1
|
Zhang C, Lv Z, Liang H, Hu F, Bi H. Bioinformatics insights into ACSL1 and ACSL5: prognostic and immune roles in low-grade glioma. BMC Cancer 2025; 25:226. [PMID: 39924494 PMCID: PMC11809057 DOI: 10.1186/s12885-025-13651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 02/05/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Fatty acid metabolism disruptions affect low-grade gliomas (LGGs), with glioma cells depending on fatty acids for survival. Targeting fatty acid oxidation through the acyl-coenzyme A synthetase long-chain (ACSL) family could alleviate glioma growth and improve prognosis management. However, the integration of ACSLs for analyzing their relationship with LGGs remains unexplored. METHODS We collected RNA expression data of ACSLs for LGGs from TCGA, GTEx, CGGA, and GEO datasets and validated the prognostic significance of gene expression in 37 glioma samples. DNA methylation data from UCSC Xena and promoter methylation levels via MEXPRESS were analyzed. Functional enrichments of co-expressed ACSLs genes were conducted using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis. Protein-protein interaction networks were established via GeneMANIA, and cBioPortal assessed somatic mutations and copy number variations of ACSLs in LGGs. TIMER and TISIDB databases investigated the correlation between ACSLs expression and immune infiltration and checkpoint genes. Hazard ratios (HR) with 95% confidence intervals (95% CI) were computed, and net reclassification index and integrated discrimination improvement were estimated to evaluate the predictive capability of the prognosis model. RESULTS Independent prognostic factors for overall survival included age, gender, tumor grade, MGMT promoter status, ACSL1, ACSL3, ACSL5, and ACSL6 expression levels. High ACSL1 (HR = 2.352, 95%CI: 1.647-3.359, P = 9.00E-06), ACSL3 (HR = 2.367, 95%CI: 1.547-3.624, P = 2.92E-04) and ACSL5 (HR = 2.329, 95%CI: 1.611-3.367, P = 2.80E-05) expression correlated with poor prognosis, while increased ACSL6 (HR = 0.449, 95%CI: 0.290-0.696, P = 1.02E-03) expression related to better survival rates. Furthermore, these associations were also confirmed in the validation datasets and our external cohort. Negative correlation between ACSL1 and ACSL3 gene expression and methylation was found. Functional enrichment analyses highlighted the roles of ACSL1 and ACSL5 in glioma mechanisms and immune function, with significant associations between somatic CNVs and immune cell infiltration. CONCLUSIONS ACSL1 and ACSL5 exhibit prognostic significance in gliomas and influence tumor immunity and immune cell migration, providing valuable insights into LGG prognosis and therapeutic targets.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, People's Republic of China
| | - Zhonghua Lv
- Department of Neurosurgery, The Tumor Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongsheng Liang
- Department of Neurosurgery, The First Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, No. 1066 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, China.
| | - Haoran Bi
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Cheng X, Xu J, Cui Y, Liu J, Chen Y, He C, Cui L, Liu Y, Song B, Gong C, Mi P. Nanovesicles for Lipid Metabolism Reprogram-Enhanced Ferroptosis and Magnetotherapy of Refractory Tumors and Inhibiting Metastasis with Activated Innate Immunity. ACS NANO 2025. [PMID: 39928515 DOI: 10.1021/acsnano.4c16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Castration-resistant prostate cancer (CRPC) is an intractable disease, but approaches for eradicating primary tumors and inhibiting metastasis are limited. Considering that lipid metabolism plays key roles in ferroptosis and tumor progression and treatment resistance, here we developed a biomimetic nanovesicle (FiFe@RBM) encapsulating fatty acid synthetase inhibitors and iron oxide nanoparticles for synergistic therapy of CRPC and inhibiting the metastasis. FiFe@RBM with superior magnetic properties efficiently delivered drugs into the CRPC cancer cells, where it can release Fe ions to efficiently induce reactive oxygen species and mitochondrial dysfunction and inhibit the AKT-mTOR pathway, which synergistically causes apoptosis and enhances ferroptosis by rewired lipid metabolism through increasing polyunsaturated fatty acids (PUFAs), PUFA-enriched phosphatidylcholine (PUFA-PC), PUFA-enriched phosphatidylethanolamine (PUFA-PE), etc. By intravenous injection, the high accumulation of FiFe@RBM in PC-3 tumors enabled precision T1/T2-weighted magnetic resonance imaging-guided effective eradication of human CRPC PC-3 tumors by synergistic magnetic hyperthermia therapy (MHT) and ferroptosis, which further inhibited liver metastasis by the activated and recruited high rates of natural killer cells in the nude mice model. This work presents an effective nanovesicle strategy for reprogramming lipid metabolism to enhance ferroptosis in synergy with MHT for effectively treating refractory cancers.
Collapse
Affiliation(s)
- Xueqing Cheng
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinshun Xu
- Department of Ultrasound, Sichuan Cancer Hospital, Chengdu 610042, Sichuan, China
| | - Yongsheng Cui
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuntian Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chuanshi He
- Department of Ultrasound, Sichuan Cancer Hospital, Chengdu 610042, Sichuan, China
| | - Lele Cui
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610051, Sichuan, China
| | - Bin Song
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Radiology, Sanya People's Hospital, Sanya 572032, Hainan, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
3
|
Freitas-Cortez MA, Masrorpour F, Jiang H, Mahmud I, Lu Y, Huang A, Duong LK, Wang Q, Voss TA, Kettlun Leyton CS, Wei B, Chan WK, Lin K, Zhang J, Tsouko E, Ganjoo S, Barsoumian HB, Riad TS, Hu Y, Leuschner C, Puebla-Osorio N, Wang J, Hu J, Davies MA, Puduvalli VK, Billon C, Burris TP, Lorenzi PL, Gan B, Welsh JW. Cancer cells avoid ferroptosis induced by immune cells via fatty acid binding proteins. Mol Cancer 2025; 24:40. [PMID: 39901247 PMCID: PMC11789333 DOI: 10.1186/s12943-024-02198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/11/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Cancer creates an immunosuppressive environment that hampers immune responses, allowing tumors to grow and resist therapy. One way the immune system fights back is by inducing ferroptosis, a type of cell death, in tumor cells through CD8 + T cells. This involves lipid peroxidation and enzymes like lysophosphatidylcholine acyltransferase 3 (Lpcat3), which makes cells more prone to ferroptosis. However, the mechanisms by which cancer cells avoid immunotherapy-mediated ferroptosis are unclear. Our study reveals how cancer cells evade ferroptosis and anti-tumor immunity through the upregulation of fatty acid-binding protein 7 (Fabp7). METHODS To explore how cancer cells resist immune cell-mediated ferroptosis, we used a comprehensive range of techniques. We worked with cell lines including PD1-sensitive, PD1-resistant, B16F10, and QPP7 glioblastoma cells, and conducted in vivo studies in syngeneic 129 Sv/Ev, C57BL/6, and conditional knockout mice with Rora deletion specifically in CD8+ T cells, Cd8 cre;Rorafl mice. Methods included mass spectrometry-based lipidomics, targeted lipidomics, Oil Red O staining, Seahorse analysis, quantitative PCR, immunohistochemistry, PPARγ transcription factor assays, ChIP-seq, untargeted lipidomic analysis, ROS assay, ex vivo co-culture of CD8+ T cells with cancer cells, ATAC-seq, RNA-seq, Western blotting, co-immunoprecipitation assay, flow cytometry and Imaging Mass Cytometry. RESULTS PD1-resistant tumors upregulate Fabp7, driving protective metabolic changes that shield cells from ferroptosis and evade anti-tumor immunity. Fabp7 decreases the transcription of ferroptosis-inducing genes like Lpcat3 and increases the transcription of ferroptosis-protective genes such as Bmal1 through epigenetic reprogramming. Lipidomic profiling revealed that Fabp7 increases triglycerides and monounsaturated fatty acids (MUFAs), which impede lipid peroxidation and ROS generation. Fabp7 also improves mitochondrial function and fatty acid oxidation (FAO), enhancing cancer cell survival. Furthermore, cancer cells increase Fabp7 expression in CD8+ T cells, disrupting circadian clock gene expression and triggering apoptosis through p53 stabilization. Clinical trial data revealed that higher FABP7 expression correlates with poorer overall survival and progression-free survival in patients undergoing immunotherapy. CONCLUSIONS Our study uncovers a novel mechanism by which cancer cells evade immune-mediated ferroptosis through Fabp7 upregulation. This protein reprograms lipid metabolism and disrupts circadian regulation in immune cells, promoting tumor survival and resistance to immunotherapy. Targeting Fabp7 could enhance immunotherapy effectiveness by re-sensitizing resistant tumors to ferroptosis.
Collapse
Affiliation(s)
- Maria Angelica Freitas-Cortez
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Children's Research Institute at UT Southwestern, Pediatrics 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Hong Jiang
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ailing Huang
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Lisa K Duong
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tiffany A Voss
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Claudia S Kettlun Leyton
- Department of Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bo Wei
- Department of Bioinformatics and Computational Biology, Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wai-Kin Chan
- Department of Bioinformatics and Computational Biology, Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Efrosini Tsouko
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shonik Ganjoo
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Thomas S Riad
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Yun Hu
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Carola Leuschner
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cyrielle Billon
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy at University of Health and Sciences, St. Louis, MO, 63110, USA
| | - Thomas P Burris
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - James W Welsh
- Department of Radiation Oncology, UT MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Astacio E, DiAngelo JR. The regulation of triglyceride storage by Acsx4 and Acsx5 in Drosophila fat tissue. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001430. [PMID: 39958912 PMCID: PMC11830124 DOI: 10.17912/micropub.biology.001430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/18/2025] [Accepted: 02/01/2025] [Indexed: 02/18/2025]
Abstract
The production of energy is one of the most fundamental requirements for organismal survival. Decreasing expression of Drosophila 9G8 , an mRNA splicing protein, specifically in adipose tissue results in triglyceride accumulation. Decreasing 9G8 in adipose also results in upregulation of the acyl-CoA synthetases Acsx4 and Acsx5 ; however, the functions of these genes in regulating lipid metabolism is not fully understood. Here, we decreased Acsx4 and Acsx5 in fly adipose tissue and this resulted in high triglycerides. This suggests that these genes regulate lipid breakdown, and their upregulation is perhaps compensating for the triglyceride accumulation observed when 9G8 levels are decreased.
Collapse
|
5
|
Tadmor-Levi R, Argov-Argaman N. Distinctive Lipogenic Gene Expression Patterns in the Mammary Glands of Dairy Cows Are Associated with the Unique Fatty Acid Composition of Bovine Milk Fat. Foods 2025; 14:412. [PMID: 39942007 PMCID: PMC11816880 DOI: 10.3390/foods14030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Fat composition is largely responsible for the technological and rheological properties of cow milk and dairy products. Bovine milk fat is unique in terms of its fatty acid composition and positional distribution, with about 25% of its fatty acids being short- and medium-chain, which are synthesized de novo in the mammary gland and are not present in extra-mammary tissues. With the aim to identify potential genetic factors responsible for the unique composition of bovine milk fat, we extracted genes with GO annotations related to lipid metabolism and performed a gene expression mega-analysis. Overall, different lipogenic tissues (i.e., mammary, liver, and adipose) displayed discerned expression patterns. In a PCA, the liver was significantly separated from adipose and mammary tissues. In a correlation analysis with the fatty acid synthetase (FASN) gene, notable differences among the tissues were found. In the mammary gland, the majority of genes (~70%) were negatively correlated with FASN expression, whereas only 18% were negatively correlated in adipose. Only a few genes were positively correlated with FASN exclusively in the mammary gland, including AGPAT1 and AGPAT6, which also had the highest expression in the mammary gland compared with adipose. Looking at the expression levels in tissues (TPM) revealed significant differences in the expressions of genes responsible for the activation of fatty acids by ligation to CoA, according to their carbon chain length. Notably, the ACSS1 gene, which converts acetate to acetyl-CoA, had the highest expression in the mammary gland, whereas genes responsible for the activation of long-chain fatty acids had lower expressions. The findings of the present study suggest that the unique properties of dairy fat are the results of the distinct expression patterns of genes involved in de novo synthesis of fatty acids and their downstream utilization.
