1
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Jang G, Lee EM, Kim HJ, Park Y, Bang NH, Lee Kang J, Park EM. Visceral adiposity is associated with iron deposition and myelin loss in the brains of aged mice. Neurochem Int 2024; 179:105833. [PMID: 39128623 DOI: 10.1016/j.neuint.2024.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Iron deposition and myelin loss are observed in the brain with aging, and iron accumulation is suggested to be involved in myelin damage. However, the exact mechanism of iron deposition with aging remains unclear. This study was aimed to determine whether expanded visceral adipose tissue contributes to iron deposition and myelin loss by inducing hepcidin in the brains of aged male mice. Compared with young adult mice, levels of hepcidin in the brain, epididymal adipose tissue, and circulation were increased in aged mice, which had expanded visceral adipose tissue with inflammation. An increase in expressions of ferritin, an indicator of intracellular iron status, was accompanied by decreased levels of proteins related to myelin sheath in the brains of aged mice. These age-related changes in the brain were improved by visceral fat removal. In addition, IL-6 level, activation of microglia/macrophages, and nuclear translocation of phosphorylated Smad1/5 (pSmad1/5) inducing hepcidin expression were reduced in the brains of aged mice after visceral fat removal, accompanied by decreases of pSmad1/5- and ferritin-positive microglia/macrophages and mature oligodendrocytes. These findings indicate that visceral adiposity contributes to hepcidin-mediated iron deposition and myelin loss with inflammation in the aged brain. Our results support the importance of preventing visceral adiposity for maintaining brain health in older individuals.
Collapse
Affiliation(s)
- Gyeonghui Jang
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Eun-Mi Lee
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Hyun-Jung Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Yelin Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Nayun Hanna Bang
- School of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Jihee Lee Kang
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 07084, Republic of Korea; Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea.
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea.
| |
Collapse
|
3
|
Iriarte-Gahete M, Tarancon-Diez L, Garrido-Rodríguez V, Leal M, Pacheco YM. Absolute and functional iron deficiency: Biomarkers, impact on immune system, and therapy. Blood Rev 2024:101227. [PMID: 39142965 DOI: 10.1016/j.blre.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Iron is essential for numerous physiological processes and its deficiency often leads to anemia. Iron deficiency (ID) is a global problem, primarily affecting reproductive-age women and children, especially in developing countries. Diagnosis uses classical biomarkers like ferritin or transferrin saturation. Recent advancements include using soluble transferrin receptor (sTfR) or hepcidin for improved detection and classification of absolute and functional iron deficiencies, though mostly used in research. ID without anemia may present symptoms like asthenia and fatigue, even without relevant clinical consequences. ID impacts not only red-blood cells but also immune system cells, highlighting its importance in global health and immune-related comorbidities. Managing ID, requires addressing its cause and selecting appropriate iron supplementation. Various improved oral and intravenous products are available, but further research is needed to refine treatment strategies. This review updates on absolute and functional iron deficiencies, their relationships with the immune system and advancements in diagnosis and therapies.
Collapse
Affiliation(s)
- Marianela Iriarte-Gahete
- Immunology Service, Unit of Clinical Laboratories, Institute of Biomedicine of Seville, IBiS / Virgen del Rocío University Hospital / CSIC / University of Seville, Seville, Spain
| | - Laura Tarancon-Diez
- Group of Infections in the Pediatric Population, Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Vanesa Garrido-Rodríguez
- Immunology Service, Unit of Clinical Laboratories, Institute of Biomedicine of Seville, IBiS / Virgen del Rocío University Hospital / CSIC / University of Seville, Seville, Spain
| | - Manuel Leal
- Internal Medicine Service, Viamed Santa Ángela de la Cruz Hospital, Seville, Spain
| | - Yolanda María Pacheco
- Immunology Service, Unit of Clinical Laboratories, Institute of Biomedicine of Seville, IBiS / Virgen del Rocío University Hospital / CSIC / University of Seville, Seville, Spain; Universidad Loyola Andalucía, Facultad de Ciencias de la Salud, Campus Sevilla, 41704, Dos Hermanas, Sevilla, Spain.
| |
Collapse
|
4
|
Berton PF, Gambero A. Hepcidin and inflammation associated with iron deficiency in childhood obesity - A systematic review. J Pediatr (Rio J) 2024; 100:124-131. [PMID: 37541648 PMCID: PMC10943301 DOI: 10.1016/j.jped.2023.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/06/2023] Open
Abstract
OBJECTIVES This paper aims to review data on the association of obesity and iron deficiency in children and adolescents, exposing the possible involvement of hepcidin and interleukin-6 (IL-6), obesity's inflammation biomarkers. DATA SOURCE Articles from PUBMED and WEB OF SCIENCE database with no chronological limit were reviewed to write this systematic review. Keywords such as children, obesity, iron deficiency, and hepcidin were used. After deleting duplicated and review articles, 91 were screened, and 39 were selected as eligible. Sixteen articles were included because they involved serum hepcidin levels in obese children and adolescents as outcomes. SUMMARY OF FINDINGS Finally, those 16 articles were organized in two tables: one includes therapeutic interventions, and the other does not. As hepcidin was discovered in 2000, the first articles that presented serum hepcidin's quantification in obese children and adolescents, homeostasis iron markers, and their possible association with obesity's inflammatory environment began to be published in 2008. CONCLUSIONS Obesity's chronic inflammation state leads to the production of IL-6, which acts as a signaling molecule for hepcidin synthesis, resulting in iron deficiency, which is common in obese children and adolescents who respond inadequately to iron supplementation. On the other hand, that population responds adequately to therapeutic intervention programs that lead to weight loss, guaranteeing iron homeostasis improvement. Therefore, perhaps it is time to discuss serum hepcidin level quantification as part of evaluating children and adolescents with iron deficiency, which could guide clinical choices that might lead to better therapeutic outcomes.
