- James A Greenberg
- Department of Health and Nutrition Sciences, Brooklyn College, City University of New York, New York, NY 11210, USA
| | | | | |
Collapse
|
34
|
Abstract
Appropriate nutrition is an essential prerequisite for effective improvement of athletic performance, conditioning, recovery from fatigue after exercise, and avoidance of injury. Nutritional supplements containing carbohydrates, proteins, vitamins, and minerals have been widely used in various sporting fields to provide a boost to the recommended daily allowance. In addition, several natural food components have been found to show physiological effects, and some of them are considered to be useful for promoting exercise performance or for prevention of injury. However, these foods should only be used when there is clear scientific evidence and with understanding of the physiological changes caused by exercise. This article describes various "functional foods" that have been reported to be effective for improving exercise performance or health promotion, along with the relevant physiological changes that occur during exercise.
Collapse
Affiliation(s)
- Wataru Aoi
- Research Center for Sports Medicine, Doshisha University, Kyoto 602-8580, Japan
- Department of Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuji Naito
- Department of Medical Proteomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toshikazu Yoshikawa
- Department of Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Medical Proteomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
35
|
Lopez-Garcia E, van Dam RM, Willett WC, Rimm EB, Manson JE, Stampfer MJ, Rexrode KM, Hu FB. Coffee consumption and coronary heart disease in men and women: a prospective cohort study. Circulation 2006; 113:2045-53. [PMID: 16636169 DOI: 10.1161/circulationaha.105.598664] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We examined the association between long-term habitual coffee consumption and risk of coronary heart disease (CHD). METHODS AND RESULTS We performed a prospective cohort study with 44,005 men and 84,488 women without history of cardiovascular disease or cancer. Coffee consumption was first assessed in 1986 for men and in 1980 for women and then repeatedly every 2 to 4 years; the follow-up continued through 2000. We documented 2173 incident cases of coronary heart disease (1449 nonfatal myocardial infarctions and 724 fatal cases of CHD) among men and 2254 cases (1561 nonfatal myocardial infarctions and 693 fatal cases of CHD) among women. Among men, after adjustment for age, smoking, and other CHD risk factors, the relative risks (RRs) of CHD across categories of cumulative coffee consumption (<1 cup/mo, 1 cup/mo to 4 cups/wk, 5 to 7 cups/wk, 2 to 3 cups/d, 4 to 5 cups/d, and > or =6 cups/d) were 1.0, 1.04 (95% confidence interval 0.91 to 1.17), 1.02 (0.91 to 1.15), 0.97 (0.86 to 1.11), 1.07 (0.88 to 1.31), and 0.72 (0.49 to 1.07; P for trend=0.41); among women, the RRs were 1.0, 0.97 (0.83 to 1.14), 1.02 (0.90 to 1.17), 0.84 (0.74 to 0.97), 0.99 (0.83 to 1.17), and 0.87 (0.68 to 1.11; P for trend=0.08). Stratification by smoking status, alcohol consumption, history of type 2 diabetes mellitus, and body mass index gave similar results. Similarly, we found no effect when the most recent coffee consumption was examined. RRs for quintiles of caffeine intake varied from 0.97 (0.84 to 1.10) in the second quintile to 0.97 (0.84 to 1.11) in the highest quintile (P for trend=0.82) in men and from 1.02 (0.90 to 1.16) to 0.97 (0.85 to 1.11; P for trend=0.37) in women. CONCLUSIONS These data do not provide any evidence that coffee consumption increases the risk of CHD.
Collapse
Affiliation(s)
- Esther Lopez-Garcia
- Department of Nutrition and Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The aim of this study was to assess the effect of caffeine ingestion on 8 km run performance using an ecologically valid test protocol. A randomized double-blind crossover study was conducted involving eight male distance runners. The participants ran an 8 km race 1 h after ingesting a placebo capsule, a caffeine capsule (3 mg x kg(-1) body mass) or no supplement. Heart rate was recorded at 5 s intervals throughout the race. Blood lactate concentration and ratings of perceived exertion were recorded after exercise. A repeated-measures analysis of variance (ANOVA) identified a significant treatment effect for 8 km performance time (P < 0.05); caffeine resulted in a mean improvement of 23.8 s (95% confidence interval [CI] = 13.1 to 34.5 s) in 8 km performance time (1.2% improvement, 95% CI = 0.7 to 1.8%). In addition, a two-way (time x condition) repeated-measures ANOVA identified a significantly higher blood lactate concentration 3 min after exercise during the caffeine trial (P < 0.05). We conclude that ingestion of 3 mg . kg(-1) body mass of caffeine can improve absolute 8 km run performance in an ecologically valid race setting.
