1
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Esmaealzadeh N, Ram M, Abdolghaffari A, Marques AM, Bahramsoltani R. Toll-like receptors in inflammatory bowel disease: A review of the role of phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155178. [PMID: 38007993 DOI: 10.1016/j.phymed.2023.155178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammation within the gastrointestinal tract with a remarkable impact on patients' quality of life. Toll-like receptors (TLR), as a key contributor of immune system in inflammation, has a critical role in the pathogenesis of IBD and thus, can be a suitable target of therapeutic agents. Medicinal plants have long been considered as a source of bioactive agents for different diseases, including IBD. PURPOSE This review discusses current state of the art on the role of plant-derived compounds for the management of IBD with a focus on TLRs. METHODS Electronic database including PubMed, Web of Science, and Scopus were searched up to January 2023 and all studies in which anticolitis effects of a phytochemical was assessed via modulation of TLRs were considered. RESULTS Different categories of phytochemicals, including flavonoids, lignans, alkaloids, terpenes, saccharides, and saponins have demonstrated modulatory effects on TLR in different animal and cell models of bowel inflammation. Flavonoids were the most studied phytochemicals amongst others. Also, TLR4 was the most important type of TLRs which were modulated by phytochemicals. Other mechanisms such as inhibition of pro-inflammatory cytokines, nuclear factor-κB pathway, nitric oxide synthesis pathway, cyclooxygenase-2, lipid peroxidation, as well as induction of endogenous antioxidant defense mechanisms were also reported for phytochemicals in various IBD models. CONCLUSION Taken together, a growing body of pre-clinical evidence support the efficacy of herbal compounds for the treatment of IBD via modulation of TLRs. Future clinical studies are recommended to assess the safety and efficacy of these compounds in human.
Collapse
Affiliation(s)
- Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobe Ram
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - André Mesquita Marques
- Department of Natural Products, Institute of Drug Technology (Farmanguinhos), FIOCRUZ, Rio de Janeiro, Brazil
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Thakur K, Khan H, Grewal AK, Singh TG. Nuclear orphan receptors: A novel therapeutic agent in neuroinflammation. Int Immunopharmacol 2023; 124:110845. [PMID: 37690241 DOI: 10.1016/j.intimp.2023.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023]
Abstract
Orphan receptors constitute a historically varied subsection of a superfamily of nuclear receptors. Nuclear receptors regulate gene expression in response to ligand signals and are particularly alluring therapeutic targets for chronic illnesses. Neuroinflammation and neurodegenerative diseases have been linked to these orphan nuclear receptors. Preclinical and clinical evidence suggests that orphan receptors could serve as future targets in neuroinflammation, such as Parkinson's disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), and Cerebral Ischemia. Given the therapeutic relevance of certain orphan receptors in a variety of disorders, their potential in neuroinflammation remains unproven. There is substantial evidence that ligand-activated transcription factors have great promise for preventing neurodegenerative and neurological disorders, with certain orphan nuclear receptors i.e., PPARγ, NR4As, and orphan GPCRs holding particularly high potential. Based on previous findings, we attempted to determine the contribution of PPAR, NR4As, and orphan GPCRs-regulated neuroinflammation to the pathogenesis of these disorders and their potential to become novel therapeutic targets.
Collapse
Affiliation(s)
- Kiran Thakur
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | | | | |
Collapse
|
4
|
Stifel U, Caratti G, Tuckermann J. Novel insights into the regulation of cellular catabolic metabolism in macrophages through nuclear receptors. FEBS Lett 2022; 596:2617-2629. [PMID: 35997656 DOI: 10.1002/1873-3468.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022]
Abstract
Regulation of cellular catabolic metabolism in immune cells has recently become a major concept for resolution of inflammation. Nuclear receptors (NRs), including peroxisome proliferator activator receptors (PPARs), 1,25-dihydroxyvitamin D(3) receptor (VDR), liver X receptors (LXRs), glucocorticoid receptors (GRs), estrogen-related receptor α (ERRα) and Nur77, have been identified as major modulators of inflammation, affecting innate immune cells, such as macrophages. Evidence emerges on how NRs regulate cellular metabolism in macrophages during inflammatory processes and contribute to the resolution of inflammation. This could have new implications for our understanding of how NRs shape immune responses and inform anti-inflammatory drug design. This review will highlight the recent developments about NRs and their role in cellular metabolism in macrophages.
Collapse
Affiliation(s)
- Ulrich Stifel
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Giorgio Caratti
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| |
Collapse
|
5
|
Buspirone Ameliorates Colon Inflammation in TNBS-Induced Rat Acute Colitis: The Involvement of TLR4/NF-kB Pathway. Drug Res (Stuttg) 2022; 72:449-456. [PMID: 35820429 DOI: 10.1055/a-1855-1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory situation involving the whole digestive system. This illness includes ulcerative colitis and Crohn's disease. According to scientific research, the immune system plays an essential part in developing this disease. Recently, buspirone has been discovered to have anti-inflammatory properties. As a result, this research aims to see if buspirone provides anti-inflammatory effects in a rat model of TNBS-induced colitis. Control, TNBS, dexamethasone (2 mg/kg), and buspirone (5, 10, and 20 mg/kg) were randomly given to six groups of 36 male Wistar rats. Colitis was induced by intrarectal instillation of TNBS in all research groups except the control group, and rats were meliorated with dexamethasone and buspirone. Macroscopic and microscopic lesions appeared after colitis induction, while therapy with dexamethasone and buspirone significantly improved the lesions. TLR4 and pNF-κB expression were also enhanced during colitis induction. On the other hand, the administration of dexamethasone or buspirone resulted in a considerable reduction in their expression. Tissue TNF-α and MPO activity were enhanced after induction of colitis in terms of biochemical variables; however, administration of dexamethasone or buspirone reduced TNF-α and MPO activity. Eventually, in an animal model of severe colitis, buspirone displayed anti-inflammatory characteristics via lowering the TLR4/NF-ĸB signaling pathway's activity in an animal model of acute colitis.
Collapse
|
6
|
Bupropion Ameliorates Acetic Acid-Induced Colitis in Rat: the Involvement of the TLR4/NF-kB Signaling Pathway. Inflammation 2021; 43:1999-2009. [PMID: 32594336 DOI: 10.1007/s10753-020-01273-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease composed of ulcerative colitis and Crohn's disease is a disorder that may involve entire gastrointestinal tract. Its pathogenesis is mainly an immune-mediated inflammation. Recently, it has been indicated that bupropion possesses anti-inflammatory properties; hence, the objective of this experiment is the investigation of the anti-inflammatory influence of bupropion on colonic lesions that emerged following the intrarectal administration of acetic acid. Thirty-six male Wistar rats were allocated randomly into six groups, including control, acetic acid, dexamethasone (2 mg/kg), and bupropion (40, 80, and 160 mg/kg). Colitis was induced by intrarectal administration of acetic acid in all study groups except control group, and animals were treated by oral administration of dexamethasone and bupropion. While macroscopic and microscopic lesions were observed after colitis induction, administration of dexamethasone and bupropion 160 mg/kg led to the remarkable improvement in lesions. In addition, the expression of TLR4 and NF-ĸB was decreased after colitis induction; however, treatment with dexamethasone (2 mg/kg) and bupropion (160 mg/kg) resulted in a significant decrease in their expression. Regarding biochemical factors, following colitis induction, TNF-α level and MPO activity were increased; nevertheless, dexamethasone (2 mg/kg) and bupropion (160 mg/kg) decreased the TNF-α and MPO activity. In conclusion, bupropion exerts anti-inflammatory influence through suppressing the TLR4 and NF-ĸB expression in the rat model of acute colitis.
Collapse
|
7
|
Sun Y, Zang L, Lau C, Zhang X, Lu J. Sensitive detection of transcription factor by coupled fluorescence-encoded microsphere with exonuclease protection. Talanta 2021; 229:122272. [PMID: 33838774 DOI: 10.1016/j.talanta.2021.122272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 01/05/2023]
Abstract
Aberrant transcription factors (TFs) activities are closely related to the occurrence and development of various diseases. Herein, we presented a fluorescence-encoded microsphere-based approach for TFs detection coupling with common DNA footprinting assay. Target TFs specifically bound the binding sites of double-stranded DNA (dsDNA) probes which were conjugated to microspheres. Thus, the probes were protected from being hydrolyzed by exonuclease III (Exo III). Afterwards, biotins labeled on the probes reacted with streptavidin-phycoerythrin (SA-PE) to produce fluorescent signal; however, in the absence of target TFs, the dsDNA probes would be hydrolyzed by Exo III resulting in biotins falling off and thus fluorescence signal was not generated. This strategy can be used to detect nuclear factor-kappa B p50 (NF-κB p50) with a detection limit of 0.2 nM. The steric hindrance of microspheres overcome the disadvantage of Exo III that can nibble into the protein-bound DNA region. Meanwhile, the fluorescent label of microsphere was specific to each TF, enabling multiplex detection could be achieved by changing specific protein binding site of corresponding dsDNA probe. This method has been successfully applied for simultaneous detection of NF-κB p50, AP-1 and CREB in nuclear extract isolated from HeLa cells stimulated or unstimulated by TNF-α, showing great potential for biomedical researches and precise disease diagnosis.