Collapse
Affiliation(s)
- Pedro Ferro Berton
- Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP, Brazil
| | - Alessandra Gambero
- Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP, Brazil.
| |
Collapse
|
5
|
Ohara R, Dario FL, Emílio-Silva MT, Assunção R, Rodrigues VP, Bueno G, Raimundo PR, da Rocha LRM, Hiruma-Lima CA. Citral Modulates MMP-2 and MMP-9 Activities on Healing of Gastric Ulcers Associated with High-Fat Diet-Induced Obesity. Int J Mol Sci 2023; 24:ijms24054888. [PMID: 36902320 PMCID: PMC10003425 DOI: 10.3390/ijms24054888] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 03/06/2023] Open
Abstract
Obesity causes low-grade inflammation that results in the development of comorbidities. In people with obesity, exacerbation of gastric lesion severity and delayed healing may aggravate gastric mucosal lesions. Accordingly, we aimed to evaluate the citral effects on gastric lesion healing in eutrophic and obese animals. C57Bl/6 male mice were divided into two groups: animals fed a standard diet (SD) or high-fat diet (HFD) for 12 weeks. Gastric ulcers were induced using acetic acid (80%) in both groups. Citral (25, 100, or 300 mg/kg) was administered orally for 3 or 10 days. A vehicle-treated negative control (1% Tween 80, 10 mL/kg) and lansoprazole-treated (30 mg/kg) were also established. Lesions were macroscopically examined by quantifying regenerated tissue and ulcer areas. Matrix metalloproteinases (MMP-2 and -9) were analyzed by zymography. The ulcer base area between the two examined periods was significantly reduced in HFD 100 and 300 mg/kg citral-treated animals. In the 100 mg/kg citral-treated group, healing progression was accompanied by reduced MMP-9 activity. Accordingly, HFD could alter MMP-9 activity, delaying the initial healing phase. Although macroscopic changes were undetectable, 10-day treatment with 100 mg/kg citral exhibited improved scar tissue progression in obese animals, with reduced MMP-9 activity and modulation of MMP-2 activation.
Collapse
|
6
|
Abstract
High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.
Collapse
Affiliation(s)
- Alexandria V Harrison
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
| | - Felipe Ramos Lorenzo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| | - Donald A McClain
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| |
Collapse
|
7
|
James JV, Varghese J, John NM, Deschemin JC, Vaulont S, McKie AT, Jacob M. Insulin resistance and adipose tissue inflammation induced by a high-fat diet are attenuated in the absence of hepcidin. J Nutr Biochem 2023; 111:109175. [PMID: 36223834 DOI: 10.1016/j.jnutbio.2022.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Increased body iron stores and inflammation in adipose tissue have been implicated in the pathogenesis of insulin resistance (IR) and type 2 diabetes mellitus. However, the underlying basis of these associations is unclear. To attempt to investigate this, we studied the development of IR and associated inflammation in adipose tissue in the presence of increased body iron stores. Male hepcidin knock-out (Hamp1-/-) mice, which have increased body iron stores, and wild-type (WT) mice were fed a high-fat diet (HFD) for 12 and 24 weeks. Development of IR and metabolic parameters linked to this, insulin signaling in various tissues, and inflammation and iron-related parameters in visceral adipose tissue were studied in these animals. HFD-feeding resulted in impaired glucose tolerance in both genotypes of mice. In response to the HFD for 24 weeks, Hamp1-/- mice gained less body weight and developed less systemic IR than corresponding WT mice. This was associated with less lipid accumulation in the liver and decreased inflammation and lipolysis in the adipose tissue in the knock-out mice, than in the WT animals. Fewer macrophages infiltrated the adipose tissue in the knockout mice than in wild-type mice, with these macrophages exhibiting a predominantly anti-inflammatory (M2-like) phenotype and indirect evidence of a possible lowered intracellular iron content. The absence of hepcidin was thus associated with attenuated inflammation in the adipose tissue and increased whole-body insulin sensitivity, suggesting a role for it in these processes.
Collapse
Affiliation(s)
- Jithu Varghese James
- Department of Biochemistry, Christian Medical College, Vellore, India; Department of Diabetes & Obesity, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Joe Varghese
- Department of Biochemistry, Christian Medical College, Vellore, India
| | | | - Jean-Christophe Deschemin
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Sophie Vaulont
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Andrew Tristan McKie
- Department of Haematology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Molly Jacob
- Department of Biochemistry, Christian Medical College, Vellore, India.