Collapse
Affiliation(s)
- C A Bridge
- Sport and Exercise Research Group, Edge Hill College, Ormskirk, UK.
| | | |
Collapse
|
37
|
Shimoda H, Seki E, Aitani M. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. Altern Ther Health Med 2006; 6:9. [PMID: 16545124 PMCID: PMC1513603 DOI: 10.1186/1472-6882-6-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 03/17/2006] [Indexed: 11/10/2022]
Abstract
BACKGROUND An epidemiological study conducted in Italy indicated that coffee has the greatest antioxidant capacity among the commonly consumed beverages. Green coffee bean is rich in chlorogenic acid and its related compounds. The effect of green coffee bean extract (GCBE) on fat accumulation and body weight in mice was assessed with the objective of investigating the effect of GCBE on mild obesity. METHODS Male ddy mice were fed a standard diet containing GCBE and its principal constituents, namely, caffeine and chlorogenic acid, for 14 days. Further, hepatic triglyceride (TG) level was also investigated after consecutive administration (13 days) of GCBE and its constituents. To examine the effect of GCBE and its constituents on fat absorption, serum TG changes were evaluated in olive oil-loaded mice. In addition, to investigate the effect on hepatic TG metabolism, carnitine palmitoyltransferase (CPT) activity in mice was evaluated after consecutive ingestion (6 days) of GCBE and its constituents (caffeine, chlorogenic acid, neochlorogenic acid and feruloylquinic acid mixture). RESULTS It was found that 0.5% and 1% GCBE reduced visceral fat content and body weight. Caffeine and chlorogenic acid showed a tendency to reduce visceral fat and body weight. Oral administration of GCBE (100 and 200 mg/kg. day) for 13 days showed a tendency to reduce hepatic TG in mice. In the same model, chlorogenic acid (60 mg/kg. day) reduced hepatic TG level. In mice loaded with olive oil (5 mL/kg), GCBE (200 and 400 mg/kg) and caffeine (20 and 40 mg/kg) reduced serum TG level. GCBE (1%), neochlorogenic acid (0.028% and 0.055%) and feruloylquinic acid mixture (0.081%) significantly enhanced hepatic CPT activity in mice. However, neither caffeine nor chlorogenic acid alone was found to enhance CPT activity. CONCLUSION These results suggest that GCBE is possibly effective against weight gain and fat accumulation by inhibition of fat absorption and activation of fat metabolism in the liver. Caffeine was found to be a suppressor of fat absorption, while chlorogenic acid was found to be partially involved in the suppressive effect of GCBE that resulted in the reduction of hepatic TG level. Phenolic compounds such as neochlorogenic acid and feruloylquinic acid mixture, except chlorogenic acid, can enhance hepatic CPT activity.
Collapse
Affiliation(s)
- Hiroshi Shimoda
- Oryza Oil & Fat Chemical Co., Ltd., Research & Development Division, 1 Numata Kitagata-cho, Ichinomiya, Aichi 493-8001, Japan
| | - Emi Seki
- Oryza Oil & Fat Chemical Co., Ltd., Research & Development Division, 1 Numata Kitagata-cho, Ichinomiya, Aichi 493-8001, Japan
| | - Michio Aitani
- Oryza Oil & Fat Chemical Co., Ltd., Research & Development Division, 1 Numata Kitagata-cho, Ichinomiya, Aichi 493-8001, Japan
| |
Collapse
|
38
|
Murase T, Haramizu S, Shimotoyodome A, Tokimitsu I, Hase T. Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1550-6. [PMID: 16410398 DOI: 10.1152/ajpregu.00752.2005] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of polyphenols known as catechins are abundant in green tea, which is consumed mainly in Asian countries. The effects of catechin-rich green tea extract (GTE) on running endurance and energy metabolism during exercise in BALB/c mice were investigated. Mice were divided into four groups: nonexercise control, exercise control (Ex-cont), exercise+0.2% GTE, and exercise+0.5% GTE groups. Treadmill running time to exhaustion, plasma biochemical parameters, skeletal muscle glycogen content, beta-oxidation activity, and malonyl-CoA content immediately after exercise were measured at 8-10 wk after the initiation of the experiment. Oxygen consumption and respiratory exchange ratio were measured using indirect calorimetry. Running times to exhaustion in mice fed 0.5% GTE were 30% higher than in Ex-cont mice and were accompanied by a lower respiratory exchange ratio, higher muscle beta-oxidation activity, and lower malonyl-CoA content. In addition, muscle glycogen content was high in the GTE group compared with the Ex-cont group. Plasma lactate concentrations in mice fed GTE were significantly lower after exercise, concomitant with an increase in free fatty acid concentrations. Catechins, which are the main constituents of GTE, did not show significant effects on peroxisome proliferator-activated receptor-alpha or delta-dependent luciferase activities. These results suggest that the endurance-improving effects of GTE were mediated, at least partly, by increased metabolic capacity and utilization of fatty acid as a source of energy in skeletal muscle during exercise.