Collapse
Affiliation(s)
- Roni Tadmor-Levi
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Nurit Argov-Argaman
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Wang Y, Ma H, Zhang B, Li S, Lu B, Qi Y, Liu T, Wang H, Kang X, Liang Y, Kong E, Cao L, Zhou B. Protein palmitoylation in hepatic diseases: Functional insights and therapeutic strategies. J Adv Res 2024:S2090-1232(24)00619-2. [PMID: 39732335 DOI: 10.1016/j.jare.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Liver pathologies represent a spectrum of conditions ranging from fatty liver to the aggressive hepatocellular carcinoma (HCC), as well as parasitic infections, which collectively pose substantial global health challenges. S-palmitoylation (commonly referred to as palmitoylation), a post-translational modification (PTM) characterized by the covalent linkage of a 16-carbon palmitic acid (PA) chain to specific cysteine residues on target proteins, plays a pivotal role in diverse cellular functions and is intimately associated with the liver's physiological and pathological states. AIM OF REVIEW This study aims to elucidate how protein palmitoylation affects liver disease pathophysiology and evaluates its potential as a target for diagnostic and therapeutic interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent studies have identified the key role of protein palmitoylation in regulating the development and progression of liver diseases. This review summarizes the intricate mechanisms by which protein palmitoylation modulates the pathophysiological processes of liver diseases and explores the potential of targeting protein palmitoylation modifications or the enzymes regulating this modification as prospective diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ying Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Haoyuan Ma
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Bowen Zhang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Sainan Li
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Beijia Lu
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Yingcheng Qi
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Tingting Liu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, PR China.
| | - Xiaohong Kang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Eryan Kong
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Liu Cao
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Binhui Zhou
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China; Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| |
Collapse
|
7
|
Ding W, Sun Y, Han Y, Liu Y, Jin S. Transcriptome comparison revealed the difference in subcutaneous fat metabolism of Qinghai yak under different feeding conditions. PLoS One 2024; 19:e0311224. [PMID: 39637129 PMCID: PMC11620555 DOI: 10.1371/journal.pone.0311224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/16/2024] [Indexed: 12/07/2024] Open
Abstract
In order to explore the differences in subcutaneous fat metabolism and pathway information in yaks under different feeding conditions, this experiment used Illumina high-throughput sequencing technology to sequence the transcriptome of subcutaneous fat tissues of yaks under different feeding conditions and analyzed them bioinformatically. 9 naturally grazed yaks at 18 months of age were randomly divided into 3 groups, one group (G18_SF) was slaughtered, one group (G24_SF) continued to graze until 24 months of age was slaughtered, and one group (F24_SF) was housed until 24 months of age was slaughtered, and subcutaneous fat tissue was collected from the back of the yaks. A total of 15,261 expressed genes were identified in the nine samples, with 13,959 coexpressed genes and 533 differential expressed genes (DEGs), G18_SF vs F24_SF 133 DEGs, G18_SF vs G24_SF 469 DEGs, F24_SF vs G24_SF 5 DEGs. GO functional annotation analysis found that DEGs were mainly annotated in BP and CC, which included biological regulation, metabolic processes and cellular processes. KEGG revealed that the DEGs are mainly enriched for PPAR signaling pathway, AMPK signaling pathway and other pathways related to lipid metabolism. This study provides a scientific basis for further research on the effects of mRNA on subcutaneous fat in yaks under different feeding conditions.
Collapse
Affiliation(s)
- Weiqin Ding
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| | - Yonggang Sun
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| | - Yincang Han
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| | - Yaqian Liu
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| | - Shengwei Jin
- Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, Qinghai, China
- Key Laboratory of Plateau Livestock Genetic Resources Protection and Innovative Utilization of Qinghai Provincial, Xining, Qinghai, China
| |
Collapse
|
8
|
Jiang Y, Ma F, Wang J, Chen X, Xue L, Chen X, Hu J. Up-regulation of long non-coding RNA H19 ameliorates renal tubulointerstitial fibrosis by reducing lipid deposition and inflammatory response through regulation of the microRNA-130a-3p/long-chain acyl-CoA synthetase 1 axis. Noncoding RNA Res 2024; 9:1120-1132. [PMID: 39022687 PMCID: PMC11254502 DOI: 10.1016/j.ncrna.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 07/20/2024] Open
Abstract
Long non-coding RNA (lncRNA) H19 is an extensively studied lncRNA that is related to numerous pathological changes. Our previous findings have documented that serum lncRNA H19 levels are decreased in patients with chronic kidney disorder and lncRNA H19 reduction is closely correlated with renal tubulointerstitial fibrosis, an essential step in developing end-stage kidney disease. Nonetheless, the precise function and mechanism of lncRNA H19 in renal tubulointerstitial fibrosis are not fully comprehended. The present work utilized a mouse model of unilateral ureteral obstruction (UUO) and transforming growth factor-β1 (TGF-β1)-stimulated HK-2 cells to investigate the possible role and mechanism of lncRNA H19 in renal tubulointerstitial fibrosis were investigated. Levels of lncRNA H19 decreased in kidneys of mice with UUO and HK-2 cells stimulated with TGF-β1. Up-regulation of lncRNA H19 in mouse kidneys remarkably relieved kidney injury, fibrosis and inflammation triggered by UUO. Moreover, the increase of lncRNA H19 in HK-2 cells reduced epithelial-to-mesenchymal transition (EMT) induced by TGF-β1. Notably, up-regulation of lncRNA H19 reduced lipid accumulation and triacylglycerol content in kidneys of mice with UUO and TGF-β1-stimulated HK-2 cells, accompanied by the up-regulation of long-chain acyl-CoA synthetase 1 (ACSL1). lncRNA H19 was identified as a sponge of microRNA-130a-3p, through which lncRNA H19 modulates the expression of ACSL1. The overexpression of microRNA-130a-3p reversed the lncRNA H19-induced increases in the expression of ACSL1. The suppressive effects of lncRNA H19 overexpression on the EMT, inflammation and lipid accumulation in HK-2 cells were diminished by ACSL1 silencing or microRNA-130a-3p overexpression. Overall, the findings showed that lncRNA H19 ameliorated renal tubulointerstitial fibrosis by reducing lipid deposition via modulation of the microRNA-130a-3p/ACSL1 axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinping Hu
- Department of Nephrology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi Province, China
| |
Collapse
|
9
|
Fagali Franchi F, Dos Santos PH, Kubo Fontes P, Valencise Quaglio AE, Gomes Nunes S, Zoccal Mingoti G, de Souza Castilho AC. PAPP-A enhances the antioxidative effects of IGF-1 during bovine in vitro embryo production. Theriogenology 2024; 229:191-201. [PMID: 39197256 DOI: 10.1016/j.theriogenology.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024]
Abstract
We investigated whether exogenous pregnancy-associated plasma protein-A (PAPP-A) enhances the antioxidant role of insulin-like growth factor-1 (IGF-1) in bovine in vitro embryo production (IVP). We performed standard in vitro maturation (IVM) and in vitro culture (IVC) or added menadione to promote an oxidative stressed microenvironment and evaluated the antioxidant effect of IGF-1 alone or in combination with PAPP-A (IGF-1/PAPP-A). In IVM, the treatments did not affect oocyte nuclear development, total GSH content, cumulus cell gene expression, and blastocyst yield. Nevertheless, IGF-1/PAPP-A treatment prevented an increase in reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) levels. In IVC, the treatments did not affect the total GSH content on blastocysts and IVC media, but IGF-1 and IGF-1/PAPP-A treatments increased blastocyst yield compared to the menadione group. In addition, IGF-1/PAPP-A treatment had lower ROS levels and regulated genes related to embryonic quality compared to the control and menadione groups. Overall, we showed that PAPP-A could enhance the antioxidant role of IGF-1 during IVP in cattle by avoiding higher ROS levels in oocytes and blastocysts and modulating the transcriptional abundance of genes involved in oxidative protection and embryonic quality.
Collapse
Affiliation(s)
- Fernanda Fagali Franchi
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil; Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy.
| | - Priscila Helena Dos Santos
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil.
| | - Patricia Kubo Fontes
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil.
| | - Ana Elisa Valencise Quaglio
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil.
| | - Sarah Gomes Nunes
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil.
| | - Gisele Zoccal Mingoti
- São Paulo State University (Unesp), School of Veterinary Medicine, Laboratory of Reproductive Physiology, Araçatuba, São Paulo, Brazil.
| | | |
Collapse
|
10
|
Li X, Guo Z, Ma X, Liu H, Wang W, Tang H. Core promoter identification and transcriptional regulation of porcine ACSL3 gene. Anim Biotechnol 2024; 35:2430383. [PMID: 39584470 DOI: 10.1080/10495398.2024.2430383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Intramuscular fat (IMF) content is an important factor that affects the edible and processing quality of pork. Studying the transcriptional regulation mechanisms of genes affecting intramuscular fat deposition can provide theoretical support for genetic improvement in pigs. Long-chain fatty acyl-CoA synthase 3 (ACSL3), as a key enzyme in the process of lipid synthesis in mammals. However, no information about the core promoter of the ACSL3 gene and its transcriptional regulation has been reported so far. In this experiment, we successfully cloned 3112 bp of the porcine ACSL3 gene promoter region. In order to find out the core promoter of the ACSL3 gene. The results indicated that the core promoter region of the ACSL3 gene is located from -111 bp to -59 bp upstream of the transcription initiation site (TSS). To identify the interaction between SP1 and the ACSL3 gene promoter, we mutated the predicted binding sites of ACSL3 gene promoter. The results showed that the activity of the promoter was decreased by site-specific mutagenesis of the SP1 transcription factor binding site, while overexpression of SP1 increased the expression of the ACSL3 gene. In summary, our study identified a core promoter region of the porcine ACSL3 gene, and the SP1 binding site is responsible for the promoter activity.
Collapse
Affiliation(s)
- Xiaomin Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, China
| | - Zijiao Guo
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, China
| | - Xueying Ma
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, China
| | - Huixin Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, China
| | - Wenwen Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hui Tang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
11
|
Lin J, Lai Y, Lu F, Wang W. Targeting ACSLs to modulate ferroptosis and cancer immunity. Trends Endocrinol Metab 2024:S1043-2760(24)00255-8. [PMID: 39424456 DOI: 10.1016/j.tem.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Five acyl-CoA synthetase long-chain family members (ACSLs) are responsible for catalyzing diverse long-chain fatty acids (LCFAs) into LCFA-acyl-coenzyme A (CoA) for their subsequent metabolism, including fatty acid oxidation (FAO), lipid synthesis, and protein acylation. In this review, we focus on ACSLs and their LCFA substrates and introduce their involvement in regulation of cancer proliferation, metastasis, and therapeutic resistance. Along with the recognition of the decisive role of ACSL4 in ferroptosis - an immunogenic cell death (ICD) initiated by lipid peroxidation - we review the functions of ACSLs on regulating ferroptosis sensitivity. Last, we discuss the current understanding of ACSL on the antitumor immune response. We emphasize the necessity to explore the functions of immune cells expressing ACSLs for developing novel strategies to augment immunotherapy by targeting ACSL.
Collapse
Affiliation(s)
- Junhong Lin
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yongfeng Lai
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fujia Lu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Zhong W, Chen C, Tan S, He X, Wen X, Wang S, Tocher DR, Waiho K, Chen C. Identification and Functional Characterization of the FATP1 Gene from Mud Crab, Scylla paramamosain. Animals (Basel) 2024; 14:2969. [PMID: 39457899 PMCID: PMC11506284 DOI: 10.3390/ani14202969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
In mammals, fatty acid transport protein 1 (FATP1) plays important roles in cellular uptake and activation of long-chain fatty acid (LCFA), especially in processes of transportation, oxidation and triacylglycerol synthesis. However, the role of FATP1 in invertebrates, especially decapod crustaceans, is still poorly understood. In this study, the cDNA of a FATP1 gene from a decapod crustacean, mud crab Scylla paramamosain, was cloned and functionally characterized. The FATP1 gene encoded a polypeptide consisting of 643 amino acids that exhibits all the typical features of the FATP family and shares high homology with the other FATP orthologs of crustaceans. The relative mRNA expression levels of FATP1 were observed to be higher in metabolically active tissues such as hepatopancreas, stomach and gill than in other crab parts. Knockdown of the FATP1 mRNA in vivo significantly reduced triacylglycerols and total lipid levels in the hepatopancreas, accompanied by an increase in the expression of genes related to fatty acid transportation, allocation and hydrolysis, including long-chain acyl-CoA synthetase 3/4 (ACSL3/4) and carnitine palmitoyl transferase 1 (CPT1), and a decrease in the expression of genes related to fatty acid synthesis such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) in the hepatopancreas. Furthermore, increased dietary n-3 long-chain polyunsaturated fatty acid (LC-PUFA) levels resulted in the up-regulation of the FATP1 expression in the hepatopancreas, accompanied by an increase in LC-PUFA content, especially eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), in both polar (PLs) and neutral lipids (NLs) in the hepatopancreas and muscles of crabs. These findings suggested that the FATP1 gene identified in S. paramamosain might play important roles in regulating long-chain fatty acid metabolism and deposition in crustaceans.