Collapse
Affiliation(s)
- Yue Sun
- School of Biomedical Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China; School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Liu Zang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Choiwan Lau
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Xueji Zhang
- School of Biomedical Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Jianzhong Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
8
|
Li Y, Deng S, Wang X, Huang W, Chen J, Robbins N, Mu X, Essandoh K, Peng T, Jegga AG, Rubinstein J, Adams DE, Wang Y, Peng J, Fan GC. Sectm1a deficiency aggravates inflammation-triggered cardiac dysfunction through disruption of LXRα signalling in macrophages. Cardiovasc Res 2021; 117:890-902. [PMID: 32170929 PMCID: PMC8453795 DOI: 10.1093/cvr/cvaa067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 01/03/2023] Open
Abstract
AIMS Cardiac dysfunction is a prevalent comorbidity of disrupted inflammatory homeostasis observed in conditions such as sepsis (acute) or obesity (chronic). Secreted and transmembrane protein 1a (Sectm1a) has previously been implicated to regulate inflammatory responses, yet its role in inflammation-associated cardiac dysfunction is virtually unknown. METHODS AND RESULTS Using the CRISPR/Cas9 system, we generated a global Sectm1a-knockout (KO) mouse model and observed significantly increased mortality and cardiac injury after lipopolysaccharide (LPS) injection, when compared with wild-type (WT) control. Further analysis revealed significantly increased accumulation of inflammatory macrophages in hearts of LPS-treated KO mice. Accordingly, ablation of Sectm1a remarkably increased inflammatory cytokines levels both in vitro [from bone marrow-derived macrophages (BMDMs)] and in vivo (in serum and myocardium) after LPS challenge. RNA-sequencing results and bioinformatics analyses showed that the most significantly down-regulated genes in KO-BMDMs were modulated by LXRα, a nuclear receptor with robust anti-inflammatory activity in macrophages. Indeed, we identified that the nuclear translocation of LXRα was disrupted in KO-BMDMs when treated with GW3965 (LXR agonist), resulting in higher levels of inflammatory cytokines, compared to GW3965-treated WT-cells. Furthermore, using chronic inflammation model of high-fat diet (HFD) feeding, we observed that infiltration of inflammatory monocytes/macrophages into KO-hearts were greatly increased and accordingly, worsened cardiac function, compared to WT-HFD controls. CONCLUSION This study defines Sectm1a as a new regulator of inflammatory-induced cardiac dysfunction through modulation of LXRα signalling in macrophages. Our data suggest that augmenting Sectm1a activity may be a potential therapeutic approach to resolve inflammation and associated cardiac dysfunction.
Collapse
Affiliation(s)
- Yutian Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Shan Deng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Jing Chen
- Division of Biomedical Informatics, Cincinnati Children’s Hospital, Cincinnati, OH 45267, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Nathan Robbins
- Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Xingjiang Mu
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Kobina Essandoh
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Tianqing Peng
- Critical Illness Research, Lawson Health Research Institute, London, ON N6A 4G5, Canada
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital, Cincinnati, OH 45267, USA
| | - Jack Rubinstein
- Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - David E Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | - Jiangtong Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| |
Collapse
|
9
|
Dejban P, Sahraei M, Chamanara M, Dehpour A, Rashidian A. Anti-inflammatory effect of amitriptyline in a rat model of acetic acid-induced colitis: the involvement of the TLR4/NF-kB signaling pathway. Fundam Clin Pharmacol 2020; 35:843-851. [PMID: 33336463 DOI: 10.1111/fcp.12642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023]
Abstract
Inflammatory bowel disease (IBD) consists of ulcerative colitis and Crohn's disease, which affects gastrointestinal tract. The immune-mediated inflammation is mostly considered as the pathogenesis of IBD. It has been demonstrated that amitriptyline exerts anti-inflammatory influence; therefore, the aim of the current experiment is to evaluate the anti-inflammatory impact of amitriptyline on intestinal disorders following acetic acid-induced colitis in rats. Thirty male Wistar rats were randomly divided into five groups, including sham, control, dexamethasone (2 mg/kg), and amitriptyline (10 and 20 mg/kg). Intrarectal administration of acetic acid was applied to colitis induction in all study groups except for sham group. Animals were treated by oral administration of dexamethasone or amitriptyline. While macroscopic and microscopic lesions appeared after colitis induction treatment with dexamethasone and amitriptyline 10 and 20 mg/kg significantly improved lesions. Moreover, Toll-like receptor 4 (TLR4) and nuclear factor binding kappa light-chain (NF-ĸB expression), tumor necrosis factor-alpha (TNF-α) level, and myeloperoxidase (MPO) activity were increased after colitis induction, whereas treatment with dexamethasone (2 mg/kg) or amitriptyline (10 and 20 mg/kg) caused a noticeable decrease in the TLR4 and pNF-ĸB expression, TNF-α level, and MPO activity. In conclusion, amitriptyline plays an anti-inflammatory role through the suppression of TLR4/pNF-ĸB signaling pathway in the rat model of acute colitis.
Collapse
Affiliation(s)
- Pegah Dejban
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of nephrology and hypertension, Mayo Clinic, MN, USA
| | - Masomeh Sahraei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Nuclear Receptors as Potential Therapeutic Targets for Myeloid Leukemia. Cells 2020; 9:cells9091921. [PMID: 32824945 PMCID: PMC7563802 DOI: 10.3390/cells9091921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (NR) superfamily has been studied extensively in many solid tumors and some receptors have been targeted to develop therapies. However, their roles in leukemia are less clear and vary considerably among different types of leukemia. Some NRs participate in mediating the differentiation of myeloid cells, making them attractive therapeutic targets for myeloid leukemia. To date, the success of all-trans retinoic acid (ATRA) in treating acute promyelocytic leukemia (APL) remains a classical and unsurpassable example of cancer differentiation therapy. ATRA targets retinoic acid receptor (RAR) and forces differentiation and/or apoptosis of leukemic cells. In addition, ligands/agonists of vitamin D receptor (VDR) and peroxisome proliferator-activated receptor (PPAR) have also been shown to inhibit proliferation, induce differentiation, and promote apoptosis of leukemic cells. Encouragingly, combining different NR agonists or the addition of NR agonists to chemotherapies have shown some synergistic anti-leukemic effects. This review will summarize recent research findings and discuss the therapeutic potential of selected NRs in acute and chronic myeloid leukemia, focusing on RAR, VDR, PPAR, and retinoid X receptor (RXR). We believe that more mechanistic studies in this field will not only shed new lights on the roles of NRs in leukemia, but also further expand the clinical applications of existing therapeutic agents targeting NRs.
Collapse
|
11
|
Yang L, Lin Q, Han L, Wang Z, Luo M, Kang W, Liu J, Wang J, Ma T, Liu H. Soy hull dietary fiber alleviates inflammation in BALB/C mice by modulating the gut microbiota and suppressing the TLR-4/NF-κB signaling pathway. Food Funct 2020; 11:5965-5975. [PMID: 32662806 DOI: 10.1039/d0fo01102a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The present study is undertaken to assess the ability of insoluble dietary fiber (IDF) and soluble dietary fiber (SDF) extracted from soy hulls to relieve colitis in dextran sulfate sodium (DSS) induced inflammatory bowel disease (IBD) in a BALB/C mouse model. We characterized dietary fiber (DF) structures by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Water retention capacity (WRC), water swelling capacity (WSC), oil adsorption capacity (OAC), glucose adsorption capacity (GAC), and the bile acid retardation index (BRI) were measured. The unique surface and chemical structural characteristics endowed DF with good absorption capacity and hydration ability, along with delayed glucose diffusion and absorption of bile acids. IBD was induced with a solution containing 5% DSS in male mice, which were administered a total oral dose of IDF (300 mg kg-1) and SDF (300 mg kg-1) three times per day after successful model establishment. All the mice were assessed weekly for weight change, diarrhea index, and fecal bleeding index. Levels of TLR-4 and NF-κB proteins were measured with western blotting analysis. Cytokine TNF-α in the serum was detected with an enzyme-linked immunosorbent assay (ELISA). Histological methods (H&E) were used to observe part of the mouse colon. The gut microbiota in the colonic contents was analyzed by 16S rRNA gene sequencing. DF decreased weight loss, diarrhea, and fecal bleeding, and also slowed serum TNF-α release. Increases in the levels of NF-κB proteins in inflamed colon tissue were also significantly suppressed by DF treatment. DF ameliorates the colitis induced decrease in gut microbiota species richness. The effect of SDF seemed clearer: the relative abundance of Barnesiella, Lactobacillus, Ruminococcus and Flavonifractor at the genus level was greater than that in the normal control group.
Collapse
Affiliation(s)
- Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China. and China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Qian Lin
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Lin Han
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Ziyi Wang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Mingshuo Luo
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Wanrong Kang
- Scientific Research Center, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Tao Ma
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
12
|
Nirwane A, Majumdar A. Understanding mitochondrial biogenesis through energy sensing pathways and its translation in cardio-metabolic health. Arch Physiol Biochem 2018; 124:194-206. [PMID: 29072101 DOI: 10.1080/13813455.2017.1391847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mitochondria play a pivotal role in physiological energy governance. Mitochondrial biogenesis comprises growth and division of pre-existing mitochondria, triggered by environmental stressors such as endurance exercise, caloric restriction, cold exposure and oxidative stress. For normal physiology, balance between energy intake, storage and expenditure is of utmost important for the coordinated regulation of energy homeostasis. In contrast, abnormalities in these regulations render the individual susceptible to cardiometabolic disorders. This review provides a comprehensive coverage and understanding on mitochondrial biogenesis achieved through energy-sensing pathways. This includes the complex coordination of nuclear, cytosolic and mitochondrial events involving energy sensors, transcription factors, coactivators and regulators. It focuses on the importance of mitochondrial biogenesis in cardiometabolic health. Lastly, converging on the benefits of caloric restriction and endurance exercise in achieving cardiometabolic health.
