1
|
Dinu S, Stancu IG, Cotar AI, Ceianu CS, Pintilie GV, Karpathakis I, Fălcuță E, Csutak O, Prioteasa FL. Continuous and Dynamic Circulation of West Nile Virus in Mosquito Populations in Bucharest Area, Romania, 2017-2023. Microorganisms 2024; 12:2080. [PMID: 39458389 PMCID: PMC11510486 DOI: 10.3390/microorganisms12102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen with a worldwide distribution. Climate change and human activities have driven the expansion of WNV into new territories in Europe during the last two decades. Romania is endemic for WNV circulation since at least 1996 when the presence of lineage 1 was documented during an unprecedented outbreak. Lineage 2 was first identified in this country during a second significant human outbreak in 2010. Its continuous circulation is marked by clade replacement, and even co-circulation of different strains of the same clade was observed until 2016. The present study aims to fill the information gap regarding the WNV strains that were circulating in Romania between 2017 and 2023, providing chiefly viral sequences obtained from mosquito samples collected in the Bucharest metropolitan area, complemented by human and bird viral sequences. WNV was detected mainly in Culex pipiens mosquitoes, the vectors of this virus in the region, but also in the invasive Aedes albopictus mosquito species. Lineage 2 WNV was identified in mosquito samples collected between 2017 and 2023, as well as in human sera from patients in southern and central Romania during the outbreaks of 2017 and 2018. Both 2a and 2b sub-lineages were identified, with evidence of multiple clusters and sub-clusters within sub-lineage 2a, highlighting the complex and dynamic circulation of WNV in Romania, as a consequence of distinct introduction events from neighboring countries followed by in situ evolution.
Collapse
Affiliation(s)
- Sorin Dinu
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania;
| | - Ioana Georgeta Stancu
- Department of Genetics, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania; (I.G.S.); (O.C.)
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania; (C.S.C.); (G.V.P.); (I.K.)
| | - Ani Ioana Cotar
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania; (C.S.C.); (G.V.P.); (I.K.)
| | - Cornelia Svetlana Ceianu
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania; (C.S.C.); (G.V.P.); (I.K.)
| | - Georgiana Victorița Pintilie
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania; (C.S.C.); (G.V.P.); (I.K.)
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Ioannis Karpathakis
- Vector-Borne Infections Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania; (C.S.C.); (G.V.P.); (I.K.)
| | - Elena Fălcuță
- Medical Entomology Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania; (E.F.); (F.L.P.)
| | - Ortansa Csutak
- Department of Genetics, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania; (I.G.S.); (O.C.)
| | - Florian Liviu Prioteasa
- Medical Entomology Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, 050096 Bucharest, Romania; (E.F.); (F.L.P.)
| |
Collapse
|
2
|
Talmi-Frank D, Byas AD, Murrieta R, Weger-Lucarelli J, Rückert C, Gallichotte EN, Yoshimoto JA, Allen C, Bosco-Lauth AM, Graham B, Felix TA, Brault AC, Ebel GD. Intracellular Diversity of WNV within Circulating Avian Peripheral Blood Mononuclear Cells Reveals Host-Dependent Patterns of Polyinfection. Pathogens 2023; 12:767. [PMID: 37375457 DOI: 10.3390/pathogens12060767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Arthropod-borne virus (arbovirus) populations exist as mutant swarms that are maintained between arthropods and vertebrates. West Nile virus (WNV) population dynamics are host-dependent. In American crows, purifying selection is weak and population diversity is high compared to American robins, which have 100- to 1000-fold lower viremia. WNV passed in robins leads to fitness gains, whereas that passed in crows does not. Therefore, we tested the hypothesis that high crow viremia allows for higher genetic diversity within individual avian peripheral blood mononuclear cells (PBMCs), reasoning that this could have produced the previously observed host-specific differences in genetic diversity and fitness. Specifically, we infected cells and birds with a molecularly barcoded WNV and sequenced viral RNA from single cells to quantify the number of WNV barcodes in each. Our results demonstrate that the richness of WNV populations within crows far exceeds that in robins. Similarly, rare WNV variants were maintained by crows more frequently than by robins. Our results suggest that increased viremia in crows relative to robins leads to the maintenance of defective genomes and less prevalent variants, presumably through complementation. Our findings further suggest that weaker purifying selection in highly susceptible crows is attributable to this higher viremia, polyinfections and complementation.
Collapse
Affiliation(s)
- Dalit Talmi-Frank
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alex D Byas
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Reyes Murrieta
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - James Weger-Lucarelli
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Emily N Gallichotte
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Janna A Yoshimoto
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Chris Allen
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Angela M Bosco-Lauth
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Barbara Graham
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Todd A Felix
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Lakewood, CO 80228, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Gregory D Ebel
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
Hyeon JY, Helal ZH, Appel A, Tocco N, Hunt A, Lee DH, Risatti GR. Whole genome sequencing and phylogenetic analysis of West Nile viruses from animals in New England, United States, 2021. Front Vet Sci 2023; 10:1085554. [PMID: 37187933 PMCID: PMC10175668 DOI: 10.3389/fvets.2023.1085554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2023] [Indexed: 05/17/2023] Open
Abstract
West Nile virus is a mosquito-borne Flavivirus which is the leading cause of global arboviral encephalitis. We sequenced WNVs from an American crow found in Connecticut and an alpaca found in Massachusetts which were submitted to the Connecticut Veterinary Medical Diagnostic Laboratory (CVMDL). We report here the complete protein-coding sequences (CDS) of the WNVs (WNV 21-3957/USA CT/Crow/2021 and WNV 21-3782/USA MA/Alpaca/2021) and their phylogenetic relationship with other WNVs recovered from across the United States. In the phylogenetic analysis, the WNVs from this study belonged to the WNV lineage 1. The WNV 21-3957/USA CT/Crow/2021 clustered with WNVs from a mosquito and birds in New York during 2007-2013. Interestingly, the virus detected in the alpaca, WNV 21-3782/USA MA/Alpaca/2021 clustered with WNVs from mosquitos in New York, Texas, and Arizona during 2012-2016. The genetic differences between the viruses detected during the same season in an American crow and an alpaca suggest that vector-host feeding preferences are most likely driving viral transmission. The CDS of the WNVs and their phylogenetic relationships with other WNVs established in this study would be useful as reference data for future investigations on WNVs. Seasonal surveillance of WNV in birds and mammals and the genetic characterization of detected viruses are necessary to monitor patterns of disease presentations and viral evolution within a geographical area.