| |
Collapse
|
8
|
Guevara-Ramírez P, Cadena-Ullauri S, Ruiz-Pozo VA, Tamayo-Trujillo R, Paz-Cruz E, Simancas-Racines D, Zambrano AK. Genetics, genomics, and diet interactions in obesity in the Latin American environment. Front Nutr 2022; 9:1063286. [PMID: 36532520 PMCID: PMC9751379 DOI: 10.3389/fnut.2022.1063286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 08/25/2023] Open
Abstract
Obesity is a chronic disease characterized by abnormal or excessive fat accumulation that could impact an individual's health; moreover, the World Health Organization (WHO) has declared obesity a global epidemic since 1997. In Latin America, in 2016, reports indicated that 24.2% of the adult population was obese. The environmental factor or specific behaviors like dietary intake or physical activity have a vital role in the development of a condition like obesity, but the interaction of genes could contribute to that predisposition. Hence, it is vital to understand the relationship between genes and disease. Indeed, genetics in nutrition studies the genetic variations and their effect on dietary response; while genomics in nutrition studies the role of nutrients in gene expression. The present review represents a compendium of the dietary behaviors in the Latin American environment and the interactions of genes with their single nucleotide polymorphisms (SNPs) associated with obesity, including the risk allele frequencies in the Latin American population. Additionally, a bibliographical selection of several studies has been included; these studies examined the impact that dietary patterns in Latin American environments have on the expression of numerous genes involved in obesity-associated metabolic pathways.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
9
|
Qiu F, Wu L, Yang G, Zhang C, Liu X, Sun X, Chen X, Wang N. The role of iron metabolism in chronic diseases related to obesity. Mol Med 2022; 28:130. [PMID: 36335331 PMCID: PMC9636637 DOI: 10.1186/s10020-022-00558-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity is one of the major public health problems threatening the world, as well as a potential risk factor for chronic metabolic diseases. There is growing evidence that iron metabolism is altered in obese people, however, the highly refined regulation of iron metabolism in obesity and obesity-related complications is still being investigated. Iron accumulation can affect the body’s sensitivity to insulin, Type 2 diabetes, liver disease and cardiovascular disease. This review summarized the changes and potential mechanisms of iron metabolism in several chronic diseases related to obesity, providing new clues for future research.
Collapse
|
10
|
Hagarty-Waite KA, Totten MS, Pierce M, Armah SM, Erikson KM. Influence of Sex and Strain on Hepatic and Adipose Tissue Trace Element Concentrations and Gene Expression in C57BL/6J and DBA/2J High Fat Diet Models. Int J Mol Sci 2022; 23:ijms232213778. [PMID: 36430257 PMCID: PMC9697485 DOI: 10.3390/ijms232213778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The objective of this study was to determine the influence of sex and strain on the dysregulation of trace element concentration and associative gene expression due to diet induced obesity in adipose tissue and the liver. Male and female C57BL/6J (B6J) and DBA/2J (D2J) were randomly assigned to a normal-fat diet (NFD) containing 10% kcal fat/g or a mineral-matched high-fat diet (HFD) containing 60% kcal fat/g for 16 weeks. Liver and adipose tissue were assessed for copper, iron, manganese, and zinc concentrations and related changes in gene expression. Notable findings include three-way interactions of diet, sex, and strain amongst adipose tissue iron concentrations (p = 0.005), adipose hepcidin expression (p = 0.007), and hepatic iron regulatory protein (IRP) expression (p = 0.012). Cd11c to Cd163 ratio was increased in adipose tissue due to HFD amongst all biological groups except B6J females, for which tissue iron concentrations were reduced due to HFD (p = 0.002). Liver divalent metal transporter 1 (DMT-1) expression was increased due to HFD amongst B6J males (p < 0.005) and females (p < 0.004), which coincides with the reduction in hepatic iron concentrations found in these biological groups (p < 0.001). Sex, strain, and diet affected trace element concentration, the expression of genes that regulate trace element homeostasis, and the expression of macrophages that contribute to tissue iron-handling in adipose tissue. These findings suggest that sex and strain may be key factors that influence the adaptive capacity of iron mismanagement in adipose tissue and its subsequent consequences, such as insulin resistance.
Collapse
Affiliation(s)
| | - Melissa S. Totten
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
- Department of Chemistry and Physics, Salem College, Winston-Salem, NC 27101, USA
| | - Matthew Pierce
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Seth M. Armah
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Keith M. Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
- Correspondence:
| |
Collapse
|
11
|
Liu G, Li J, Pang B, Li Y, Xu F, Liao N, Shao D, Jiang C, Shi J. Potential role of selenium in alleviating obesity-related iron dyshomeostasis. Crit Rev Food Sci Nutr 2022; 63:10032-10046. [PMID: 35574661 DOI: 10.1080/10408398.2022.2074961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is a serious health problem in modern life and increases the risk of many comorbidities including iron dyshomeostasis. In contrast to malnourished anemia, obesity-related iron dyshomeostasis is mainly caused by excessive fat accumulation, inflammation, and disordered gut microbiota. In obesity, iron dyshomeostasis also induces disorders associated with gut microbiota, neurodegenerative injury, oxidative damage, and fat accumulation in the liver. Selenium deficiency is often accompanied by obesity or iron deficiency, and selenium supplementation has been shown to alleviate obesity and overcome iron deficiency. Selenium inhibits fat accumulation and exhibits anti-inflammatory activity. It regulates gut microbiota, prevents neurodegenerative injury, alleviates oxidative damage to the body, and ameliorates hepatic fat accumulation. These effects theoretically meet the requirements for the inhibition of factors underlying obesity-related iron dyshomeostasis. Selenium supplementation may have a potential role in the alleviation of obesity-related iron dyshomeostasis. This review verifies this hypothesis in theory. All the currently reported causes and results of obesity-related iron dyshomeostasis are reviewed comprehensively, together with the effects of selenium. The challenges and strategies of selenium supplementation are also discussed. The findings demonstrate the possibility of selenium-containing drugs or functional foods in alleviating obesity-related iron dyshomeostasis.