Collapse
Affiliation(s)
- Abhijit Nirwane
- a Department of Pharmacology , Bombay College of Pharmacy , Mumbai , India
- b Department of Pharmaceutical and Biomedical Sciences , University of Georgia , Athens , GA , USA
| | - Anuradha Majumdar
- a Department of Pharmacology , Bombay College of Pharmacy , Mumbai , India
| |
Collapse
|
13
|
Ghonimy A, Zhang DM, Farouk MH, Wang Q. The Impact of Carnitine on Dietary Fiber and Gut Bacteria Metabolism and Their Mutual Interaction in Monogastrics. Int J Mol Sci 2018; 19:E1008. [PMID: 29597260 PMCID: PMC5979481 DOI: 10.3390/ijms19041008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/06/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
Carnitine has vital roles in the endogenous metabolism of short chain fatty acids. It can protect and support gut microbial species, and some dietary fibers can reduce the available iron involved in the bioactivity of carnitine. There is also an antagonistic relationship between high microbial populations and carnitine bioavailability. This review shows the interactions between carnitine and gut microbial composition. It also elucidates the role of carnitine bacterial metabolism, mitochondrial function, fiber fermentability, and short chain fatty acids (SCFAs).
Collapse
Affiliation(s)
- Abdallah Ghonimy
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Dong Ming Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
- Tonghua Normal University, Tonghua 134000, China.
| | - Mohammed Hamdy Farouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt.
| | - Qiuju Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
14
|
Casali BT, Reed-Geaghan EG, Landreth GE. Nuclear receptor agonist-driven modification of inflammation and amyloid pathology enhances and sustains cognitive improvements in a mouse model of Alzheimer's disease. J Neuroinflammation 2018; 15:43. [PMID: 29448961 PMCID: PMC5815248 DOI: 10.1186/s12974-018-1091-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder characterized by pathological hallmarks of beta-amyloid plaque deposits, tau pathology, inflammation, and cognitive decline. Treatment remains a clinical obstacle due to lack of effective therapeutics. Agonists targeting nuclear receptors, such as bexarotene, reversed cognitive deficits regardless of treatment duration and age in murine models of AD. While bexarotene demonstrated marked efficacy in decreasing plaque levels following short-term treatment, prolonged treatment did not modulate plaque burden. This suggested that plaques might reform in mice treated chronically with bexarotene and that cessation of bexarotene treatment before plaques reform might alter amyloid pathology, inflammation, and cognition in AD mice. METHODS We utilized one-year-old APP/PS1 mice that were divided into two groups. We treated one group of mice for 2 weeks with bexarotene. The other group of mice was treated for 2 weeks with bexarotene followed by withdrawal of drug treatment for an additional 2 weeks. Cognition was evaluated using the novel-object recognition test either at the end of bexarotene treatment or the end of the withdrawal period. We then analyzed amyloid pathology and microgliosis at the conclusion of the study in both groups. RESULTS Bexarotene treatment enhanced cognition in APP/PS1 mice similar to previous findings. Strikingly, we observed sustained cognitive improvements in mice in which bexarotene treatment was discontinued for 2 weeks. We observed a sustained reduction in microgliosis and plaque burden following drug withdrawal exclusively in the hippocampus. CONCLUSIONS Our findings demonstrate that bexarotene selectively modifies aspects of neuroinflammation in a region-specific manner to reverse hippocampal-dependent cognitive deficits in AD mice and may provide insight to inform future studies with nuclear receptor agonists.
Collapse
Affiliation(s)
- Brad T. Casali
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Erin G. Reed-Geaghan
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Gary E. Landreth
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
15
|
Jena PK, Sheng L, Di Lucente J, Jin LW, Maezawa I, Wan YJY. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity. FASEB J 2018; 32:2866-2877. [PMID: 29401580 DOI: 10.1096/fj.201700984rr] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The goal of this study was to identify the intrinsic links that explain the effect of a Western diet (WD) on cognitive dysfunction. Specific pathogen-free, wild-type mice were fed either a control diet (CD) or a high-fat, high-sucrose WD after weaning and were euthanized at 10 mo of age to study the pathways that affect cognitive health. The results showed that long-term WD intake reduced hippocampal synaptic plasticity and the level of brain-derived neurotrophic factor mRNA in the brain and isolated microglia. A WD also activated ERK1/2 and reduced postsynaptic density-95 in the brain, suggesting postsynaptic damage. Moreover, WD-fed mice had increased inflammatory signaling in the brain, ileum, liver, adipose tissue, and spleen, which was accompanied by microglia activation. In the brain, as well as in the digestive tract, a WD reduced signaling regulated by retinoic acid and bile acids (BAs), whose receptors form heterodimers to control metabolism and inflammation. Furthermore, a WD intake caused dysbiosis and dysregulated BA synthesis with reduced endogenous ligands for BA receptors, i.e., farnesoid X receptor and G-protein-coupled bile acid receptor in the liver and brain. Together, dysregulated BA synthesis and dysbiosis were accompanied by systemic inflammation, microglial activation, and reduced neuroplasticity induced by WD.-Jena, P. K., Sheng, L., Di Lucente, J., Jin, L.-W., Maezawa, I., Wan, Y.-J. Y. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity.
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| | - Jacopo Di Lucente
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Lee-Way Jin
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Izumi Maezawa
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| |
Collapse
|
16
|
Zhang Y, Xiang D, Tang B, Zhang CY. Sensitive Detection of Transcription Factor in Nuclear Extracts by Target-Actuated Isothermal Amplification-Mediated Fluorescence Enhancement. Anal Chem 2017; 89:10439-10445. [DOI: 10.1021/acs.analchem.7b02451] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Zhang
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Shandong Provincial
Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Dongxue Xiang
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Shandong Provincial
Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Shandong Provincial
Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-yang Zhang
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Shandong Provincial
Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
17
|
Esposito S, Bonavita S, Sparaco M, Gallo A, Tedeschi G. The role of diet in multiple sclerosis: A review. Nutr Neurosci 2017; 21:377-390. [PMID: 28338444 DOI: 10.1080/1028415x.2017.1303016] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial, inflammatory, and neurodegenerative disease of the central nervous system, where environmental factors interact with genetic susceptibility. The role of diet on MS has not been comprehensively elucidated; therefore, through an extensive search of relevant literature, this review reports the most significant evidence regarding nutrition as a possible co-factor influencing the inflammatory cascade by acting on both its molecular pathways and gut microbiota. Since nutritional status and dietary habits in MS patients have not been extensively reported, the lack of a scientific-based consensus on dietary recommendation in MS could encourage many patients to experiment alternative dietetic regimens, increasing the risk of malnutrition. This work investigates the health implications of an unbalanced diet in MS, and collects recent findings on nutrients of great interest among MS patients and physicians. The aim of this review is to elucidate the role of an accurate nutritional counseling in MS to move toward a multidisciplinary management of the disease and to encourage future studies demonstrating the role of a healthy diet on the onset and course of MS.
Collapse
Affiliation(s)
- Sabrina Esposito
- a I Clinic of Neurology, Second University of Naples , 80138 , Italy.,b Department of Neuroscience, Psychology, Drug Research and Child Health , University of Florence , Italy
| | - Simona Bonavita
- a I Clinic of Neurology, Second University of Naples , 80138 , Italy.,c MRI Research Center SUN-FISM, Second University of Naples , Italy.,d Institute for Diagnosis and Care "Hermitage Capodimonte" , Naples , Italy
| | - Maddalena Sparaco
- a I Clinic of Neurology, Second University of Naples , 80138 , Italy
| | - Antonio Gallo
- a I Clinic of Neurology, Second University of Naples , 80138 , Italy.,c MRI Research Center SUN-FISM, Second University of Naples , Italy.,d Institute for Diagnosis and Care "Hermitage Capodimonte" , Naples , Italy
| | - Gioacchino Tedeschi
- a I Clinic of Neurology, Second University of Naples , 80138 , Italy.,c MRI Research Center SUN-FISM, Second University of Naples , Italy.,d Institute for Diagnosis and Care "Hermitage Capodimonte" , Naples , Italy
| |
Collapse
|
18
|
Huang GL, Zhang W, Ren HY, Zhou P, Chen Y, Chen QX, Shen DY. Oncogenic retinoic acid receptor α promotes human colorectal cancer growth through simultaneously regulating p21 transcription and GSK3β/β-catenin signaling. Cancer Lett 2016; 388:118-129. [PMID: 27932034 DOI: 10.1016/j.canlet.2016.11.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 12/24/2022]
Abstract
Retinoic acid receptor α (RARα) plays important roles in the progression of several cancers such as leukemia, breast cancer, and lung cancer. In this study, we demonstrated that RARα protein was frequently overexpressed in human CRC specimens and CRC cell lines. RARα knockdown decreased cell survival, proliferation, and colony formation in vitro and tumorigenic potential in nude mice. Specifically, RARα knockdown inhibited cell cycle progression at G1 phase through upregulation of cell cycle inhibitor p21, and downregulation of cyclinD1. Furthermore, RARα was directly recruited to the p21 promoter to inhibit the expression of p21. Simultaneously, RARα contributed to the progression of CRC cells in part due to upregulation of cyclinD1 via activation of GSK3β/β-catenin pathway. Molecular mechanism studies revealed RARα interacted with GSK3β and led to decreased expression of GSK3β at ser9, followed by increased β-catenin expression. Taken together, our results signified the importance of RARα in CRC and demonstrated that RARα promotes CRC progression through suppressing p21 transcription and enhancing GSK3β/β-catenin signaling. RARα might become a potential molecular target for the treatment of CRC.