Collapse
Affiliation(s)
- Wenjie Zhong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Chuangsi Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Senyue Tan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Xianda He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Douglas R. Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu 21300, Malaysia;
| | - Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| |
Collapse
|
13
|
Bi X, Wu X, Chen J, Li X, Lin Y, Yu Y, Fang X, Cheng X, Cai Z, Jin T, Han S, Wang M, Han P, Min J, Fu G, Wang F. Characterization of ferroptosis-triggered pyroptotic signaling in heart failure. Signal Transduct Target Ther 2024; 9:257. [PMID: 39327446 PMCID: PMC11427671 DOI: 10.1038/s41392-024-01962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/04/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Pressure overload-induced cardiac hypertrophy is a common cause of heart failure (HF), and emerging evidence suggests that excessive oxidized lipids have a detrimental effect on cardiomyocytes. However, the key regulator of lipid toxicity in cardiomyocytes during this pathological process remains unknown. Here, we used lipidomics profiling and RNA-seq analysis and found that phosphatidylethanolamines (PEs) and Acsl4 expression are significantly increased in mice with transverse aortic constriction (TAC)-induced HF compared to sham-operated mice. In addition, we found that overexpressing Acsl4 in cardiomyocytes exacerbates pressure overload‒induced cardiac dysfunction via ferroptosis. Notably, both pharmacological inhibition and genetic deletion of Acsl4 significantly reduced left ventricular chamber size and improved cardiac function in mice with TAC-induced HF. Moreover, silencing Acsl4 expression in cultured neonatal rat ventricular myocytes was sufficient to inhibit hypertrophic stimulus‒induced cell growth. Mechanistically, we found that Acsl4-dependent ferroptosis activates the pyroptotic signaling pathway, which leads to increased production of the proinflammatory cytokine IL-1β, and neutralizing IL-1β improved cardiac function in Acsl4 transgenic mice following TAC. These results indicate that ACSL4 plays an essential role in the heart during pressure overload‒induced cardiac remodeling via ferroptosis-induced pyroptotic signaling. Together, these findings provide compelling evidence that targeting the ACSL4-ferroptosis-pyroptotic signaling cascade may provide a promising therapeutic strategy for preventing heart failure.
Collapse
Affiliation(s)
- Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaotian Wu
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangjun Lin
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Yu
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuexian Fang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Xihao Cheng
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoxian Cai
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Jin
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuxian Han
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Meihui Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peidong Han
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
- School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
14
|
Mothersole R, Mothersole MK, Goddard HG, Liu J, Van Hamme JD. Enzyme Catalyzed Formation of CoA Adducts of Fluorinated Hexanoic Acid Analogues using a Long-Chain acyl-CoA Synthetase from Gordonia sp. Strain NB4-1Y. Biochemistry 2024; 63:2153-2165. [PMID: 39152907 PMCID: PMC11376266 DOI: 10.1021/acs.biochem.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Per and polyfluoroalkyl substances (PFAS) are a large family of anthropogenic fluorinated chemicals of increasing environmental concern. Over recent years, numerous microbial communities have been found to be capable of metabolizing some polyfluoroalkyl substances, generating a range of low-molecular-weight PFAS metabolites. One proposed pathway for the microbial breakdown of fluorinated carboxylates includes β-oxidation, this pathway is initiated by the formation of a CoA adduct. However, until recently no PFAS-CoA adducts had been reported. In a previous study, we were able to use a bacterial medium-chain acyl-CoA synthetase (mACS) to form CoA adducts of fluorinated adducts of propanoic acid and pentanoic acid but were not able to detect any products of fluorinated hexanoic acid analogues. Herein, we expressed and purified a long-chain acyl-CoA synthetase (lACS) and a A461K variant of mACS from the soil bacterium Gordonia sp. strain NB4-1Y and performed an analysis of substrate scope and enzyme kinetics using fluorinated and nonfluorinated carboxylates. We determined that lACS can catalyze the formation of CoA adducts of 1:5 fluorotelomer carboxylic acid (FTCA), 2:4 FTCA and 3:3 FTCA, albeit with generally low turnover rates (<0.02 s-1) compared with the nonfluorinated hexanoic acid (5.39 s-1). In addition, the A461K variant was found to have an 8-fold increase in selectivity toward hexanoic acid compared with wild-type mACS, suggesting that Ala-461 has a mechanistic role in selectivity toward substrate chain length. This provides further evidence to validate the proposed activation step involving the formation of CoA adducts in the enzymatic breakdown of PFAS.
Collapse
Affiliation(s)
- Robert
G. Mothersole
- Department
of Chemistry, Thompson Rivers University, 805 TRU Way, Kamloops, British Columbia V2C 0C8, Canada
| | - Mina K. Mothersole
- Department
of Biological Sciences, Thompson Rivers
University, 805 TRU Way, Kamloops, British Columbia V2C 0C8, Canada
| | - Hannah G. Goddard
- Department
of Biological Sciences, Thompson Rivers
University, 805 TRU Way, Kamloops, British Columbia V2C 0C8, Canada
| | - Jinxia Liu
- Department
of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Québec H3A 0C3, Canada
| | - Jonathan D. Van Hamme
- Department
of Biological Sciences, Thompson Rivers
University, 805 TRU Way, Kamloops, British Columbia V2C 0C8, Canada
| |
Collapse
|
15
|
Lu H, Jiang H, Li C, Derisoud E, Zhao A, Eriksson G, Lindgren E, Pui HP, Risal S, Pei Y, Maxian T, Ohlsson C, Benrick A, Haider S, Stener-Victorin E, Deng Q. Dissecting the Impact of Maternal Androgen Exposure on Developmental Programming through Targeting the Androgen Receptor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309429. [PMID: 39075722 PMCID: PMC11423211 DOI: 10.1002/advs.202309429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/15/2024] [Indexed: 07/31/2024]
Abstract
Women with polycystic ovary syndrome (PCOS) exhibit sustained elevation in circulating androgens during pregnancy, an independent risk factor linked to pregnancy complications and adverse outcomes in offspring. Yet, further studies are required to understand the effects of elevated androgens on cell type-specific placental dysfunction and fetal development. Therefore, a PCOS-like mouse model induced by continuous androgen exposure is examined. The PCOS-mice exhibited impaired placental and embryonic development, resulting in mid-gestation lethality. Co-treatment with the androgen receptor blocker, flutamide, prevents these phenotypes including germ cell specification. Comprehensive profiling of the placenta by whole-genome bisulfite and RNA sequencing shows a reduced proportion of trophoblast precursors, possibly due to the downregulation of Cdx2 expression. Reduced expression of Gcm1, Synb, and Prl3b1 is associated with reduced syncytiotrophoblasts and sinusoidal trophoblast giant cells, impairs placental labyrinth formation. Importantly, human trophoblast organoids exposed to androgens exhibit analogous changes, showing impaired trophoblast differentiation as a key feature in PCOS-related pregnancy complications. These findings provide new insights into the potential cellular targets for future treatments.
Collapse
Affiliation(s)
- Haojiang Lu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Hong Jiang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Congru Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Emilie Derisoud
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Allan Zhao
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Gustaw Eriksson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Eva Lindgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Han-Pin Pui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Sanjiv Risal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Yu Pei
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Theresa Maxian
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, 1090, Austria
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
- School of Health Sciences, University of Skövde, Skövde, 54128, Sweden
| | - Sandra Haider
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, 1090, Austria
| | | | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
16
|
Han S, Guo J, Kong C, Li J, Lin F, Zhu J, Wang T, Chen Q, Liu Y, Hu H, Qiu T, Cheng F, Zhou J. ANKRD1 aggravates renal ischaemia‒reperfusion injury via promoting TRIM25-mediated ubiquitination of ACSL3. Clin Transl Med 2024; 14:e70024. [PMID: 39285846 PMCID: PMC11406046 DOI: 10.1002/ctm2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Renal ischaemia‒reperfusion injury (IRI) is the primary cause of acute kidney injury (AKI). To date, effective therapies for delaying renal IRI and postponing patient survival remain absent. Ankyrin repeat domain 1 (ANKRD1) has been implicated in some pathophysiologic processes, but its role in renal IRI has not been explored. METHODS The mouse model of IRI-AKI and in vitro model were utilised to investigate the role of ANKRD1. Immunoprecipitation-mass spectrometry was performed to identify potential ANKRD1-interacting proteins. Protein‒protein interactions and protein ubiquitination were examined using immunoprecipitation and proximity ligation assay and immunoblotting, respectively. Cell viability, damage and lipid peroxidation were evaluated using biochemical and cellular techniques. RESULTS First, we unveiled that ANKRD1 were significantly elevated in renal IRI models. Global knockdown of ANKRD1 in all cell types of mouse kidney by recombinant adeno-associated virus (rAAV9)-mitigated ischaemia/reperfusion-induced renal damage and failure. Silencing ANKRD1 enhanced cell viability and alleviated cell damage in human renal proximal tubule cells exposed to hypoxia reoxygenation or hydrogen peroxide, while ANKRD1 overexpression had the opposite effect. Second, we discovered that ANKRD1's detrimental function during renal IRI involves promoting lipid peroxidation and ferroptosis by directly binding to and decreasing levels of acyl-coenzyme A synthetase long-chain family member 3 (ACSL3), a key protein in lipid metabolism. Furthermore, attenuating ACSL3 in vivo through pharmaceutical approach and in vitro via RNA interference mitigated the anti-ferroptotic effect of ANKRD1 knockdown. Finally, we showed ANKRD1 facilitated post-translational degradation of ACSL3 by modulating E3 ligase tripartite motif containing 25 (TRIM25) to catalyse K63-linked ubiquitination of ACSL3, thereby amplifying lipid peroxidation and ferroptosis, exacerbating renal injury. CONCLUSIONS Our study revealed a previously unknown function of ANKRD1 in renal IRI. By driving ACSL3 ubiquitination and degradation, ANKRD1 aggravates ferroptosis and ultimately exacerbates IRI-AKI, underlining ANKRD1's potential as a therapeutic target for kidney IRI. KEY POINTS/HIGHLIGHTS Ankyrin repeat domain 1 (ANKRD1) is rapidly activated in renal ischaemia‒reperfusion injury (IRI) models in vivo and in vitro. ANKRD1 knockdown mitigates kidney damage and preserves renal function. Ferroptosis contributes to the deteriorating function of ANKRD1 in renal IRI. ANKRD1 promotes acyl-coenzyme A synthetase long-chain family member 3 (ACSL3) degradation via the ubiquitin‒proteasome pathway. The E3 ligase tripartite motif containing 25 (TRIM25) is responsible for ANKRD1-mediated ubiquitination of ACSL3.
Collapse
Affiliation(s)
- Shangting Han
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jiayu Guo
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Chenyang Kong
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
- Department of NephrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jun Li
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
| | - Fangyou Lin
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jiefu Zhu
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Tianyu Wang
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qi Chen
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yiting Liu
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Haochong Hu
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Tao Qiu
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jiangqiao Zhou
- Department of Organ TransplantationRenmin Hospital of Wuhan UniversityWuhanChina
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
17
|
Velazquez FN, Luberto C, Canals D, Hannun YA. Enzymes of sphingolipid metabolism as transducers of metabolic inputs. Biochem Soc Trans 2024; 52:1795-1808. [PMID: 39101614 PMCID: PMC11783705 DOI: 10.1042/bst20231442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Sphingolipids (SLs) constitute a discrete subdomain of metabolism, and they display both structural and signaling functions. Accumulating evidence also points to intimate connections between intermediary metabolism and SL metabolism. Given that many SLs exhibit bioactive properties (i.e. transduce signals), these raise the possibility that an important function of SLs is to relay information on metabolic changes into specific cell responses. This could occur at various levels. Some metabolites are incorporated into SLs, whereas others may initiate regulatory or signaling events that, in turn, modulate SL metabolism. In this review, we elaborate on the former as it represents a poorly appreciated aspect of SL metabolism, and we develop the hypothesis that the SL network is highly sensitive to several specific metabolic changes, focusing on amino acids (serine and alanine), various fatty acids, choline (and ethanolamine), and glucose.