Collapse
Affiliation(s)
- Ji-Yeon Hyeon
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Zeinab H. Helal
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
| | - Allison Appel
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
| | - Natalie Tocco
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
| | - Amelia Hunt
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Guillermo R. Risatti
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
4
|
Foss L, Feiszli T, Kramer VL, Reisen WK, Padgett K. Epidemic versus endemic West Nile virus dead bird surveillance in California: Changes in sensitivity and focus. PLoS One 2023; 18:e0284039. [PMID: 37023091 PMCID: PMC10079120 DOI: 10.1371/journal.pone.0284039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Since 2003, the California West Nile virus (WNV) dead bird surveillance program (DBSP) has monitored publicly reported dead birds for WNV surveillance and response. In the current paper, we compared DBSP data from early epidemic years (2004-2006) with recent endemic years (2018-2020), with a focus on specimen collection criteria, county report incidence, bird species selection, WNV prevalence in dead birds, and utility of the DBSP as an early environmental indicator of WNV. Although fewer agencies collected dead birds in recent years, most vector control agencies with consistent WNV activity continued to use dead birds as a surveillance tool, with streamlined operations enhancing efficiency. The number of dead bird reports was approximately ten times greater during 2004-2006 compared to 2018-2020, with reports from the Central Valley and portions of Southern California decreasing substantially in recent years; reports from the San Francisco Bay Area decreased less dramatically. Seven of ten counties with high numbers of dead bird reports were also high human WNV case burden areas. Dead corvid, sparrow, and quail reports decreased the most compared to other bird species reports. West Nile virus positive dead birds were the most frequent first indicators of WNV activity by county in 2004-2006, followed by positive mosquitoes; in contrast, during 2018-2020 mosquitoes were the most frequent first indicators followed by dead birds, and initial environmental WNV detections occurred later in the season during 2018-2020. Evidence for WNV impacts on avian populations and susceptibility are discussed. Although patterns of dead bird reports and WNV prevalence in tested dead birds have changed, dead birds have endured as a useful element within our multi-faceted WNV surveillance program.
Collapse
Affiliation(s)
- Leslie Foss
- Vector-Borne Disease Section, California Department of Public Health, Richmond, California, United States of America
| | - Tina Feiszli
- Vector-Borne Disease Section, California Department of Public Health, Richmond, California, United States of America
| | - Vicki L. Kramer
- Vector-Borne Disease Section, California Department of Public Health, Sacramento, California, United States of America
| | - William K. Reisen
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Kerry Padgett
- Vector-Borne Disease Section, California Department of Public Health, Richmond, California, United States of America
| |
Collapse
|
5
|
Frank DT, Byas AD, Murrieta R, Weger-Lucarelli J, Rückert C, Gallichotte E, Yoshimoto JA, Allen C, Bosco-Lauth AM, Graham B, Felix TA, Brault A, Ebel GD. Intracellular diversity of WNV within circulating avian peripheral blood mononuclear cells reveals host-dependent patterns of polyinfection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525959. [PMID: 36747638 PMCID: PMC9900929 DOI: 10.1101/2023.01.27.525959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Error-prone replication of RNA viruses generates the genetic diversity required for adaptation within rapidly changing environments. Thus, arthropod-borne virus (arbovirus) populations exist in nature as mutant swarms that are maintained between arthropods and vertebrates. Previous studies have demonstrated that West Nile virus (WNV) population dynamics are host dependent: In American crows, which experience extremely high viremia, purifying selection is weak and population diversity is high compared to American robins, which have 100 to 1000-fold lower viremia. WNV passed in robins experiences fitness gains, whereas that passed in crows does not. Therefore, we tested the hypothesis that high crow viremia allows higher genetic diversity within individual avian peripheral-blood mononuclear cells (PBMCs), reasoning that this could have produced the previously observed host-specific differences in genetic diversity and fitness. Specifically, we infected cells and birds with a novel, barcoded version of WNV and sequenced viral RNA from single cells to quantify the number of WNV barcodes that each contained. Our results demonstrate that the richness of WNV populations within crows far exceeds that in robins. Similarly, rare WNV variants were maintained by crows more frequently than by robins. Our results suggest that increased viremia in crows relative to robins leads to maintenance of defective genomes and less prevalent variants, presumably through complementation. Our findings further suggest that weaker purifying selection in highly susceptible crows is attributable to this higher viremia, polyinfections and complementation. These studies further document the role of particular, ecologically relevant hosts in shaping virus population structure. Author Summary WNV mutational diversity in vertebrates is species-dependent. In crows, low frequency variants are common, and viral populations are more diverse. In robins, fewer mutations become permanent fixtures of the overall viral population. We infected crows, robins and a chicken cell line with a genetically marked (barcoded) WNV. Higher levels of virus led to multiple unique WNV genomes infecting individual cells, even when a genotype was present at low levels in the input viral stock. Our findings suggest that higher levels of circulating virus in natural hosts allow less fit viruses to survive in RNA virus populations through complementation by more fit viruses. This is significant as it allows less represented and less fit viruses to be maintained at low levels until they potentially emerge when virus environments change. Overall our data reveal new insights on the relationships between host susceptibility to high viremia and virus evolution.
Collapse
Affiliation(s)
- Dalit Talmi Frank
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alex D. Byas
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Reyes Murrieta
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James Weger-Lucarelli
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, Nevada, USA
| | - Emily Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Janna A. Yoshimoto
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Chris Allen
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Angela M. Bosco-Lauth
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Barbara Graham
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Todd A. Felix
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Golden, CO, USA
| | - Aaron Brault
- Division of Vector-borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention Fort Collins, Colorado, USA
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
6
|
Hopf C, Bunting E, Clark A, Childs-Sanford S. Survival and Release of 5 American Crows (Corvus brachyrhynchos) Naturally Infected With West Nile Virus. J Avian Med Surg 2022; 36:85-91. [DOI: 10.1647/20-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Schvartz G, Tirosh-Levy S, Bider S, Lublin A, Farnoushi Y, Erster O, Steinman A. West Nile Virus in Common Wild Avian Species in Israel. Pathogens 2022; 11:107. [PMID: 35056055 PMCID: PMC8780237 DOI: 10.3390/pathogens11010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022] Open
Abstract
In order to evaluate the contribution of different wild bird species to West Nile virus (WNV) circulation in Israel, during the months preceding the 2018 outbreak that occurred in Israel, we randomly sampled 136 frozen carcasses of a variety of avian species. Visceral and central nervous system (CNS) tissue pools were tested using WNV NS2A RT qPCR assay; of those, 15 (11.03%, 95% CI: 6.31-17.54%) tissue pools were positive. A total of 13 out of 15 WNV RT qPCR positive samples were successfully sequenced. Phylogenetic analysis indicated that all WNV isolates were identified as lineage 1 and all categorized as cluster 2 eastern European. Our results indicated that WNV isolates that circulated within the surveyed wild birds in spring 2018 were closely related to several of the isolates of the previously reported 2018 outbreak in birds in Israel and that the majority of infected birds were of local species.