Collapse
Affiliation(s)
- Gui-Li Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wei Zhang
- Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Hong-Yue Ren
- Biobank, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Pan Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yun Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qing-Xi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Dong-Yan Shen
- Biobank, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China.
| |
Collapse
|
19
|
Wehmeier K, Onstead-Haas LM, Wong NCW, Mooradian AD, Haas MJ. Pro-inflammatory signaling by 24,25-dihydroxyvitamin D3 in HepG2 cells. J Mol Endocrinol 2016; 57:87-96. [PMID: 27234962 DOI: 10.1530/jme-16-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/27/2016] [Indexed: 12/31/2022]
Abstract
The vitamin D metabolite 24,25-dihydroxyvitamin D3 (24, 25[OH]2D3) was shown to induce nongenomic signaling pathways in resting zone chondrocytes and other cells involved in bone remodeling. Recently, our laboratory demonstrated that 24,25-[OH]2D3 but not 25-hydroxyvitamin D3, suppresses apolipoprotein A-I (apo A-I) gene expression and high-density lipoprotein (HDL) secretion in hepatocytes. Since 24,25-[OH]2D3 has low affinity for the vitamin D receptor (VDR) and little is known with regard to how 24,25-[OH]2D3 modulates nongenomic signaling in hepatocytes, we investigated the capacity of 24,25-[OH]2D3 to activate various signaling pathways relevant to apo A-I synthesis in HepG2 cells. Treatment with 24,25-[OH]2D3 resulted in decreased peroxisome proliferator-activated receptor alpha (PPARα) expression and retinoid-X-receptor alpha (RXRα) expression. Similarly, treatment of hepatocytes with 50 nM 24,25-[OH]2D3 for 1-3 h induced PKCα activation as well as c-jun-N-terminal kinase 1 (JNK1) activity and extracellular-regulated kinase 1/2 (ERK1/2) activity. These changes in kinase activity correlated with changes in c-jun phosphorylation, an increase in AP-1-dependent transcriptional activity, as well as repression of apo A-I promoter activity. Furthermore, treatment with 24,25-[OH]2D3 increased IL-1β, IL-6, and IL-8 expression by HepG2 cells. These observations suggest that 24,25-[OH]2D3 elicits several novel rapid nongenomic-mediated pro-inflammatory protein kinases targeting AP1 activity, increasing pro-inflammatory cytokine expression, potentially impacting lipid metabolism and hepatic function.
Collapse
Affiliation(s)
- Kent Wehmeier
- Division of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, Florida, USA
| | - Luisa M Onstead-Haas
- Division of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, Florida, USA
| | - Norman C W Wong
- Department of MedicineBiochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Arshag D Mooradian
- Division of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, Florida, USA
| | - Michael J Haas
- Division of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, Florida, USA
| |
Collapse
|
20
|
Atorvastatin attenuates TNBS-induced rat colitis: the involvement of the TLR4/NF-kB signaling pathway. Inflammopharmacology 2016; 24:109-18. [PMID: 27038922 DOI: 10.1007/s10787-016-0263-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/18/2016] [Indexed: 12/13/2022]
Abstract
AIM The aim of the present study is to explore whether atorvastatin improves intestinal inflammation through the inhibition of the TLR4/NFkB signaling pathway in TNBS-induced rat colitis. METHODS Acute colitis was induced by intra-rectal administration of 100 mg/kg TNBS dissolved in 0.25 ml of 50 % ethanol. Twenty four hours after colitis induction, saline, atorvastatin (20 and 40 mg/kg) and sulfasalazine (100 mg/kg) were given to the animals by oral route. This was repeated daily for 1 week. Body weight changes, macroscopic and microscopic lesions were assessed. MPO and TNF-α activities were detected by immunohistochemistry (IHC) and the expression level of TLR4, MyD88 and NF-κB p65 proteins were measured by western blotting analysis. RESULTS Atorvastatin and sulfasalazine reduced the body weight loss, macroscopic and microscopic lesions. Additionally, both drugs decreased the expression of MPO and TNF-α positive cells in the colon tissue. Furthermore, they inhibited the TNBS-induced expression of TLR4, MyD88 and NF-κB p65 proteins. CONCLUSIONS It is suggested that the anti-inflammatory effect of atorvastatin on TNBS-induced rat colitis may involve the inhibition of the TLR4/NFkB signaling pathway.
Collapse
|
21
|
Luo Y, Wang Q, Zhang Y. A systems pharmacology approach to decipher the mechanism of danggui-shaoyao-san decoction for the treatment of neurodegenerative diseases. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:66-81. [PMID: 26680587 DOI: 10.1016/j.jep.2015.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/27/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neurodegenerative diseases (NDs) is a time-dependent course for a sequence of conditions that primarily impact the neurons in the human brain, ultimately, resulting in persistence and progressive degeneration and / or death of nerve cells and reduction of cognition and memory function. Currently, there are no therapeutic approaches to cure neurodegeneration, except certain medicines that temporarily alleviate symptoms, facilitating the improvement of a patients' quality of life. Danggui-shaoyao-san (DSS), as a famous Chinese herbal formula, has been widely used in the treatment of various illnesses, including neurodegenerative diseases. Although well-practiced in clinical medicine, the mechanisms involved in DSS for the treatment of neurodegenerative diseases remain elusive. MATERIALS AND METHODS In the present study, a novel systems pharmacology approach was developed to decipher the potential mechanism between DSS and neurodegenerative disorders, implicated in oral bioavailability screening, drug-likeness assessment, target identification and network analysis. RESULTS Based on a comprehensive systems approach, active compounds of DSS, relevant potential targets and targets associated with diseases were predicted. Active compounds, targets and diseases were used to construct biological networks, such as, compound-target interactions and target-disease networks, to decipher the mechanisms of DSS to address NDs. CONCLUSIONS Overall, a well-understood picture of DSS, hallmarked by multiple herbs-compounds-targets-pathway-cooperation networks for the treatment of NDs, was revealed. Notably, this systems pharmacology approach provided a novel in silico approach for the development paradigm of traditional Chinese medicine (TCM) and the generation of new strategies for the management of NDs.
Collapse
Affiliation(s)
- Yunxia Luo
- Laboratory of Experimental Animal, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yongbin Zhang
- Laboratory of Experimental Animal, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
22
|
Porcu P, Barron AM, Frye CA, Walf AA, Yang SY, He XY, Morrow AL, Panzica GC, Melcangi RC. Neurosteroidogenesis Today: Novel Targets for Neuroactive Steroid Synthesis and Action and Their Relevance for Translational Research. J Neuroendocrinol 2016; 28:12351. [PMID: 26681259 PMCID: PMC4769676 DOI: 10.1111/jne.12351] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/12/2015] [Accepted: 12/12/2015] [Indexed: 12/19/2022]
Abstract
Neuroactive steroids are endogenous neuromodulators synthesised in the brain that rapidly alter neuronal excitability by binding to membrane receptors, in addition to the regulation of gene expression via intracellular steroid receptors. Neuroactive steroids induce potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the GABAA receptor. They also exert neuroprotective, neurotrophic and antiapoptotic effects in several animal models of neurodegenerative diseases. Neuroactive steroids regulate many physiological functions, such as the stress response, puberty, the ovarian cycle, pregnancy and reward. Their levels are altered in several neuropsychiatric and neurological diseases and both preclinical and clinical studies emphasise a therapeutic potential of neuroactive steroids for these diseases, whereby symptomatology ameliorates upon restoration of neuroactive steroid concentrations. However, direct administration of neuroactive steroids has several challenges, including pharmacokinetics, low bioavailability, addiction potential, safety and tolerability, which limit its therapeutic use. Therefore, modulation of neurosteroidogenesis to restore the altered endogenous neuroactive steroid tone may represent a better therapeutic approach. This review summarises recent approaches that target the neuroactive steroid biosynthetic pathway at different levels aiming to promote neurosteroidogenesis. These include modulation of neurosteroidogenesis through ligands of the translocator protein 18 kDa and the pregnane xenobiotic receptor, as well as targeting of specific neurosteroidogenic enzymes such as 17β-hydroxysteroid dehydrogenase type 10 or P450 side chain cleavage. Enhanced neurosteroidogenesis through these targets may be beneficial not only for neurodegenerative diseases, such as Alzheimer's disease and age-related dementia, but also for neuropsychiatric diseases, including alcohol use disorders.