Collapse
Affiliation(s)
- Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
de Souza DW, Ceglarek VM, Siqueira BS, Volinski CZ, Nenevê JZ, Arruda JPDA, Vettorazzi JF, Grassiolli S. Phenylhydrazine-induced anemia reduces subcutaneous white and brown adipose tissues in hypothalamic obese rats. Exp Physiol 2022; 107:575-588. [PMID: 35396880 DOI: 10.1113/ep089883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
NEW FUNDINGS What is the central question of this study? This study aims to assess whether an anemic state could modify adiposity and metabolic parameters in hypothalamic obese rats. What is the main finding and its importance? Our results indicate that hypothalamic obese rats do not display iron deficiency. However, the pharmacological induction of anemia in hypothalamic-obese rats resulted in reduced adiposity, characterized by a decrease in subcutaneous white and brown adipose tissue depots. These findings suggest that iron imbalance in obesity may elevate lipolysis. ABSTRACT Iron imbalance is frequent in obesity. Herein, we evaluated the impact of anemia induced by phenylhydrazine on adiposity and metabolic state of hypothalamic obese rats. Hypothalamic obesity was induced by high doses of glutamate monosodium (MSG; 4g/Kg) administered to neonatal male rats (n = 20). Controls (CTL; non-obese rats) received saline equimolar (n = 20). Rats were weaned at 21 days of life. At 70 days, half of the rats received three intraperitoneal doses of phenylhydrazine (PHZ; 40mg/Kg/dose) or saline solution. Body weight and food intake were accompanied for four weeks after PHZ administration. At 92 days, rats were euthanized, blood was collected for microcapillary hematocrit (Hct) analysis and plasma quantification of glucose, triglycerides, total cholesterol, and iron levels. The liver, the spleen, and the white (WAT) and brown (BAT) adipose tissues were excised, weighed, and used for histology. MSG-treated rats developed obesity, hypertriglyceridemia, and insulin resistance, compared to CTL rats, without changes in iron levels and Hct. PHZ administration reduced iron plasma levels and promoted similar tissue injuries in the spleen and liver from MSG and CTL rats. However, in MSG-treated rats, PHZ decreased fasting glucose levels and Hct, as well as diminished the subcutaneous WAT and BAT mass. Although MSG-obesity does not affect iron plasma levels and Hct by itself, PHZ-induced anemia associated with obesity induces a marked drop in subcutaneous WAT and BAT mass, suggesting that iron imbalance may lead to increased lipolytic responses in obese rats, compared to lean rats. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Domwesley Wendreo de Souza
- Programa de Pós-Graduação em Biociências e Saúde, CCBS, Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - Vanessa Marieli Ceglarek
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRG), Porto Alegre, RS, Brasil
| | - Bruna Schumaker Siqueira
- Programa de Pós-Graduação em Biociências e Saúde, CCBS, Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - Caroline Zanella Volinski
- Graduação Enfermagem, CCBS - Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - Juliane Zanon Nenevê
- Graduação Enfermagem, CCBS - Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | - João Paulo de Amorin Arruda
- Programa de Pós-Graduação em Odontologia, CCBS - Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| | | | - Sabrina Grassiolli
- Programa de Pós-Graduação em Biociências e Saúde, CCBS, Universidade Estadual do Oeste do Paraná (Unioeste), Cascavel, PR, Brasil
| |
Collapse
|
13
|
Hepcidin gene silencing ameliorated inflammation and insulin resistance in adipose tissue of db/db mice via inhibiting METs formation. Mol Immunol 2021; 133:110-121. [PMID: 33640761 DOI: 10.1016/j.molimm.2021.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
As a major feature of diabetes, inflammation is closely related to macrophage extracellular traps and the expression of hepcidin upregulated by diabetes is reportedly involved in chronic inflammation. Therefore, we aimed to explore whether hepcidin could be implicated in inflammation and macrophage extracellular traps (METs) formation. The diabetic db/db mouse model was established exhibiting insulin resistance (IR), inflammation, macrophages infiltration and higher expression of hepcidin, where samples were obtained from epididymal adipose tissue. We observed that inflammation and IR improved in adipose tissue of mice treated with hepcidin gene silencing. Furthermore, METs formation could be markedly inhibited via hepcidin gene silencing followed by attenuated inflammatory response due to METs, indicating hepcidin gene silencing played a key role in anti-inflammation by inhibiting METs formation. So, we concluded that hepcidin gene silencing has a potential for treatment of diabetes due to its ability to ameliorate inflammation via inhibiting METs formation.