Collapse
Affiliation(s)
- Gili Schvartz
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (G.S.); (S.T.-L.); (S.B.)
- Department of Virology, Kimron Veterinary Institute, Beit Dagan 5025001, Israel;
| | - Sharon Tirosh-Levy
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (G.S.); (S.T.-L.); (S.B.)
| | - Shahar Bider
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (G.S.); (S.T.-L.); (S.B.)
| | - Avishai Lublin
- Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan 5025001, Israel; (A.L.); (Y.F.)
| | - Yigal Farnoushi
- Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan 5025001, Israel; (A.L.); (Y.F.)
| | - Oran Erster
- Department of Virology, Kimron Veterinary Institute, Beit Dagan 5025001, Israel;
| | - Amir Steinman
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (G.S.); (S.T.-L.); (S.B.)
| |
Collapse
|
8
|
Owen JC, Landwerlen HR, Dupuis AP, Belsare AV, Sharma DB, Wang S, Ciota AT, Kramer LD. Reservoir hosts experiencing food stress alter transmission dynamics for a zoonotic pathogen. Proc Biol Sci 2021; 288:20210881. [PMID: 34375559 PMCID: PMC8354750 DOI: 10.1098/rspb.2021.0881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022] Open
Abstract
Food limitation is a universal stressor for wildlife populations and is increasingly exacerbated by human activities. Anthropogenic environmental change can significantly alter the availability and quality of food resources for reservoir hosts and impact host-pathogen interactions in the wild. The state of the host's nutritional reserves at the time of infection is a key factor influencing infection outcomes by altering host resistance. Combining experimental and model-based approaches, we investigate how an environmental stressor affects host resistance to West Nile virus (WNV). Using American robins (Turdus migratorius), a species considered a superspreader of WNV, we tested the effect of acute food deprivation immediately prior to infection on host viraemia. Here, we show that robins food deprived for 48 h prior to infection, developed higher virus titres and were infectious longer than robins fed normally. To gain an understanding about the epidemiological significance of food-stressed hosts, we developed an agent-based model that simulates transmission dynamics of WNV between an avian host and the mosquito vector. When simulating a nutritionally stressed host population, the mosquito infection rate rose significantly, reaching levels that represent an epidemiological risk. An understanding of the infection disease dynamics in wild populations is critical to predict and mitigate zoonotic disease outbreaks.
Collapse
Affiliation(s)
- J. C. Owen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - H. R. Landwerlen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - A. P. Dupuis
- Griffin Laboratory, NYS Department of Health, Slingerlands, NY 12159, USA
| | - A. V. Belsare
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - D. B. Sharma
- Center for Statistical Training and Consulting, Michigan State University, East Lansing, MI 48824, USA
| | - S. Wang
- Griffin Laboratory, NYS Department of Health, Slingerlands, NY 12159, USA
| | - A. T. Ciota
- Griffin Laboratory, NYS Department of Health, Slingerlands, NY 12159, USA
| | - L. D. Kramer
- Griffin Laboratory, NYS Department of Health, Slingerlands, NY 12159, USA
| |
Collapse
|
9
|
Wheeler SS, Taff CC, Reisen WK, Townsend AK. Mosquito blood-feeding patterns and nesting behavior of American crows, an amplifying host of West Nile virus. Parasit Vectors 2021; 14:331. [PMID: 34158103 PMCID: PMC8220764 DOI: 10.1186/s13071-021-04827-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/07/2021] [Indexed: 12/02/2022] Open
Abstract
Background Although American crows are a key indicator species for West Nile virus (WNV) and mount among the highest viremias reported for any host, the importance of crows in the WNV transmission cycle has been called into question because of their consistent underrepresentation in studies of Culex blood meal sources. Here, we test the hypothesis that this apparent underrepresentation could be due, in part, to underrepresentation of crow nesting habitat from mosquito sampling designs. Specifically, we examine how the likelihood of a crow blood meal changes with distance to and timing of active crow nests in a Davis, California, population. Methods Sixty artificial mosquito resting sites were deployed from May to September 2014 in varying proximity to known crow nesting sites, and Culex blood meal hosts were identified by DNA barcoding. Genotypes from crow blood meals and local crows (72 nestlings from 30 broods and 389 local breeders and helpers) were used to match mosquito blood meals to specific local crows. Results Among the 297 identified Culex blood meals, 20 (6.7%) were attributable to crows. The mean percentage of blood meals of crow origin was 19% in the nesting period (1 May–18 June 2014), but 0% in the weeks after fledging (19 June–1 September 2014), and the likelihood of a crow blood meal increased with proximity to an active nest: the odds that crows hosted a Culex blood meal were 38.07 times greater within 10 m of an active nest than > 10 m from an active nest. Nine of ten crow blood meals that could be matched to a genotype of a specific crow belonged to either nestlings in these nests or their mothers. Six of the seven genotypes that could not be attributed to sampled birds belonged to females, a sex bias likely due to mosquitoes targeting incubating or brooding females. Conclusion Data herein indicate that breeding crows serve as hosts for Culex in the initial stages of the WNV spring enzootic cycle. Given their high viremia, infected crows could thereby contribute to the re-initiation and early amplification of the virus, increasing its availability as mosquitoes shift to other moderately competent later-breeding avian hosts.![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04827-x.