Collapse
Affiliation(s)
- Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Anna M. Barron
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba, Japan
| | - Cheryl Anne Frye
- Institute of Arctic Biology, The University of Alaska–Fairbanks, Fairbanks, AK, USA
- The University at Albany, Albany, NY, USA
| | - Alicia A. Walf
- Institute of Arctic Biology, The University of Alaska–Fairbanks, Fairbanks, AK, USA
- The University at Albany, Albany, NY, USA
- Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Song-Yu Yang
- Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Xue-Ying He
- Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - A. Leslie Morrow
- Departments of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Gian Carlo Panzica
- Department of Neuroscience, University of Turin, and NICO - Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Roberto C. Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
23
|
Swaminathan S, Rosner MH, Okusa MD. Emerging therapeutic targets of sepsis-associated acute kidney injury. Semin Nephrol 2015; 35:38-54. [PMID: 25795498 DOI: 10.1016/j.semnephrol.2015.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is linked to high morbidity and mortality. To date, singular approaches to target specific pathways known to contribute to the pathogenesis of SA-AKI have failed. Because of the complexity of the pathogenesis of SA-AKI, a reassessment necessitates integrative approaches to therapeutics of SA-AKI that include general supportive therapies such as the use of vasopressors, fluids, antimicrobials, and target-specific and time-dependent therapeutics. There has been recent progress in our understanding of the pathogenesis and treatment of SA-AKI including the temporal nature of proinflammatory and anti-inflammatory processes. In this review, we discuss the clinical and experimental basis of emerging therapeutic approaches that focus on targeting early proinflammatory and late anti-inflammatory processes, as well as therapeutics that may enhance cellular survival and recovery. Finally, we include ongoing clinical trials in sepsis.
Collapse
Affiliation(s)
- Sundararaman Swaminathan
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, VA
| | - Mitchell H Rosner
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, VA
| | - Mark D Okusa
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, VA.
| |
Collapse
|
24
|
Andersen V, Svenningsen K, Knudsen LA, Hansen AK, Holmskov U, Stensballe A, Vogel U. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology. World J Gastroenterol 2015; 21:11862-11876. [PMID: 26557010 PMCID: PMC4631984 DOI: 10.3748/wjg.v21.i41.11862] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/07/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development.
METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function.
RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that ABCB1 expression identifies a subpopulation of pro-inflammatory Th17 cells which were resistant to treatment with glucocorticoids. The evidence for the involvement of ABCC2 and ABCG2 in colonic pathophysiology was weak.
CONCLUSION: ABCB1, diet, and gut microbes mutually interact in colonic inflammation, a well-known risk factor for CRC. Further insight may be translated into preventive and treatment strategies.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/physiopathology
- Disease Models, Animal
- Genetic Predisposition to Disease
- Humans
- Inflammatory Bowel Diseases/genetics
- Inflammatory Bowel Diseases/metabolism
- Inflammatory Bowel Diseases/pathology
- Inflammatory Bowel Diseases/physiopathology
- Mice, Transgenic
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phenotype
- Polymorphism, Genetic
- Tumor Microenvironment
Collapse
|
25
|
Fok I cleavage–inhibition strategy for the specific and accurate detection of transcription factors. Talanta 2015; 144:44-50. [DOI: 10.1016/j.talanta.2015.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 01/23/2023]
|
26
|
Mayer-Wrangowski SC, Rauh D. Monitoring Ligand-Induced Conformational Changes for the Identification of Estrogen Receptor Agonists and Antagonists. Angew Chem Int Ed Engl 2015; 54:4379-82. [DOI: 10.1002/anie.201410148] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 01/12/2023]
|
27
|
Mayer-Wrangowski SC, Rauh D. Detektion ligandeninduzierter Konformationsänderungen im Östrogenrezeptor. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
La Rocca C, Tait S, Mantovani A. Use of a combinedin vitroassay for effect-directed assessment of infant formulas. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Cinzia La Rocca
- Food and Veterinary Toxicology Unit; Department of Veterinary Public Health and Food Safety; Istituto Superiore di Sanità; Viale Regina Elena Rome 299-00161 Italy
| | - Sabrina Tait
- Food and Veterinary Toxicology Unit; Department of Veterinary Public Health and Food Safety; Istituto Superiore di Sanità; Viale Regina Elena Rome 299-00161 Italy
| | - Alberto Mantovani
- Food and Veterinary Toxicology Unit; Department of Veterinary Public Health and Food Safety; Istituto Superiore di Sanità; Viale Regina Elena Rome 299-00161 Italy
| |
Collapse
|
29
|
Meher AP, Joshi AA, Joshi SR. Maternal micronutrients, omega-3 fatty acids, and placental PPARγ expression. Appl Physiol Nutr Metab 2014; 39:793-800. [DOI: 10.1139/apnm-2013-0518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An altered one-carbon cycle is known to influence placental and fetal development. We hypothesize that deficiency of maternal micronutrients such as folic acid and vitamin B12 will lead to increased oxidative stress, reduced long-chain polyunsaturated fatty acids, and altered expression of peroxisome proliferator activated receptor (PPARγ) in the placenta, and omega-3 fatty acid supplementation to these diets will increase the expression of PPARγ. Female rats were divided into 5 groups: control, folic acid deficient, vitamin B12 deficient, folic acid deficient + omega-3 fatty acid supplemented, and vitamin B12 deficient + omega-3 fatty acid supplemented. Dams were dissected on gestational day 20. Maternal micronutrient deficiency leads to lower (p < 0.05) levels of placental docosahexaenoic acid, arachidonic acid, PPARγ expression and higher (p < 0.05) levels of plasma malonidialdehyde, placental IL-6, and TNF-α. Omega-3 fatty acid supplementation to a vitamin B12 deficient diet normalized the expression of PPARγ and lowered the levels of placental TNF-α. In the case of supplementation to a folic acid deficient diet it lowered the levels of malonidialdehyde and placental IL-6 and TNF-α. This study has implications for fetal growth as oxidative stress, inflammation, and PPARγ are known to play a key role in the placental development.
Collapse
Affiliation(s)
- Akshaya P. Meher
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411043, India
| | - Asmita A. Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411043, India
| | - Sadhana R. Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411043, India
| |
Collapse
|
30
|
|
31
|
Hu YW, Ma X, Huang JL, Mao XR, Yang JY, Zhao JY, Li SF, Qiu YR, Yang J, Zheng L, Wang Q. Dihydrocapsaicin Attenuates Plaque Formation through a PPARγ/LXRα Pathway in apoE(-/-) Mice Fed a High-Fat/High-Cholesterol Diet. PLoS One 2013; 8:e66876. [PMID: 23840542 PMCID: PMC3694162 DOI: 10.1371/journal.pone.0066876] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 05/10/2013] [Indexed: 12/26/2022] Open
Abstract
Aims Atherosclerosis is a chronic inflammatory disease and represents the major cause of cardiovascular morbidity and mortality. There is evidence that dihydrocapsaicin (DHC) can exert multiple pharmacological and physiological effects. Here, we explored the effect of DHC in atherosclerotic plaque progression in apoE−/− mice fed a high-fat/high-cholesterol diet. Methods and Results apoE−/− mice were randomly divided into two groups and fed a high-fat/high-cholesterol diet with or without DHC for 12 weeks. We demonstrated that cellular cholesterol content was significantly decreased while apoA1-mediated cholesterol efflux was significantly increased following treatment with DHC in THP-1 macrophage-derived foam cells. We also observed that plasma levels of TG, LDL-C, VLDL-C, IL-1β, IL-6, TNF-α and CRP were markedly decreased while plasma levels of apoA1 and HDL-C were significantly increased, and consistent with this, atherosclerotic lesion development was significantly inhibited by DHC treatment of apoE−/− mice fed a high-fat/high-cholesterol diet. Moreover, treatment with both LXRα siRNA and PPARγ siRNA made the up-regulation of DHC on ABCA1, ABCG1, ABCG5, SR-B1, NPC1, CD36, LDLR, HMGCR, apoA1 and apoE expression notably abolished while made the down-regulation of DHC on SRA1 expression markedly compensated. And treatment with PPARγ siRNA made the DHC-induced up-regulation of LXRα expression notably abolished while treatment with LXRα siRNA had no effect on DHC-induced PPARγ expression. Conclusion These observations provide direct evidence that DHC can significantly decrease atherosclerotic plaque formation involving in a PPARγ/LXRα pathway and thus DHC may represent a promising candidate for a therapeutic agent for the treatment or prevention of atherosclerosis.
Collapse
Affiliation(s)
- Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Ma
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Lan Huang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin-Ru Mao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun-Yao Yang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia-Yi Zhao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shu-Fen Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia Yang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (LZ); (QW)
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (LZ); (QW)
| |
Collapse
|
32
|
Anuka E, Gal M, Stocco DM, Orly J. Expression and roles of steroidogenic acute regulatory (StAR) protein in 'non-classical', extra-adrenal and extra-gonadal cells and tissues. Mol Cell Endocrinol 2013; 371:47-61. [PMID: 23415713 DOI: 10.1016/j.mce.2013.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/03/2013] [Accepted: 02/04/2013] [Indexed: 01/12/2023]
Abstract
The activity of the steroidogenic acute regulatory (StAR) protein is indispensable and rate limiting for high output synthesis of steroid hormones in the adrenal cortex and the gonads, known as the 'classical' steroidogenic organs (StAR is not expressed in the human placenta). In addition, studies of recent years have shown that StAR is also expressed in many tissues that produce steroid hormones for local use, potentially conferring some functional advantage by acting via intracrine, autocrine or paracrine fashion. Others hypothesized that StAR might also function in non-steroidogenic roles in specific tissues. This review highlights the evidence for the presence of StAR in 17 extra-adrenal and extra-gonadal organs, cell types and malignancies. Provided is the physiological context and the rationale for searching for the presence of StAR in such cells. Since in many of the tissues the overall level of StAR is relatively low, we also reviewed the methods used for StAR detection. The gathered information suggests that a comprehensive understanding of StAR activity in 'non-classical' tissues will require the use of experimental approaches that are able to analyze StAR presence at single-cell resolution.