Collapse
|
14
|
Totten MS, Pierce DM, Erikson KM. Diet-Induced Obesity Disrupts Trace Element Homeostasis and Gene Expression in the Olfactory Bulb. Nutrients 2020; 12:E3909. [PMID: 33371327 PMCID: PMC7767377 DOI: 10.3390/nu12123909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to determine the impact of diet-induced obesity (DIO) on trace element homeostasis and gene expression in the olfactory bulb and to identify potential interaction effects between diet, sex, and strain. Our study is based on evidence that obesity and olfactory bulb impairments are linked to neurodegenerative processes. Briefly, C57BL/6J (B6J) and DBA/2J (D2J) male and female mice were fed either a low-fat diet or a high-fat diet for 16 weeks. Brain tissue was then evaluated for iron, manganese, copper, and zinc concentrations and mRNA gene expression. There was a statistically significant diet-by-sex interaction for iron and a three-way interaction between diet, sex, and strain for zinc in the olfactory bulb. Obese male B6J mice had a striking 75% increase in iron and a 50% increase in manganese compared with the control. There was an increase in zinc due to DIO in B6J males and D2J females, but a decrease in zinc in B6J females and D2J males. Obese male D2J mice had significantly upregulated mRNA gene expression for divalent metal transporter 1, alpha-synuclein, amyloid precursor protein, dopamine receptor D2, and tyrosine hydroxylase. B6J females with DIO had significantly upregulated brain-derived neurotrophic factor expression. Our results demonstrate that DIO has the potential to disrupt trace element homeostasis and mRNA gene expression in the olfactory bulb, with effects that depend on sex and genetics. We found that DIO led to alterations in iron and manganese predominantly in male B6J mice, and gene expression dysregulation mainly in male D2J mice. These results have important implications for health outcomes related to obesity with possible connections to neurodegenerative disease.
Collapse
Affiliation(s)
- Melissa S. Totten
- Department of Nutrition, School of Health and Human Sciences, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (D.M.P.); (K.M.E.)
| | | | | |
Collapse
|
15
|
Fillebeen C, Lam NH, Chow S, Botta A, Sweeney G, Pantopoulos K. Regulatory Connections between Iron and Glucose Metabolism. Int J Mol Sci 2020; 21:ijms21207773. [PMID: 33096618 PMCID: PMC7589414 DOI: 10.3390/ijms21207773] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is essential for energy metabolism, and states of iron deficiency or excess are detrimental for organisms and cells. Therefore, iron and carbohydrate metabolism are tightly regulated. Serum iron and glucose levels are subjected to hormonal regulation by hepcidin and insulin, respectively. Hepcidin is a liver-derived peptide hormone that inactivates the iron exporter ferroportin in target cells, thereby limiting iron efflux to the bloodstream. Insulin is a protein hormone secreted from pancreatic β-cells that stimulates glucose uptake and metabolism via insulin receptor signaling. There is increasing evidence that systemic, but also cellular iron and glucose metabolic pathways are interconnected. This review article presents relevant data derived primarily from mouse models and biochemical studies. In addition, it discusses iron and glucose metabolism in the context of human disease.
Collapse
Affiliation(s)
- Carine Fillebeen
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC H3Y 1P3, Canada;
| | - Nhat Hung Lam
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.H.L.); (S.C.); (A.B.); (G.S.)
| | - Samantha Chow
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.H.L.); (S.C.); (A.B.); (G.S.)
| | - Amy Botta
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.H.L.); (S.C.); (A.B.); (G.S.)
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.H.L.); (S.C.); (A.B.); (G.S.)
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC H3Y 1P3, Canada;
- Correspondence: ; Tel.: +1-514-340-8260 (ext. 25293)
| |
Collapse
|
16
|
Kadakia R, Zheng Y, Zhang Z, Zhang W, Josefson JL, Hou L. Association of cord blood methylation with neonatal leptin: An epigenome wide association study. PLoS One 2019; 14:e0226555. [PMID: 31851703 PMCID: PMC6919608 DOI: 10.1371/journal.pone.0226555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022] Open
Abstract
Background Neonatal adiposity is a risk factor for childhood obesity. Investigating contributors to neonatal adiposity is important for understanding early life obesity risk. Epigenetic changes of metabolic genes in cord blood may contribute to excessive neonatal adiposity and subsequent childhood obesity. This study aims to evaluate the association of cord blood DNA methylation patterns with anthropometric measures and cord blood leptin, a biomarker of neonatal adiposity. Methods A cross-sectional study was performed on a multiethnic cohort of 114 full term neonates born to mothers without gestational diabetes at a university hospital. Cord blood was assayed for leptin and for epigenome-wide DNA methylation profiles via the Illumina 450K platform. Neonatal body composition was measured by air displacement plethysmography. Multivariable linear regression was used to analyze associations between individual CpG sites as well as differentially methylated regions in cord blood DNA with measures of newborn adiposity including anthropometrics (birth weight, fat mass and percent body fat) and cord blood leptin. False discovery rate was estimated to account for multiple comparisons. Results 247 CpG sites as well as 18 differentially methylated gene regions were associated with cord blood leptin but no epigenetic changes were associated with birth weight, fat mass or percent body fat. Genes of interest identified in this study are DNAJA4, TFR2, SMAD3, PLAG1, FGF1, and HNF4A. Conclusion Epigenetic changes in cord blood DNA are associated with cord blood leptin levels, a measure of neonatal adiposity.
