1
|
Bohers C, Vazeille M, Bernaoui L, Pascalin L, Meignan K, Mousson L, Jakerian G, Karch A, de Lamballerie X, Failloux AB. Aedes albopictus is a competent vector of five arboviruses affecting human health, greater Paris, France, 2023. Euro Surveill 2024; 29:2400271. [PMID: 38757289 PMCID: PMC11100294 DOI: 10.2807/1560-7917.es.2024.29.20.2400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024] Open
Abstract
Aedes albopictus collected in 2023 in the greater Paris area (Île-de-France) were experimentally able to transmit five arboviruses: West Nile virus from 3 days post-infection (dpi), chikungunya virus and Usutu virus from 7 dpi, dengue virus and Zika virus from 21 dpi. Given the growing number of imported dengue cases reported in early 2024 in France, surveillance of Ae. albopictus should be reinforced during the Paris Olympic Games in July, when many international visitors including from endemic countries are expected.
Collapse
Affiliation(s)
- Chloé Bohers
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Marie Vazeille
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Lydia Bernaoui
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | | | - Kevin Meignan
- Agence Régionale de Démoustication, Rosny-sous-Bois, France
| | - Laurence Mousson
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | | | - Anaïs Karch
- Agence Régionale de Démoustication, Rosny-sous-Bois, France
| | - Xavier de Lamballerie
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| |
Collapse
|
2
|
Simonin Y. Circulation of West Nile Virus and Usutu Virus in Europe: Overview and Challenges. Viruses 2024; 16:599. [PMID: 38675940 PMCID: PMC11055060 DOI: 10.3390/v16040599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and has since spread globally, notably in Europe, causing periodic outbreaks associated with severe cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited impact on human health. There has been a recent expansion of these viruses' geographic range in Europe, facilitated by factors such as climate change, leading to increased human exposure. While sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in their pathogenicity and their impact on both human and animal health. While WNV has been more extensively studied and is a significant public health concern in many regions, USUV has recently been gaining attention due to its emergence in Europe and the diversity of its circulating lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is important to the implementation of effective surveillance and control measures. This perspective provides a brief overview of the current situation of these two viruses in Europe and outlines the significant challenges that need to be addressed in the coming years.
Collapse
Affiliation(s)
- Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France
| |
Collapse
|
3
|
Schwarz ER, Long MT. Comparison of West Nile Virus Disease in Humans and Horses: Exploiting Similarities for Enhancing Syndromic Surveillance. Viruses 2023; 15:1230. [PMID: 37376530 DOI: 10.3390/v15061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
West Nile virus (WNV) neuroinvasive disease threatens the health and well-being of horses and humans worldwide. Disease in horses and humans is remarkably similar. The occurrence of WNV disease in these mammalian hosts has geographic overlap with shared macroscale and microscale drivers of risk. Importantly, intrahost virus dynamics, the evolution of the antibody response, and clinicopathology are similar. The goal of this review is to provide a comparison of WNV infection in humans and horses and to identify similarities that can be exploited to enhance surveillance methods for the early detection of WNV neuroinvasive disease.
Collapse
Affiliation(s)
- Erika R Schwarz
- Montana Veterinary Diagnostic Laboratory, MT Department of Livestock, Bozeman, MT 59718, USA
| | - Maureen T Long
- Department of Comparative, Diagnostic, & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Santos PD, Günther A, Keller M, Homeier-Bachmann T, Groschup MH, Beer M, Höper D, Ziegler U. An advanced sequence clustering and designation workflow reveals the enzootic maintenance of a dominant West Nile virus subclade in Germany. Virus Evol 2023; 9:vead013. [PMID: 37197362 PMCID: PMC10184446 DOI: 10.1093/ve/vead013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/13/2023] [Accepted: 03/16/2023] [Indexed: 05/19/2023] Open
Abstract
West Nile virus (WNV) is the most widespread arthropod-borne (arbo) virus and the primary cause of arboviral encephalitis globally. Members of WNV species genetically diverged and are classified into different hierarchical groups below species rank. However, the demarcation criteria for allocating WNV sequences into these groups remain individual and inconsistent, and the use of names for different levels of the hierarchical levels is unstructured. In order to have an objective and comprehensible grouping of WNV sequences, we developed an advanced grouping workflow using the 'affinity propagation clustering' algorithm and newly included the 'agglomerative hierarchical clustering' algorithm for the allocation of WNV sequences into different groups below species rank. In addition, we propose to use a fixed set of terms for the hierarchical naming of WNV below species level and a clear decimal numbering system to label the determined groups. For validation, we applied the refined workflow to WNV sequences that have been previously grouped into various lineages, clades, and clusters in other studies. Although our workflow regrouped some WNV sequences, overall, it generally corresponds with previous groupings. We employed our novel approach to the sequences from the WNV circulation in Germany 2020, primarily from WNV-infected birds and horses. Besides two newly defined minor (sub)clusters comprising only three sequences each, Subcluster 2.5.3.4.3c was the predominant WNV sequence group detected in Germany from 2018 to 2020. This predominant subcluster was also associated with at least five human WNV infections in 2019-20. In summary, our analyses imply that the genetic diversity of the WNV population in Germany is shaped by enzootic maintenance of the dominant WNV subcluster accompanied by sporadic incursions of other rare clusters and subclusters. Moreover, we show that our refined approach for sequence grouping yields meaningful results. Although we primarily aimed at a more detailed WNV classification, the presented workflow can also be applied to the objective genotyping of other virus species.
Collapse
Affiliation(s)
| | | | - Markus Keller
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493, Greifswald-Insel Riems, Germany
| | | | - Martin H Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493, Greifswald-Insel Riems, Germany
- German Centre for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, 17493, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, 17493, Greifswald-Insel Riems, Germany
| | | | | |
Collapse
|
5
|
Fehér OE, Fehérvári P, Tolnai CH, Forgách P, Malik P, Jerzsele Á, Wagenhoffer Z, Szenci O, Korbacska-Kutasi O. Epidemiology and Clinical Manifestation of West Nile Virus Infections of Equines in Hungary, 2007-2020. Viruses 2022; 14:v14112551. [PMID: 36423160 PMCID: PMC9694158 DOI: 10.3390/v14112551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
West Nile virus (WNV) is an emerging pathogen in Hungary, causing severe outbreaks in equines and humans since 2007. The aim of our study was to provide a comprehensive report on the clinical signs of West Nile neuroinvasive disease (WNND) in horses in Hungary. Clinical details of 124 confirmed equine WNND cases were collected between 2007 and 2019. Data about the seasonal and geographical presentation, demographic data, clinical signs, treatment protocols, and disease progression were evaluated. Starting from an initial case originating from the area of possible virus introduction by migratory birds, the whole country became endemic with WNV over the subsequent 12 years. The transmission season did not expand significantly during the data collection period, but vaccination protocols should be always reviewed according to the recent observations. There was not any considerable relationship between the occurrence of WNND and age, breed, or gender. Ataxia was by far the most common neurologic sign related to the disease, but weakness, behavioral changes, and muscle fasciculation appeared frequently. Apart from recumbency combined with inappetence, no other clinical sign or treatment regime correlated with survival. The survival rate showed a moderate increase throughout the years, possibly due to the increased awareness of practitioners.
Collapse
Affiliation(s)
- Orsolya Eszter Fehér
- Institute for Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
- Correspondence:
| | - Péter Fehérvári
- Department of Biomathematics and Informatics, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Csenge Hanna Tolnai
- University Equine Clinic, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | - Petra Forgách
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Hungária Krt. 23-25, 1143 Budapest, Hungary
| | - Péter Malik
- National Food Chain Safety Office, Veterinary Diagnostic Directorate, Tábornok u. 2., 1143 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István utca 2, 1078 Budapest, Hungary
| | - Zsombor Wagenhoffer
- Institute for Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
| | - Otto Szenci
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
| | - Orsolya Korbacska-Kutasi
- Institute for Animal Breeding, Nutrition and Laboratory Animal Science, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
- University Equine Clinic, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Wien, Austria
| |
Collapse
|
6
|
Cavalleri JV, Korbacska‐Kutasi O, Leblond A, Paillot R, Pusterla N, Steinmann E, Tomlinson J. European College of Equine Internal Medicine consensus statement on equine flaviviridae infections in Europe. Vet Med (Auckl) 2022; 36:1858-1871. [DOI: 10.1111/jvim.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Jessika‐M. V. Cavalleri
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Orsolya Korbacska‐Kutasi
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
- Department for Animal Breeding, Nutrition and Laboratory Animal Science University of Veterinary Medicine Budapest Hungary
- Hungarian Academy of Sciences—Szent Istvan University (MTA‐SZIE) Large Animal Clinical Research Group Üllő Dóra major Hungary
| | - Agnès Leblond
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup University of Lyon Marcy l'Etoile France
| | - Romain Paillot
- School of Equine and Veterinary Physiotherapy Writtle University College Chelmsford UK
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine University of California Davis California USA
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine Ruhr University Bochum Bochum Germany
| | - Joy Tomlinson
- Baker Institute for Animal Health Cornell University College of Veterinary Medicine Ithaca New York USA
| |
Collapse
|
7
|
Bidirectional Interactions between Arboviruses and the Bacterial and Viral Microbiota in Aedes aegypti and Culex quinquefasciatus. mBio 2022; 13:e0102122. [PMID: 36069449 PMCID: PMC9600335 DOI: 10.1128/mbio.01021-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mosquitoes are important vectors for many arboviruses. It is becoming increasingly clear that various symbiotic microorganisms (including bacteria and insect-specific viruses; ISVs) in mosquitoes have the potential to modulate the ability of mosquitoes to transmit arboviruses. In this study, we compared the bacteriome and virome (both eukaryotic viruses and bacteriophages) of female adult Aedes aegypti and Culex quinquefasciatus mosquitoes fed with sucrose/water, blood, or blood spiked with Zika virus (ZIKV) or West Nile virus (WNV), respectively. Furthermore, we investigated associations between the microbiota and vector competence. We show that the influence of arboviruses on the mosquito microbiome—and vice versa—is distinct for each combination of arbovirus/mosquito species. The presence of ZIKV resulted in a temporarily increased Aedes ISV diversity. However, this effect was distinct for different ISVs: some ISVs decreased following the blood meal (Aedes aegypti totivirus), whereas other ISVs increased only when the blood contained ZIKV (Guadeloupe mosquito virus). Also, the diversity of the Aedes bacteriome depended on the diet and the presence of ZIKV, with a lower diversity observed for mosquitoes receiving blood without ZIKV. In Cx. quinquefasciatus, some ISVs increased in WNV-infected mosquitoes (Guadeloupe Culex tymo-like virus). Particularly, the presence of Wenzhou sobemo-like virus 3 (WSLV3) was associated with the absence of infectious WNV in mosquito heads, suggesting that WSLV3 might affect vector competence for WNV. Distinct profiles of bacteriophages were identified in Culex mosquitoes depending on diet, despite the lack of clear changes in the bacteriome. Overall, our data demonstrate a complex three-way interaction among arboviruses, resident microbiota, and the host, which is distinct for different arbovirus–mosquito combinations. A better understanding of these interactions may lead to the identification of microbiota able to suppress the ability of arbovirus transmission to humans, and hence improved arbovirus control measures.