Collapse
Affiliation(s)
- Eli Anuka
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
33
|
Ryan SM, McMorrow J, Umerska A, Patel HB, Kornerup KN, Tajber L, Murphy EP, Perretti M, Corrigan OI, Brayden DJ. An intra-articular salmon calcitonin-based nanocomplex reduces experimental inflammatory arthritis. J Control Release 2013; 167:120-9. [PMID: 23391443 DOI: 10.1016/j.jconrel.2013.01.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 12/14/2022]
Abstract
Prolonged inappropriate inflammatory responses contribute to the pathogenesis of rheumatoid arthritis (RA) and to aspects of osteoarthritis (OA). The orphan nuclear receptor, NR4A2, is a key regulator and potential biomarker for inflammation and represents a potentially valuable therapeutic target. Both salmon calcitonin (sCT) and hyaluronic acid (HA) attenuated activated mRNA expression of NR4A1, NR4A2, NR4A3, and matrix metalloproteinases (MMPs) 1, 3 and 13 in three human cell lines: SW1353 chondrocytes, U937 and THP-1 monocytes. Ad-mixtures of sCT and HA further down-regulated expression of NR4A2 compared to either agent alone at specific concentrations, hence the rationale for their formulation in nanocomplexes (NPs) using chitosan. The sCT released from NP stimulated cAMP production in human T47D breast cancer cells expressing sCT receptors. When NP were injected by the intra-articular (I.A.) route to the mouse knee during on-going inflammatory arthritis of the K/BxN serum transfer model, joint inflammation was reduced together with NR4A2 expression, and local bone architecture was preserved. These data highlight remarkable anti-inflammatory effects of sCT and HA at the level of reducing NR4A2 mRNA expression in vitro. Combining them in NP elicits anti-arthritic effects in vivo following I.A. delivery.
Collapse
Affiliation(s)
- Sinéad M Ryan
- Environmental Health Research Institute, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Cathal Brugha St., Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Renga B, Francisci D, D'Amore C, Schiaroli E, Carino A, Baldelli F, Fiorucci S. HIV-1 infection is associated with changes in nuclear receptor transcriptome, pro-inflammatory and lipid profile of monocytes. BMC Infect Dis 2012; 12:274. [PMID: 23106848 PMCID: PMC3528633 DOI: 10.1186/1471-2334-12-274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/25/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Persistent residual immune activation and lipid dysmetabolism are characteristics of HIV positive patients receiving an highly active antiretroviral therapy (HAART). Nuclear Receptors are transcription factors involved in the regulation of immune and metabolic functions through the modulation of gene transcription. The objective of the present study was to investigate for the relative abundance of members of the nuclear receptor family in monocytic cells isolated from HIV positive patients treated or not treated with HAART. METHODS Monocytes isolated from peripheral blood mononuclear cells (PBMC) were used for analysis of the relative mRNA expressions of FXR, PXR, LXR, VDR, RARα, RXR, PPARα, PPARβ, PPARγ and GR by Real-Time polymerase chain reaction (PCR). The expression of a selected subset of inflammatory and metabolic genes MCP-1, ICAM-1, CD36 and ABCA1 was also measured. RESULTS Monocytes isolated from HIV infected patients expressed an altered pattern of nuclear receptors characterized by a profound reduction in the expressions of FXR, PXR, PPARα, GR, RARα and RXR. Of interest, the deregulated expression of nuclear receptors was not restored under HAART and was linked to an altered expression of genes which supports both an immune activation and altered lipid metabolism in monocytes. CONCLUSIONS Altered expression of genes mediating reciprocal regulation of lipid metabolism and immune function in monocytes occurs in HIV. The present findings provide a mechanistic explanation for immune activation and lipid dysmetabolism occurring in HIV infected patients and could lead to the identification of novel potential therapeutic targets.
Collapse
Affiliation(s)
- Barbara Renga
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Laragione T, Gulko PS. Liver X receptor regulates rheumatoid arthritis fibroblast-like synoviocyte invasiveness, matrix metalloproteinase 2 activation, interleukin-6 and CXCL10. Mol Med 2012; 18:1009-17. [PMID: 22634718 DOI: 10.2119/molmed.2012.00173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/15/2012] [Indexed: 01/07/2023] Open
Abstract
Fibroblast-like synoviocyte (FLS) invasiveness correlates with articular damage in rheumatoid arthritis (RA), yet little is known about its regulation. In this study we aimed to determine the role of the nuclear receptor liver X receptor (LXR) in FLS invasion. FLS were isolated from synovial tissues obtained from RA patients and from DA rats with pristane-induced arthritis. Invasion was tested on Matrigel-coated chambers in the presence of the LXR agonist T0901317, or control vehicle. FLS were cultured in the presence or absence of T0901317, and supernatants were used to quantify matrix metalloproteinase 1 (MMP-1), MMP-2, MMP-3, interleukin-6 (IL-6), tumor necrosis factor-α and C-X-C motif chemokine ligand 10 (CXCL10). Nuclear factor-κB (NF-κB) (p65) and Akt activation, actin cytoskeleton, cell morphology and lamellipodia formation were also determined. The LXR agonist T0901317 significantly reduced DA FLS invasion by 99% (P ≤ 0.001), and RA FLS invasion by 96% (P ≤ 0.001), compared with control. T0901317-induced suppression of invasion was associated with reduced production of activated MMP-2, IL-6 and CXCL10 by RA FLS, and with reduction of actin filament reorganization and reduced polarized formation of lamellipodia. T0901317 also prevented both IL-1β-induced and IL-6-induced FLS invasion. NF-κB (p65) and Akt activation were not significantly affected by T0901317. This is the first description of a role for LXR in the regulation of FLS invasion and in processes and pathways implicated both in invasion as well as in inflammatory responses. These findings provide a new rationale for considering LXR agonists as therapeutic agents aimed at reducing both inflammation and FLS-mediated invasion and destruction in RA.
Collapse
Affiliation(s)
- Teresina Laragione
- Laboratory of Experimental Rheumatology, Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York 11030, United States of America
| | | |
Collapse
|
36
|
Stojancevic M, Stankov K, Mikov M. The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2012; 26:631-7. [PMID: 22993736 PMCID: PMC3441172 DOI: 10.1155/2012/538452] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/30/2011] [Indexed: 12/14/2022]
Abstract
The most important function of the intestinal mucosa is to form a barrier that separates luminal contents from the intestine. Defects in the intestinal epithelial barrier have been observed in several intestinal disorders such as inflammatory bowel disease (IBD). Recent studies have identified a number of factors that contribute to development of IBD including environmental triggers, genetic factors, immunoregulatory defects and microbial exposure. The current review focuses on the influence of the farnesoid X receptor (FXR) on the inhibition of intestinal inflammation in patients with IBD. The development and investigation of FXR agonists provide strong support for the regulatory role of FXR in mucosal innate immunity. Activation of FXR in the intestinal tract decreases the production of proinflammatory cytokines such as interleukin (IL) 1-beta, IL-2, IL-6, tumour necrosis factor-alpha and interferon-gamma, thus contributing to a reduction in inflammation and epithelial permeability. In addition, intestinal FXR activation induces the transcription of multiple genes involved in enteroprotection and the prevention of bacterial translocation in the intestinal tract. These data suggest that FXR agonists are potential candidates for exploration as a novel therapeutic strategy for IBD in humans.
Collapse
Affiliation(s)
- Maja Stojancevic
- Department of Pharmacology, University of Novi Sad, Hajduk Veljkova, Serbia.
| | | | | |
Collapse
|
37
|
Leung CH, Chan DSH, Ma VPY, Ma DL. DNA-Binding Small Molecules as Inhibitors of Transcription Factors. Med Res Rev 2012; 33:823-46. [DOI: 10.1002/med.21266] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Victor Pui-Yan Ma
- Department of Chemistry; Hong Kong Baptist University; Kowloon Tong; Hong Kong
| | - Dik-Lung Ma
- Department of Chemistry; Hong Kong Baptist University; Kowloon Tong; Hong Kong
| |
Collapse
|
38
|
Andersen V, Olsen A, Carbonnel F, Tjønneland A, Vogel U. Diet and risk of inflammatory bowel disease. Dig Liver Dis 2012; 44:185-94. [PMID: 22055893 DOI: 10.1016/j.dld.2011.10.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/14/2011] [Accepted: 10/03/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND A better understanding of the environmental factors leading to inflammatory bowel disease should help to prevent occurrence of the disease and its relapses. AIM To review current knowledge on dietary risk factors for inflammatory bowel disease. METHODS The PubMed, Medline and Cochrane Library were searched for studies on diet and risk of inflammatory bowel disease. RESULTS Established non-diet risk factors include family predisposition, smoking, appendectomy, and antibiotics. Retrospective case-control studies are encumbered with methodological problems. Prospective studies on European cohorts, mainly including middle-aged adults, suggest that a diet high in protein from meat and fish is associated with a higher risk of inflammatory bowel disease. Intake of the n-6 polyunsaturated fatty acid linoleic acid may confer risk of ulcerative colitis, whereas n-3 polyunsaturated fatty acids may be protective. No effect was found of intake of dietary fibres, sugar, macronutrients, total energy, vitamin C, D, E, Carotene, or Retinol (vitamin A) on risk of ulcerative colitis. No prospective data was found on risk related to intake of fruits, vegetables or food microparticles (titanium dioxide and aluminium silicate). CONCLUSIONS A diet high in protein, particular animal protein, may be associated with increased risk of inflammatory bowel disease and relapses. N-6 polyunsaturated fatty acids may predispose to ulcerative colitis whilst n-3 polyunsaturated fatty acid may protect. These results should be confirmed in other countries and in younger subjects before dietary counselling is recommended in high risk subjects.