Collapse
Affiliation(s)
- Rachel Kadakia
- Division of Endocrinology, Ann and Robert H. Lurie Children’s Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| | - Yinan Zheng
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Zhou Zhang
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Wei Zhang
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Jami L. Josefson
- Division of Endocrinology, Ann and Robert H. Lurie Children’s Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Lifang Hou
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
17
|
Rodrigues de Morais T, Gambero A. Iron chelators in obesity therapy – Old drugs from a new perspective? Eur J Pharmacol 2019; 861:172614. [DOI: 10.1016/j.ejphar.2019.172614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
|
18
|
Increased adiposity by feeding growing rats a high-fat diet results in iron decompartmentalisation. Br J Nutr 2019; 123:1094-1108. [PMID: 32172712 DOI: 10.1017/s0007114519002320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study reports the effects of a high-fat (HF) diet of over 8 weeks on the Fe status of growing rats. Tissue Fe levels were analysed by atomic absorption spectrophotometry, and whole-body adiposity was measured by dual-energy X-ray absorptiometry. Histopathology and morphometry of adipose tissue were performed. Liver homogenates were used for measuring ferroportin-1 protein levels by immunoblotting, and transcript levels were used for Fe genes measured by real-time PCR. Tissue Fe pools were fit to a compartmental biokinetic model in which Fe was assessed using fourteen compartments and twenty-seven transfer constants (kj,i from tissue 'i' to tissue 'j') adapted from the International Commission on Radiological Protection (ICRP) 69. Ten kj,i were calculated from the experimental data using non-linear regression, and seventeen were estimated by allometry according to the formula ${k_{i,j}} = a \times {M^b}$. Validation of the model was carried out by comparing predicted and analysed Fe pool sizes in erythrocytes, the liver and the spleen. Body adiposity was negatively associated with serum Fe levels and positively associated with liver Fe stores. An inferred increase in Fe transfer from bone marrow to the liver paralleled higher hepatic Fe concentrations and ferritin heavy-chain mRNA levels in the HF diet-fed animals, suggesting that liver Fe accumulation occurred at least in part due to a favoured liver erythrocyte uptake. If this feeding condition was to be prolonged, impaired Fe decompartmentalisation may occur, ultimately resulting in dysmetabolic Fe overload.
Collapse
|
19
|
Mohammed A H, Adel Amin K. Alteration of Serum and Hepatic Trace Element Level in Non-alcoholic Fatty Liver Disease-induced by High-fat Sucrose Diet. ACTA ACUST UNITED AC 2019. [DOI: 10.3923/ajsr.2019.323.332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Yan HF, Liu ZY, Guan ZA, Guo C. Deferoxamine ameliorates adipocyte dysfunction by modulating iron metabolism in ob/ob mice. Endocr Connect 2018; 7:604-616. [PMID: 29678877 PMCID: PMC5911700 DOI: 10.1530/ec-18-0054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The mechanisms underlying obesity and anti-obesity processes have garnered remarkable attention as potential therapeutic targets for obesity-associated metabolic syndromes. Our prior work has shown the healing efficacy of iron reduction therapies for hepatic steatosis in a rodent model of diabetes and obesity. In this study, we investigated how iron depletion by deferoxamine (DFO) affected adipocyte dysfunction in the epididymal adipose tissues of ob/ob mice. METHODS Male ob/ob mice were assigned to either a vehicle-treated or DFO-treated group. DFO (100 mg/kg body weight) was injected intraperitoneally for 15 days. RESULTS We confirmed that iron deposits were statistically increased in the epididymal fat pad of 26-week-old ob/ob mice compared with wild-type (WT) mice. DFO significantly improved vital parameters of adipose tissue biology by reducing reactive oxygen species and inflammatory marker (TNFα, IL-2, IL-6, and Hepcidin) secretion, by increasing the levels of antioxidant enzymes, hypoxia-inducible factor-1α (HIF-1α) and HIF-1α-targeted proteins, and by altering adipocytic iron-, glucose- and lipid-associated metabolism proteins. Meanwhile, hypertrophic adipocytes were decreased in size, and insulin signaling pathway-related proteins were also activated after 15 days of DFO treatment. CONCLUSIONS These findings suggest that dysfunctional iron homeostasis contributes to the pathophysiology of obesity and insulin resistance in adipose tissues of ob/ob mice. Further investigation is required to develop safe iron chelators as effective treatment strategies against obesity, with potential for rapid clinical application.
Collapse
Affiliation(s)
- Hong-Fa Yan
- College of Life and Health SciencesNortheastern University, Shenyang, China
| | - Zhao-Yu Liu
- College of Life and Health SciencesNortheastern University, Shenyang, China
| | - Zhi-Ang Guan
- College of Life and Health SciencesNortheastern University, Shenyang, China
| | - Chuang Guo
- College of Life and Health SciencesNortheastern University, Shenyang, China
| |
Collapse
|
21
|
Cui C, Ye F, Li Y, Yin H, Ye M, He L, Zhao X, Xu H, Li D, Qiu M, Zhu Q, Wang Y. Detection of SNPs in the BMP6 Gene and Their Association with Carcass and Bone Traits in Chicken. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2017-0555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- C Cui
- Sichuan Agricultural University, China
| | - F Ye
- Sichuan Agricultural University, China
| | - Y Li
- Sichuan Agricultural University, China
| | - H Yin
- Sichuan Agricultural University, China
| | - M Ye
- Sichuan Agricultural University, China
| | - L He
- Sichuan Agricultural University, China
| | - X Zhao
- Sichuan Agricultural University, China
| | - H Xu
- Sichuan Agricultural University, China
| | - D Li
- Sichuan Agricultural University, China
| | - M Qiu
- Sichuan Agricultural University, China
| | - Q Zhu
- Sichuan Agricultural University, China
| | - Y Wang
- Sichuan Agricultural University, China
| |
Collapse
|
22
|
Ma X, Pham VT, Mori H, MacDougald OA, Shah YM, Bodary PF. Iron elevation and adipose tissue remodeling in the epididymal depot of a mouse model of polygenic obesity. PLoS One 2017. [PMID: 28651003 PMCID: PMC5484604 DOI: 10.1371/journal.pone.0179889] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Iron dysregulation is a potential contributor to the pathology of obesity-related metabolic complications. KK/HIJ (KK) mice, a polygenic obese mouse model, have elevated serum iron levels. A subset of KK male mice display a bronzing of epididymal adipose tissue (eAT) associated with >100-fold (p<0.001) higher iron concentration. Methods To further phenotype and characterize the adipose tissue iron overload, 27 male KK mice were evaluated. 14 had bronzing eAT and 13 had normal appearing eAT. Fasting serum and tissues were collected for iron content, qPCR, histology and western blot. Results High iron levels were confirmed in bronzing eAT (High Iron group, HI) versus normal iron level (NI) in normal appearing eAT. Surprisingly, iron levels in subcutaneous and brown adipose depots were not different between the groups (p>0.05). The eAT histology revealed iron retention, macrophage clustering, tissue fibrosis, cell death as well as accumulation of HIF-2α in the high iron eAT. qPCR showed significantly decreased Lep (leptin) and AdipoQ (adiponectin), whereas Tnfα (tumor necrosis factor α), and Slc40a1 (ferroportin) were up-regulated in HI (p<0.05). Elevated HIF-2α, oxidative stress and local insulin signaling loss was also observed. Significance Our data suggest that deposition of iron in adipose tissue is limited to the epididymal depot in male KK mice. A robust adipose tissue remodeling is concomitant with the high iron concentration, which causes local adipose tissue insulin resistance.