Collapse
Affiliation(s)
- Fabiola N. Velazquez
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Chiara Luberto
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794
| | - Daniel Canals
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Yusuf A. Hannun
- From the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
18
|
Roszczyc-Owsiejczuk K, Imierska M, Sokołowska E, Kuźmicki M, Pogodzińska K, Błachnio-Zabielska A, Zabielski P. shRNA-mediated down-regulation of Acsl1 reverses skeletal muscle insulin resistance in obese C57BL6/J mice. PLoS One 2024; 19:e0307802. [PMID: 39178212 PMCID: PMC11343424 DOI: 10.1371/journal.pone.0307802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/12/2024] [Indexed: 08/25/2024] Open
Abstract
Prolonged consumption of diet rich in fats is regarded as the major factor leading to the insulin resistance (IR) and type 2 diabetes (T2D). Emerging evidence link excessive accumulation of bioactive lipids such as diacylglycerol (DAG) and ceramide (Cer), with impairment of insulin signaling in skeletal muscle. Until recently, little has been known about the involvement of long-chain acyl-CoAs synthetases in the above mechanism. To examine possible role of long-chain acyl-coenzyme A synthetase 1 (Acsl1) (a major muscular ACSL isoform) in mediating HFD-induced IR we locally silenced Acsl1 in gastrocnemius of high-fat diet (HFD)-fed C57BL/6J mice through electroporation-delivered shRNA and compared it to non-silenced tissue within the same animal. Acsl1 down-regulation decreased the content of muscular long-chain acyl-CoA (LCACoA) and both the Cer (C18:1-Cer and C24:1-Cer) and DAG (C16:0/18:0-DAG, C16:0/18:2-DAG, C18:0/18:0-DAG) and simultaneously improved insulin sensitivity and glucose uptake as compared with non-silenced tissue. Acsl1 down-regulation decreased expression of mitochondrial β-oxidation enzymes, and the content of both the short-chain acylcarnitine (SCA-Car) and short-chain acyl-CoA (SCACoA) in muscle, pointing towards reduction of mitochondrial FA oxidation. The results indicate, that beneficial effects of Acsl1 partial ablation on muscular insulin sensitivity are connected with inhibition of Cer and DAG accumulation, and outweigh detrimental impact of decreased mitochondrial fatty acids metabolism in skeletal muscle of obese HFD-fed mice.
Collapse
Affiliation(s)
- Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Emilia Sokołowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Kuźmicki
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
19
|
Wang H, He K, Zhang H, Zhang Q, Cao L, Li J, Zhong Z, Chen H, Zhou L, Lian C, Wang M, Chen K, Qian PY, Li C. Deciphering deep-sea chemosynthetic symbiosis by single-nucleus RNA-sequencing. eLife 2024; 12:RP88294. [PMID: 39102287 PMCID: PMC11299980 DOI: 10.7554/elife.88294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Bathymodioline mussels dominate deep-sea methane seep and hydrothermal vent habitats and obtain nutrients and energy primarily through chemosynthetic endosymbiotic bacteria in the bacteriocytes of their gill. However, the molecular mechanisms that orchestrate mussel host-symbiont interactions remain unclear. Here, we constructed a comprehensive cell atlas of the gill in the mussel Gigantidas platifrons from the South China Sea methane seeps (1100 m depth) using single-nucleus RNA-sequencing (snRNA-seq) and whole-mount in situ hybridisation. We identified 13 types of cells, including three previously unknown ones, and uncovered unknown tissue heterogeneity. Every cell type has a designated function in supporting the gill's structure and function, creating an optimal environment for chemosynthesis, and effectively acquiring nutrients from the endosymbiotic bacteria. Analysis of snRNA-seq of in situ transplanted mussels clearly showed the shifts in cell state in response to environmental oscillations. Our findings provide insight into the principles of host-symbiont interaction and the bivalves' environmental adaption mechanisms.
Collapse
Affiliation(s)
- Hao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan LaboratoryQingdaoChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- Department of Ocean Science, Hong Kong University of Science and TechnologyHong KongChina
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| | - Huan Zhang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Quanyong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingJapan
| | - Lei Cao
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Jing Li
- South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - Zhaoshan Zhong
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Hao Chen
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Li Zhou
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Chao Lian
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingJapan
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- Department of Ocean Science, Hong Kong University of Science and TechnologyHong KongChina
| | - Chaolun Li
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
20
|
Shrestha RK, Nassar ZD, Hanson AR, Iggo R, Townley SL, Dehairs J, Mah CY, Helm M, Alizadeh-Ghodsi M, Pickering M, Ghesquière B, Watt MJ, Quek LE, Hoy AJ, Tilley WD, Swinnen JV, Butler LM, Selth LA. ACSM1 and ACSM3 Regulate Fatty Acid Metabolism to Support Prostate Cancer Growth and Constrain Ferroptosis. Cancer Res 2024; 84:2313-2332. [PMID: 38657108 DOI: 10.1158/0008-5472.can-23-1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Solid tumors are highly reliant on lipids for energy, growth, and survival. In prostate cancer, the activity of the androgen receptor (AR) is associated with reprogramming of lipid metabolic processes. Here, we identified acyl-CoA synthetase medium chain family members 1 and 3 (ACSM1 and ACSM3) as AR-regulated mediators of prostate cancer metabolism and growth. ACSM1 and ACSM3 were upregulated in prostate tumors compared with nonmalignant tissues and other cancer types. Both enzymes enhanced proliferation and protected prostate cancer cells from death in vitro, whereas silencing ACSM3 led to reduced tumor growth in an orthotopic xenograft model. ACSM1 and ACSM3 were major regulators of the prostate cancer lipidome and enhanced energy production via fatty acid oxidation. Metabolic dysregulation caused by loss of ACSM1/3 led to mitochondrial oxidative stress, lipid peroxidation, and cell death by ferroptosis. Conversely, elevated ACSM1/3 activity enabled prostate cancer cells to survive toxic levels of medium chain fatty acids and promoted resistance to ferroptosis-inducing drugs and AR antagonists. Collectively, this study reveals a tumor-promoting function of medium chain acyl-CoA synthetases and positions ACSM1 and ACSM3 as key players in prostate cancer progression and therapy resistance. Significance: Androgen receptor-induced ACSM1 and ACSM3 mediate a metabolic pathway in prostate cancer that enables the utilization of medium chain fatty acids for energy production, blocks ferroptosis, and drives resistance to clinically approved antiandrogens.
Collapse
Affiliation(s)
- Raj K Shrestha
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| | - Zeyad D Nassar
- South Australian Health and Medical Research Institute, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, Australia
| | - Adrienne R Hanson
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| | - Richard Iggo
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Institut Bergonié Unicancer, INSERM, Bordeaux, France
| | - Scott L Townley
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Chui Y Mah
- South Australian Health and Medical Research Institute, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, Australia
| | - Madison Helm
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Mohammadreza Alizadeh-Ghodsi
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Marie Pickering
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Bart Ghesquière
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, Charles Perkins Centre, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lisa M Butler
- South Australian Health and Medical Research Institute, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, Australia
| |
Collapse
|
21
|
Cheval L, Poindessous V, Sampaio JL, Crambert G, Pallet N. Lipidomic Profiling of Kidney Cortical Tubule Segments Identifies Lipotypes with Physiological Implications. FUNCTION 2024; 5:zqae016. [PMID: 38985001 PMCID: PMC11237892 DOI: 10.1093/function/zqae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 07/11/2024] Open
Abstract
A detailed knowledge of the lipid composition of components of nephrons is crucial for understanding physiological processes and the development of kidney diseases. However, the lipidomic composition of kidney tubular segments is unknown. We manually isolated the proximal convoluted tubule (PCT), the cortical thick ascending limb of Henle's loop, and the cortical collecting duct from 5 lean and obese mice and subjected the samples to shotgun lipidomics analysis by high-resolution mass spectrometry acquisition. Across all samples, more than 500 lipid species were identified, quantified, and compared. We observed significant compositional differences among the 3 tubular segments, which serve as true signatures. These intrinsic lipidomic features are associated with a distinct proteomic program that regulates highly specific physiological functions. The distinctive lipidomic features of each of the 3 segments are mostly based on the relative composition of neutral lipids, long-chain polyunsaturated fatty acids, sphingolipids, and ether phospholipids. These features support the hypothesis of a lipotype assigned to specific tubular segments. Obesity profoundly impacts the lipotype of PCT. In conclusion, we present a comprehensive lipidomic analysis of 3 cortical segments of mouse kidney tubules. This valuable resource provides unparalleled detail that enhances our understanding of tubular physiology and the potential impact of pathological conditions.
Collapse
Affiliation(s)
- Lydie Cheval
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- CNRS EMR 8228-Unité Métabolisme et Physiologie Rénale, 75006 Paris, France
| | - Virginie Poindessous
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, 75015, Paris, France
| | - Julio L Sampaio
- CurieCoreTech Metabolomics and Lipidomics Technology Platform, Institut Curie, 75005, Paris, France
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- CNRS EMR 8228-Unité Métabolisme et Physiologie Rénale, 75006 Paris, France
| | - Nicolas Pallet
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, 75015, Paris, France
- Department of Clinical Chemistry, Assistance Publique Hôpitaux de Paris, Georges Pompidou European Hospital, 75015, Paris, France
| |
Collapse
|
22
|
Peng F, Lu J, Su K, Liu X, Luo H, He B, Wang C, Zhang X, An F, Lv D, Luo Y, Su Q, Jiang T, Deng Z, He B, Xu L, Guo T, Xiang J, Gu C, Wang L, Xu G, Xu Y, Li M, Kelley KW, Cui B, Liu Q. Oncogenic fatty acid oxidation senses circadian disruption in sleep-deficiency-enhanced tumorigenesis. Cell Metab 2024; 36:1598-1618.e11. [PMID: 38772364 DOI: 10.1016/j.cmet.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Circadian disruption predicts poor cancer prognosis, yet how circadian disruption is sensed in sleep-deficiency (SD)-enhanced tumorigenesis remains obscure. Here, we show fatty acid oxidation (FAO) as a circadian sensor relaying from clock disruption to oncogenic metabolic signal in SD-enhanced lung tumorigenesis. Both unbiased transcriptomic and metabolomic analyses reveal that FAO senses SD-induced circadian disruption, as illustrated by continuously increased palmitoyl-coenzyme A (PA-CoA) catalyzed by long-chain fatty acyl-CoA synthetase 1 (ACSL1). Mechanistically, SD-dysregulated CLOCK hypertransactivates ACSL1 to produce PA-CoA, which facilitates CLOCK-Cys194 S-palmitoylation in a ZDHHC5-dependent manner. This positive transcription-palmitoylation feedback loop prevents ubiquitin-proteasomal degradation of CLOCK, causing FAO-sensed circadian disruption to maintain SD-enhanced cancer stemness. Intriguingly, timed β-endorphin resets rhythmic Clock and Acsl1 expression to alleviate SD-enhanced tumorigenesis. Sleep quality and serum β-endorphin are negatively associated with both cancer development and CLOCK/ACSL1 expression in patients with cancer, suggesting dawn-supplemented β-endorphin as a potential chronotherapeutic strategy for SD-related cancer.
Collapse
Affiliation(s)
- Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xinyu Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Fan An
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Yuanyuan Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning, China
| | - Qitong Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Tonghui Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Ziqian Deng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lingzhi Xu
- Department of Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jin Xiang
- State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chundong Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ling Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guowang Xu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning, China
| | - Ying Xu
- Cambridge-Soochow University Genomic Resource Center, Soochow University, Suzhou, Jiangsu, China
| | - Mindian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China; State Key Laboratory of Oncology in South China, Psychobehavioral Cancer Research Center, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Poindessous V, Lazareth H, Crambert G, Cheval L, Sampaio JL, Pallet N. STAT3 drives the expression of ACSL4 in acute kidney injury. iScience 2024; 27:109737. [PMID: 38799564 PMCID: PMC11126884 DOI: 10.1016/j.isci.2024.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/27/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024] Open
Abstract
Long-chain acyl-CoA synthetase family 4 (ACSL4) metabolizes long-chain polyunsaturated fatty acids (PUFAs), enriching cell membranes with phospholipids susceptible to peroxidation and drive ferroptosis. The role of ACSL4 and ferroptosis upon endoplasmic-reticulum (ER)-stress-induced acute kidney injury (AKI) is unknown. We used lipidomic, molecular, and cellular biology approaches along with a mouse model of AKI induced by ER stress to investigate the role of ACSL4 regulation in membrane lipidome remodeling in the injured tubular epithelium. Tubular epithelial cells (TECs) activate ACSL4 in response to STAT3 signaling. In this context, TEC membrane lipidome is remodeled toward PUFA-enriched triglycerides instead of PUFA-bearing phospholipids. TECs expressing ACSL4 in this setting are not vulnerable to ferroptosis. Thus, ACSL4 activity in TECs is driven by STAT3 signaling, but ACSL4 alone is not enough to sensitize ferroptosis, highlighting the significance of the biological context associated with the study model.