Collapse
|
8
|
Virus Infection in Equine. Animals (Basel) 2022; 12:ani12080957. [PMID: 35454204 PMCID: PMC9030645 DOI: 10.3390/ani12080957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
|
9
|
Seroepidemiological Survey of West Nile Virus Infections in Horses from Berlin/Brandenburg and North Rhine-Westphalia, Germany. Viruses 2022; 14:v14020243. [PMID: 35215837 PMCID: PMC8877243 DOI: 10.3390/v14020243] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Following the introduction of the West Nile virus (WNV) into eastern Germany in 2018, increasing infections have been diagnosed in birds, equines, and humans over time, while the spread of WNV into western Germany remained unclear. We screened 437 equine sera from 2018 to 2020, excluding vaccinated horses, collected from convenience sampled patients in the eastern and western parts of Germany, for WNV-specific antibodies (ELISAs followed by virus/specific neutralization tests) and genomes (RT-qPCRs). Clinical presentations, final diagnoses, and demographic data were also recorded. In the eastern part, a total of eight horses were found WNV seropositive in 2019 (seroprevalence of 8.16%) and 27 in 2020 (13.77%). There were also two clinically unsuspected horses with WNV-specific antibodies in the western part from 2020 (2.63%), albeit travel history-related infections could not be excluded. None of the horse sera contained WNV-specific genomes. Eight horses in eastern Germany carried WNV-IgM antibodies, but only four of these showed typical clinical signs. These results underline the difficulty of detecting a WNV infection in a horse solely based on clinical signs. Thus, WNV circulation is established in the horse population in eastern Germany, but not yet in the western part.
Collapse
|
10
|
Humphreys JM, Pelzel-McCluskey AM, Cohnstaedt LW, McGregor BL, Hanley KA, Hudson AR, Young KI, Peck D, Rodriguez LL, Peters DPC. Integrating Spatiotemporal Epidemiology, Eco-Phylogenetics, and Distributional Ecology to Assess West Nile Disease Risk in Horses. Viruses 2021; 13:v13091811. [PMID: 34578392 PMCID: PMC8473291 DOI: 10.3390/v13091811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Mosquito-borne West Nile virus (WNV) is the causative agent of West Nile disease in humans, horses, and some bird species. Since the initial introduction of WNV to the United States (US), approximately 30,000 horses have been impacted by West Nile neurologic disease and hundreds of additional horses are infected each year. Research describing the drivers of West Nile disease in horses is greatly needed to better anticipate the spatial and temporal extent of disease risk, improve disease surveillance, and alleviate future economic impacts to the equine industry and private horse owners. To help meet this need, we integrated techniques from spatiotemporal epidemiology, eco-phylogenetics, and distributional ecology to assess West Nile disease risk in horses throughout the contiguous US. Our integrated approach considered horse abundance and virus exposure, vector and host distributions, and a variety of extrinsic climatic, socio-economic, and environmental risk factors. Birds are WNV reservoir hosts, and therefore we quantified avian host community dynamics across the continental US to show intra-annual variability in host phylogenetic structure and demonstrate host phylodiversity as a mechanism for virus amplification in time and virus dilution in space. We identified drought as a potential amplifier of virus transmission and demonstrated the importance of accounting for spatial non-stationarity when quantifying interaction between disease risk and meteorological influences such as temperature and precipitation. Our results delineated the timing and location of several areas at high risk of West Nile disease and can be used to prioritize vaccination programs and optimize virus surveillance and monitoring.
Collapse
Affiliation(s)
- John M. Humphreys
- Pest Management Research Unit, Agricultural Research Service, US Department of Agriculture, Sidney, MT 59270, USA
- Correspondence:
| | - Angela M. Pelzel-McCluskey
- Veterinary Services, Animal and Plant Health Inspection Service (APHIS), US Department of Agriculture, Fort Collins, CO 80526, USA;
| | - Lee W. Cohnstaedt
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Manhattan, KS 66502, USA; (L.W.C.); (B.L.M.)
| | - Bethany L. McGregor
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Manhattan, KS 66502, USA; (L.W.C.); (B.L.M.)
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (K.A.H.); (K.I.Y.)
| | - Amy R. Hudson
- Big Data Initiative and SCINet Program for Scientific Computing, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20704, USA; (A.R.H.); (D.P.C.P.)
| | - Katherine I. Young
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (K.A.H.); (K.I.Y.)
| | - Dannele Peck
- Northern Plains Climate Hub, US Department of Agriculture, Fort Collins, CO 80526, USA;
| | - Luis L. Rodriguez
- Plum Island Animal Disease Center, US Department of Agriculture, Orient Point, NY 11957, USA;
| | - Debra P. C. Peters
- Big Data Initiative and SCINet Program for Scientific Computing, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20704, USA; (A.R.H.); (D.P.C.P.)
| |
Collapse
|
11
|
A Scoping Review of West Nile Virus Seroprevalence Studies among African Equids. Pathogens 2021; 10:pathogens10070899. [PMID: 34358049 PMCID: PMC8308515 DOI: 10.3390/pathogens10070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) is an emerging and re-emerging zoonotic flavivirus first identified in and endemic to Africa. The virus is transmitted between birds by biting mosquitoes, with equids and humans being incidental hosts. The majority of infected incidental hosts display no or only mild clinical signs, but a fraction develop encephalitis. The aim of this scoping review was to identify and evaluate primary research on the presence of antibodies to WNV among African equids. Three bibliographic databases and the grey literature were searched. Of 283 articles identified, only 16 satisfied all the inclusion criteria. Data were collated on study design and outcomes. The overall seroprevalence reported ranged from 17.4 to 90.3%, with 1998 (35%) of the 5746 horses, donkeys and mules having screened positive for WNV antibodies. Several articles determined that seroprevalence increased significantly with age. Due to co-circulation of other flaviviruses in Africa, in the majority of studies that screened samples by ELISA, positive results were confirmed using a more specific neutralization test. However, only eight studies tested against other flaviviruses, including Potiskum, Uganda S, Wesselsbron and yellow fever virus in one, Japanese encephalitis and Usutu virus (USUV) in one, tick-borne encephalitis and USUV in one and USUV only in three. Equids are regarded as useful sentinel animals for WNV, but variation in study design poses challenges when trying to determine risk factors for, and trends in, WNV seroprevalence.
Collapse
|
12
|
Guggemos HD, Fendt M, Hieke C, Heyde V, Mfune JKE, Borgemeister C, Junglen S. Simultaneous circulation of two West Nile virus lineage 2 clades and Bagaza virus in the Zambezi region, Namibia. PLoS Negl Trop Dis 2021; 15:e0009311. [PMID: 33798192 PMCID: PMC8046352 DOI: 10.1371/journal.pntd.0009311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/14/2021] [Accepted: 03/16/2021] [Indexed: 12/25/2022] Open
Abstract
Flaviviruses include a great diversity of mosquito-borne arboviruses with epidemic potential and high global disease burden. Several flaviviruses are circulating in southern Africa affecting humans and livestock, among them West Nile virus (WNV) and Wesselsbron virus. Despite their high relevance, no arbovirus surveillance study has been conducted for more than 35 years in Namibia. In this study we assessed the diversity of flaviviruses circulating in mosquitoes in the densely populated, semi-tropical Zambezi region of north-eastern Namibia. In total, 10,206 mosquitoes were sampled in Bwabwata and Mudumu national parks and Mashi and Wuparo conservancies and screened for flavivirus infections. A high infection rate with insect-specific flaviviruses was found with 241 strains of two previously known and seven putative novel insect-specific flaviviruses. In addition, we identified ten strains of WNV in the main vector Cx. univittatus sampled in the Mashi conservancy. Surprisingly, the strains fell into two different clades of lineage 2, 2b and 2d. Further, three strains of Bagaza Virus (BAGV) were found in Cx. univittatus mosquitoes originating from Mudumu national park. Assessment of BAGV growth in different cell lines showed high replication rates in mosquito and duck cells and about 100,000fold lower replication in human, primate and rodent cells. We demonstrate a wide genetic diversity of flaviviruses is circulating in mosquitoes in the Zambezi region. Importantly, WNV and BAGV can cause outbreaks including severe disease and mortality in humans and birds, respectively. Future studies should focus on WNV and BAGV geographic distribution, as well as on their potential health impacts in and the associated social and economic implications for southern Africa. Mosquitoes serve as vectors for the transmission of infectious diseases. Some of the most important mosquito-borne arboviruses belong to the genus Flavivirus, which can induce severe disease in humans and livestock. Surveillance of vector populations provide information on circulating arboviruses and may help to identify local outbreaks. Here we sampled mosquitoes over three wet seasons in the densely populated, semi-tropical Zambezi region of north-eastern Namibia and tested them for infections with flaviviruses. We observed simultaneous circulation of two different West Nile virus clades in the main vector species Cx. univittatus. Humans infected with West Nile virus can develop flu-like symptoms or in rare cases meningoencephalitis. Further, we detected Bagaza virus in Cx. univittatus from another locality and season. Bagaza virus infects birds leading to high mortality rates and may also infect humans. Our data suggest that both viruses are endemic in the Zambezi region and may affect human health and well-being in Namibia.
Collapse
Affiliation(s)
- Heiko D. Guggemos
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Matthias Fendt
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Christian Hieke
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany
| | - Verena Heyde
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany
| | - John K. E. Mfune
- Department of Biological Sciences, University of Namibia, Windhoek, Namibia
| | | | - Sandra Junglen
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- * E-mail:
| |
Collapse
|
13
|
Detecting seasonal transient correlations between populations of the West Nile Virus vector Culex sp. and temperatures with wavelet coherence analysis. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Bakhshi H, Fazlalipour M, Dadgar-Pakdel J, Zakeri S, Raz A, Failloux AB, Dinparast Djadid N. Developing a Vaccine to Block West Nile Virus Transmission: In Silico Studies, Molecular Characterization, Expression, and Blocking Activity of Culex pipiens mosGCTL-1. Pathogens 2021; 10:pathogens10020218. [PMID: 33671430 PMCID: PMC7921969 DOI: 10.3390/pathogens10020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mosquito galactose-specific C-type lectins (mosGCTLs), such as mosGCTL-1, act as ligands to facilitate the invasion of flaviviruses like West Nile virus (WNV). WNV interacts with the mosGCTL-1 of Aedes aegypti (Culicidae) and facilitates the invasion of this virus. Nevertheless, there is no data about the role of mosGCTL-1 as a transmission-blocking vaccine candidate in Culex pipiens, the most abundant Culicinae mosquito in temperate regions. METHODS Adult female Cx. pipiens mosquitoes were experimentally infected with a WNV infectious blood meal, and the effect of rabbit anti-rmosGCTL-1 antibodies on virus replication was evaluated. Additionally, in silico studies such as the prediction of protein structure, homology modeling, and molecular interactions were carried out. RESULTS We showed a 30% blocking activity of Cx. pipiens mosGCTL-1 polyclonal antibodies (compared to the 10% in the control group) with a decrease in infection rates in mosquitoes at day 5 post-infection, suggesting that there may be other proteins in the midgut of Cx. pipiens that could act as cooperative-receptors for WNV. In addition, docking results revealed that WNV binds with high affinity, to the Culex mosquito lectin receptors. CONCLUSIONS Our results do not support the idea that mosGCTL-1 of Cx. pipiens primarily interacts with WNV to promote viral infection, suggesting that other mosGCTLs may act as primary infection factors in Cx. pipiens.
Collapse
Affiliation(s)
- Hasan Bakhshi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
| | - Mehdi Fazlalipour
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran;
| | - Javad Dadgar-Pakdel
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
- Trauma Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan Abad Square, Imam Khomeini Avenue, Tehran 1136746911, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
- Correspondence: (A.R.); (A.-B.F.); (N.D.D.); Tel.: +98-(0)21-64-11-24-62 (A.R.); +33-(0)1-40-61-36-17 (A.-B.F.); +98-(0)21-64-11-24-62 (N.D.D.)
| | - Anna-Bella Failloux
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, 25 rue Dr. Roux, CEDEX 15, 75724 Paris, France
- Correspondence: (A.R.); (A.-B.F.); (N.D.D.); Tel.: +98-(0)21-64-11-24-62 (A.R.); +33-(0)1-40-61-36-17 (A.-B.F.); +98-(0)21-64-11-24-62 (N.D.D.)
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran; (H.B.); (J.D.-P.); (S.Z.)