Collapse
Affiliation(s)
- Vibeke Andersen
- Medical Department, Viborg Regional Hospital, Viborg, Denmark.
| | | | | | | | | |
Collapse
|
39
|
Shirakami Y, Lee SA, Clugston RD, Blaner WS. Hepatic metabolism of retinoids and disease associations. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:124-36. [PMID: 21763780 PMCID: PMC3488285 DOI: 10.1016/j.bbalip.2011.06.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/14/2011] [Accepted: 06/21/2011] [Indexed: 12/12/2022]
Abstract
The liver is the most important tissue site in the body for uptake of postprandial retinoid, as well as for retinoid storage. Within the liver, both hepatocytes and hepatic stellate cells (HSCs) are importantly involved in retinoid metabolism. Hepatocytes play an indispensable role in uptake and processing of dietary retinoid into the liver, and in synthesis and secretion of retinol-binding protein (RBP), which is required for mobilizing hepatic retinoid stores. HSCs are the central cellular site for retinoid storage in the healthy animal, accounting for as much as 50-60% of the total retinoid present in the entire body. The liver is also an important target organ for retinoid actions. Retinoic acid is synthesized in the liver and can interact with retinoid receptors which control expression of a large number of genes involved in hepatic processes. Altered retinoid metabolism and the accompanying dysregulation of retinoid signaling in the liver contribute to hepatic disease. This is related to HSCs, which contribute significantly to the development of hepatic disease when they undergo a process of cellular activation. HSC activation results in the loss of HSC retinoid stores and changes in extracellular matrix deposition leading to the onset of liver fibrosis. An association between hepatic disease progression and decreased hepatic retinoid storage has been demonstrated. In this review article, we summarize the essential role of the liver in retinoid metabolism and consider briefly associations between hepatic retinoid metabolism and disease. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Yohei Shirakami
- Department of Medicine, College of Physcians and Surgeons, Columbia University, 630 W, 168th St, New York, NY 10032, USA
| | | | | | | |
Collapse
|
40
|
Malek G, Dwyer M, McDonnell D. Exploring the potential role of the oxidant-activated transcription factor aryl hydrocarbon receptor in the pathogenesis of AMD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:51-9. [PMID: 22183315 DOI: 10.1007/978-1-4614-0631-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Goldis Malek
- Department of Ophthalmology, Duke University, Durham, NC 27701, USA.
| | | | | |
Collapse
|
41
|
Relevance of nuclear receptor expression in a Tchreg cell line, HOZOT: RXRα and PPARγ negatively regulate IFN-γ production. RESULTS IN IMMUNOLOGY 2012; 2:158-65. [PMID: 24371580 DOI: 10.1016/j.rinim.2012.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 11/24/2022]
Abstract
Nuclear receptors (NRs) have recently received much attention for their newly discovered roles in T cell development, as exemplified by RARα (Treg cells) and RORγt (Th17 cells). In previous studies, we characterized a new type of T cell subset, designated as Tchreg (cytotoxic, helper, and regulatory T) cells, in terms of its cytokine signature. In this study, we investigated the expression and functional relevance of NRs in Tchreg cells by performing mRNA profiling of HOZOT, a cord blood-derived Tchreg cell line. We identified eleven inducible and eight constitutively expressed NRs in HOZOT. Among these NRs, RXRα and PPARγ showed features of signature NRs of Tchreg cells because they were selectively expressed in HOZOT compared with other T cell subsets. These NRs exhibited contrasting expression patterns, as RXRα was independent of anti-CD3/28 antibody stimulation while PPARγ was stimulated-dependent. Upon agonist treatment, both proteins translocated to the nucleus and inhibited IFN-γ production through binding to the promoter region of the IFN-γ gene. These results provide new insight into the roles of RXRα and PPARγ in T cell biology, especially in their biological relevance in Tchreg cells.
Collapse
|
42
|
Wu C, Gilroy R, Taylor R, Olyaee M, Abdulkarim B, Forster J, O'Neil M, Damjanov I, Wan YJY. Alteration of hepatic nuclear receptor-mediated signaling pathways in hepatitis C virus patients with and without a history of alcohol drinking. Hepatology 2011; 54:1966-74. [PMID: 21898497 PMCID: PMC3230737 DOI: 10.1002/hep.24645] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED The current study tests a hypothesis that nuclear receptor signaling is altered in chronic hepatitis C patients and that the altered pattern is specific to alcohol drinking history. The expression of a panel of more than 100 genes encoding nuclear receptors, coregulators, and their direct/indirect targets was studied in human livers. Gene expression pattern was compared between 15 normal donor livers and 23 hepatitis C virus (HCV) genotype 1-positive livers from patients without a drinking history (matched for age, sex, and body mass index). HCV infection increased the expression of nuclear receptors small heterodimer partner and constitutive androstane receptor (CAR) as well as genes involved in fatty acid trafficking, bile acid synthesis and uptake, and inflammatory response. However, the expression of retinoid X receptor (RXR) α, peroxisomal proliferator-activated receptor (PPAR) α and β as well as steroid regulatory element-binding protein (SREBP)-1c was decreased in HCV-infected livers. Gene expression pattern was compared in chronic hepatitis C patients with and without a drinking history. Alcohol drinking increased the expression of genes involved in fatty acid uptake, trafficking, and oxidation, but decreased the expression of genes responsible for gluconeogenesis. These changes were consistent with reduced fasting plasma glucose levels and altered expression of upstream regulators that include RXRα, PPARα, and CAR. The messenger RNA levels of fibroblast growth factor 21, interleukin-10, and fatty acid synthase, which are all regulated by nuclear receptors, showed independent correlation with hepatic HCV RNA levels. CONCLUSION Our findings suggest that those genes and pathways that showed altered expression could potentially be therapeutic targets for HCV infection and/or alcohol drinking-induced liver injury.
Collapse
Affiliation(s)
- Chuanghong Wu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS,Department of Infectious Diseases, the People's Hospital of Shekou, Shenzhen, 518067, China
| | - Richard Gilroy
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Ryan Taylor
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Mojtaba Olyaee
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Bashar Abdulkarim
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS
| | - Jameson Forster
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS
| | - Maura O'Neil
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS
| | - Ivan Damjanov
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS
| | - Yu-Jui Yvonne Wan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS,Corresponding Author: Yu-Jui Yvonne Wan, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Mailstop 1018, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA. Phone: 913-588-9111, Fax: 913-588-7501,
| |
Collapse
|
43
|
Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a narrative review. Complement Ther Med 2011; 19:228-37. [PMID: 21827937 DOI: 10.1016/j.ctim.2011.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/03/2011] [Accepted: 06/29/2011] [Indexed: 11/28/2022] Open
Abstract
It is commonly accepted that nutrition is one of the possible environmental factors involved in the pathogenesis of multiple sclerosis (MS), but its role as complementary MS treatment is unclear and largely disregarded. At present, MS therapy is not associated to a particular diet, probably due to lack of information on the effects of nutrition on the disease. To overcome the distrust of the usefulness of dietary control in MS and to encourage nutritional interventions in the course of the disease, it is necessary to assess the nature and the role of bioactive dietary molecules and their targets, and establish how a dietary control can influence cell metabolism and improve the wellness of MS patients. The aim of this review is to provide a rationale for a nutritional intervention in MS by evaluating at the molecular level the effects of dietary molecules on the inflammatory and autoimmune processes involved in the disease. Present data reveal that healthy dietary molecules have a pleiotropic role and are able to change cell metabolism from anabolism to catabolism and down-regulate inflammation by interacting with enzymes, nuclear receptors and transcriptional factors. The control of gut dysbiosis and the combination of hypo-caloric, low-fat diets with specific vitamins, oligoelements and dietary integrators, including fish oil and polyphenols, may slow-down the progression of the disease and ameliorate the wellness of MS patients.
Collapse
Affiliation(s)
- P Riccio
- Dipartimento di Biologia D.B.A.F., University of Basilicata, Potenza, Italy.
| |
Collapse
|
44
|
Probiotics, nuclear receptor signaling, and anti-inflammatory pathways. Gastroenterol Res Pract 2011; 2011:971938. [PMID: 21808643 PMCID: PMC3144714 DOI: 10.1155/2011/971938] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/28/2011] [Accepted: 05/19/2011] [Indexed: 02/07/2023] Open
Abstract
There is increased investigation of the human microbiome as it relates to health and disease. Dysbiosis is implicated in various clinical conditions including inflammatory bowel disease (IBD). Probiotics have been explored as a potential treatment for IBD and other diseases. The mechanism of action for probiotics has yet to be fully elucidated. This paper discusses novel mechanisms of action for probiotics involving anti-inflammatory signaling pathways. We highlight recent progress in probiotics and nuclear receptor signaling, such as peroxisome-proliferator-activated receptor gamma (PPARγ) and vitamin D receptor (VDR). We also discuss future areas of investigation.
Collapse
|
45
|
Raglow Z, Thoma-Perry C, Gilroy R, Wan YJY. The interaction between HCV and nuclear receptor-mediated pathways. Pharmacol Ther 2011; 132:30-8. [PMID: 21620888 DOI: 10.1016/j.pharmthera.2011.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/03/2011] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) is presently the leading indication for liver transplantation in Western countries. Treatment for HCV infection includes a combination of pegylated interferon and ribavirin, which produces highly variable response rates. This reflects the lack of information regarding the roles of host and viral components during viral pathogenesis. Vital processes regulated by the liver, including metabolism, lipid homeostasis, cellular proliferation, and the immune response, are known to be systematically dysregulated as a result of persistent HCV infection. Nuclear receptors and their ligands are recognized as indispensable regulators of liver homeostasis. Pathways mediated by the nuclear receptor superfamily have been shown to be profoundly disrupted during HCV infection, leading to an increased importance in elucidating the exact nature of this complex relationship. Expanded understanding of the role of nuclear receptors in HCV infection may therefore be an essential step in the search for a more universally effective treatment.