Collapse
Affiliation(s)
- Virginie Poindessous
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Paris, France
| | - Helene Lazareth
- Centre de Recherche des Cordeliers, INSERM U1138, Université Paris Cité, Paris, France
- Université Paris-Cité, Paris, France
- Laboratory of Renal Physiology and Tubulopathies, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université Paris Cité, Paris, France
| | - Gilles Crambert
- EMR 8228 Metabolism and Renal Physiology Unit, CNRS, Paris, France
- CurieCoreTech Metabolomics and Lipidomics Technology Platform, Institut Curie, Paris, France
| | - Lydie Cheval
- EMR 8228 Metabolism and Renal Physiology Unit, CNRS, Paris, France
- CurieCoreTech Metabolomics and Lipidomics Technology Platform, Institut Curie, Paris, France
| | - Julio L. Sampaio
- CurieCoreTech Metabolomics and Lipidomics Technology Platform, Institut Curie, Paris, France
| | - Nicolas Pallet
- Laboratory of Renal Physiology and Tubulopathies, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université Paris Cité, Paris, France
- Department of Clinical Chemistry, Assistance Publique Hôpitaux de Paris, Georges Pompidou European Hospital, Paris, France
| |
Collapse
|
24
|
Zhang H, Sun Q, Dong H, Jin Z, Li M, Jin S, Zeng X, Fan J, Kong Y. Long-chain acyl-CoA synthetase-4 regulates endometrial decidualization through a fatty acid β-oxidation pathway rather than lipid droplet accumulation. Mol Metab 2024; 84:101953. [PMID: 38710444 PMCID: PMC11099325 DOI: 10.1016/j.molmet.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE Lipid metabolism plays an important role in early pregnancy, but its effects on decidualization are poorly understood. Fatty acids (FAs) must be esterified by fatty acyl-CoA synthetases to form biologically active acyl-CoA in order to enter the anabolic and/or catabolic pathway. Long-chain acyl-CoA synthetase 4 (ACSL4) is associated with female reproduction. However, whether it is involved in decidualization is unknown. METHODS The expression of ACSL4 in human and mouse endometrium was detected by immunohistochemistry. ACSL4 levels were regulated by the overexpression of ACSL4 plasmid or ACSL4 siRNA, and the effects of ACSL4 on decidualization markers and morphology of endometrial stromal cells (ESCs) were clarified. A pregnant mouse model was established to determine the effect of ACSL4 on the implantation efficiency of mouse embryos. Modulation of ACSL4 detects lipid anabolism and catabolism. RESULTS Through examining the expression level of ACSL4 in human endometrial tissues during proliferative and secretory phases, we found that ACSL4 was highly expressed during the secretory phase. Knockdown of ACSL4 suppressed decidualization and inhibited the mesenchymal-to-epithelial transition induced by MPA and db-cAMP in ESCs. Further, the knockdown of ACSL4 reduced the efficiency of embryo implantation in pregnant mice. Downregulation of ACSL4 inhibited FA β-oxidation and lipid droplet accumulation during decidualization. Interestingly, pharmacological and genetic inhibition of lipid droplet synthesis did not affect FA β-oxidation and decidualization, while the pharmacological and genetic inhibition of FA β-oxidation increased lipid droplet accumulation and inhibited decidualization. In addition, inhibition of β-oxidation was found to attenuate the promotion of decidualization by the upregulation of ACSL4. The decidualization damage caused by ACSL4 knockdown could be reversed by activating β-oxidation. CONCLUSIONS Our findings suggest that ACSL4 promotes endometrial decidualization by activating the β-oxidation pathway. This study provides interesting insights into our understanding of the mechanisms regulating lipid metabolism during decidualization.
Collapse
Affiliation(s)
- Hongshuo Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qianyi Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haojie Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zeen Jin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mengyue Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shanyuan Jin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaolan Zeng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jianhui Fan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
25
|
Jaroenlak P, McCarty KL, Xia B, Lam C, Zwack EE, Yanai I, Bhabha G, Ekiert DC. scRNA-seq reveals transcriptional dynamics of Encephalitozoon intestinalis parasites in human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596468. [PMID: 38853846 PMCID: PMC11160751 DOI: 10.1101/2024.05.30.596468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Microsporidia are single-celled intracellular parasites that cause opportunistic diseases in humans. Encephalitozoon intestinalis is a prevalent human-infecting species that invades the small intestine. Dissemination to other organ systems is also observed, and is potentially facilitated by macrophages. The macrophage response to infection and the developmental trajectory of the parasite are not well studied. Here we use single cell RNA sequencing to investigate transcriptional changes in both the host and parasite during infection. While a small population of infected macrophages mount a response, most remain transcriptionally unchanged, suggesting that the majority of parasites may avoid host detection. The parasite transcriptome reveals large transcriptional changes throughout the life cycle, providing a blueprint for parasite development. The stealthy microsporidian lifestyle likely allows these parasites to harness macrophages for replication and dissemination. Together, our data provide insights into the host response in primary human macrophages and the E. intestinalis developmental program.
Collapse
Affiliation(s)
- Pattana Jaroenlak
- Department of Cell Biology, New York University Grossman School of Medicine, New York 10016, USA
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kacie L. McCarty
- Department of Cell Biology, New York University Grossman School of Medicine, New York 10016, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York 10016, USA
| | - Bo Xia
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cherry Lam
- Department of Cell Biology, New York University Grossman School of Medicine, New York 10016, USA
| | - Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York 10016, USA
| | - Itai Yanai
- Institute for Computational Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University Grossman School of Medicine, New York 10016, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Damian C. Ekiert
- Department of Cell Biology, New York University Grossman School of Medicine, New York 10016, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York 10016, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
26
|
Bai Y, Li J, Wei Y, Chen Z, Liu Z, Guo D, Jia X, Niu Y, Shi B, Zhang X, Zhao Z, Hu J, Han X, Wang J, Liu X, Li S. Proteome Analysis Related to Unsaturated Fatty Acid Synthesis by Interfering with Bovine Adipocyte ACSL1 Gene. Antioxidants (Basel) 2024; 13:641. [PMID: 38929080 PMCID: PMC11200461 DOI: 10.3390/antiox13060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Unsaturated fatty acids (UFAs) in beef play a vital role in promoting human health. Long-chain fatty acyl-CoA synthase 1 (ACSL1) is a crucial gene for UFA synthesis in bovine adipocytes. To investigate the protein expression profile during UFA synthesis, we performed a proteomic analysis of bovine adipocytes by RNA interference and non-interference with ACSL1 using label-free techniques. A total of 3558 proteins were identified in both the NC and si-treated groups, of which 1428 were differentially expressed proteins (DEPs; fold change ≥ 1.2 or ≤ 0.83 and p-value < 0.05). The enrichment analysis of the DEPs revealed signaling pathways related to UFA synthesis or metabolism, including cAMP, oxytocin, fatty acid degradation, glycerol metabolism, insulin, and the regulation of lipolysis in adipocytes (p-value < 0.05). Furthermore, based on the enrichment analysis of the DEPs, we screened 50 DEPs that potentially influence the synthesis of UFAs and constructed an interaction network. Moreover, by integrating our previously published transcriptome data, this study established a regulatory network involving differentially expressed long non-coding RNAs (DELs), highlighting 21 DEPs and 13 DELs as key genes involved in UFA synthesis. These findings present potential candidate genes for further investigation into the molecular mechanisms underlying UFA synthesis in bovines, thereby offering insights to enhance the quality of beef and contribute to consumer health in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.B.); (J.L.); (Y.W.); (Z.C.); (Z.L.); (D.G.); (X.J.); (Y.N.); (B.S.); (X.Z.); (X.H.); (J.W.); (X.L.); (S.L.)
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.B.); (J.L.); (Y.W.); (Z.C.); (Z.L.); (D.G.); (X.J.); (Y.N.); (B.S.); (X.Z.); (X.H.); (J.W.); (X.L.); (S.L.)
| | | | | | | | | |
Collapse
|
27
|
Lai Y, Gao Y, Lin J, Liu F, Yang L, Zhou J, Xue Y, Li Y, Chang Z, Li J, Chao T, Chen J, Cheng X, Gao X, Li X, Lu F, Chu Q, Wang W. Dietary elaidic acid boosts tumoral antigen presentation and cancer immunity via ACSL5. Cell Metab 2024; 36:822-838.e8. [PMID: 38350448 DOI: 10.1016/j.cmet.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/12/2023] [Accepted: 01/20/2024] [Indexed: 02/15/2024]
Abstract
Immunomodulatory effects of long-chain fatty acids (LCFAs) and their activating enzyme, acyl-coenzyme A (CoA) synthetase long-chain family (ACSL), in the tumor microenvironment remain largely unknown. Here, we find that ACSL5 functions as an immune-dependent tumor suppressor. ACSL5 expression sensitizes tumors to PD-1 blockade therapy in vivo and the cytotoxicity mediated by CD8+ T cells in vitro via regulation of major histocompatibility complex class I (MHC-I)-mediated antigen presentation. Through screening potential substrates for ACSL5, we further identify that elaidic acid (EA), a trans LCFA that has long been considered harmful to human health, phenocopies to enhance MHC-I expression. EA supplementation can suppress tumor growth and sensitize PD-1 blockade therapy. Clinically, ACSL5 expression is positively associated with improved survival in patients with lung cancer, and plasma EA level is also predictive for immunotherapy efficiency. Our findings provide a foundation for enhancing immunotherapy through either targeting ACSL5 or metabolic reprogramming of antigen presentation via dietary EA supplementation.
Collapse
Affiliation(s)
- Yongfeng Lai
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhong Lin
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liguo Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Chang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianfu Gao
- Shanghai ProfLeader Biotech Co., Ltd, Shanghai, China
| | - Xiong Li
- Department of Gynecology & Obstetrics, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fujia Lu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
28
|
Xiang S, Yan W, Ren X, Feng J, Zu X. Role of ferroptosis and ferroptosis-related long non'coding RNA in breast cancer. Cell Mol Biol Lett 2024; 29:40. [PMID: 38528461 DOI: 10.1186/s11658-024-00560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Ferroptosis, a therapeutic strategy for tumours, is a regulated cell death characterised by the increased accumulation of iron-dependent lipid peroxides (LPO). Tumour-associated long non-coding RNAs (lncRNAs), when combined with traditional anti-cancer medicines or radiotherapy, can improve efficacy and decrease mortality in cancer. Investigating the role of ferroptosis-related lncRNAs may help strategise new therapeutic options for breast cancer (BC). Herein, we briefly discuss the genes and pathways of ferroptosis involved in iron and reactive oxygen species (ROS) metabolism, including the XC-/GSH/GPX4 system, ACSL4/LPCAT3/15-LOX and FSP1/CoQ10/NAD(P)H pathways, and investigate the correlation between ferroptosis and LncRNA in BC to determine possible biomarkers related to ferroptosis.
Collapse
Affiliation(s)
- Shasha Xiang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wen Yan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xing Ren
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jianbo Feng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
29
|
Köberlin MS, Fan Y, Liu C, Chung M, Pinto AFM, Jackson PK, Saghatelian A, Meyer T. A fast-acting lipid checkpoint in G1 prevents mitotic defects. Nat Commun 2024; 15:2441. [PMID: 38499565 PMCID: PMC10948896 DOI: 10.1038/s41467-024-46696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Lipid synthesis increases during the cell cycle to ensure sufficient membrane mass, but how insufficient synthesis restricts cell-cycle entry is not understood. Here, we identify a lipid checkpoint in G1 phase of the mammalian cell cycle by using live single-cell imaging, lipidome, and transcriptome analysis of a non-transformed cell. We show that synthesis of fatty acids in G1 not only increases lipid mass but extensively shifts the lipid composition to unsaturated phospholipids and neutral lipids. Strikingly, acute lowering of lipid synthesis rapidly activates the PERK/ATF4 endoplasmic reticulum (ER) stress pathway that blocks cell-cycle entry by increasing p21 levels, decreasing Cyclin D levels, and suppressing Retinoblastoma protein phosphorylation. Together, our study identifies a rapid anticipatory ER lipid checkpoint in G1 that prevents cells from starting the cell cycle as long as lipid synthesis is low, thereby preventing mitotic defects, which are triggered by low lipid synthesis much later in mitosis.