Collapse
Affiliation(s)
- Sarah S Wheeler
- Sacramento-Yolo Mosquito and Vector Control District, 8631 Bond Road, Elk Grove, CA, 95624, USA.
| | - Conor C Taff
- Cornell Lab of Ornithology and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - William K Reisen
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Andrea K Townsend
- Department of Biology, Hamilton College, 198 College Hill Rd, Clinton, NY, 13323, USA
| |
Collapse
|
10
|
Pathogenesis of Two Western Mediterranean West Nile Virus Lineage 1 Isolates in Experimentally Infected Red-Legged Partridges ( Alectoris rufa). Pathogens 2021; 10:pathogens10060748. [PMID: 34199167 PMCID: PMC8231501 DOI: 10.3390/pathogens10060748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) is the most widespread flavivirus in the world with a wide vertebrate host range. Its geographic expansion and activity continue to increase with important human and equine outbreaks and local bird mortality. In a previous experiment, we demonstrated the susceptibility of 7-week-old red-legged partridges (Alectoris rufa) to Mediterranean WNV isolates Morocco/2003 and Spain/2007, which varied in virulence for this gallinaceous species. Here we study the pathogenesis of the infection with these two strains to explain the different course of infection and mortality. Day six post-inoculation was critical in the course of infection, with the highest viral load in tissues, the most widespread virus antigen, and more severe lesions. The most affected organs were the heart, liver, and spleen. Comparing infections with Morocco/2003 and Spain/2007, differences were observed in the viral load, virus antigen distribution, and lesion nature and severity. A more acute and marked inflammatory reaction (characterized by participation of microglia and CD3+ T cells) as well as neuronal necrosis in the brain were observed in partridges infected with Morocco/2003 as compared to those infected with Spain/2007. This suggests a higher neurovirulence of Morocco/2003, probably related to one or more specific molecular determinants of virulence different from Spain/2007.
Collapse
|
11
|
Ridenour CL, Cocking J, Poidmore S, Erickson D, Brock B, Valentine M, Roe CC, Young SJ, Henke JA, Hung KY, Wittie J, Stefanakos E, Sumner C, Ruedas M, Raman V, Seaton N, Bendik W, Hornstra O’Neill HM, Sheridan K, Centner H, Lemmer D, Fofanov V, Smith K, Will J, Townsend J, Foster JT, Keim PS, Engelthaler DM, Hepp CM. St. Louis Encephalitis Virus in the Southwestern United States: A Phylogeographic Case for a Multi-Variant Introduction Event. Front Genet 2021; 12:667895. [PMID: 34168675 PMCID: PMC8217752 DOI: 10.3389/fgene.2021.667895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/28/2021] [Indexed: 11/14/2022] Open
Abstract
Since the reemergence of St. Louis Encephalitis (SLE) Virus (SLEV) in the Southwest United States, identified during the 2015 outbreak in Arizona, SLEV has been seasonally detected within Culex spp. populations throughout the Southwest United States. Previous work revealed the 2015 outbreak was caused by an importation of SLEV genotype III, which had only been detected previously in Argentina. However, little is known about when the importation occurred or the transmission and genetic dynamics since its arrival into the Southwest. In this study, we sought to determine whether the annual detection of SLEV in the Southwest is due to enzootic cycling or new importations. To address this question, we analyzed 174 SLEV genomes (142 sequenced as part of this study) using Bayesian phylogenetic analyses to estimate the date of arrival into the American Southwest and characterize the underlying population structure of SLEV. Phylogenetic clustering showed that SLEV variants circulating in Maricopa and Riverside counties form two distinct populations with little evidence of inter-county transmission since the onset of the outbreak. Alternatively, it appears that in 2019, Yuma and Clark counties experienced annual importations of SLEV that originated in Riverside and Maricopa counties. Finally, the earliest representatives of SLEV genotype III in the Southwest form a polytomy that includes both California and Arizona samples. We propose that the initial outbreak most likely resulted from the importation of a population of SLEV genotype III variants, perhaps in multiple birds, possibly multiple species, migrating north in 2013, rather than a single variant introduced by one bird.
Collapse
Affiliation(s)
- Chase L. Ridenour
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Jill Cocking
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Samuel Poidmore
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Daryn Erickson
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Breezy Brock
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Michael Valentine
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | - Chandler C. Roe
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Steven J. Young
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, AZ, United States
| | - Jennifer A. Henke
- Coachella Valley Mosquito and Vector Control District, Indio, CA, United States
| | - Kim Y. Hung
- Coachella Valley Mosquito and Vector Control District, Indio, CA, United States
| | - Jeremy Wittie
- Coachella Valley Mosquito and Vector Control District, Indio, CA, United States
| | | | - Chris Sumner
- Yuma County Pest Abatement District, Yuma, AZ, United States
| | - Martha Ruedas
- Yuma County Pest Abatement District, Yuma, AZ, United States
| | - Vivek Raman
- Southern Nevada Health District, Las Vegas, NV, United States
| | - Nicole Seaton
- Southern Nevada Health District, Las Vegas, NV, United States
| | - William Bendik
- Southern Nevada Health District, Las Vegas, NV, United States
| | | | - Krystal Sheridan
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | - Heather Centner
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | - Darrin Lemmer
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | - Viacheslav Fofanov
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Kirk Smith
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, AZ, United States
| | - James Will
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, AZ, United States
| | - John Townsend
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, AZ, United States
| | - Jeffrey T. Foster
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Paul S. Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | | | - Crystal M. Hepp
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
12
|
Fiacre L, Pagès N, Albina E, Richardson J, Lecollinet S, Gonzalez G. Molecular Determinants of West Nile Virus Virulence and Pathogenesis in Vertebrate and Invertebrate Hosts. Int J Mol Sci 2020; 21:ijms21239117. [PMID: 33266206 PMCID: PMC7731113 DOI: 10.3390/ijms21239117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV), like the dengue virus (DENV) and yellow fever virus (YFV), are major arboviruses belonging to the Flavivirus genus. WNV is emerging or endemic in many countries around the world, affecting humans and other vertebrates. Since 1999, it has been considered to be a major public and veterinary health problem, causing diverse pathologies, ranging from a mild febrile state to severe neurological damage and death. WNV is transmitted in a bird–mosquito–bird cycle, and can occasionally infect humans and horses, both highly susceptible to the virus but considered dead-end hosts. Many studies have investigated the molecular determinants of WNV virulence, mainly with the ultimate objective of guiding vaccine development. Several vaccines are used in horses in different parts of the world, but there are no licensed WNV vaccines for humans, suggesting the need for greater understanding of the molecular determinants of virulence and antigenicity in different hosts. Owing to technical and economic considerations, WNV virulence factors have essentially been studied in rodent models, and the results cannot always be transported to mosquito vectors or to avian hosts. In this review, the known molecular determinants of WNV virulence, according to invertebrate (mosquitoes) or vertebrate hosts (mammalian and avian), are presented and discussed. This overview will highlight the differences and similarities found between WNV hosts and models, to provide a foundation for the prediction and anticipation of WNV re-emergence and its risk of global spread.