- Correspondence: (A.R.); (A.-B.F.); (N.D.D.); Tel.: +98-(0)21-64-11-24-62 (A.R.); +33-(0)1-40-61-36-17 (A.-B.F.); +98-(0)21-64-11-24-62 (N.D.D.)
| |
Collapse
|
15
|
Câmara RJF, Bueno BL, Resende CF, Balasuriya UBR, Sakamoto SM, dos Reis JKP. Viral Diseases that Affect Donkeys and Mules. Animals (Basel) 2020; 10:ani10122203. [PMID: 33255568 PMCID: PMC7760297 DOI: 10.3390/ani10122203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Donkeys have been neglected and threatened by abandonment, indiscriminate slaughter, and a lack of proper sanitary management. They are often treated as “small horses.” However, donkeys and horses have significant genetic, physiological, and behavioral differences. Specific knowledge about viral infectious diseases that affect donkeys and mules is important to mitigate disease outbreaks. Thus, the purpose of this review is to provide a brief update on viral diseases of donkeys and mules and ways to prevent their spread. Abstract Donkeys (Equus asinus) and mules represent approximately 50% of the entire domestic equine herd in the world and play an essential role in the lives of thousands of people, primarily in developing countries. Despite their importance, donkeys are currently a neglected and threatened species due to abandonment, indiscriminate slaughter, and a lack of proper sanitary management. Specific knowledge about infectious viral diseases that affect this group of Equidae is still limited. In many cases, donkeys and mules are treated like horses, with the physiological differences between these species usually not taken into account. Most infectious diseases that affect the Equidae family are exclusive to the family, and they have a tremendous economic impact on the equine industry. However, some viruses may cross the species barrier and affect humans, representing an imminent risk to public health. Nevertheless, even with such importance, most studies are conducted on horses (Equus caballus), and there is little comparative information on infection in donkeys and mules. Therefore, the objective of this article is to provide a brief update on viruses that affect donkeys and mules, thereby compromising their performance and well-being. These diseases may put them at risk of extinction in some parts of the world due to neglect and the precarious conditions they live in and may ultimately endanger other species’ health and humans.
Collapse
Affiliation(s)
- Rebeca Jéssica Falcão Câmara
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
| | - Bruna Lopes Bueno
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
| | - Cláudia Fideles Resende
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, River Rd, Room 1043, Baton Rouge, LA 70803, USA;
| | - Sidnei Miyoshi Sakamoto
- Laboratório Multidisciplinar do Centro de Ciências Biológicas e da Saúde, Departamento de Ciências da Saúde (DCS), Universidade Federal Rural do Semi-Árido, Rio Grande do Norte 59625-900, Brazil;
| | - Jenner Karlisson Pimenta dos Reis
- Laboratório de Retroviroses, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.J.F.C.); (B.L.B.); (C.F.R.)
- Correspondence: ; Tel.: +55-31-3409-2100
| |
Collapse
|
16
|
Contrasted Epidemiological Patterns of West Nile Virus Lineages 1 and 2 Infections in France from 2015 to 2019. Pathogens 2020; 9:pathogens9110908. [PMID: 33143300 PMCID: PMC7692118 DOI: 10.3390/pathogens9110908] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Since 2015, annual West Nile virus (WNV) outbreaks of varying intensities have been reported in France. Recent intensification of enzootic WNV circulation was observed in the South of France with most horse cases detected in 2015 (n = 49), 2018 (n = 13), and 2019 (n = 13). A WNV lineage 1 strain was isolated from a horse suffering from West Nile neuro-invasive disease (WNND) during the 2015 episode in the Camargue area. A breaking point in WNV epidemiology was achieved in 2018, when WNV lineage 2 emerged in Southeastern areas. This virus most probably originated from WNV spread from Northern Italy and caused WNND in humans and the death of diurnal raptors. WNV lineage 2 emergence was associated with the most important human WNV epidemics identified so far in France (n = 26, including seven WNND cases and two infections in blood and organ donors). Two other major findings were the detection of WNV in areas with no or limited history of WNV circulation (Alpes-Maritimes in 2018, Corsica in 2018–2019, and Var in 2019) and distinct spatial distribution of human and horse WNV cases. These new data reinforce the necessity to enhance French WNV surveillance to better anticipate future WNV epidemics and epizootics and to improve the safety of blood and organ donations.
Collapse
|
17
|
Pathogenicity of West Nile Virus Lineage 1 to German Poultry. Vaccines (Basel) 2020; 8:vaccines8030507. [PMID: 32899581 PMCID: PMC7563189 DOI: 10.3390/vaccines8030507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus that originates from Africa and at present causes neurological disease in birds, horses, and humans all around the globe. As West Nile fever is an important zoonosis, the role of free-ranging domestic poultry as a source of infection for humans should be evaluated. This study examined the pathogenicity of an Italian WNV lineage 1 strain for domestic poultry (chickens, ducks, and geese) held in Germany. All three species were subcutaneously injected with WNV, and the most susceptible species was also inoculated via mosquito bite. All species developed various degrees of viremia, viral shedding (oropharyngeal and cloacal), virus accumulation, and pathomorphological lesions. Geese were most susceptible, displaying the highest viremia levels. The tested waterfowl, geese, and especially ducks proved to be ideal sentinel species for WNV due to their high antibody levels and relatively low blood viral loads. None of the three poultry species can function as a reservoir/amplifying host for WNV, as their viremia levels most likely do not suffice to infect feeding mosquitoes. Due to the recent appearance of WNV in Germany, future pathogenicity studies should also include local virus strains.
Collapse
|
18
|
Bakhshi H, Mousson L, Vazeille M, Zakeri S, Raz A, de Lamballerie X, Dinparast-Djadid N, Failloux AB. High Transmission Potential of West Nile Virus Lineage 1 for Cx. pipiens s.l. of Iran. Viruses 2020; 12:E397. [PMID: 32260215 PMCID: PMC7232300 DOI: 10.3390/v12040397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
: Vector competence is an important parameter in evaluating whether a species plays a role in transmission of an arbovirus. Although the protocols are similar, interpretation of results is unique given the specific interactions that exist between a mosquito population and a viral genotype. Here, we assessed the infection (IR), dissemination (DR), and transmission (TR) rates of Cx. pipiens s.l., collected from Iran, for West Nile virus (WNV) lineage 1a. We showed that Cx. pipiens s.l. mosquitoes in Iran were susceptible to WNV with IR up to 89.7%, 93.6%, and 83.9% at 7, 14, and 21 days post-infection (dpi) respectively. In addition, DR and TR reached respectively 92.3% and 75.0% at 21 dpi, and the number of viral particles delivered with saliva reached up to 1.33 × 105 particles. Therefore, an unexpected high risk of WNV dissemination in the region where Cx. pipiens s.l. mosquitoes are well established should be considered carefully and surveillance measures implemented accordingly.
Collapse
Affiliation(s)
- Hasan Bakhshi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran P.O. Box 1316943551, Iran; (H.B.); (S.Z.); (A.R.)
| | - Laurence Mousson
- Institut Pasteur, Arboviruses and Insect Vectors, 75724 Paris, France; (L.M.); (M.V.)
| | - Marie Vazeille
- Institut Pasteur, Arboviruses and Insect Vectors, 75724 Paris, France; (L.M.); (M.V.)
| | - Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran P.O. Box 1316943551, Iran; (H.B.); (S.Z.); (A.R.)
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran P.O. Box 1316943551, Iran; (H.B.); (S.Z.); (A.R.)
| | - Xavier de Lamballerie
- Unité des Virus Emergents (UVE), Aix Marseille Université, IRD 190, INSERM 1207, IHU Méditerranée Infection, 13005 Marseille, France;
| | - Navid Dinparast-Djadid
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran P.O. Box 1316943551, Iran; (H.B.); (S.Z.); (A.R.)
| | - Anna-Bella Failloux
- Institut Pasteur, Arboviruses and Insect Vectors, 75724 Paris, France; (L.M.); (M.V.)
| |
Collapse
|
19
|
Petruccelli A, Zottola T, Ferrara G, Iovane V, Di Russo C, Pagnini U, Montagnaro S. West Nile Virus and Related Flavivirus in European Wild Boar ( Sus scrofa), Latium Region, Italy: A Retrospective Study. Animals (Basel) 2020; 10:ani10030494. [PMID: 32188017 PMCID: PMC7143470 DOI: 10.3390/ani10030494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A retrospective sero-survey for evidence of West Nile virus (WNV) infection in European wild boar (Sus scorfa) was conducted in the Latium region, Italy, on stored serum samples of the period November 2011 to January 2012. METHODS Sera were collected from 168 European wild boars and screened for antibodies to WNV and other Flaviviruses by competitive enzyme linked immunosorbent assay (cELISA). All sera positive for Flavivirus antibodies by cELISA were further examined by virus neutralization test (VNT). To test the presence of Flavivirus RNA in samples, an RT-PCR was performed using a pan-Flavivirus primers pair. RESULTS Thirteen wild boars (7.73%) were seropositive for Flaviviruses. The hemolysis of serum samples limited the interpretation of the VNT for 7 samples, confirming the presence of specific antibody against WNV in a single European wild boar serum sample. The presence of ELISA positive/VNT negative samples suggests the occurrence of non-neutralizing antibodies against WNV or other antigen-related Flaviviruses. No samples resulted positive for Flavivirus by RT-PCR assay. CONCLUSION Although a moderately high percentage of animals with specific antibody for WNV has been detected in wild boar in other surveillance studies in Europe, this has not been reported previously in Italy. Together, these data indicate that European wild boar are exposed to WNV and/or other related-Flavivirus in central Italy and confirm the usefulness of wild ungulates, as suitable Flavivirus sentinels.
Collapse
Affiliation(s)
- Angela Petruccelli
- Department of Veterinary Medicine and Animal Productions, University of Naples, 80137 Naples, Italy; (A.P.); (G.F.); (U.P.)
| | - Tiziana Zottola
- Experimental Zooprophylactic Institute of Lazio e Toscana Regions, Section of Latina, 04100 Latina, Italy; (T.Z.); (C.D.R.)
| | - Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples, 80137 Naples, Italy; (A.P.); (G.F.); (U.P.)
| | - Valentina Iovane
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy;
| | - Cristina Di Russo
- Experimental Zooprophylactic Institute of Lazio e Toscana Regions, Section of Latina, 04100 Latina, Italy; (T.Z.); (C.D.R.)
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples, 80137 Naples, Italy; (A.P.); (G.F.); (U.P.)
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples, 80137 Naples, Italy; (A.P.); (G.F.); (U.P.)
- Correspondence: com; Tel.: +39-081-253-6178
| |
Collapse
|
20
|
Folly AJ, Dorey-Robinson D, Hernández-Triana LM, Phipps LP, Johnson N. Emerging Threats to Animals in the United Kingdom by Arthropod-Borne Diseases. Front Vet Sci 2020; 7:20. [PMID: 32118054 PMCID: PMC7010938 DOI: 10.3389/fvets.2020.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/10/2020] [Indexed: 01/06/2023] Open
Abstract
Worldwide, arthropod-borne disease transmission represents one of the greatest threats to public and animal health. For the British Isles, an island group on the north-western coast of continental Europe consisting of the United Kingdom (UK) and the Republic of Ireland, physical separation offers a barrier to the introduction of many of the pathogens that affect animals on the rest of the continent. Added to this are strict biosecurity rules at ports of entry and the depauperate vector biodiversity found on the islands. Nevertheless, there are some indigenous arthropod-borne pathogens that cause sporadic outbreaks, such as the tick-borne louping ill virus, found almost exclusively in the British Isles, and a range of piroplasmid infections that are poorly characterized. These provide an ongoing source of infection whose emergence can be unpredictable. In addition, the risk remains for future introductions of both exotic vectors and the pathogens they harbor, and can transmit. Current factors that are driving the increases of both disease transmission and the risk of emergence include marked changes to the climate in the British Isles that have increased summer and winter temperatures, and extended the period over which arthropods are active. There have also been dramatic increases in the distribution of mosquito-borne diseases, such as West Nile and Usutu viruses in mainland Europe that are making the introduction of these pathogens through bird migration increasingly feasible. In addition, the establishment of midge-borne bluetongue virus in the near continent has increased the risk of wind-borne introduction of infected midges and the inadvertent importation of infected cattle. Arguably the greatest risk is associated with the continual increase in the movement of people, pets and trade into the UK. This, in particular, is driving the introduction of invasive arthropod species that either bring disease-causing pathogens, or are known competent vectors, that increase the risk of disease transmission if introduced. The following review documents the current pathogen threats to animals transmitted by mosquitoes, ticks and midges. This includes both indigenous and exotic pathogens to the UK. In the case of exotic pathogens, the pathway and risk of introduction are also discussed.