Collapse
Affiliation(s)
- Marielle S Köberlin
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Yilin Fan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Chad Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94111, USA
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology and Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology and Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
30
|
Deng B, Kong W, Shen X, Han C, Zhao Z, Chen S, Zhou C, Bae-Jump V. The role of DGAT1 and DGAT2 in regulating tumor cell growth and their potential clinical implications. J Transl Med 2024; 22:290. [PMID: 38500157 PMCID: PMC10946154 DOI: 10.1186/s12967-024-05084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/10/2024] [Indexed: 03/20/2024] Open
Abstract
Lipid metabolism is widely reprogrammed in tumor cells. Lipid droplet is a common organelle existing in most mammal cells, and its complex and dynamic functions in maintaining redox and metabolic balance, regulating endoplasmic reticulum stress, modulating chemoresistance, and providing essential biomolecules and ATP have been well established in tumor cells. The balance between lipid droplet formation and catabolism is critical to maintaining energy metabolism in tumor cells, while the process of energy metabolism affects various functions essential for tumor growth. The imbalance of synthesis and catabolism of fatty acids in tumor cells leads to the alteration of lipid droplet content in tumor cells. Diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2, the enzymes that catalyze the final step of triglyceride synthesis, participate in the formation of lipid droplets in tumor cells and in the regulation of cell proliferation, migration and invasion, chemoresistance, and prognosis in tumor. Several diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 inhibitors have been developed over the past decade and have shown anti-tumor effects in preclinical tumor models and improvement of metabolism in clinical trials. In this review, we highlight key features of fatty acid metabolism and different paradigms of diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 activities on cell proliferation, migration, chemoresistance, and prognosis in tumor, with the hope that these scientific findings will have potential clinical implications.
Collapse
Affiliation(s)
- Boer Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaochang Shen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chao Han
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shuning Chen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
31
|
Wang L, Fang X, Ling B, Wang F, Xia Y, Zhang W, Zhong T, Wang X. Research progress on ferroptosis in the pathogenesis and treatment of neurodegenerative diseases. Front Cell Neurosci 2024; 18:1359453. [PMID: 38515787 PMCID: PMC10955106 DOI: 10.3389/fncel.2024.1359453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Globally, millions of individuals are impacted by neurodegenerative disorders including Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Although a great deal of energy and financial resources have been invested in disease-related research, breakthroughs in therapeutic approaches remain elusive. The breakdown of cells usually happens together with the onset of neurodegenerative diseases. However, the mechanism that triggers neuronal loss is unknown. Lipid peroxidation, which is iron-dependent, causes a specific type of cell death called ferroptosis, and there is evidence its involvement in the pathogenic cascade of neurodegenerative diseases. However, the specific mechanisms are still not well known. The present article highlights the basic processes that underlie ferroptosis and the corresponding signaling networks. Furthermore, it provides an overview and discussion of current research on the role of ferroptosis across a variety of neurodegenerative conditions.
Collapse
Affiliation(s)
- Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- Department of Blood Transfusion, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Baodian Ling
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangsheng Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yu Xia
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
32
|
Wang W, Wang P, Zhu L, Liu B, Wei Q, Hou Y, Li X, Hu Y, Li W, Wang Y, Jiang C, Yang G, Wang J. An optimized fluorescent biosensor for monitoring long-chain fatty acyl-CoAs metabolism in vivo. Biosens Bioelectron 2024; 247:115935. [PMID: 38128319 DOI: 10.1016/j.bios.2023.115935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Long-chain fatty acyl-CoAs (LCACoAs) are intermediates in lipid metabolism that exert a wide range of cellular functions. However, our knowledge about the subcellular distribution and regulatory impacts of LCACoAs is limited by a lack of methods for detecting LCACoAs in living cells and tissues. Here, we report our development of LACSerHR, a genetically encoded fluorescent biosensor that enables precise measurement of subtle fluctuations in the levels of endogenous LCACoAs in vivo. LACSerHR significantly improve the fluorescent brightness and analyte affinity, in vitro and in vivo testing showcased LACSerHR's large dynamic range. We demonstrate LACSerHR's capacity for real-time evaluation of LCACoA levels in specific subcellular compartments, for example in response to disruption of ACSL enzyme function in HEK293T cells. Moreover, we show the application of LACSerHR for sensitive measurement of elevated LCACoA levels in the livers of mouse models for two common metabolic diseases (NAFLD and type 2 diabetes). Thus, our LACSerHR sensor is a powerful, broadly applicable tool for studying LCACoAs metabolism and disease.
Collapse
Affiliation(s)
- Weibo Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China; National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, PR China
| | - Pengcheng Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, PR China
| | - Lixin Zhu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Bingjie Liu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Qingpeng Wei
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Yongkang Hou
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Xi Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Yufei Hu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, PR China
| | - Guangfu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, PR China.
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China.
| |
Collapse
|
33
|
Deisl C, Moe OW, Hilgemann DW. Constitutive Plasma Membrane Turnover in T-REx293 cells via Ordered Membrane Domain Endocytosis under Mitochondrial Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576124. [PMID: 38293164 PMCID: PMC10827192 DOI: 10.1101/2024.01.17.576124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Clathrin/dynamin-independent endocytosis of ordered plasma membrane domains (ordered membrane domain endocytosis, OMDE) can become massive in response to cytoplasmic Ca elevations, G protein activation by non-hydrolyzable GTP analogs, and enhanced oxidative metabolism. In patch-clamped murine bone marrow macrophages (BMMs), cytoplasmic succinate and pyruvate, but not β-hydroxybutyrate, induce OMDE of 75% of the plasma membrane within 2 min. The responses require palmitoylation of membrane proteins, being decreased by 70% in BMMs lacking the acyltransferase, DHHC5, by treatment with carnitine to shift long-chain acyl groups from cytoplasmic to mitochondrial acyl-CoAs, by bromopalmitate/albumin complexes to block DHHCs, and by the mitochondria-specific cyclosporin, NIM811, to block permeability transition pores that may release mitochondrial coenzyme A into the cytoplasm. Using T-REx293 cells, OMDE amounts to 40% with succinate, pyruvate, or GTPγS, and it is inhibited by actin cytoskeleton disruption. Pyruvate-induced OMDE is blocked by the hydrophobic antioxidant, edaravone, which prevents permeability transition pore openings. Using fluorescent 3kD dextrans to monitor endocytosis, OMDE appears to be constitutively active in T-REx293 cells but not in BMMs. After 1 h without substrates or bicarbonate, pyruvate and hydroxybutyrate inhibit constitutive OMDE, as expected for a shift of CoA from long-chain acyl-CoAs to other CoA metabolites. In the presence of bicarbonate, pyruvate strongly enhances OMDE, which is then blocked by β-hydroxybutyrate, bromopalmitate/albumin complexes, cyclosporines, or edaravone. After pyruvate responses, T-REx293 cells grow normally with no evidence for apoptosis. Fatty acid-free albumin (15 μM) inhibits basal OMDE in T-REx293 cells, as do cyclosporines, carnitine, and RhoA blockade. Surprisingly, OMDE in the absence of substrates and bicarbonate is not inhibited by siRNA knockdown of the acyltransferases, DHHC5 or DHHC2, which are required for activated OMDE in patch clamp experiments. We verify biochemically that small CoA metabolites decrease long-chain acyl-CoAs. We verify also that palmitoylations of many PM-associated proteins decrease and increase when OMDE is inhibited and stimulated, respectively, by different metabolites. STED microscopy reveals that vesicles formed during constitutive OMDE in T-REX293 cells have 90 to 130 nm diameters. In summary, OMDE is likely a major G-protein-dependent endocytic mechanism that can be constitutively active in some cell types, albeit not BMMs. OMDE depends on different DHHC acyltransferases in different circumstances and can be limited by local supplies of fatty acids, CoA, and long-chain acyl-CoAs.
Collapse
Affiliation(s)
- Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orson W Moe
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
34
|
Niknafs S, Meijer MMY, Khaskheli AA, Roura E. In ovo delivery of oregano essential oil activated xenobiotic detoxification and lipid metabolism at hatch in broiler chickens. Poult Sci 2024; 103:103321. [PMID: 38100943 PMCID: PMC10762474 DOI: 10.1016/j.psj.2023.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
In ovo interventions are used to improve embryonic development and robustness of chicks. The objective of this study was to identify the optimal dose for in ovo delivery of oregano essential oil (OEO), and to investigate metabolic impacts. Broiler chickens Ross 308 fertile eggs were injected with 7 levels of OEO (0, 5, 10, 20, 30, 40, and 50 µL) into the amniotic fluid at embryonic d 17.5 (E17.5) (n = 48). Chick quality was measured by navel score (P < 0.05) and/or hatchability rates (P < 0.01) were significantly decreased at doses at or above 10 or 20 µL/egg, respectively, indicating potential toxicity. However, no effects were observed at the 5 µL/egg, suggesting that compensatory mechanisms were effective to maintain homeostasis in the developing embryo. To pursue a better understanding of these mechanisms, transcriptomic analyses of the jejunum were performed comparing the control injected with saline and the group injected with 5 µL of OEO. The transcriptomic analyses identified that 167 genes were upregulated and 90 were downregulated in the 5 µL OEO compared to the control group injected with saline (P < 0.01). Functional analyses of the differentially expressed genes (DEG) showed that metabolic pathways related to the epoxygenase cytochrome P450 pathway associated with xenobiotic catabolic processes were significantly upregulated (P < 0.05). In addition, long-chain fatty acid metabolism associated with ATP binding transporters was also upregulated in the OEO treated group (P < 0.05). The results indicated that low doses of OEO in ovo have the potential to increase lipid metabolism in late stages (E17.5) of embryonic development. In conclusion, in ovo delivery of 5 µL OEO did not show any negative impact on hatchability and chick quality. OEO elevated expression of key enzymes and receptors involved in detoxification pathways and lipid metabolism in the jejunum of hatchling broiler chicks.
Collapse
Affiliation(s)
- Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | - Mila M Y Meijer
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | - Asad A Khaskheli
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia.
| |
Collapse
|
35
|
Xiao X, Li R, Cui B, Lv C, Zhang Y, Zheng J, Hui R, Wang Y. Liver ACSM3 deficiency mediates metabolic syndrome via a lauric acid-HNF4α-p38 MAPK axis. EMBO J 2024; 43:507-532. [PMID: 38191811 PMCID: PMC10897460 DOI: 10.1038/s44318-023-00020-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Metabolic syndrome combines major risk factors for cardiovascular disease, making deeper insight into its pathogenesis important. We here explore the mechanistic basis of metabolic syndrome by recruiting an essential patient cohort and performing extensive gene expression profiling. The mitochondrial fatty acid metabolism enzyme acyl-CoA synthetase medium-chain family member 3 (ACSM3) was identified to be significantly lower expressed in the peripheral blood of metabolic syndrome patients. In line, hepatic ACSM3 expression was decreased in mice with metabolic syndrome. Furthermore, Acsm3 knockout mice showed glucose and lipid metabolic abnormalities, and hepatic accumulation of the ACSM3 fatty acid substrate lauric acid. Acsm3 depletion markedly decreased mitochondrial function and stimulated signaling via the p38 MAPK pathway cascade. Consistently, Acsm3 knockout mouse exhibited abnormal mitochondrial morphology, decreased ATP contents, and enhanced ROS levels in their livers. Mechanistically, Acsm3 deficiency, and lauric acid accumulation activated nuclear receptor Hnf4α-p38 MAPK signaling. In line, the p38 inhibitor Adezmapimod effectively rescued the Acsm3 depletion phenotype. Together, these findings show that disease-associated loss of ACSM3 facilitates mitochondrial dysfunction via a lauric acid-HNF4a-p38 MAPK axis, suggesting a novel therapeutic vulnerability in systemic metabolic dysfunction.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruofei Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Lv
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Zheng
- Rizhao Port Hospital, Shandong, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
36
|
Leyland B, Novichkova E, Dolui AK, Jallet D, Daboussi F, Legeret B, Li Z, Li-Beisson Y, Boussiba S, Khozin-Goldberg I. Acyl-CoA binding protein is required for lipid droplet degradation in the diatom Phaeodactylum tricornutum. PLANT PHYSIOLOGY 2024; 194:958-981. [PMID: 37801606 DOI: 10.1093/plphys/kiad525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 10/08/2023]
Abstract
Diatoms (Bacillariophyceae) accumulate neutral storage lipids in lipid droplets during stress conditions, which can be rapidly degraded and recycled when optimal conditions resume. Since nutrient and light availability fluctuate in marine environments, storage lipid turnover is essential for diatom dominance of marine ecosystems. Diatoms have garnered attention for their potential to provide a sustainable source of omega-3 fatty acids. Several independent proteomic studies of lipid droplets isolated from the model oleaginous pennate diatom Phaeodactylum tricornutum have identified a previously uncharacterized protein with an acyl-CoA binding (ACB) domain, Phatrdraft_48778, here referred to as Phaeodactylum tricornutum acyl-CoA binding protein (PtACBP). We report the phenotypic effects of CRISPR-Cas9 targeted genome editing of PtACBP. ptacbp mutants were defective in lipid droplet and triacylglycerol degradation, as well as lipid and eicosapentaenoic acid synthesis, during recovery from nitrogen starvation. Transcription of genes responsible for peroxisomal β-oxidation, triacylglycerol lipolysis, and eicosapentaenoic acid synthesis was inhibited. A lipid-binding assay using a synthetic ACB domain from PtACBP indicated preferential binding specificity toward certain polar lipids. PtACBP fused to eGFP displayed an endomembrane-like pattern, which surrounded the periphery of lipid droplets. PtACBP is likely responsible for intracellular acyl transport, affecting cell division, development, photosynthesis, and stress response. A deeper understanding of the molecular mechanisms governing storage lipid turnover will be crucial for developing diatoms and other microalgae as biotechnological cell factories.