Collapse
Affiliation(s)
- Lise Fiacre
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Nonito Pagès
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Emmanuel Albina
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Jennifer Richardson
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
- Correspondence: ; Tel.: +33-1-43967376
| | - Gaëlle Gonzalez
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
| |
Collapse
|
13
|
Oliveira ARS, Cohnstaedt LW, Noronha LE, Mitzel D, McVey DS, Cernicchiaro N. Perspectives Regarding the Risk of Introduction of the Japanese Encephalitis Virus (JEV) in the United States. Front Vet Sci 2020; 7:48. [PMID: 32118069 PMCID: PMC7019853 DOI: 10.3389/fvets.2020.00048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Japanese encephalitis (JE) is a zoonotic, emerging disease transmitted by mosquito vectors infected with the Japanese encephalitis virus (JEV). Its potential for emergence into susceptible regions is high, including in the United States (US), and is a reason of economic concern among the agricultural community, and to public health due to high morbidity and mortality rates in humans. While exploring the complexities of interactions involved with viral transmission, we proposed a new outlook on the role of vectors, hosts and the environment under changing conditions. For instance, the role of feral pigs may have been underappreciated in our previous work, given research keeps pointing to the importance of susceptible populations of wild swine in naïve regions as key elements for the introduction of emergent vector-borne diseases. High risk of JEV introduction has been associated with the transportation of infected mosquitoes via aircraft. Nonetheless, no JEV outbreaks have been reported in the US to date and results from a qualitative risk assessment considered the risk of establishment to be negligible under the current conditions (environmental, vector, pathogen, and host). In this work, we discuss virus-vector-host interactions and ecological factors important for virus transmission and spread, review research on the risk of JEV introduction to the US considering the implications of risk dismissal as it relates to past experiences with similar arboviruses, and reflect on future directions, challenges, and implications of a JEV incursion.
Collapse
Affiliation(s)
- Ana R S Oliveira
- Center for Outcomes Research and Epidemiology, Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Lee W Cohnstaedt
- Arthropod-Borne Animal Diseases Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, United States
| | - Leela E Noronha
- Arthropod-Borne Animal Diseases Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, United States
| | - Dana Mitzel
- Arthropod-Borne Animal Diseases Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, United States
| | - D Scott McVey
- Arthropod-Borne Animal Diseases Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, United States
| | - Natalia Cernicchiaro
- Center for Outcomes Research and Epidemiology, Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
14
|
Kilpatrick AM, Wheeler SS. Impact of West Nile Virus on Bird Populations: Limited Lasting Effects, Evidence for Recovery, and Gaps in Our Understanding of Impacts on Ecosystems. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1491-1497. [PMID: 31549723 PMCID: PMC6821264 DOI: 10.1093/jme/tjz149] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 05/16/2023]
Abstract
The introduction of West Nile virus to North America in 1999 had profound impacts on human and wildlife health. Here, we review studies of WNV impacts on bird populations and find that overall impacts have been less than initially anticipated, with few species showing sustained changes in population size or demographic rates across multiple regions. This raises four questions: 1) What is the evidence for WNV impact on bird populations and how can we strengthen future analyses? We argue that future studies of WNV impacts should explicitly incorporate temporal variation in WNV transmission intensity, integrate field data with laboratory experimental infection studies, and correct for multiple comparisons. 2) What mechanisms might explain the relatively modest impact of WNV on most bird populations? We suggest that spatial and temporal variation in WNV transmission moderates WNV impacts on species that occur in multiple habitats, some of which provide refugia from infection. 3) Have species recovered from the initial invasion of WNV? We find evidence that many species and populations have recovered from initial WNV impact, but a few have not. 4) Did WNV cause cascading effects on other species and ecosystems? Unfortunately, few studies have examined the cascading effects of WNV population declines, but evidence suggests that some species may have been released from predation or competition. We close by discussing potentially overlooked groups of birds that may have been affected by WNV, and one highlight species, the yellow-billed magpie (Pica nutalli Audubon, 1837 [Passeriformes: Corvidae]), that appears to have suffered the largest range-wide impact from WNV.
Collapse
Affiliation(s)
- A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA
| | - Sarah S Wheeler
- Sacramento-Yolo Mosquito and Vector Control District, Elk Grove, CA
| |
Collapse
|
15
|
Jiménez de Oya N, Escribano-Romero E, Blázquez AB, Martín-Acebes MA, Saiz JC. Current Progress of Avian Vaccines Against West Nile Virus. Vaccines (Basel) 2019; 7:vaccines7040126. [PMID: 31547632 PMCID: PMC6963603 DOI: 10.3390/vaccines7040126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 01/15/2023] Open
Abstract
Birds are the main natural host of West Nile virus (WNV), the worldwide most distributed mosquito-borne flavivirus, but humans and equids can also be sporadic hosts. Many avian species have been reported as susceptible to WNV, particularly corvids. In the case that clinical disease develops in birds, this is due to virus invasion of different organs: liver, spleen, kidney, heart, and mainly the central nervous system, which can lead to death 24–48 h later. Nowadays, vaccines have only been licensed for use in equids; thus, the availability of avian vaccines would benefit bird populations, both domestic and wild ones. Such vaccines could be used in endangered species housed in rehabilitation and wildlife reserves, and in animals located at zoos and other recreational installations, but also in farm birds, and in those that are grown for hunting and restocking activities. Even more, controlling WNV infection in birds can also be useful to prevent its spread and limit outbreaks. So far, different commercial and experimental vaccines (inactivated, attenuated, and recombinant viruses, and subunits and DNA-based candidates) have been evaluated, with various regimens, both in domestic and wild avian species. However, there are still disadvantages that must be overcome before avian vaccination can be implemented, such as its cost-effectiveness for domestic birds since in many species the pathogenicity is low or zero, or the viability of being able to achieve collective immunity in wild birds in freedom. Here, a comprehensive review of what has been done until now in the field of avian vaccines against WNV is presented and discussed.