Collapse
Affiliation(s)
- Zoe Raglow
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | |
Collapse
|
46
|
Soskić SS, Dobutović BD, Sudar EM, Obradović MM, Nikolić DM, Zarić BL, Stojanović SD, Stokić EJ, Mikhailidis DP, Isenović ER. Peroxisome proliferator-activated receptors and atherosclerosis. Angiology 2011; 62:523-34. [PMID: 21467121 DOI: 10.1177/0003319711401012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) represent the family of 3 nuclear receptor isoforms-PPARα, -γ, and -δ/β, which are encoded by different genes. As lipid sensors, they are primarily involved in regulation of lipid metabolism and subsequently in inflammation and atherosclerosis. Atherosclerosis considers accumulation of the cells and extracellular matrix in the vessel wall leading to the formation of atherosclerotic plaque, atherothrombosis, and other vascular complications. Besides existence of natural ligands for PPARs, their more potent synthetic ligands are fibrates and thiazolidindiones. Future investigations should now focus on the mechanisms of PPARs activation, which might present new approaches involved in the antiatherosclerotic effects revealed in this review. In addition, in this review we are presenting latest data from recent performed clinical studies which have focus on novel approach to PPARs agonists as potential therapeutic agents in the treatment of complex disease such as atherosclerosis.
Collapse
Affiliation(s)
- Sanja S Soskić
- Laboratory for Radiobiology and Molecular Genetics, Institute Vinca, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ma DL, Xu T, Chan DSH, Man BYW, Fong WF, Leung CH. A highly selective, label-free, homogenous luminescent switch-on probe for the detection of nanomolar transcription factor NF-kappaB. Nucleic Acids Res 2011; 39:e67. [PMID: 21398636 PMCID: PMC3105395 DOI: 10.1093/nar/gkr106] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transcription factors are involved in a number of important cellular processes. The transcription factor NF-κB has been linked with a number of cancers, autoimmune and inflammatory diseases. As a result, monitoring transcription factors potentially represents a means for the early detection and prevention of diseases. Most methods for transcription factor detection tend to be tedious and laborious and involve complicated sample preparation, and are not practical for routine detection. We describe herein the first label-free luminescence switch-on detection method for transcription factor activity using Exonuclease III and a luminescent ruthenium complex, [Ru(phen)2(dppz)]2+. As a proof of concept for this novel assay, we have designed a double-stranded DNA sequence bearing two NF-κB binding sites. The results show that the luminescence response was proportional to the concentration of the NF-κB subunit p50 present in the sample within a wide concentration range, with a nanomolar detection limit. In the presence of a known NF-κB inhibitor, oridonin, a reduction in the luminescence response of the ruthenium complex was observed. The reduced luminescence response of the ruthenium complex in the presence of small molecule inhibitors allows the assay to be applied to the high-throughput screening of chemical libraries to identify new antagonists of transcription factor DNA binding activity. This will allow the rapid and low cost identification and development of novel scaffolds for the treatment of diseases caused by the deregulation of transcription factor activity.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
48
|
Riccio P, Rossano R, Liuzzi GM. May diet and dietary supplements improve the wellness of multiple sclerosis patients? A molecular approach. Autoimmune Dis 2011; 2010:249842. [PMID: 21461338 PMCID: PMC3065662 DOI: 10.4061/2010/249842] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/27/2010] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis is a complex and multifactorial neurological disease, and nutrition is one of the environmental factors possibly involved in its pathogenesis. At present, the role of nutrition is unclear, and MS therapy is not associated to a particular diet. MS clinical trials based on specific diets or dietary supplements are very few and in some cases controversial. To understand how diet can influence the course of MS and improve the wellness of MS patients, it is necessary to identify the dietary molecules, their targets and the molecular mechanisms involved in the control of the disease. The aim of this paper is to provide a molecular basis for the nutritional intervention in MS by evaluating at molecular level the effect of dietary molecules on the inflammatory and autoimmune processes involved in the disease.
Collapse
Affiliation(s)
- Paolo Riccio
- Dipartimento di Biologia D.B.A.F., Università degli Studi della Basilicata, 85100 Potenza, Italy
| | | | | |
Collapse
|
49
|
Andersen V, Christensen J, Ernst A, Jacobsen BA, Tjønneland A, Krarup HB, Vogel U. Polymorphisms in NF-κB, PXR, LXR, PPARγ and risk of inflammatory bowel disease. World J Gastroenterol 2011; 17:197-206. [PMID: 21245992 PMCID: PMC3020373 DOI: 10.3748/wjg.v17.i2.197] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/14/2010] [Accepted: 08/21/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the contribution of polymorphisms in nuclear receptors to risk of inflammatory bowel disease (IBD).
METHODS: Genotypes of nuclear factor (NF)-κB (NFKB1) NFκB -94ins/del (rs28362491); peroxisome proliferator-activated receptor (PPAR)-γ (PPARγ) PPARγ Pro12Ala (rs 1801282) and C1431T (rs 3856806); pregnane X receptor (PXR) (NR1I2) PXR A-24381C (rs1523127), C8055T (2276707), and A7635G (rs 6785049); and liver X receptor (LXR) (NR1H2) LXR T-rs1405655-C and T-rs2695121-C were assessed in a Danish case-control study of 327 Crohn’s disease patients, 495 ulcerative colitis (UC) patients, and 779 healthy controls. Odds ratio (OR) and 95% CI were estimated by logistic regression models.
RESULTS: The PXR A7635G variant, the PPARγ Pro12Ala and LXR T-rs2695121-C homozygous variant genotypes were associated with risk of UC (OR: 1.31, 95% CI: 1.03-1.66, P = 0.03, OR: 2.30, 95% CI: 1.04-5.08, P = 0.04, and OR: 1.41, 95% CI: 1.00-1.98, P = 0.05, respectively) compared to the corresponding homozygous wild-type genotypes. Among never smokers, PXR A7635G and the LXR T-rs1405655-C and T-rs2695121-C variant genotypes were associated with risk of IBD (OR: 1.41, 95% CI: 1.05-1.91, P = 0.02, OR: 1.63, 95% CI: 1.21-2.20, P = 0.001, and OR: 2.02, 95% CI: 1.36-2.99, P = 0.0005, respectively) compared to the respective homozygous variant genotypes. PXR A7635G (rs6785049) variant genotype was associated with a higher risk of UC diagnosis before the age of 40 years and with a higher risk of extensive disease (OR: 1.34, 95% CI: 1.03-1.75 and OR: 2.49, 95% CI: 1.24-5.03, respectively).
CONCLUSION: Common PXR and LXR polymorphisms may contribute to risk of IBD, especially among never smokers.
Collapse
|
50
|
Andersen V, Christensen J, Overvad K, Tjønneland A, Vogel U. Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes. BMC Cancer 2010; 10:484. [PMID: 20836841 PMCID: PMC2949803 DOI: 10.1186/1471-2407-10-484] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 09/13/2010] [Indexed: 12/19/2022] Open
Abstract
Background Transcription factors and nuclear receptors constitute a link between exposure to heterocyclic amines and polycyclic aromatic hydrocarbons from meat and tobacco smoke and colorectal cancer (CRC) risk. The aim of this study was to investigate if polymorphisms in nuclear factor kappa-B, pregnane X receptor, and liver X receptor were associated with risk of CRC, and to investigate possible interactions with lifestyle factors such as smoking, meat consumption, and NSAID use. Methods The polymorphisms nuclear factor kappa-B (NFkB, NFKB1) -94 insertion/deletion ATTG (rs28362491), pregnane X receptor (PXR, NR1I2) A-24381C (rs1523127), C8055T (rs2276707), A7635G (rs6785049), liver X receptor (LXR-β, NR1H3) C-rs1405655T, T-rs2695121C were assessed together with lifestyle factors in a nested case-cohort study of 378 CRC cases and 756 random participants from the Danish prospective Diet, Cancer and Health study of 57,053 persons. Results Carriers of NFkB -94deletion were at 1.45-fold higher risk of CRC than homozygous carriers of the insertion allele (incidence rate ratio (IRR) = 1.45, 95% confidence interval (95% CI): 1.10-1.92). There was interaction between this polymorphism and intake of red and processed meat in relation to CRC risk. Carriers of NFkB -94deletion were at 3% increased risk pr 25 gram meat per day (95% CI: 0.98-1.09) whereas homozygous carriers of the insertion were not at increased risk (p for interaction = 0.03). PXR and LXR polymorphisms were not associated with CRC risk. There was no interaction between use of nonsteroid antiinflammatory drugs (NSAID) or smoking status and NFkB, PXR or LXR polymorphisms. Conclusions A polymorphism in NFkB was associated with CRC risk and there was interaction between this polymorphism and meat intake in relation to CRC risk. This study suggests a role for NFkB in CRC aetiology.
Collapse
Affiliation(s)
- Vibeke Andersen
- Medical Department, Viborg Regional Hospital, Heibergs Allé 4, DK-8800 Viborg, Denmark.
| | | | | | | | | |
Collapse
|