Collapse
Affiliation(s)
- Ben Leyland
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Ekaterina Novichkova
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Achintya Kumar Dolui
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Denis Jallet
- Toulouse Biotechnology Institute Bio & Chemical Engineering, Institut National de la Recherche Agronomique, Institute National Des Sciences Appliquees, Le Centre national de la recherche scientifique, Toulouse 31077, France
| | - Fayza Daboussi
- Toulouse Biotechnology Institute Bio & Chemical Engineering, Institut National de la Recherche Agronomique, Institute National Des Sciences Appliquees, Le Centre national de la recherche scientifique, Toulouse 31077, France
| | - Bertrand Legeret
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Zhongze Li
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Yonghua Li-Beisson
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Sammy Boussiba
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Inna Khozin-Goldberg
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| |
Collapse
|
37
|
Park C, Lim JM, Hong SC, Cho M. Monitoring the synthesis of neutral lipids in lipid droplets of living human cancer cells using two-color infrared photothermal microscopy. Chem Sci 2024; 15:1237-1247. [PMID: 38274065 PMCID: PMC10806728 DOI: 10.1039/d3sc04705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/25/2023] [Indexed: 01/27/2024] Open
Abstract
There has been growing interest in the functions of lipid droplets (LDs) due to recent discoveries regarding their diverse roles. These functions encompass lipid metabolism, regulation of lipotoxicity, and signaling pathways that extend beyond their traditional role in energy storage. Consequently, there is a need to examine the molecular dynamics of LDs at the subcellular level. Two-color infrared photothermal microscopy (2C-IPM) has proven to be a valuable tool for elucidating the molecular dynamics occurring in LDs with sub-micrometer spatial resolution and molecular specificity. In this study, we employed the 2C-IPM to investigate the molecular dynamics of LDs in both fixed and living human cancer cells (U2OS cells) using the isotope labeling method. We investigated the synthesis of neutral lipids occurring in individual LDs over time after exposing the cells to excess saturated fatty acids while simultaneously comparing inherent lipid contents in LDs. We anticipate that these research findings will reveal new opportunities for studying lesser-known biological processes within LDs and other subcellular organelles.
Collapse
Affiliation(s)
- Chanjong Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Jong Min Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
- Department of Physics, Korea University Seoul 02841 Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
- Department of Chemistry, Korea University Seoul 02841 Korea
| |
Collapse
|
38
|
Li J, Li L, Zhang Z, Chen P, Shu H, Yang C, Chu Y, Liu J. Ferroptosis: an important player in the inflammatory response in diabetic nephropathy. Front Immunol 2023; 14:1294317. [PMID: 38111578 PMCID: PMC10725962 DOI: 10.3389/fimmu.2023.1294317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetic nephropathy (DN) is a chronic inflammatory disease that affects millions of diabetic patients worldwide. The key to treating of DN is early diagnosis and prevention. Once the patient enters the clinical proteinuria stage, renal damage is difficult to reverse. Therefore, developing early treatment methods is critical. DN pathogenesis results from various factors, among which the immune response and inflammation play major roles. Ferroptosis is a newly discovered type of programmed cell death characterized by iron-dependent lipid peroxidation and excessive ROS production. Recent studies have demonstrated that inflammation activation is closely related to the occurrence and development of ferroptosis. Moreover, hyperglycemia induces iron overload, lipid peroxidation, oxidative stress, inflammation, and renal fibrosis, all of which are related to DN pathogenesis, indicating that ferroptosis plays a key role in the development of DN. Therefore, this review focuses on the regulatory mechanisms of ferroptosis, and the mutual regulatory processes involved in the occurrence and development of DN and inflammation. By discussing and analyzing the relationship between ferroptosis and inflammation in the occurrence and development of DN, we can deepen our understanding of DN pathogenesis and develop new therapeutics targeting ferroptosis or inflammation-related regulatory mechanisms for patients with DN.
Collapse
Affiliation(s)
- Jialing Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Haiying Shu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
39
|
Ding N, Wang W, Teng J, Zeng Y, Zhang Q, Dong L, Tang H. miR-26a-5p Regulates Adipocyte Differentiation via Directly Targeting ACSL3 in Adipocytes. Adipocyte 2023; 12:1-10. [PMID: 36710425 PMCID: PMC9891161 DOI: 10.1080/21623945.2023.2166345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Preadipocytes become mature adipocytes after proliferation and differentiation, and although many genes and microRNAs have been identified in intramuscular fat, their physiological function and regulatory mechanisms remain largely unexplored. miR-26a-5p has been reported to be related to fat deposition, but its effect on porcine preadipocyte differentiation has not been explored. In this study, bioinformatics analysis and luciferase reporter assay identified that miR-26a-5p binds to the 3'UTR of Acyl-CoA synthetase long-chain family member 3 (ACSL3) mRNA. The model for porcine intramuscular preadipocyte differentiation was established to explore the function of miR-6a-5p-ACSL3 on adipocyte differentiation. ACSL3 knockdown markedly reduced the triglycerides (TG) content of cells, as well as the mRNA levels of adipogenic marker genes (PPAR-γ and SREBP-1c). The number of lipid droplets in cells transfected with a miR-26a-5p mimic is significantly reduced, consistent with ACSL3 knockdown results, while the miR-26a-5p inhibitor resulted in opposite results. Taken together, miR-26a-5p is a repressor of porcine preadipocyte differentiation and plays a vital role in ACSL3-mediated adipogenesis.
Collapse
Affiliation(s)
- Ning Ding
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science & Technology, Shandong Agricultural University, Taian, Shandong Province, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science & Technology, Shandong Agricultural University, Taian, Shandong Province, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Jun Teng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science & Technology, Shandong Agricultural University, Taian, Shandong Province, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Yongqing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science & Technology, Shandong Agricultural University, Taian, Shandong Province, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science & Technology, Shandong Agricultural University, Taian, Shandong Province, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Licai Dong
- Shandong Futong Agriculture & Animal Husbandry Development Co. LTD, Linyi, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science & Technology, Shandong Agricultural University, Taian, Shandong Province, China,Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China,CONTACT Hui Tang No. 61, Daizong Street, Tai’an City, Shandong Province, 271018, China
| |
Collapse
|
40
|
Zhang D, Jia X, Lin D, Ma J. Melatonin and ferroptosis: Mechanisms and therapeutic implications. Biochem Pharmacol 2023; 218:115909. [PMID: 37931663 DOI: 10.1016/j.bcp.2023.115909] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron-dependent lipid peroxidation leading to oxidative damage to cell membranes. Cell sensitivity to ferroptosis is influenced by factors such as iron overload, lipid metabolism, and the regulation of the antioxidant system. Melatonin, with its demonstrated capacity to chelate iron, modulate iron metabolism proteins, regulate lipid peroxidation, and regulate antioxidant systems, has promise as a potential therapeutic agent in mediating ferroptosis. The availability of approved drugs targeting ferroptosis is limited; therefore, melatonin is a candidate for broad application due to its safety and efficacy in attenuating ferroptosis in noncancerous diseases. Melatonin has been demonstrated to attenuate ferroptosis in cellular and animal models of noncancerous diseases, showcasing effectiveness in organs such as the heart, brain, lung, liver, kidney, and bone. This review outlines the molecular mechanisms of ferroptosis, investigates melatonin's potential effects on ferroptosis, and discusses melatonin's therapeutic potential as a promising intervention against diseases associated with ferroptosis. Through this discourse, we aim to lay a strong foundation for developing melatonin as a therapeutic strategy to modulate ferroptosis in a variety of disease contexts.
Collapse
Affiliation(s)
- Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaotong Jia
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
41
|
Luo SH, Tian JM, Chu Y, Zhu HY, Ni JD, Huang J. The BRD4-SRPK2-SRSF2 signal modulates the splicing efficiency of ACSL3 pre-mRNA and influences erastin-induced ferroptosis in osteosarcoma cells. Cell Death Dis 2023; 14:760. [PMID: 37993451 PMCID: PMC10665344 DOI: 10.1038/s41419-023-06273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Lipid metabolism is the key to ferroptosis susceptibility. However, little is known about the underlying mechanisms in osteosarcoma cells. Functional restriction of bromodomain-containing protein 4 (BRD4) reduced the susceptibility to erastin-induced ferroptosis of osteosarcoma cells both in vitro and in vivo. Mechanically, BRD4 controls the splicing efficiency of the RNA precursor (pre-mACSL3) of ACSL3 (ACSL3) by recruiting serinerich/threonine protein kinase 2 (SRPK2) to assemble the splicing catalytic platform. Moreover, the AMP-binding domain of ACSL3 significantly influences arachidonic acid synthesis and thus determines the susceptibility to erastin-induced ferroptosis. Overall, we found a BRD4-mediated pre-mACSL3 splicing influences erastin-induced ferroptosis by affecting arachidonic acid synthesis in osteosarcoma cells. Data in this study fills some of the gap in understanding the post-transcriptional regulatory mechanisms of ACSL3 and provides new insights into the mechanisms of lipid metabolism regulation and its effect on susceptibility to ferroptosis in osteosarcoma cells.
Collapse
Affiliation(s)
- Shun-Hong Luo
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Ming Tian
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Chu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Yi Zhu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Dong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
42
|
Lv J, Yanting W, Wei S. Regulatory roles of ACSL5 in the anti-tumor function of palmitic acid (C16:0) <em>via</em> the ERK signaling pathway. Eur J Histochem 2023; 67. [PMID: 37946526 DOI: 10.4081/ejh.2023.3867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Previous studies have highlighted the susceptibility of cancer to perturbations in lipid metabolism. In particular, C16:0 has emerged as a promising novel treatment for hepatocellular carcinoma. In our study, we investigated the levels of C16:0 in the serum of non-small lung cancer patients were significant downregulation compared to healthy individuals (n=10; p<0.05). Moreover, our in vitro experiments using A549 cells demonstrated that C16:0 effectively inhibited proliferation, apoptosis, migration, and invasion. Despite these promising results, its pathogenesis remains poorly understood. CCK-8 assay, annexin V-FITC/PI double staining assay, wound healing assay and transwell assay were performed to evaluate the effects of C16:0, on proliferation, apoptosis, migration and invasion of A549 cells. RNA sequencing was used to identify essential factors involved in C16:0-growth inhibition in lung cancer. Further, the expression levels of related gene and proteins were detected by quantitative RT-PCR and Western blotting. Mouse NSCLC subcutaneous xenograft tumor model was established, and gastric lavage was given with C16:0. Tumor volume assay and hematoxylin-eosin staining were used to detect tumor growth in vivo. Our analysis revealed a significant upregulation of ACSL5 and its associated proteins in C16:0-treated A549 cells compared to the control group both in vivo and in vitro. Moreover, the knockdown of ACSL5 reversed the anti-tumor effect, resulting in an increased rate of the malignant phenotype mentioned above. Additionally, the expression of phosphorylated ERK protein was significantly inhibited with increasing concentrations of C16:0 in A549 cells. These results reveal for the first time that C16:0, as a novel target, regulates ACLS5 through the ERK signaling pathway, to inhibit the proliferation and apoptosis and inhibits cell migration and invasion of NSCLC. These findings may lead to the development of a novel therapeutic approach for non-small lung cancer.