Collapse
Affiliation(s)
- Xiaoya Ma
- School of Kinesiology, University of Michigan, 1402 Washington Hts., Ann Arbor, MI, United States of America
- Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America
| | - Vinh T. Pham
- School of Kinesiology, University of Michigan, 1402 Washington Hts., Ann Arbor, MI, United States of America
| | - Hiroyuki Mori
- Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America
| | - Ormond A. MacDougald
- Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America
- Internal Medicine, University of Michigan Medical School, Ann Arbor MI, United States of America
| | - Yatrik M. Shah
- Department of Molecular & Integrative Physiology, Ann Arbor, MI, United States of America
- Internal Medicine, University of Michigan Medical School, Ann Arbor MI, United States of America
| | - Peter F. Bodary
- School of Kinesiology, University of Michigan, 1402 Washington Hts., Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
23
|
Gotardo ÉMF, Caria CREP, de Oliveira CC, Rocha T, Ribeiro ML, Gambero A. Effects of iron supplementation in mice with hypoferremia induced by obesity. Exp Biol Med (Maywood) 2016; 241:2049-2055. [PMID: 27439539 DOI: 10.1177/1535370216660398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Iron is an important micronutrient, but it can also act as a dangerous element by interfering with glucose homeostasis and inflammation, two features that are already disturbed in obese subjects. In this work, we study the effects of systemic iron supplementation on metabolic and inflammatory responses in mice with hypoferremia induced by obesity to better characterize whether iron worsens the parameters that are already altered after 24 weeks of a high-fat diet (HFD). Mice were maintained on a control diet or a HFD for 24 weeks and received iron-III polymaltose (50 mg/kg/every 2 days) during the last two weeks. Glucose homeostasis (basal glucose and insulin test tolerance) and systemic and visceral adipose tissue (VAT) inflammation were assessed. Iron levels were measured in serum. The Prussian blue reaction was used in isolated macrophages to detect iron deposition. Iron supplementation resulted in an increased number of VAT macrophages that were positive for Prussian blue staining as well as increased serum iron levels. Systemic hepcidin, leptin, resistin, and monocyte chemoattractant protein-1 (MCP-1) levels were not altered by iron supplementation. Local adipose tissue inflammation was also not made worse by iron supplementation because the levels of hepcidin, MCP-1, leptin, and interleukin (IL)-6 were not altered. In contrast, iron supplementation resulted in an increased production of IL-10 by adipose tissue and VAT macrophages. Leukocytosis and VAT plasminogen activator inhibitor-1 (PAI-1) level were reduced, but insulin resistance was not altered after iron supplementation. In conclusion, systemic iron supplementation in mice with hypoferremia induced by obesity did not worsen inflammatory marker or adipose tissue inflammation or the metabolic status established by obesity. Iron deposition was observed in adipose tissue, mainly in macrophages, suggesting that these cells have mechanisms that promote iron incorporation without increasing the production of inflammatory mediators.