Collapse
Affiliation(s)
- Takatoshi Murase
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan.
| | | | | | | | | |
Collapse
|
39
|
Norager CB, Jensen MB, Madsen MR, Laurberg S. Caffeine improves endurance in 75-yr-old citizens: a randomized, double-blind, placebo-controlled, crossover study. J Appl Physiol (1985) 2005; 99:2302-6. [PMID: 16081625 DOI: 10.1152/japplphysiol.00309.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effect of caffeine on physical performance in healthy citizens aged > or =70 yr. The randomized, double-blind, placebo-controlled, crossover study was conducted in 15 men and 15 women recruited by their general practitioner. Participants abstained from caffeine for 48 h and were randomized to receive one capsule of placebo and then caffeine (6 mg/kg) or caffeine and then placebo with 1 wk in between. One hour after intervention, we measured reaction and movement times, postural stability, walking speed, cycling at 65% of expected maximal heart rate, perceived effort during cycling, maximal isometric arm flexion strength, and endurance. Analysis was by intention to treat, and P < 0.05 was regarded as significant. Caffeine increased cycling endurance by 25% [95% confidence interval (CI): 13-38; P = 0.0001] and isometric arm flexion endurance by 54% (95% CI: 29-83; P = 0.0001). Caffeine also reduced the rating of perceived exertion after 5 min of cycling by 11% (95% CI: 5-17; P = 0.002) and postural stability with eyes open by 25% (95% CI: 2-53; P = 0.03). Caffeine ingestion did not affect muscle strength, walking speed, reaction, and movement times. At the end of the study, 46% of participants correctly identified when they received caffeine and placebo. Caffeine increased exercise endurance in healthy citizens aged > or =70 yr, but the participants' reasons for stopping the test may have varied between subjects, as the cycling test was done at approximately 55% of maximal oxygen consumption. Further studies are required to investigate whether caffeine can be utilized to improve the physical performance of elderly citizens.
Collapse
Affiliation(s)
- C B Norager
- Surgical Research Unit, Dept. of Surgery, Herning Hospital, University Hospital of Aarhus, Denmark.
| | | | | | | |
Collapse
|
40
|
Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA. Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol 2003; 284:R399-404. [PMID: 12399249 DOI: 10.1152/ajpregu.00386.2002] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caffeine ingestion can delay fatigue during exercise, but the mechanisms remain elusive. This study was designed to test the hypothesis that blockade of central nervous system (CNS) adenosine receptors may explain the beneficial effect of caffeine on fatigue. Initial experiments were done to confirm an effect of CNS caffeine and/or the adenosine A(1)/A(2) receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) on spontaneous locomotor activity. Thirty minutes before measurement of spontaneous activity or treadmill running, male rats received caffeine, NECA, caffeine plus NECA, or vehicle during four sessions separated by approximately 1 wk. CNS caffeine and NECA (intracerebroventricular) were associated with increased and decreased spontaneous activity, respectively, but caffeine plus NECA did not block the reduction induced by NECA. CNS caffeine also increased run time to fatigue by 60% and NECA reduced it by 68% vs. vehicle. However, unlike the effects on spontaneous activity, pretreatment with caffeine was effective in blocking the decrease in run time by NECA. No differences were found after peripheral (intraperitoneal) drug administration. Results suggest that caffeine can delay fatigue through CNS mechanisms, at least in part by blocking adenosine receptors.
Collapse
Affiliation(s)
- J Mark Davis
- Department of Exercise Science, Schools of Public Health and Medicine, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | | | | | | | | | |
Collapse
|