Collapse
Affiliation(s)
- Arran J. Folly
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | - Daniel Dorey-Robinson
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | | | - L. Paul Phipps
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
| | - Nicholas Johnson
- Virology Department, Animal and Plant Health Agency (Weybridge), Addlestone, United Kingdom
- Faculty of Health and Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
21
|
Atyame CM, Alout H, Mousson L, Vazeille M, Diallo M, Weill M, Failloux AB. Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus. Proc Biol Sci 2020; 286:20182273. [PMID: 30963855 DOI: 10.1098/rspb.2018.2273] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence of the mosquito Culex quinquefasciatus for two arboviruses, Rift Valley Fever virus (RVFV) and West Nile virus (WNV). Three Cx. quinquefasciatus lines sharing a common genetic background were used: two insecticide-resistant lines, one homozygous for amplification of the Ester2 locus (SA2), the other homozygous for the acetylcholinesterase ace-1 G119S mutation (SR) and the insecticide-susceptible reference line Slab. Statistical analyses revealed no significant effect of insecticide-resistant mechanisms on vector competence for RVFV. However, both insecticide resistance mechanisms significantly influenced the outcome of WNV infections by increasing the dissemination of WNV in the mosquito body, therefore leading to an increase in transmission efficiency by resistant mosquitoes. These results showed that insecticide resistance mechanisms enhanced vector competence for WNV and may have a significant impact on transmission dynamics of arboviruses. Our findings highlight the importance of understanding the impacts of insecticide resistance on the vectorial capacity parameters to assess the overall consequence on transmission.
Collapse
Affiliation(s)
- Célestine M Atyame
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France.,2 Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS-INSERM-IRD-Université de La Réunion , île de La Réunion , France
| | - Haoues Alout
- 3 INRA, UMR 1309 ASTRE, INRA-CIRAD , 34598 Montpellier , France.,4 Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier , Montpellier , France
| | - Laurence Mousson
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France
| | - Marie Vazeille
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France
| | - Mawlouth Diallo
- 5 Institut Pasteur de Dakar, Unité d'Entomologie médicale , Dakar , Sénégal
| | - Mylène Weill
- 4 Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier , Montpellier , France
| | - Anna-Bella Failloux
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France
| |
Collapse
|
22
|
Camp JV, Nowotny N. The knowns and unknowns of West Nile virus in Europe: what did we learn from the 2018 outbreak? Expert Rev Anti Infect Ther 2020; 18:145-154. [PMID: 31914833 DOI: 10.1080/14787210.2020.1713751] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: West Nile virus (WNV) is a mosquito-borne human and animal pathogen with nearly worldwide distribution. In Europe, the virus is endemic with seasonal regional outbreaks that have increased in frequency over the last 10 years. A massive outbreak occurred across southern and central Europe in 2018 with the number of confirmed human cases increasing up to 7.2-fold from the previous year, and expanding to include previously virus-free regions.Areas covered: This review focuses on potential causes that may explain the 2018 European WNV outbreak. We discuss the role genetic, ecological, and environmental aspects may have played in the increased activity during the 2018 transmission season, summarizing the latest epidemiological and virological publications.Expert opinion: Optimal environmental conditions, specifically increased temperature, were most likely responsible for the observed outbreak. Other factors cannot be ruled out due to limited available information, including factors that may influence host/vector abundance and contact. Europe will likely experience even larger-scale outbreaks in the coming years. Increased surveillance efforts should be implemented with a focus on early-warning detection methods, and large-scale host and vector surveys should continue to fill gaps in knowledge.
Collapse
Affiliation(s)
- Jeremy V Camp
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
23
|
Bournez L, Umhang G, Faure E, Boucher JM, Boué F, Jourdain E, Sarasa M, Llorente F, Jiménez-Clavero MA, Moutailler S, Lacour SA, Lecollinet S, Beck C. Exposure of Wild Ungulates to the Usutu and Tick-Borne Encephalitis Viruses in France in 2009-2014: Evidence of Undetected Flavivirus Circulation a Decade Ago. Viruses 2019; 12:E10. [PMID: 31861683 PMCID: PMC7019733 DOI: 10.3390/v12010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Abstract: Flaviviruses have become increasingly important pathogens in Europe over the past few decades. A better understanding of the spatiotemporal distribution of flaviviruses in France is needed to better define risk areas and to gain knowledge of the dynamics of virus transmission cycles. Serum samples from 1014 wild boar and 758 roe deer from 16 departments (administrative units) in France collected from 2009 to 2014 were screened for flavivirus antibodies using a competitive ELISA (cELISA) technique. Serum samples found to be positive or doubtful by cELISA were then tested for antibodies directed against West Nile virus (WNV), Usutu virus (USUV), Bagaza virus (BAGV), and tick-borne encephalitis/Louping ill viruses (TBEV/LIV) by microsphere immunoassays (except BAGV) and micro-neutralization tests. USUV antibodies were detected only in southeastern and southwestern areas. TBEV/LIV antibodies were detected in serum samples from eastern, southwestern and northern departments. The results indicate continuous circulation of USUV in southern France from 2009 to 2014, which was unnoticed by the French monitoring system for bird mortality. The findings also confirm wider distribution of TBEV in the eastern part of the country than of human clinical cases. However, further studies are needed to determine the tick-borne flavivirus responsible for the seroconversion in southwestern and northern France.
Collapse
Affiliation(s)
- Laure Bournez
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Gérald Umhang
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Eva Faure
- National Hunters Federation, 92130 Issy-les-Moulineaux, France; (E.F.); (M.S.)
| | - Jean-Marc Boucher
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Franck Boué
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Elsa Jourdain
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité mixte de recherche Epidémiologie des maladies animales et zoonotiques (UMR EPIA), 63122 Saint-Genès-Champanelle, France;
| | - Mathieu Sarasa
- National Hunters Federation, 92130 Issy-les-Moulineaux, France; (E.F.); (M.S.)
- Biologie et Ecologie des Organismes et Populations Sauvages (BEOPS), 1 Esplanade Compans Caffarelli, 31000 Toulouse, France
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28130 Valdeolmos, Spain; (F.L.); (M.A.J.-C.)
| | - Miguel A. Jiménez-Clavero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28130 Valdeolmos, Spain; (F.L.); (M.A.J.-C.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Sara Moutailler
- Unité mixte de recherche Biologie moléculaire et Immunologie Parasitaire (UMR BIPAR), ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France;
| | - Sandrine A. Lacour
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| | - Sylvie Lecollinet
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| | - Cécile Beck
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| |
Collapse
|
24
|
Martinet JP, Ferté H, Failloux AB, Schaffner F, Depaquit J. Mosquitoes of North-Western Europe as Potential Vectors of Arboviruses: A Review. Viruses 2019; 11:E1059. [PMID: 31739553 PMCID: PMC6893686 DOI: 10.3390/v11111059] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The intensification of trade and travel is linked to the growing number of imported cases of dengue, chikungunya or Zika viruses into continental Europe and to the expansion of invasive mosquito species such as Aedes albopictus and Aedes japonicus. Local outbreaks have already occurred in several European countries. Very little information exists on the vector competence of native mosquitoes for arboviruses. As such, the vectorial status of the nine mosquito species largely established in North-Western Europe (Aedes cinereus and Aedes geminus, Aedes cantans, Aedes punctor, Aedes rusticus, Anopheles claviger s.s., Anopheles plumbeus, Coquillettidia richiardii, Culex pipiens s.l., and Culiseta annulata) remains mostly unknown. OBJECTIVES To review the vector competence of both invasive and native mosquito populations found in North-Western Europe (i.e., France, Belgium, Germany, United Kingdom, Ireland, The Netherlands, Luxembourg and Switzerland) for dengue, chikungunya, Zika, West Nile and Usutu viruses. METHODS A bibliographical search with research strings addressing mosquito vector competence for considered countries was performed. RESULTS Out of 6357 results, 119 references were related to the vector competence of mosquitoes in Western Europe. Eight species appear to be competent for at least one virus. CONCLUSIONS Aedes albopictus is responsible for the current outbreaks. The spread of Aedes albopictus and Aedes japonicus increases the risk of the autochthonous transmission of these viruses. Although native species could contribute to their transmission, more studies are still needed to assess that risk.
Collapse
Affiliation(s)
- Jean-Philippe Martinet
- Faculté de Pharmacie, Université de Reims Champagne-Ardenne, ANSES, SFR Cap Santé, EA7510 ESCAPE–USC VECPAR, 51 rue Cognacq-Jay, 51096 Reims CEDEX, France; (H.F.); (J.D.)
- Arbovirus et Insectes Vecteurs, Département de Virologie, Institut Pasteur, 25-28 rue du docteur Roux, 75015 Paris, France;
| | - Hubert Ferté
- Faculté de Pharmacie, Université de Reims Champagne-Ardenne, ANSES, SFR Cap Santé, EA7510 ESCAPE–USC VECPAR, 51 rue Cognacq-Jay, 51096 Reims CEDEX, France; (H.F.); (J.D.)
- Laboratoire de Parasitologie, Hôpital Maison-Blanche, CHU de Reims, 45 rue Cognacq-Jay, 51100 Reims, France
| | - Anna-Bella Failloux
- Arbovirus et Insectes Vecteurs, Département de Virologie, Institut Pasteur, 25-28 rue du docteur Roux, 75015 Paris, France;
| | - Francis Schaffner
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Rämistrasse 71, 8006 Zürich, Switzerland;
- Francis Schaffner Consultancy, Lörracherstrasse 50, 4125 Riehen (Basel-Land), Switzerland
| | - Jérôme Depaquit
- Faculté de Pharmacie, Université de Reims Champagne-Ardenne, ANSES, SFR Cap Santé, EA7510 ESCAPE–USC VECPAR, 51 rue Cognacq-Jay, 51096 Reims CEDEX, France; (H.F.); (J.D.)
- Laboratoire de Parasitologie, Hôpital Maison-Blanche, CHU de Reims, 45 rue Cognacq-Jay, 51100 Reims, France
| |
Collapse
|
25
|
Bosco-Lauth AM, Bowen RA. West Nile Virus: Veterinary Health and Vaccine Development. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1463-1466. [PMID: 31549715 DOI: 10.1093/jme/tjz125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 06/10/2023]
Abstract
West Nile virus (WNV) (Flaviviridae: Flavivirus) was discovered in Africa more than 80 yr ago and became recognized as an avian pathogen and a cause of neurologic disease in horses largely during periodic incursions into Europe. Introduction of WNV into North America stimulated great anxiety, particularly in the equine industry, but also for pet owners and livestock producers concerned about the effect of WNV on other domestic animals. Numerous subsequent studies of naturally occurring and experimentally induced disease greatly expanded our understanding of the host range and clinical consequences of WNV infection in diverse species and led to rapid development and deployment of efficacious vaccines for horses. In addition to humans, horses are clearly the animals most frequently affected by serious, sometimes lethal disease following infection with WNV, but are dead-end hosts due to the low-magnitude viremia they develop. Dogs, cats, and livestock species including chickens are readily infected with WNV, but only occasionally develop clinical disease and are considered dead-end hosts for the virus.