Collapse
Affiliation(s)
- Érica Martins Ferreira Gotardo
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista 12916-900, SP, Brazil
| | - Cintia Rabelo E Paiva Caria
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista 12916-900, SP, Brazil
| | - Caroline Candida de Oliveira
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista 12916-900, SP, Brazil
| | - Thalita Rocha
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista 12916-900, SP, Brazil
| | - Marcelo Lima Ribeiro
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista 12916-900, SP, Brazil
| | - Alessandra Gambero
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista 12916-900, SP, Brazil
| |
Collapse
|
24
|
Liu L, Byrd A, Plummer J, Erikson KM, Harrison SH, Han J. The Effects of Dietary Fat and Iron Interaction on Brain Regional Iron Contents and Stereotypical Behaviors in Male C57BL/6J Mice. Front Nutr 2016; 3:20. [PMID: 27493939 PMCID: PMC4954826 DOI: 10.3389/fnut.2016.00020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022] Open
Abstract
Adequate brain iron levels are essential for enzyme activities, myelination, and neurotransmitter synthesis in the brain. Although systemic iron deficiency has been found in genetically or dietary-induced obese subjects, the effects of obesity-associated iron dysregulation in brain regions have not been examined. The objective of this study was to examine the effect of dietary fat and iron interaction on brain regional iron contents and regional-associated behavior patterns in a mouse model. Thirty C57BL/6J male weanling mice were randomly assigned to six dietary treatment groups (n = 5) with varying fat (control/high) and iron (control/high/low) contents. The stereotypical behaviors were measured during the 24th week. Blood, liver, and brain tissues were collected at the end of the 24th week. Brains were dissected into the hippocampus, midbrain, striatum, and thalamus regions. Iron contents and ferritin heavy chain (FtH) protein and mRNA expressions in these regions were measured. Correlations between stereotypical behaviors and brain regional iron contents were analyzed at the 5% significance level. Results showed that high-fat diet altered the stereotypical behaviors such as inactivity and total distance traveled (P < 0.05). The high-fat diet altered brain iron contents and FtH protein and mRNA expressions in a regional-specific manner: (1) high-fat diet significantly decreased the brain iron content in the striatum (P < 0.05), but not other regions, and (2) thalamus has a more distinct change in FtH mRNA expression compared with other regions. Furthermore, high-fat diet resulted in a significant decreased total distance traveled and a significant correlation between iron content and sleeping in midbrain (P < 0.05). Dietary iron also decreased brain iron content and FtH protein expression in a regionally specific manner. The effect of interaction between dietary fat and iron was observed in brain iron content and behaviors. All these findings will lay foundations to further explore the links among obesity, behaviors, and brain iron alteration.
Collapse
Affiliation(s)
- Lumei Liu
- Department of Biology, North Carolina Agricultural and Technical State University , Greensboro, NC , USA
| | - Aria Byrd
- Department of Biology, North Carolina Agricultural and Technical State University , Greensboro, NC , USA
| | - Justin Plummer
- Department of Nutrition, The University of North Carolina at Greensboro , Greensboro, NC , USA
| | - Keith M Erikson
- Department of Nutrition, The University of North Carolina at Greensboro , Greensboro, NC , USA
| | - Scott H Harrison
- Department of Biology, North Carolina Agricultural and Technical State University , Greensboro, NC , USA
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University , Greensboro, NC , USA
| |
Collapse
|
25
|
Baldwin HJ, Green AE, Spellar KM, Arthur PJ, Phillips HG, Patel JV. Tipping the balance: Haemoglobinopathies and the risk of diabetes. World J Diabetes 2016; 7:8-13. [PMID: 26788262 PMCID: PMC4707301 DOI: 10.4239/wjd.v7.i1.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/08/2015] [Accepted: 12/02/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To establish a link between the risk of diabetes with haemoglobinopathies by examining available evidence of the effects of iron and blood glucose homeostasis from molecular to epidemiological perspectives.
METHODS: A systematic literature search was performed using electronic literature databases using various search terms. The International Diabetes Federation World Atlas was used to generate a list of populations with high rates of diabetes. PubMed, Scopus and Google Scholar were used to identify which of these populations also had a reported prevalence of haemoglobin abnormalities.
RESULTS: Abnormalities in iron homeostasis leads to increases in reactive oxygen species in the blood. This promotes oxidative stress which contributes to peripheral resistance to insulin in two ways: (1) reduced insulin/insulin receptor interaction; and (2) β-cell dysfunction. Hepcidin is crucial in terms of maintaining appropriate amounts of iron in the body and is in turn affected by haemoglobinopathies. Hepcidin also has other metabolic effects in places such as the liver but so far the extent of these is not well understood. It does however directly control the levels of serum ferritin. High serum ferritin is found in obese patients and those with diabetes and a meta-analysis of the various studies shows that high serum ferritin does indeed increase diabetes risk.
CONCLUSION: From an epidemiological standpoint, it is plausible that the well-documented protective effects of haemoglobinopathies with regard to malaria may have also offered other evolutionary advantages. By contributing to peripheral insulin resistance, haemoglobinopathies may have helped to sculpt the so-called “thrifty genotype”, which hypothetically is advantageous in times of famine. The prevalence data however is not extensive enough to provide concrete associations between diabetes and haemoglobinopathies - more precise studies are required.
Collapse
|
26
|
Hubler MJ, Peterson KR, Hasty AH. Iron homeostasis: a new job for macrophages in adipose tissue? Trends Endocrinol Metab 2015; 26:101-9. [PMID: 25600948 PMCID: PMC4315734 DOI: 10.1016/j.tem.2014.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 12/29/2022]
Abstract
Elevated serum ferritin and increased cellular iron concentrations are risk factors for diabetes; however, the etiology of this association is unclear. Metabolic tissues such as pancreas, liver, and adipose tissue (AT), as well as the immune cells resident in these tissues, may be involved. Recent studies demonstrate that the polarization status of macrophages has important relevance to their iron-handling capabilities. Furthermore, a subset of macrophages in AT have elevated iron concentrations and a gene expression profile indicative of iron handling, a capacity diminished in obesity. Because iron overload in adipocytes increases systemic insulin resistance, iron handling by AT macrophages may have relevance not only to adipocyte iron stores but also to local and systemic insulin sensitivity.
Collapse
Affiliation(s)
- Merla J Hubler
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristin R Peterson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|