Collapse
Affiliation(s)
- Nereida Jiménez de Oya
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Estela Escribano-Romero
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Ana-Belén Blázquez
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| | - Juan-Carlos Saiz
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), 28040 Madrid, Spain.
| |
Collapse
|
16
|
Maharaj PD, Langevin SA, Bolling BG, Andrade CC, Engle XA, Ramey WN, Bosco-Lauth A, Bowen RA, Sanders TA, Huang CYH, Reisen WK, Brault AC. N-linked glycosylation of the West Nile virus envelope protein is not a requisite for avian virulence or vector competence. PLoS Negl Trop Dis 2019; 13:e0007473. [PMID: 31306420 PMCID: PMC6658116 DOI: 10.1371/journal.pntd.0007473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/25/2019] [Accepted: 05/17/2019] [Indexed: 01/27/2023] Open
Abstract
The N-linked glycosylation motif at amino acid position 154-156 of the envelope (E) protein of West Nile virus (WNV) is linked to enhanced murine neuroinvasiveness, avian pathogenicity and vector competence. Naturally occurring isolates with altered E protein glycosylation patterns have been observed in WNV isolates; however, the specific effects of these polymorphisms on avian host pathogenesis and vector competence have not been investigated before. In the present study, amino acid polymorphisms, NYT, NYP, NYF, SYP, SYS, KYS and deletion (A'DEL), were reverse engineered into a parental WNV (NYS) cDNA infectious clone to generate WNV glycosylation mutant viruses. These WNV glycosylation mutant viruses were characterized for in vitro growth, pH-sensitivity, temperature-sensitivity and host competence in American crows (AMCR), house sparrows (HOSP) and Culex quinquefasciatus. The NYS and NYT glycosylated viruses showed higher viral replication, and lower pH and temperature sensitivity than NYP, NYF, SYP, SYS, KYS and A'DEL viruses in vitro. Interestingly, in vivo results demonstrated asymmetric effects in avian and mosquito competence that were independent of the E-protein glycosylation status. In AMCRs and HOSPs, all viruses showed comparable viremias with the exception of NYP and KYS viruses that showed attenuated phenotypes. Only NYP showed reduced vector competence in both Cx. quinquefasciatus and Cx. tarsalis. Glycosylated NYT exhibited similar avian virulence properties as NYS, but resulted in higher mosquito oral infectivity than glycosylated NYS and nonglycosylated, NYP, NYF, SYP and KYS mutants. These data demonstrated that amino acid polymorphisms at E154/156 dictate differential avian host and vector competence phenotypes independent of E-protein glycosylation status.
Collapse
Affiliation(s)
- Payal D. Maharaj
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Stanley A. Langevin
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Bethany G. Bolling
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Christy C. Andrade
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Xavier A. Engle
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Wanichaya N. Ramey
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Todd A. Sanders
- U.S. Fish and Wildlife Service, Vancouver, WA, United States of America
| | - Claire Y.-H. Huang
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - William K. Reisen
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Aaron C. Brault
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| |
Collapse
|
17
|
Jiménez de Oya N, Escribano-Romero E, Camacho MC, Blazquez AB, Martín-Acebes MA, Höfle U, Saiz JC. A Recombinant Subviral Particle-Based Vaccine Protects Magpie ( Pica pica) Against West Nile Virus Infection. Front Microbiol 2019; 10:1133. [PMID: 31231320 PMCID: PMC6560071 DOI: 10.3389/fmicb.2019.01133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/03/2019] [Indexed: 01/19/2023] Open
Abstract
The mosquito-borne West Nile virus (WNV) is a highly neurovirulent Flavivirus currently representing an emergent zoonotic concern. WNV cycles in nature between mosquito vectors and birds that act as amplifier hosts and play an essential role in virus ecology, being, thus, WNV a threat to many species. Availability of an efficient avian vaccine would benefit certain avian populations, both birds grown for hunting and restocking activities, as well as endangered species in captive breeding projects, wildlife reservations, and recreation installations, and would be useful to prevent and contain outbreaks. Avian vaccination would be also of interest to limit WNV spillover to humans or horses from susceptible bird species that live in urbanized landscapes, like magpies. Herein, we have addressed the efficacy of a single dose of a WNV recombinant subviral particle (RSP) vaccine in susceptible magpie (Pica pica). The protective capacity of the RSP-based vaccine was demonstrated upon challenge of magpies with 5 × 103 plaque forming units of a neurovirulent WNV strain. A significant improvement in survival rates of immunized birds was recorded when compared to vehicle-inoculated animals (71.4 vs. 22.2%, respectively). Viremia, which is directly related to the capacity of a host to be competent for virus transmission, was reduced in vaccinated animals, as was the presence of infectious virus in feather follicles. Bird-to-bird transmission was recorded in three of six unchallenged (contact) magpies housed with non-vaccinated WNV-infected birds, but not in contact animals housed with vaccinated WNV-infected magpies. These results demonstrate the protective efficacy of the RSP-based vaccine in susceptible birds against WNV infection and its value in controlling the spread of the virus.
Collapse
Affiliation(s)
- Nereida Jiménez de Oya
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - María-Cruz Camacho
- Grupo de Sanidad y Biotecnología SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Ana-Belén Blazquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Miguel A Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ursula Höfle
- Grupo de Sanidad y Biotecnología SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Juan-Carlos Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
18
|
Worwa G, Hutton AA, Brault AC, Reisen WK. Comparative fitness of West Nile virus isolated during California epidemics. PLoS Negl Trop Dis 2019; 13:e0007135. [PMID: 30716113 PMCID: PMC6375641 DOI: 10.1371/journal.pntd.0007135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/14/2019] [Accepted: 01/07/2019] [Indexed: 11/30/2022] Open
Abstract
West Nile virus (WNV) has been circulating in California since its first detection in 2003, causing repeated outbreaks affecting public, wildlife and veterinary health. Epidemics of WNV are difficult to predict due to the multitude of factors influencing transmission dynamics among avian and mosquito hosts. Typically, high levels of WNV amplification are required for outbreaks to occur, and therefore associated viral strains may exhibit enhanced virulence and mortality in competent bird species resulting in increased mosquito infection prevalence. In our previous study, most WNV isolates made from California during 2007-08 showed increased fitness when competed in House Finches (HOFI, Haemorhous mexicanus) and Culex tarsalis Coquillett mosquitoes against COAV997-5nt, a genetically marked recombinant virus derived from a 2003 California strain. Herein, we evaluated the competitive fitness of WNV strains isolated during California epidemics in 2004, 2005, 2007, 2011 and 2012 against COAV997-5nt. These outbreak isolates did not produce elevated mortality in HOFIs, but replicated more efficiently than did COAV997-5nt based on quantification of WNV RNA copies in sera, thereby demonstrating increased competitive fitness. Oral co-infections in Cx. tarsalis resulted in similar virus-specific infection and transmission rates, indicating that outbreak isolates did not have a fitness advantage over COAV997-5nt. Collectively, WNV isolates from outbreaks demonstrated relatively greater avian, but not vector, replicative fitness compared to COAV997-5nt, similar to previously characterized non-outbreak isolates of WNV. Our results indicated that ecological rather than viral factors may facilitate WNV amplification to outbreak levels, but monitoring viral phenotypes through competitive fitness studies may provide insight into altered replication and transmission potential among emerging WNV strains.