Collapse
Affiliation(s)
- Angela M Bosco-Lauth
- Department of Biomedical Sciences, ARBL, Colorado State University, Fort Collins, CO
| | - Richard A Bowen
- Department of Biomedical Sciences, ARBL, Colorado State University, Fort Collins, CO
| |
Collapse
|
26
|
Genetic susceptibility to West Nile virus infection in Camargue horses. Res Vet Sci 2019; 124:284-292. [PMID: 31005660 DOI: 10.1016/j.rvsc.2019.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/04/2019] [Accepted: 04/07/2019] [Indexed: 11/21/2022]
Abstract
West Nile virus (WNV) is a mosquito-borne zoonotic neurotropic virus capable to cause lethal meningoencephalitis (WNE) in infected hosts such as birds, horses, and humans. Due to their sensitivity, horses serve as sentinel species in areas at risk. We studied a population of Camargue horses living in Southern France in two zones with endemic WNV circulation where WNV outbreaks were recorded in 2000 and 2003-4. Two sets of microsatellite markers located in MHC and Ly49 genomic regions were genotyped as well as multiple SNPs in ten immunity-related candidate gene regions. Associations between genetic polymorphisms and resistance/susceptibility to WNE were tested. While single marker associations were weak, compound two-gene genotypes of SNPs located within the MAVS, NCR2 and IL-10 genes and microsatellites HMS082 and CZM013 were associated with susceptibility to WNE. Combinations of microsatellite markers CZM009, ABGe17402 and ABGe9019 were associated with simple seroconversion without clinical signs of WNE (resistance). In addition, a distribution of polymorphic markers between WNV-IgG seropositive horses and a control group of WNV-IgG seronegative horses was tested. One SNP in the OAS1 gene (NC_009151.3:g.21961328A>G) was significantly associated with the seropositive phenotype (pcorr = 0.023; OR = 40.5 CI (4.28; 383.26); RR = 8.18 CI (1.27; 52.89) in the Camargue breed. In compound genotypes, SNP markers for SLC11A1, MAVS, OAS1, TLR4, ADAM17 and NCR2 genes and ten microsatellites showed non-random distribution between seropositive and seronegative groups of horses. Further analysis of associated markers could contribute to our understanding of anti-WNV defense mechanisms in horses.
Collapse
|
27
|
Eldin C, Mailhe M, Zandotti C, Grard G, Galla M, Parola P, Brouqui P, Lagier JC. West Nile virus outbreak in the South of France: Implications for travel medicine. Travel Med Infect Dis 2019; 28:100-101. [PMID: 30630052 DOI: 10.1016/j.tmaid.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Carole Eldin
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.
| | - Morgane Mailhe
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Christine Zandotti
- Unité des Virus Émergents (UVE: Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Méditerranée Infection and Assistance Publique Hôpitaux de Marseille), Marseille, France
| | - Gilda Grard
- Unité des Virus Émergents (UVE: Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Méditerranée Infection and Assistance Publique Hôpitaux de Marseille), Marseille, France; Institut de Recherche Biomédicale des Armées - CNR des arbovirus, Hôpital d'Instruction des Armées Laveran, CS500413384 Marseille CEDEX 13, France
| | - Mathilde Galla
- Unité des Virus Émergents (UVE: Aix-Marseille Univ - IRD 190 - Inserm 1207 - IHU Méditerranée Infection and Assistance Publique Hôpitaux de Marseille), Marseille, France; Institut de Recherche Biomédicale des Armées - CNR des arbovirus, Hôpital d'Instruction des Armées Laveran, CS500413384 Marseille CEDEX 13, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Philippe Brouqui
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | |
Collapse
|
28
|
Hedell R, Andersson MG, Faverjon C, Marcillaud-Pitel C, Leblond A, Mostad P. Surveillance of animal diseases through implementation of a Bayesian spatio-temporal model: A simulation example with neurological syndromes in horses and West Nile Virus. Prev Vet Med 2019; 162:95-106. [PMID: 30621904 DOI: 10.1016/j.prevetmed.2018.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/10/2018] [Accepted: 11/24/2018] [Indexed: 11/25/2022]
Abstract
A potentially sensitive way to detect disease outbreaks is syndromic surveillance, i.e. monitoring the number of syndromes reported in the population of interest, comparing it to the baseline rate, and drawing conclusions about outbreaks using statistical methods. A decision maker may use the results to take disease control actions or to initiate enhanced epidemiological investigations. In addition to the total count of syndromes there are often additional pieces of information to consider when assessing the probability of an outbreak. This includes clustering of syndromes in space and time as well as historical data on the occurrence of syndromes, seasonality of the disease, etc. In this paper, we show how Bayesian theory for syndromic surveillance applies to the occurrence of neurological syndromes in horses in France. Neurological syndromes in horses may be connected e.g. to West Nile Virus (WNV), a zoonotic disease of growing concern for public health in Europe. A Bayesian method for spatio-temporal cluster detection of syndromes and for determining the probability of an outbreak is presented. It is shown how surveillance can be performed simultaneously for a specific class of diseases (WNV or diseases similar to WNV in terms of the information available to the system) and a non-specific class of diseases (not similar to WNV in terms of the information available to the system). We also discuss some new extensions to the spatio-temporal models and the computational algorithms involved. It is shown step-by-step how data from historical WNV outbreaks and surveillance data for neurological syndromes can be used for model construction. The model is implemented using a Gibbs sampling procedure, and its sensitivity and specificity is evaluated. Finally, it is illustrated how predictive modelling of syndromes can be useful for decision making in animal health surveillance.
Collapse
Affiliation(s)
- Ronny Hedell
- Swedish National Forensic Centre, SE-581 94 Linköping, Sweden; Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Gothenburg, Sweden.
| | | | - Céline Faverjon
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 155, 3097 Liebefeld, Switzerland.
| | - Christel Marcillaud-Pitel
- Réseau d'épidémio-surveillance en pathologie équine, rue Nelson Mandela, 14280 Saint Contest, France.
| | - Agnès Leblond
- EPIA, INRA, University of Lyon, VetAgro Sup, 69280 Marcy L'Etoile, France.
| | - Petter Mostad
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
29
|
Silva ASG, Matos ACD, da Cunha MACR, Rehfeld IS, Galinari GCF, Marcelino SAC, Saraiva LHG, Martins NRDS, Maranhão RDPA, Lobato ZIP, Pierezan F, Guedes MIMC, Costa EA. West Nile virus associated with equid encephalitis in Brazil, 2018. Transbound Emerg Dis 2018; 66:445-453. [PMID: 30318735 DOI: 10.1111/tbed.13043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
Mosquito-borne arboviruses are a major public health concern worldwide and are responsible for emerging and re-emerging diseases. Taken together, the arboviruses have a strong impact on public health and are the most common causes of equine encephalitis. In-depth diagnostic investigation of equine viral encephalitis is of utmost importance for the epidemiological surveillance and control of this disease. Regarding neurological disorders in equids, in April-May 2018, at least 12 cases of equid mortality with acute neurological signs were reported in six farms from Espirito Santo state, Brazil. To investigate the aetiological agent of this neurological disease outbreak, central nervous system (CNS) fragments from two horses and two donkeys were submitted for virologic diagnosis. Rabies, equine herpesvirus-1, and arbovirus-associated encephalomyelitis were investigated using differential diagnosis techniques. West Nile virus (WNV) was detected by nested RT-PCR in CNS fragments from each of the four animals in the study and confirmed by nucleotide sequencing. This is the first case of neurological disease in equids confirmed to be associated with WNV infection in Brazil. This finding unveils a new and urgent field of research and the need to understand the epidemiological and clinical characteristics of the disease and the risk to public health.
Collapse
Affiliation(s)
| | - Ana Carolina Diniz Matos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Izabelle Silva Rehfeld
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | - Felipe Pierezan
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Erica Azevedo Costa
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
30
|
Braack L, Gouveia de Almeida AP, Cornel AJ, Swanepoel R, de Jager C. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasit Vectors 2018; 11:29. [PMID: 29316963 PMCID: PMC5759361 DOI: 10.1186/s13071-017-2559-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
Key aspects of 36 mosquito-borne arboviruses indigenous to Africa are summarized, including lesser or poorly-known viruses which, like Zika, may have the potential to escape current sylvatic cycling to achieve greater geographical distribution and medical importance. Major vectors are indicated as well as reservoir hosts, where known. A series of current and future risk factors is addressed. It is apparent that Africa has been the source of most of the major mosquito-borne viruses of medical importance that currently constitute serious global public health threats, but that there are several other viruses with potential for international challenge. The conclusion reached is that increased human population growth in decades ahead coupled with increased international travel and trade is likely to sustain and increase the threat of further geographical spread of current and new arboviral disease.
Collapse
Affiliation(s)
- Leo Braack
- School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa.
| | - A Paulo Gouveia de Almeida
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Anthony J Cornel
- School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa.,Department of Entomology and Nematology, Mosquito Control Research Laboratory, Kearney Agricultural Center, UC Davis, Parlier, CA, USA
| | - Robert Swanepoel
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
31
|
Gossner CM, Marrama L, Carson M, Allerberger F, Calistri P, Dilaveris D, Lecollinet S, Morgan D, Nowotny N, Paty MC, Pervanidou D, Rizzo C, Roberts H, Schmoll F, Van Bortel W, Gervelmeyer A. West Nile virus surveillance in Europe: moving towards an integrated animal-human-vector approach. ACTA ACUST UNITED AC 2017; 22:30526. [PMID: 28494844 PMCID: PMC5434877 DOI: 10.2807/1560-7917.es.2017.22.18.30526] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022]
Abstract
This article uses the experience of five European countries to review the integrated approaches (human, animal and vector) for surveillance and monitoring of West Nile virus (WNV) at national and European levels. The epidemiological situation of West Nile fever in Europe is heterogeneous. No model of surveillance and monitoring fits all, hence this article merely encourages countries to implement the integrated approach that meets their needs. Integration of surveillance and monitoring activities conducted by the public health authorities, the animal health authorities and the authorities in charge of vector surveillance and control should improve efficiency and save resources by implementing targeted measures. The creation of a formal interagency working group is identified as a crucial step towards integration. Blood safety is a key incentive for public health authorities to allocate sufficient resources for WNV surveillance, while the facts that an effective vaccine is available for horses and that most infected animals remain asymptomatic make the disease a lesser priority for animal health authorities. The examples described here can support other European countries wishing to strengthen their WNV surveillance or preparedness, and also serve as a model for surveillance and monitoring of other (vector-borne) zoonotic infections.
Collapse
Affiliation(s)
- Céline M Gossner
- Surveillance and Response Support Unit, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Laurence Marrama
- Surveillance and Response Support Unit, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Marianne Carson
- Animal and Plant Health Unit, European Food Safety Authority (EFSA), Parma, Italy
| | - Franz Allerberger
- Units for Animal Health and Public Health, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Dimitrios Dilaveris
- Ministry of Rural Development and Food, Animal Health Directorate, Athens, Greece
| | - Sylvie Lecollinet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Animal Health Laboratory, EU-RL on equine diseases, Maisons-Alfort, France
| | - Dilys Morgan
- Emerging Infections and Zoonoses, Public Health England, Colindale, United Kingdom
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Danai Pervanidou
- Hellenic Center for Disease Control & Prevention, Department of Epidemiological Surveillance and Intervention, Vector-borne Diseases Office, Athens, Greece
| | | | - Helen Roberts
- Veterinary and Science Policy Advice team, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Friedrich Schmoll
- Units for Animal Health and Public Health, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Wim Van Bortel
- Surveillance and Response Support Unit, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Andrea Gervelmeyer
- Animal and Plant Health Unit, European Food Safety Authority (EFSA), Parma, Italy
| |
Collapse
|
32
|
West Nile virus in horses during the summer and autumn seasons of 2015 and 2016, Portugal. Vet Microbiol 2017; 212:75-79. [PMID: 29173592 DOI: 10.1016/j.vetmic.2017.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/23/2022]
Abstract
West Nile fever (WNF) is an emergent disease in Europe, under surveillance in the European Union. Following a 5-year period of apparent silence (autumn 2010 to summer 2015), West Nile virus (WNV) reemerged in the South of Portugal, in July 2015. Here we present data from the onset, geographic location within mainland Portugal, and outcome of clinical cases of WNV infection in horses in 2015 and 2016. During the transmission seasons of 2015 and 2016, twenty-seven horses, most symptomatic (n=20) were found positive to IgM, pr-E immunoglobulins and VNT, leading to the subsequent report to Animal Disease Notification System of the European Commission (ADNS) by the Portuguese National Authority for Animal Health. Outbreaks occurred in the middle summer (August) and early/mid autumn (October/November) of 2015 and 2016, in the southern regions of the country (Alentejo and Algarve). Compared with the previous WNV transmission seasons of 2004 and 2010, a higher number of cases were reported in 2015 and 2016. The results of our study contribute to increase information concerning the geographic areas affected and time period for WNV transmission risk in Portugal.