Collapse
Affiliation(s)
- Jiapei Lv
- The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang.
| | - Wang Yanting
- Ningbo Zhenhai People's Hospital, Ningbo, Zhejiang.
| | - Shan Wei
- The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang.
| |
Collapse
|
43
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. An intricate rewiring of cancer metabolism via alternative splicing. Biochem Pharmacol 2023; 217:115848. [PMID: 37813165 DOI: 10.1016/j.bcp.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
All human genes undergo alternative splicing leading to the diversity of the proteins. However, in some cases, abnormal regulation of alternative splicing can result in diseases that trigger defects in metabolism, reduced apoptosis, increased proliferation, and progression in almost all tumor types. Metabolic dysregulations and immune dysfunctions are crucial factors in cancer. In this respect, alternative splicing in tumors could be a potential target for therapeutic cancer strategies. Dysregulation of alternative splicing during mRNA maturation promotes carcinogenesis and drug resistance in many cancer types. Alternative splicing (changing the target mRNA 3'UTR binding site) can result in a protein with altered drug affinity, ultimately leading to drug resistance.. Here, we will highlight the function of various alternative splicing factors, how it regulates the reprogramming of cancer cell metabolism, and their contribution to tumor initiation and proliferation. Also, we will discuss emerging therapeutics for treating tumors via abnormal alternative splicing. Finally, we will discuss the challenges associated with these therapeutic strategies for clinical applications.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | - Sarmistha Saha
- Department of Biotechnology, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
44
|
Yu T, Sun S. Role and mechanism of ferroptosis in acute lung injury. Cell Cycle 2023; 22:2119-2129. [PMID: 37946318 PMCID: PMC10732650 DOI: 10.1080/15384101.2023.2278328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
Ferroptosis is a new non-apoptotic cell death caused by the accumulation of dysregulated metabolism of ferric iron, amino acids or lipid peroxidation. Increasing studies suggest that ferroptosis is involved in the acute lung injury (ALI). This article aims to review the role of ferroptosis in ALI. ALI is a common respiratory disease and presents a high mortality rate. Inhibiting cell ferroptosis of lung improves the ALI. In addition, several signaling pathways are related to ferroptosis in ALI, involving in iron homeostasis, lipid peroxidation, and amino acid metabolism. Moreover, there are various key factors to regulate the occurrence of ferroptosis in ALI, such as ACSL4, NRF2, and P53. The ACSL4 promotes the ferroptosis, while the NRF2 alleviates the ferroptosis in ALI. The main effect of P53 is to promote ferroptosis. Accordingly, ferroptosis is involved in ALI and may be an important therapeutic target for ALI.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Pediatrics Class 1, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
45
|
Li Z, Zhang G, Pan K, Niu X, Shu-Chien AC, Chen T, Zhang X, Wu X. Functional transcriptome reveals hepatopancreatic lipid metabolism during the molting cycle of the Chinese mitten crab Eriocheir sinensis. Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111474. [PMID: 37406959 DOI: 10.1016/j.cbpa.2023.111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Crustacean molting is highly related to energy and lipid metabolism. This study was conducted to detect the changes of total lipids (TL), triacylglyceride (TAG), phospholipid (PL) and lipid droplets in hepatopancreas, and then to investigate the gene expression patterns related to hepatopancreatic lipid metabolism during the molting cycle of Chinese mitten crab Eriocheir sinensis. Hepatopancreatic TL and TAG increased significantly from post-molt stage to pre-molt stage, then decreased significantly from pre-molt stage to ecdysis stage, which is consistent to the changes of neutral lipid-rich adipocytes in hepatopancreas. By transcriptomic analysis, 65,325 transcripts were sequenced and assembled, and 28,033 transcripts were annotated. Most genes were related to energy metabolism, and the enriched genes were involved in carbohydrate and lipid metabolism and biosynthesis, especially in de novo synthesis of fatty acids and TAG, and ketone body production. Compared to the inter-molt stages, acetyl-CoA carboxylase, fatty acid synthase and other genes related to the synthesis of fatty acids were upregulated in the pre-molt stage. TAG synthesis related genes, including Glycerol-3-phosphate acyltransferase and 1-acylglycerol-3-phosphate acyltransferases, were upregulated in the post-molt stage compared to the inter-molt stage. The expression of ketone body-related genes had no significant changes during the molting cycle. Compared to the TAG synthetic pathway, ketone body biosynthesis may contribute less/secondarily to fatty acid metabolic processes, which could be involved in the other physiological processes or metabolism. In conclusion, these results showed that TAG is the major lipid deposition during inter- and pre-molt stages, and the most genes are related to the fatty acids and TAG metabolism in the hepatopancreas during the molting cycle of E. sinensis.
Collapse
Affiliation(s)
- Zhi Li
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Guangbao Zhang
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Kewu Pan
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Xingjian Niu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | | | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Xugan Wu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; School of Biological Sciences, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
46
|
Zheng Y, Zhong G, He C, Li M. Targeted splicing therapy: new strategies for colorectal cancer. Front Oncol 2023; 13:1222932. [PMID: 37664052 PMCID: PMC10470845 DOI: 10.3389/fonc.2023.1222932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
RNA splicing is the process of forming mature mRNA, which is an essential phase necessary for gene expression and controls many aspects of cell proliferation, survival, and differentiation. Abnormal gene-splicing events are closely related to the development of tumors, and the generation of oncogenic isoform in splicing can promote tumor progression. As a main process of tumor-specific splicing variants, alternative splicing (AS) can promote tumor progression by increasing the production of oncogenic splicing isoforms and/or reducing the production of normal splicing isoforms. This is the focus of current research on the regulation of aberrant tumor splicing. So far, AS has been found to be associated with various aspects of tumor biology, including cell proliferation and invasion, resistance to apoptosis, and sensitivity to different chemotherapeutic drugs. This article will review the abnormal splicing events in colorectal cancer (CRC), especially the tumor-associated splicing variants arising from AS, aiming to offer an insight into CRC-targeted splicing therapy.
Collapse
Affiliation(s)
| | | | - Chengcheng He
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | |
Collapse
|
47
|
Merkel M, Goebel B, Boll M, Adhikari A, Maurer V, Steinhilber D, Culmsee C. Mitochondrial Reactive Oxygen Species Formation Determines ACSL4/LPCAT2-Mediated Ferroptosis. Antioxidants (Basel) 2023; 12:1590. [PMID: 37627584 PMCID: PMC10451816 DOI: 10.3390/antiox12081590] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Ferroptosis is a form of oxidative cell death that is characterized by enhanced lipid peroxidation and mitochondrial impairment. The enzymes acyl-CoA synthetase long-chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase (LPCAT) play an essential role in the biosynthesis of polyunsaturated fatty acid (PUFA)-containing phospholipids, thereby providing the substrates for lipid peroxidation and promoting ferroptosis. To examine the impact of mitochondria in ACSL4/LPCAT2-driven ferroptosis, HEK293T cells overexpressing ACSL4 and LPCAT2 (OE) or empty vector controls (LV) were exposed to 1S, 3R-RSL3 (RSL3) for induction of ferroptosis. The ACSL4/LPCAT2 overexpression resulted in higher sensitivity against RSL3-induced cell death compared to LV-transfected controls. Moreover, mitochondrial parameters such as mitochondrial reactive oxygen species (ROS) formation, mitochondrial membrane potential, and mitochondrial respiration deteriorated in the OE cells, supporting the conclusion that mitochondria play a significant role in ACSL4/LPCAT2-driven ferroptosis. This was further confirmed through the protection of OE cells against RSL3-mediated cell death by the mitochondrial ROS scavenger mitoquinone (MitoQ), which exerted protection via antioxidative properties rather than through previously reported metabolic effects. Our findings implicate that mitochondrial ROS production and the accompanying organelle disintegration are essential for mediating oxidative cell death initiated through lipid peroxidation in ferroptosis.
Collapse
Affiliation(s)
- Melanie Merkel
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany;
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; (M.B.); (A.A.); (V.M.)
| | - Bjarne Goebel
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60439 Frankfurt, Germany; (B.G.); (D.S.)
| | - Moritz Boll
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; (M.B.); (A.A.); (V.M.)
| | - Aasha Adhikari
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; (M.B.); (A.A.); (V.M.)
| | - Viktoria Maurer
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; (M.B.); (A.A.); (V.M.)
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60439 Frankfurt, Germany; (B.G.); (D.S.)
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany;
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Straße 6, 35032 Marburg, Germany; (M.B.); (A.A.); (V.M.)
| |
Collapse
|
48
|
Yang X, Zhang X, Yang Z, Zhang Q, Hao W, Pang Y, Zhang D, Liu D. Transcriptional Regulation Associated with Subcutaneous Adipogenesis in Porcine ACSL1 Gene. Biomolecules 2023; 13:1057. [PMID: 37509093 PMCID: PMC10377008 DOI: 10.3390/biom13071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Long-chain acyl-CoA synthetase 1 (ACSL1) plays an important role in fatty acid metabolism and fat deposition. The transcription of the ACSL1 gene is regulated specifically among cells and physiological processes, and transcriptional regulation of ACSL1 in adipogenesis remains elusive. Here, we characterize transcription factors (TFs) associated with adipogenesis in the porcine ACSL1 gene. CCAAT-enhancer binding protein (C/EBP)α, a well-known adipogenic marker, was found to enhance the expression of the ACSL1 gene via binding two tandem motifs in the promoter. Further, we demonstrate that ACSL1 mediates C/EBPα effects on adipogenesis in preadipocytes cultured from subcutaneous fat tissue of pigs via gain- and loss-of-function analyses. The cAMP-response element binding protein, another TF involved in adipogenesis, was also identified in the regulation of ACSL1 gene expression. Additionally, single nucleotide polymorphisms (SNPs) were screened in the promoter of ACSL1 among four breeds including the Chinese indigenous Min, and Duroc, Berkshire, and Yorkshire pigs through sequencing of PCR products. Two tightly linked SNPs, -517G>T and -311T>G, were found exclusively in Min pigs. The haplotype mutation decreases promoter activity in PK-15 and ST cells, and in vivo the expression of ACSL1, illustrating a possible role in adipogenesis regulated by C/EBPα/ACSL1 axis. Additionally, a total of 24 alternative splicing transcripts were identified, indicating the complexity of alternative splicing in the ACSL1 gene. The results will contribute to further revealing the regulatory mechanisms of ACSL1 during adipogenesis and to the characterization of molecular markers for selection of fat deposition in pigs.
Collapse
Affiliation(s)
- Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohan Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zewei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Qian Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wanjun Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yu Pang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|
49
|
Chen F, Kang R, Liu J, Tang D. The ACSL4 Network Regulates Cell Death and Autophagy in Diseases. BIOLOGY 2023; 12:864. [PMID: 37372148 DOI: 10.3390/biology12060864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Lipid metabolism, cell death, and autophagy are interconnected processes in cells. Dysregulation of lipid metabolism can lead to cell death, such as via ferroptosis and apoptosis, while lipids also play a crucial role in the regulation of autophagosome formation. An increased autophagic response not only promotes cell survival but also causes cell death depending on the context, especially when selectively degrading antioxidant proteins or organelles that promote ferroptosis. ACSL4 is an enzyme that catalyzes the formation of long-chain acyl-CoA molecules, which are important intermediates in the biosynthesis of various types of lipids. ACSL4 is found in many tissues and is particularly abundant in the brain, liver, and adipose tissue. Dysregulation of ACSL4 is linked to a variety of diseases, including cancer, neurodegenerative disorders, cardiovascular disease, acute kidney injury, and metabolic disorders (such as obesity and non-alcoholic fatty liver disease). In this review, we introduce the structure, function, and regulation of ACSL4; discuss its role in apoptosis, ferroptosis, and autophagy; summarize its pathological function; and explore the potential implications of targeting ACSL4 in the treatment of various diseases.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
50
|
Evaluation of Shifts of Gene Transcription Levels of Unicellular Green Alga Chlamydomonas reinhardtii Due to UV-C Irradiation. Microorganisms 2023; 11:microorganisms11030633. [PMID: 36985207 PMCID: PMC10059774 DOI: 10.3390/microorganisms11030633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Green algae produce valuable lipids as carbon-recycling resources. Collecting whole cells with the intracellular lipids could be efficient without cell burst; however, direct use of the cells causes microbial contamination in environments. Then, UV-C irradiation was selected to satisfy the requirements of avoiding the cell burst and sterilizing cells with Chlamydomonas reinhardtii. UV-C irradiation with 1.209 mW·cm−2 showed enough sterilization activity for 1.6 × 107 cells·mL−1 of C. reinhardtii in a depth of 5 mm for 10 min. The irradiation showed no effects to composition and contents of the intracellular lipids. From the viewpoint of transcriptomic analysis, the irradiation displayed possibilities of (i) inhibition of the synthesis of lipids due to decrement of the transcription of related genes, such as diacylglycerol acyl transferase and cyclopropane fatty acid synthase, and (ii) activation of lipid degradation and the production of NADH2+ and FADH2 due to increment of the transcription of related genes, such as isocitrate dehydrogenase, dihydrolipoamide dehydrogenase and malate dehydrogenase. Irradiation until cell death could be insufficient to shift the metabolic flows even though the transcriptions were already shifted to lipid degradation and energy production. This paper is the first report of the response of C. reinhardtii to UV-C irradiation on the transcription level.
Collapse
|