Collapse
Affiliation(s)
- Gabriella Worwa
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Andra A. Hutton
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Aaron C. Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - William K. Reisen
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
19
|
Benzarti E, Linden A, Desmecht D, Garigliany M. Mosquito-borne epornitic flaviviruses: an update and review. J Gen Virol 2019; 100:119-132. [PMID: 30628886 DOI: 10.1099/jgv.0.001203] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
West Nile Virus, Usutu virus, Bagaza virus, Israel turkey encephalitis virus and Tembusu virus currently constitute the five flaviviruses transmitted by mosquito bites with a marked pathogenicity for birds. They have been identified as the causative agents of severe neurological symptoms, drop in egg production and/or mortalities among avian hosts. They have also recently shown an expansion of their geographic distribution and/or a rise in cases of human infection. This paper is the first up-to-date review of the pathology of these flaviviruses in birds, with a special emphasis on the difference in susceptibility among avian species, in order to understand the specificity of the host spectrum of each of these viruses. Furthermore, given the lack of a clear prophylactic approach against these viruses in birds, a meta-analysis of vaccination trials conducted to date on these animals is given to constitute a solid platform from which designing future studies.
Collapse
Affiliation(s)
- Emna Benzarti
- 1FARAH Research Center, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium
| | - Annick Linden
- 2FARAH Research Center, Surveillance Network for Wildlife Diseases, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium
| | - Daniel Desmecht
- 1FARAH Research Center, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium
| | - Mutien Garigliany
- 1FARAH Research Center, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium
| |
Collapse
|
20
|
Townsend AK, Taff CC, Wheeler SS, Weis AM, Hinton MG, Jones ML, Logsdon RM, Reisen WK, Freund D, Sehgal RNM, Saberi M, Suh YH, Hurd J, Boyce WM. Low heterozygosity is associated with vector‐borne disease in crows. Ecosphere 2018. [DOI: 10.1002/ecs2.2407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
| | - Conor C. Taff
- Cornell University Laboratory of Ornithology Ithaca New York 14850 USA
| | - Sarah S. Wheeler
- Sacramento‐Yolo Mosquito and Vector Control District Elk Grove California 95624 USA
| | - Allison M. Weis
- Department of Population Health and Reproduction School of Veterinary Medicine 100K Pathogen Genome Project University of California Davis California 95616 USA
| | - Mitch G. Hinton
- Animal Behavior Graduate Group University of California Davis California 95616 USA
| | - Melissa L. Jones
- Avian Sciences Graduate Group University of California Davis California 95616 USA
| | - Ryane M. Logsdon
- Animal Behavior Graduate Group University of California Davis California 95616 USA
| | - William K. Reisen
- Department of Pathology, Microbiology, and Immunology School of Veterinary Medicine University of California Davis California 95616 USA
| | - David Freund
- Department of Biology San Francisco State University San Francisco California 94132 USA
| | - Ravinder N. M. Sehgal
- Department of Biology San Francisco State University San Francisco California 94132 USA
| | - Mojan Saberi
- Department of Wildlife, Fish, and Conservation Biology University of California Davis California 95616 USA
| | - Young Ha Suh
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14853 USA
| | - Jacqueline Hurd
- Department of Wildlife, Fish, and Conservation Biology University of California Davis California 95616 USA
| | - Walter M. Boyce
- Department of Pathology, Microbiology, and Immunology School of Veterinary Medicine University of California Davis California 95616 USA
| |
Collapse
|
21
|
Overwintering of West Nile virus in a bird community with a communal crow roost. Sci Rep 2018; 8:6088. [PMID: 29666401 PMCID: PMC5904116 DOI: 10.1038/s41598-018-24133-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/22/2018] [Indexed: 02/04/2023] Open
Abstract
In temperate climates, transmission of West Nile virus (WNV) is detectable rarely during the coldest months (late fall through early spring), yet the virus has reappeared consistently during the next warm season. Several mechanisms may contribute to WNV persistence through winter, including bird-to-bird transmission among highly viremic species. Here we consider whether, under realistic scenarios supported by field and laboratory evidence, a winter bird community could sustain WNV through the winter in the absence of mosquitoes. With this purpose we constructed a deterministic model for a community of susceptible birds consisting of communally roosting crows, raptors and other birds. We simulated WNV introduction and subsequent transmission dynamics during the winter under realistic initial conditions and model parameterizations, including plausible contact rates for roosting crows. Model results were used to determine whether the bird community could yield realistic outbreaks that would result in WNV infectious individuals at the end of the winter, which would set up the potential for onward horizontal transmission into summer. Our findings strongly suggest that winter crow roosts could allow for WNV persistence through the winter, and our model results provide synthesis to explain inconclusive results from field studies on WNV overwintering in crow roosts.
Collapse
|
22
|
Romo H, Papa A, Kading R, Clark R, Delorey M, Brault AC. Comparative Vector Competence of North American Culex pipiens and Culex quinquefasciatus for African and European Lineage 2 West Nile Viruses. Am J Trop Med Hyg 2018; 98:1863-1869. [PMID: 29637885 DOI: 10.4269/ajtmh.17-0935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that is phylogenetically separated into distinct lineages. Lineage 1 (L1) and lineage 2 (L2) encompass all WNV isolates associated with human and veterinary disease cases. Although L1 WNV is globally distributed, including North America, L2 WNV only recently emerged out of sub-Saharan Africa into Europe and Russia. The spread of L2 WNV throughout and beyond Europe depends, in part, on availability of competent vectors. The vector competence of mosquitoes within the Culex genus for WNV is well established for L1 WNV but less extensively studied for L2 WNV. Assessing the vector competence of North American Culex mosquitoes for L2 WNV will be critical for predicting the potential for L2 WNV emergence in North America. We address the vector competence of North American Culex pipiens and Culex quinquefasciatus for L2 WNV. Both mosquito species were highly competent for each of the L2 WNV strains assessed, but variation in infection, dissemination, and transmission was observed. An L2 WNV strain (NS10) isolated during the Greek outbreak in 2010 exhibited a reduced capacity to infect Cx. pipiens compared with other L2 WNV strains. In addition, a South African L2 WNV strain (SA89) displayed a significantly shorter extrinsic incubation period in Cx. quinquefasciatus compared with other L2 WNV strains. These results demonstrate that North American Culex mosquito species are competent vectors of African and European L2 WNV and that emergence of L2 WNV is unlikely to be hindered by poor competence of North American vectors.