Collapse
|
33
|
García-Bocanegra I, Belkhiria J, Napp S, Cano-Terriza D, Jiménez-Ruiz S, Martínez-López B. Epidemiology and spatio-temporal analysis of West Nile virus in horses in Spain between 2010 and 2016. Transbound Emerg Dis 2017; 65:567-577. [PMID: 29034611 DOI: 10.1111/tbed.12742] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Indexed: 10/18/2022]
Abstract
During the last decade, West Nile virus (WNV) outbreaks have increased sharply in both horses and human in Europe. The aims of this study were to evaluate characteristics and spatio-temporal distribution of WNV outbreaks in horses in Spain between 2010 and 2016 in order to identify the environmental variables most associated with WNV occurrence and to generate high-resolution WNV suitability maps to inform risk-based surveillance strategies in this country. Between August 2010 and November 2016, a total of 403 WNV suspected cases were investigated, of which, 177 (43.9%) were laboratory confirmed. Mean values of morbidity, mortality and case fatality rates were 7.5%, 1.6% and 21.2%, respectively. The most common clinical symptoms were as follows: tiredness/apathy, recumbency, muscular tremor, ataxia, incoordination and hyperaesthesia. The outbreaks confirmed during the last 7 years, with detection of WNV RNA lineage 1 in 2010, 2012, 2013, 2015 and 2016, suggest an endemic circulation of the virus in Spain. The spatio-temporal distribution of WNV outbreaks in Spain was not homogeneous, as most of them (92.7%) were concentrated in western part of Andalusia (southern Spain) and significant clusters were detected in this region in two non-consecutive years. These findings were supported by the results of the space-time scan statistics permutation model. A presence-only MaxEnt ecological niche model was used to generate a suitability map for WNV occurrence in Andalusia. The most important predictors selected by the Ecological Niche Modeling were as follows: mean annual temperature (49.5% contribution), presence of Culex pipiens (19.5% contribution), mean annual precipitation (16.1% contribution) and distance to Ramsar wetlands (14.9% contribution). Our results constitute an important step for understanding WNV emergence and spread in Spain and will provide valuable information for the development of more cost-effective surveillance and control programmes and improve the protection of horse and human populations in WNV-endemic areas.
Collapse
Affiliation(s)
- I García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - J Belkhiria
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - S Napp
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - D Cano-Terriza
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - S Jiménez-Ruiz
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - B Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
34
|
Tran A, L'Ambert G, Balança G, Pradier S, Grosbois V, Balenghien T, Baldet T, Lecollinet S, Leblond A, Gaidet-Drapier N. An Integrative Eco-Epidemiological Analysis of West Nile Virus Transmission. ECOHEALTH 2017; 14:474-489. [PMID: 28584951 PMCID: PMC5662683 DOI: 10.1007/s10393-017-1249-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
West Nile disease, caused by the West Nile virus (WNV), is a mosquito-borne zoonotic disease affecting humans and horses that involves wild birds as amplifying hosts. The mechanisms of WNV transmission remain unclear in Europe where the occurrence of outbreaks has dramatically increased in recent years. We used a dataset on the competence, distribution, abundance, diversity and dispersal of wild bird hosts and mosquito vectors to test alternative hypotheses concerning the transmission of WNV in Southern France. We modelled the successive processes of introduction, amplification, dispersal and spillover of WNV to incidental hosts based on host-vector contact rates on various land cover types and over four seasons. We evaluated the relative importance of the mechanisms tested using two independent serological datasets of WNV antibodies collected in wild birds and horses. We found that the same transmission processes (seasonal virus introduction by migratory birds, Culex modestus mosquitoes as amplifying vectors, heterogeneity in avian host competence, absence of 'dilution effect') best explain the spatial variations in WNV seroprevalence in the two serological datasets. Our results provide new insights on the pathways of WNV introduction, amplification and spillover and the contribution of bird and mosquito species to WNV transmission in Southern France.
Collapse
Affiliation(s)
- Annelise Tran
- CIRAD, UPR AGIRs, Montpellier, France.
- CIRAD, UPR TETIS, Montpellier, France.
- CYROI, Sainte-Clotilde, Reunion Island, France.
| | | | | | - Sophie Pradier
- Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | | | | | | | | | - Agnès Leblond
- Université de Lyon, Marcy-l'Etoile, France
- INRA, Saint Genès Champanelle, France
| | | |
Collapse
|
35
|
Abstract
Although long recognized as a human pathogen, West Nile virus (WNV) emerged as a significant public health problem following its introduction and spread across North America. Subsequent years have seen a greater understanding of all aspects of this viral infection. The North American epidemic resulted in a further understanding of the virology, pathogenesis, clinical features, and epidemiology of WNV infection. Approximately 80% of human WNV infections are asymptomatic. Most symptomatic people experience an acute systemic febrile illness; less than 1% of infected people develop neuroinvasive disease, which typically manifests as meningitis, encephalitis, or anterior myelitis resulting in acute flaccid paralysis. Older age is associated with more severe illness and higher mortality; other risk factors for poor outcome have been challenging to identify. In addition to natural infection through mosquito bites, transfusion- and organ transplant-associated infections have occurred. Since there is no definitive treatment for WNV infection, protection from mosquito bites and other preventative measures are critical. WNV has reached an endemic pattern in North America, but the future epidemiologic pattern is uncertain.
Collapse
|
36
|
Cardinale E, Bernard C, Lecollinet S, Rakotoharinome VM, Ravaomanana J, Roger M, Olive MM, Meenowa D, Jaumally MR, Melanie J, Héraud JM, Zientara S, Cêtre-Sossah C. West Nile virus infection in horses, Indian ocean. Comp Immunol Microbiol Infect Dis 2017; 53:45-49. [PMID: 28750867 DOI: 10.1016/j.cimid.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 11/16/2022]
Abstract
The circulation of West Nile virus (WNV) in horses was investigated in the Southwest Indian ocean. In 2010, blood samples were collected from a total of 303 horses originating from Madagascar, Mauritius, Reunion and the Seychelles and tested for WNV-specific antibodies. An overall seroprevalence of 27.39% was detected in the Indian Ocean with the highest WNV antibody prevalence of 46.22% (95% CI: [37.4-55.2%]) in Madagascar. The age and origin of the horses were found to be associated with the WNV infection risk. This paper presents the first seroprevalence study investigating WN fever in horses in the Southwest Indian Ocean area and indicates a potential risk of infection for humans and animals. In order to gain a better understanding of WN transmission cycles, WNV surveillance needs to be implemented in each of the countries.
Collapse
Affiliation(s)
- E Cardinale
- CIRAD, UMR 117 ASTRE, Cyroi Platform, F-97490 Sainte Clotilde, La Réunion, France; INRA, UMR 1309 ASTRE, F-34598 Montpellier, France.
| | - C Bernard
- CIRAD, UMR 117 ASTRE, Cyroi Platform, F-97490 Sainte Clotilde, La Réunion, France; INRA, UMR 1309 ASTRE, F-34598 Montpellier, France
| | - S Lecollinet
- UMR 1161 (ANSES/INRA/ENVA), EU-RL on Equine Diseases, F- 94701 Maisons-Alfort, France
| | - V M Rakotoharinome
- Ministère auprès de la Présidence en charge de l'Agriculture, de l'Elevage, Direction des Services Vétérinaires, Ampandrianomby, Antananarivo, Madagascar
| | - J Ravaomanana
- Centre National de la Recherche Appliquée au Développement Rural (Fofifa), Département de Recherches Zootechniques et Vétérinaires, Antananarivo, Madagascar
| | - M Roger
- CIRAD, UMR 117 ASTRE, Cyroi Platform, F-97490 Sainte Clotilde, La Réunion, France; INRA, UMR 1309 ASTRE, F-34598 Montpellier, France
| | - M M Olive
- CIRAD, UMR 117 ASTRE, Cyroi Platform, F-97490 Sainte Clotilde, La Réunion, France; INRA, UMR 1309 ASTRE, F-34598 Montpellier, France
| | - D Meenowa
- Ministère des Agro-Industries, Réduit, Mauritius
| | - M R Jaumally
- Ministère des Agro-Industries, Réduit, Mauritius
| | - J Melanie
- Ministère de l'Agriculture et des ressources marines, Victoria, Seychelles
| | - J M Héraud
- Institut Pasteur de Madagascar, Unité de Virologie, BP 1274, Antananarivo 101, Madagascar
| | - S Zientara
- UMR 1161 (ANSES/INRA/ENVA), EU-RL on Equine Diseases, F- 94701 Maisons-Alfort, France
| | - C Cêtre-Sossah
- CIRAD, UMR 117 ASTRE, Cyroi Platform, F-97490 Sainte Clotilde, La Réunion, France; INRA, UMR 1309 ASTRE, F-34598 Montpellier, France
| |
Collapse
|
37
|
Sánchez-Gómez A, Amela C, Fernández-Carrión E, Martínez-Avilés M, Sánchez-Vizcaíno JM, Sierra-Moros MJ. Risk mapping of West Nile virus circulation in Spain, 2015. Acta Trop 2017; 169:163-169. [PMID: 28212847 DOI: 10.1016/j.actatropica.2017.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 01/19/2023]
Abstract
West Nile fever is an emergent disease in Europe. The objective of this study was to conduct a predictive risk mapping of West Nile Virus (WNV) circulation in Spain based on historical data of WNV circulation. Areas of Spain with evidence of WNV circulation were mapped based on data from notifications to the surveillance systems and a literature review. A logistic regression-based spatial model was used to assess the probability of WNV circulation. Data were analyzed at municipality level. Mean temperatures of the period from June to October, presence of wetlands and presence of Special Protection Areas for birds were considered as potential predictors. Two predictors of WNV circulation were identified: higher temperature [adjusted odds ratio (AOR) 2.07, 95% CI 1.82-2.35, p<0.01] and presence of wetlands (3.37, 95% CI 1.89-5.99, p<0.01). Model validations indicated good predictions: area under the ROC curve was 0.895 (95% CI 0.870-0.919) for internal validation and 0.895 (95% CI 0.840-0.951) for external validation. This model could support improvements of WNV risk- based surveillance in Spain. The importance of a comprehensive surveillance for WNF, including human, animal and potential vectors is highlighted, which could additionally result in model refinements.
Collapse
Affiliation(s)
- Amaya Sánchez-Gómez
- Coordinating Centre for Health Alerts and Emergencies, General Directorate of Public Health, Quality and Innovation, Ministry of Health, Social Services and Equality, Madrid, Spain Paseo del Prado 18-20, 28071 Madrid, Spain.
| | - Carmen Amela
- Coordinating Centre for Health Alerts and Emergencies, General Directorate of Public Health, Quality and Innovation, Ministry of Health, Social Services and Equality, Madrid, Spain Paseo del Prado 18-20, 28071 Madrid, Spain.
| | - Eduardo Fernández-Carrión
- VISAVET Centre and Animal Health Department, Faculty of Veterinary Sciences, Complutense University, Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain.
| | - Marta Martínez-Avilés
- VISAVET Centre and Animal Health Department, Faculty of Veterinary Sciences, Complutense University, Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain.
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Centre and Animal Health Department, Faculty of Veterinary Sciences, Complutense University, Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain.
| | - María José Sierra-Moros
- Coordinating Centre for Health Alerts and Emergencies, General Directorate of Public Health, Quality and Innovation, Ministry of Health, Social Services and Equality, Madrid, Spain Paseo del Prado 18-20, 28071 Madrid, Spain.
| |
Collapse
|
38
|
More S, Bicout D, Bøtner A, Butterworth A, Calistri P, De Koeijer A, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortazar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Thulke HH, Velarde A, Willeberg P, Winckler C, Bau A, Beltran-Beck B, Carnesecchi E, Casier P, Czwienczek E, Dhollander S, Georgiadis M, Gogin A, Pasinato L, Richardson J, Riolo F, Rossi G, Watts M, Lima E, Stegeman JA. Vector-borne diseases. EFSA J 2017; 15:e04793. [PMID: 32625493 PMCID: PMC7009857 DOI: 10.2903/j.efsa.2017.4793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
After a request from the European Commission, EFSA's Panel on Animal Health and Welfare summarised the main characteristics of 36 vector-borne diseases (VBDs) in https://efsa.maps.arcgis.com/apps/PublicGallery/index.html?appid=dfbeac92aea944599ed1eb754aa5e6d1. The risk of introduction in the EU through movement of livestock or pets was assessed for each of the 36 VBDs individually, using a semiquantitative Method to INTegrate all relevant RISK aspects (MINTRISK model), which was further modified to a European scale into the http://www3.lei.wur.nl/mintrisk/ModelMgt.aspx. Only eight of the 36 VBD-agents had an overall rate of introduction in the EU (being the combination of the rate of entry, vector transmission and establishment) which was estimated to be above 0.001 introductions per year. These were Crimean-Congo haemorrhagic fever virus, bluetongue virus, West Nile virus, Schmallenberg virus, Hepatozoon canis, Leishmania infantum, Bunyamwera virus and Highlands J. virus. For these eight diseases, the annual extent of spread was assessed, assuming the implementation of available, authorised prevention and control measures in the EU. Further, the probability of overwintering was assessed, as well as the possible impact of the VBDs on public health, animal health and farm production. For the other 28 VBD-agents for which the rate of introduction was estimated to be very low, no further assessments were made. Due to the uncertainty related to some parameters used for the risk assessment or the instable or unpredictability disease situation in some of the source regions, it is recommended to update the assessment when new information becomes available. Since this risk assessment was carried out for large regions in the EU for many VBD-agents, it should be considered as a first screening. If a more detailed risk assessment for a specific VBD is wished for on a national or subnational level, the EFSA-VBD-RISK-model is freely available for this purpose.
Collapse
|
39
|
Humblet MF, Vandeputte S, Fecher-Bourgeois F, Léonard P, Gosset C, Balenghien T, Durand B, Saegerman C. Estimating the economic impact of a possible equine and human epidemic of West Nile virus infection in Belgium. ACTA ACUST UNITED AC 2017; 21:30309. [PMID: 27526394 PMCID: PMC4998509 DOI: 10.2807/1560-7917.es.2016.21.31.30309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 01/02/2016] [Indexed: 11/20/2022]
Abstract
This study aimed at estimating, in a prospective scenario, the potential economic impact of a possible epidemic of WNV infection in Belgium, based on 2012 values for the equine and human health sectors, in order to increase preparedness and help decision-makers. Modelling of risk areas, based on the habitat suitable for Culex pipiens, the main vector of the virus, allowed us to determine equine and human populations at risk. Characteristics of the different clinical forms of the disease based on past epidemics in Europe allowed morbidity among horses and humans to be estimated. The main costs for the equine sector were vaccination and replacement value of dead or euthanised horses. The choice of the vaccination strategy would have important consequences in terms of cost. Vaccination of the country's whole population of horses, based on a worst-case scenario, would cost more than EUR 30 million; for areas at risk, the cost would be around EUR 16-17 million. Regarding the impact on human health, short-term costs and socio-economic losses were estimated for patients who developed the neuroinvasive form of the disease, as no vaccine is available yet for humans. Hospital charges of around EUR 3,600 for a case of West Nile neuroinvasive disease and EUR 4,500 for a case of acute flaccid paralysis would be the major financial consequence of an epidemic of West Nile virus infection in humans in Belgium.
Collapse
|
40
|
MAMAK N, Bilgili İ. BATI NİL VİRUSU ENFEKSİYONU. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2016. [DOI: 10.24880/maeuvfd.287350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
41
|
Early detection of West Nile virus in France: quantitative assessment of syndromic surveillance system using nervous signs in horses. Epidemiol Infect 2016; 145:1044-1057. [PMID: 27938434 DOI: 10.1017/s0950268816002946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
West Nile virus (WNV) is a growing public health concern in Europe and there is a need to develop more efficient early detection systems. Nervous signs in horses are considered to be an early indicator of WNV and, using them in a syndromic surveillance system, might be relevant. In our study, we assessed whether or not data collected by the passive French surveillance system for the surveillance of equine diseases can be used routinely for the detection of WNV. We tested several pre-processing methods and detection algorithms based on regression. We evaluated system performances using simulated and authentic data and compared them to those of the surveillance system currently in place. Our results show that the current detection algorithm provided similar performances to those tested using simulated and real data. However, regression models can be easily and better adapted to surveillance objectives. The detection performances obtained were compatible with the early detection of WNV outbreaks in France (i.e. sensitivity 98%, specificity >94%, timeliness 2·5 weeks and around four false alarms per year) but further work is needed to determine the most suitable alarm threshold for WNV surveillance in France using cost-efficiency analysis.
Collapse
|
42
|
Chaskopoulou A, L'Ambert G, Petric D, Bellini R, Zgomba M, Groen TA, Marrama L, Bicout DJ. Ecology of West Nile virus across four European countries: review of weather profiles, vector population dynamics and vector control response. Parasit Vectors 2016; 9:482. [PMID: 27590848 PMCID: PMC5009705 DOI: 10.1186/s13071-016-1736-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 11/26/2022] Open
Abstract
West Nile virus (WNV) represents a serious burden to human and animal health because of its capacity to cause unforeseen and large epidemics. Until 2004, only lineage 1 and 3 WNV strains had been found in Europe. Lineage 2 strains were initially isolated in 2004 (Hungary) and in 2008 (Austria) and for the first time caused a major WNV epidemic in 2010 in Greece with 262 clinical human cases and 35 fatalities. Since then, WNV lineage 2 outbreaks have been reported in several European countries including Italy, Serbia and Greece. Understanding the interaction of ecological factors that affect WNV transmission is crucial for preventing or decreasing the impact of future epidemics. The synchronous co-occurrence of competent mosquito vectors, virus, bird reservoir hosts, and susceptible humans is necessary for the initiation and propagation of an epidemic. Weather is the key abiotic factor influencing the life-cycles of the mosquito vector, the virus, the reservoir hosts and the interactions between them. The purpose of this paper is to review and compare mosquito population dynamics, and weather conditions, in three ecologically different contexts (urban/semi-urban, rural/agricultural, natural) across four European countries (Italy, France, Serbia, Greece) with a history of WNV outbreaks. Local control strategies will be described as well. Improving our understanding of WNV ecology is a prerequisite step for appraising and optimizing vector control strategies in Europe with the ultimate goal to minimize the probability of WNV infection.
Collapse
Affiliation(s)
- Alexandra Chaskopoulou
- USDA-ARS, European Biological Control Laboratory, Tsimiski 43, Thessaloniki, 54623, Greece
| | - Gregory L'Ambert
- EID Mediterranee, 165 Avenue Paul Rimbaud, Montpellier, 34184, France
| | - Dusan Petric
- Faculty of Agriculture, Laboratory for Medical Entomology, University of Novi Sad, Trg D. Obradovica 8, Novi Sad, 21000, Serbia
| | - Romeo Bellini
- Centro Agricoltura Ambiente "G. Nicoli", Via Argini Nord 3351, Crevalcore, 40014, Italy
| | - Marija Zgomba
- Faculty of Agriculture, Laboratory for Medical Entomology, University of Novi Sad, Trg D. Obradovica 8, Novi Sad, 21000, Serbia
| | - Thomas A Groen
- Faculty of Geo-Information Science and Earth Observation, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | - Laurence Marrama
- ECDC, European Centre for Disease Prevention and Control, Tomtebodavagen 11A, Stockholm, 17183, Sweden
| | - Dominique J Bicout
- Biomathematics and Epidemiology EPSP-TIMC, VetAgro Sup, Veterinary Campus of Lyon, Marcy l'Etoile, F-69280, France. .,Laue-Langevin Institute, Theory Group, Grenoble cedex 9, F-38042, France.
| |
Collapse
|
43
|
Kleiboeker SB, Loiacono CM, Rottinghaus A, Pue HL, Johnson GC. Diagnosis of West Nile Virus Infection in Horses. J Vet Diagn Invest 2016; 16:2-10. [PMID: 14974840 DOI: 10.1177/104063870401600102] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The North American West Nile virus (WNV) epizootic, which began in 1999, has caused significant morbidity and mortality in horses. Because experimental infection has failed to consistently produce encephalitis in inoculated horses, investigation of naturally occurring cases was used to optimize strategies for diagnosis of this disease. Although WNV RNA could be detected by reverse transcriptase—polymerase chain reaction (RT-PCR) performed on whole blood collected from both clinically affected horses and unaffected herdmates, the diagnostic sensitivity of this approach was low compared with IgM-capture enzyme-linked immunosorbent assay. In addition, it was observed that 18.5% of herdmates of clinically ill horses seroconverted to WNV yet exhibited no overt clinical signs of WNV encephalitis. West Nile viral RNA was detected in neural tissue of 46 of 64 dead horses that were suspected of having WNV encephalitis. Some of these animals were IgM negative or had not been tested serologically. A primary cause of death other than WNV encephalitis was identified in 15 of the 64 cases, whereas the final diagnosis for 3 of these cases remains unresolved. Quantitative RT-PCR analysis of neural tissue from WNV RNA—positive horses demonstrated that the medulla contained the highest mean concentration of viral RNA and that WNV RNA could be detected in samples extracted from formalin-fixed neural tissue. A comparison of WNV RT-PCR amplification strategies found that nested RT-PCR improved diagnostic sensitivity only slightly over a single round of amplification and that a quantitative (TaqMan) assay had sensitivity and specificity that were equivalent to those of nested amplification.
Collapse
Affiliation(s)
- Steven B Kleiboeker
- Veterinary Medical Diagnostic Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
44
|
Furuya-Kanamori L, Liang S, Milinovich G, Soares Magalhaes RJ, Clements ACA, Hu W, Brasil P, Frentiu FD, Dunning R, Yakob L. Co-distribution and co-infection of chikungunya and dengue viruses. BMC Infect Dis 2016; 16:84. [PMID: 26936191 PMCID: PMC4776349 DOI: 10.1186/s12879-016-1417-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/07/2016] [Indexed: 01/08/2023] Open
Abstract
Background Chikungunya and dengue infections are spatio-temporally related. The current review aims to determine the geographic limits of chikungunya, dengue and the principal mosquito vectors for both viruses and to synthesise current epidemiological understanding of their co-distribution. Methods Three biomedical databases (PubMed, Scopus and Web of Science) were searched from their inception until May 2015 for studies that reported concurrent detection of chikungunya and dengue viruses in the same patient. Additionally, data from WHO, CDC and Healthmap alerts were extracted to create up-to-date global distribution maps for both dengue and chikungunya. Results Evidence for chikungunya-dengue co-infection has been found in Angola, Gabon, India, Madagascar, Malaysia, Myanmar, Nigeria, Saint Martin, Singapore, Sri Lanka, Tanzania, Thailand and Yemen; these constitute only 13 out of the 98 countries/territories where both chikungunya and dengue epidemic/endemic transmission have been reported. Conclusions Understanding the true extent of chikungunya-dengue co-infection is hampered by current diagnosis largely based on their similar symptoms. Heightened awareness of chikungunya among the public and public health practitioners in the advent of the ongoing outbreak in the Americas can be expected to improve diagnostic rigour. Maps generated from the newly compiled lists of the geographic distribution of both pathogens and vectors represent the current geographical limits of chikungunya and dengue, as well as the countries/territories at risk of future incursion by both viruses. These describe regions of co-endemicity in which lab-based diagnosis of suspected cases is of higher priority. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1417-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis Furuya-Kanamori
- Research School of Population Health, Australian National University, Acton, ACT 2601, Australia.
| | - Shaohong Liang
- Environmental Health Institute, National Environment Agency, Singapore, 138667, Singapore.
| | - Gabriel Milinovich
- School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia.
| | - Ricardo J Soares Magalhaes
- School of Veterinary Science, University of Queensland, Gatton, QLD, 4343, Australia. .,UQ Children's Health Research Centre, University of Queensland, South Brisbane, QLD, 4101, Australia.
| | - Archie C A Clements
- Research School of Population Health, Australian National University, Acton, ACT 2601, Australia.
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia.
| | - Patricia Brasil
- Instituto Nacional de Infectologia Evandro Chagas/ Fiocruz, Rio de Janeiro, Brazil.
| | - Francesca D Frentiu
- School of Biomedical Sciences and Institute for Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia.
| | - Rebecca Dunning
- Formerly School of Biomedical Sciences, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
45
|
Leblond A, Lecollinet S. Clinical screening of horses and early warning for West Nile virus. EQUINE VET EDUC 2016. [DOI: 10.1111/eve.12571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. Leblond
- INRA; Epidémiologie animale; Saint Genes Champanelle France
- VetAgro Sup; Pôle équin; Marcy l'Etoile France
| | - S. Lecollinet
- UPE; EU-RL on equine diseases; Maisons-Alfort France
| |
Collapse
|
46
|
Conte A, Candeloro L, Ippoliti C, Monaco F, De Massis F, Bruno R, Di Sabatino D, Danzetta ML, Benjelloun A, Belkadi B, El Harrak M, Declich S, Rizzo C, Hammami S, Ben Hassine T, Calistri P, Savini G. Spatio-Temporal Identification of Areas Suitable for West Nile Disease in the Mediterranean Basin and Central Europe. PLoS One 2015; 10:e0146024. [PMID: 26717483 PMCID: PMC4696814 DOI: 10.1371/journal.pone.0146024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/12/2015] [Indexed: 11/18/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-transmitted Flavivirus belonging to the Japanese encephalitis antigenic complex of the Flaviviridae family. Its spread in the Mediterranean basin and the Balkans poses a significant risk to human health and forces public health officials to constantly monitor the virus transmission to ensure prompt application of preventive measures. In this context, predictive tools indicating the areas and periods at major risk of WNV transmission are of paramount importance. Spatial analysis approaches, which use environmental and climatic variables to find suitable habitats for WNV spread, can enhance predictive techniques. Using the Mahalanobis Distance statistic, areas ecologically most suitable for sustaining WNV transmission were identified in the Mediterranean basin and Central Europe. About 270 human and equine clinical cases notified in Italy, Greece, Portugal, Morocco, and Tunisia, between 2008 and 2012, have been considered. The environmental variables included in the model were altitude, slope, night time Land Surface Temperature, Normalized Difference Vegetation Index, Enhanced Vegetation Index, and daily temperature range. Seasonality of mosquito population has been modelled and included in the analyses to produce monthly maps of suitable areas for West Nile Disease. Between May and July, the most suitable areas are located in Tunisia, Libya, Egypt, and North Cyprus. Summer/Autumn months, particularly between August and October, characterize the suitability in Italy, France, Spain, the Balkan countries, Morocco, North Tunisia, the Mediterranean coast of Africa, and the Middle East. The persistence of suitable conditions in December is confined to the coastal areas of Morocco, Tunisia, Libya, Egypt, and Israel.
Collapse
Affiliation(s)
- Annamaria Conte
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Luca Candeloro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Carla Ippoliti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Fabrizio De Massis
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Rossana Bruno
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Daria Di Sabatino
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Maria Luisa Danzetta
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Abdennasser Benjelloun
- Société de Produits Biologiques et Pharmaceutiques vétérinaires (Biopharma), Rabat, Morocco
- Laboratory of Microbiology and Molecular Biology, University Mohamed V, Faculty of Science, Rabat, Morocco
| | - Bouchra Belkadi
- Laboratory of Microbiology and Molecular Biology, University Mohamed V, Faculty of Science, Rabat, Morocco
| | - Mehdi El Harrak
- Société de Produits Biologiques et Pharmaceutiques vétérinaires (Biopharma), Rabat, Morocco
| | - Silvia Declich
- Istituto Superiore di Sanità, Reparto Epidemiologia delle Malattie Infettive, Centro Nazionale di Epidemiologia, Sorveglianza e Promozione della Salute, Rome, Italy
| | - Caterina Rizzo
- Istituto Superiore di Sanità, Reparto Epidemiologia delle Malattie Infettive, Centro Nazionale di Epidemiologia, Sorveglianza e Promozione della Salute, Rome, Italy
| | - Salah Hammami
- Ecole Nationale de Médecine Vétérinaire de Sidi Thabet (ENMV), Sidi Thabet, Tunisia
| | - Thameur Ben Hassine
- Ecole Nationale de Médecine Vétérinaire de Sidi Thabet (ENMV), Sidi Thabet, Tunisia
| | - Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| |
Collapse
|
47
|
Dridi M, Van Den Berg T, Lecollinet S, Lambrecht B. Evaluation of the pathogenicity of West Nile virus (WNV) lineage 2 strains in a SPF chicken model of infection: NS3-249Pro mutation is neither sufficient nor necessary for conferring virulence. Vet Res 2015; 46:130. [PMID: 26518144 PMCID: PMC4628354 DOI: 10.1186/s13567-015-0257-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/21/2015] [Indexed: 01/28/2023] Open
Abstract
Lineage 2 West Nile virus (WNV) strains were reported for the first time in Europe in 2004. Despite an almost silent circulation around their entry point in Hungary, an upsurge of pathogenicity occurred in 2010 as 262 people suffered from neuroinvasive disease in Greece. This increase in virulence was imputed to the emergence of a His249Pro mutation in the viral NS3 helicase, as previously evidenced in American crows experimentally infected with the prototype lineage 1 North-American WNV strain. However, since 2003, WNV strains bearing the NS3Pro genotype are regularly isolated in Western-Mediterranean countries without being correlated to any virulent outbreak in vertebrates. We thus sought to evaluate the weight of the NS3249Pro genotype as a virulence marker of WNV in an in vivo avian model of WNV infection. We therefore characterized three genetically-related Eastern-Europe lineage 2 WNV strains in day-old specific pathogen-free (SPF) chickens: Hun2004 and Aus2008 which are both characterized by a NS3249His genotype, and Gr2011 which is characterized by a NS3249Pro genotype. Unlike Hun2004 and Aus2008, Gr2011 was weakly virulent in SPF chicks as Gr2011-induced viremia was lower and waned quicklier than in the Hun2004 and Aus2008 groups. Overall, this study showed that the presence of a proline residue at position 249 of the viral NS3 helicase is neither sufficient nor necessary to confer pathogenicity to any given lineage 2 WNV strain in birds.
Collapse
Affiliation(s)
- Maha Dridi
- Operational Direction of Viral Diseases, CODA-CERVA-Veterinary and Agrochemical Research Centre, 99 Groeselenberg, 1180, Brussels, Belgium.
| | - Thierry Van Den Berg
- Operational Direction of Viral Diseases, CODA-CERVA-Veterinary and Agrochemical Research Centre, 99 Groeselenberg, 1180, Brussels, Belgium.
| | - Sylvie Lecollinet
- UPE, UMR1161 Virologie, Institut National de la Recherche Agronomique (INRA), Agence Nationale de Sécurité Sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Ecole Nationale Vétérinaire d'Alfort (ENVA), 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France.
| | - Benedicte Lambrecht
- Operational Direction of Viral Diseases, CODA-CERVA-Veterinary and Agrochemical Research Centre, 99 Groeselenberg, 1180, Brussels, Belgium.
| |
Collapse
|
48
|
The global ecology and epidemiology of West Nile virus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:376230. [PMID: 25866777 PMCID: PMC4383390 DOI: 10.1155/2015/376230] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/10/2014] [Indexed: 12/30/2022]
Abstract
Since its initial isolation in Uganda in 1937 through the present, West Nile virus (WNV) has become an important cause of human and animal disease worldwide. WNV, an enveloped virus of the genus Flavivirus, is naturally maintained in an enzootic cycle between birds and mosquitoes, with occasional epizootic spillover causing disease in humans and horses. The mosquito vectors for WNV are widely distributed worldwide, and the known geographic range of WNV transmission and disease has continued to increase over the past 77 years. While most human infections with WNV are asymptomatic, severe neurological disease may develop resulting in long-term sequelae or death. Surveillance and preventive measures are an ongoing need to reduce the public health impact of WNV in areas with the potential for transmission.
Collapse
|
49
|
Barton AJ, Prow NA, Hall RA, Kidd L, Bielefeldt-Ohmann H. A case of Murray Valley encephalitis in a 2-year-old Australian Stock Horse in south-east Queensland. Aust Vet J 2015; 93:53-7. [DOI: 10.1111/avj.12294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2014] [Indexed: 10/23/2022]
Affiliation(s)
- AJ Barton
- School of Veterinary Science; The University of Queensland; Gatton Queensland 4343 Australia
| | - NA Prow
- Australian Infectious Diseases Research Centre; University of Queensland; St Lucia Queensland Australia
| | - RA Hall
- Australian Infectious Diseases Research Centre; University of Queensland; St Lucia Queensland Australia
| | - L Kidd
- School of Veterinary Science; The University of Queensland; Gatton Queensland 4343 Australia
| | - H Bielefeldt-Ohmann
- School of Veterinary Science; The University of Queensland; Gatton Queensland 4343 Australia
- Australian Infectious Diseases Research Centre; University of Queensland; St Lucia Queensland Australia
| |
Collapse
|
50
|
Bouzalas IG, Diakakis N, Chaintoutis SC, Brellou GD, Papanastassopoulou M, Danis K, Vlemmas I, Seuberlich T, Dovas CI. Emergence of Equine West Nile Encephalitis in Central Macedonia, Greece, 2010. Transbound Emerg Dis 2015; 63:e219-e227. [PMID: 25660661 DOI: 10.1111/tbed.12334] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Indexed: 11/29/2022]
Abstract
During the summer of 2010, an outbreak of West Nile virus (WNV) infections attributed to a lineage 2 WNV strain was reported among humans and horses in Central Macedonia, Northern Greece. Here, the clinical and laboratory investigation of horses that showed severe neurological signs due to WNV infection is being described. Specifically, between August and September 2010, 17 horses with neurological signs were detected. WNV infection was confirmed in all 17 clinical cases by applying laboratory testing. The duration of WNV-specific IgM antibodies in sera obtained from seven of the clinically affected horses was relatively short (10-60 days; mean 44 days). In the regional unit of Thessaloniki, (i) seroprevalence of WNV and fatality rate in horses were high (33% and 30%, respectively), and (ii) the ratio of neurological manifestations-to-infections for this virus strain was high (19%). These observations indicate that the strain responsible for the massive human epidemic of 2010 in Greece was also highly pathogenic for horses. This is the first time that WNV infection has been documented in horses with clinical manifestations in Greece. WNV infection should be included in the differential diagnosis of horses with encephalitis in Greece.
Collapse
Affiliation(s)
- I G Bouzalas
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - N Diakakis
- Equine Unit, Companion Animal Clinic, Department of Clinical Sciences, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - S C Chaintoutis
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Diagnostic Laboratory, Department of Clinical Sciences, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - G D Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M Papanastassopoulou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K Danis
- Department of Surveillance and Intervention, Hellenic Centre for Disease Control and Prevention, Athens, Greece
| | - I Vlemmas
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - T Seuberlich
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - C I Dovas
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece. .,Diagnostic Laboratory, Department of Clinical Sciences, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|