Collapse
Affiliation(s)
- Hannah Romo
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Rebekah Kading
- Department of Microbiology, Pathology and Immunology, Colorado State University, Fort Collins, Colorado
| | - Rebecca Clark
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Mark Delorey
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Aaron C Brault
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
23
|
DeFelice NB, Schneider ZD, Little E, Barker C, Caillouet KA, Campbell SR, Damian D, Irwin P, Jones HMP, Townsend J, Shaman J. Use of temperature to improve West Nile virus forecasts. PLoS Comput Biol 2018. [PMID: 29522514 PMCID: PMC5862506 DOI: 10.1371/journal.pcbi.1006047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ecological and laboratory studies have demonstrated that temperature modulates West Nile virus (WNV) transmission dynamics and spillover infection to humans. Here we explore whether inclusion of temperature forcing in a model depicting WNV transmission improves WNV forecast accuracy relative to a baseline model depicting WNV transmission without temperature forcing. Both models are optimized using a data assimilation method and two observed data streams: mosquito infection rates and reported human WNV cases. Each coupled model-inference framework is then used to generate retrospective ensemble forecasts of WNV for 110 outbreak years from among 12 geographically diverse United States counties. The temperature-forced model improves forecast accuracy for much of the outbreak season. From the end of July until the beginning of October, a timespan during which 70% of human cases are reported, the temperature-forced model generated forecasts of the total number of human cases over the next 3 weeks, total number of human cases over the season, the week with the highest percentage of infectious mosquitoes, and the peak percentage of infectious mosquitoes that on average increased absolute forecast accuracy 5%, 10%, 12%, and 6%, respectively, over the non-temperature forced baseline model. These results indicate that use of temperature forcing improves WNV forecast accuracy and provide further evidence that temperature influences rates of WNV transmission. The findings provide a foundation for implementation of a statistically rigorous system for real-time forecast of seasonal WNV outbreaks and their use as a quantitative decision support tool for public health officials and mosquito control programs. West Nile virus (WNV) is the leading cause of domestically acquired arthropod-borne viral disease in the United States. Here we show that accurate retrospective forecasts of mosquito infection rates and human WNV cases can be generated for a variety of locations in the U.S. Incorporation of temperature forcing into a baseline dynamic model improves our ability to accurately forecast WNV outbreaks and provides further evidence that temperature modulates rates of WNV transmission. These findings provide a foundation for implementation of a statistically rigorous system for real-time short-term and seasonal forecast of WNV. Such a decision support tool would help public health officials and mosquito control programs target control of infectious mosquito populations, alert the public to future periods of elevated WNV spillover transmission risk, and identify when to intensify blood donor screening.
Collapse
Affiliation(s)
- Nicholas B. DeFelice
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Zachary D. Schneider
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Eliza Little
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Christopher Barker
- Center for Vectorborne Diseases, University of California Davis, Davis, California
| | - Kevin A. Caillouet
- St. Tammany Parish Mosquito Abatement District, St. Tammany Parish, Slidell, Louisiana, United States of America
| | - Scott R. Campbell
- Arthropod-Borne Disease Laboratory, Suffolk County Department of Health Services, Yaphank, New York, United States of America
| | - Dan Damian
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - Patrick Irwin
- Northwest Mosquito Abatement District, Wheeling, Illinois, United States of America
| | - Herff M. P. Jones
- Iberia Parish Mosquito Abatement District, Iberia Parish, New Iberia, Louisiana, United States of America
| | - John Townsend
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| |
Collapse
|
24
|
Maharaj PD, Bosco-Lauth AM, Langevin SA, Anishchenko M, Bowen RA, Reisen WK, Brault AC. West Nile and St. Louis encephalitis viral genetic determinants of avian host competence. PLoS Negl Trop Dis 2018; 12:e0006302. [PMID: 29447156 PMCID: PMC5831645 DOI: 10.1371/journal.pntd.0006302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/28/2018] [Accepted: 02/05/2018] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) and St. Louis encephalitis (SLEV) virus are enzootically maintained in North America in cycles involving the same mosquito vectors and similar avian hosts. However, these viruses exhibit dissimilar viremia and virulence phenotypes in birds: WNV is associated with high magnitude viremias that can result in mortality in certain species such as American crows (AMCRs, Corvus brachyrhynchos) whereas SLEV infection yields lower viremias that have not been associated with avian mortality. Cross-neutralization of these viruses in avian sera has been proposed to explain the reduced circulation of SLEV since the introduction of WNV in North America; however, in 2015, both viruses were the etiologic agents of concurrent human encephalitis outbreaks in Arizona, indicating the need to re-evaluate host factors and cross-neutralization responses as factors potentially affecting viral co-circulation. Reciprocal chimeric WNV and SLEV viruses were constructed by interchanging the pre-membrane (prM)-envelope (E) genes, and viruses subsequently generated were utilized herein for the inoculation of three different avian species: house sparrows (HOSPs; Passer domesticus), house finches (Haemorhous mexicanus) and AMCRs. Cross-protective immunity between parental and chimeric viruses were also assessed in HOSPs. Results indicated that the prM-E genes did not modulate avian replication or virulence differences between WNV and SLEV in any of the three avian species. However, WNV-prME proteins did dictate cross-protective immunity between these antigenically heterologous viruses. Our data provides further evidence of the important role that the WNV / SLEV viral non-structural genetic elements play in viral replication, avian host competence and virulence. Since the identification of West Nile virus (WNV) in North America in 1999, St. Louis encephalitis virus (SLEV) cases declined rapidly. Both viruses utilize similar avian hosts and vectors for maintenance of transmission cycles; however, they present different phenotypes in both vector and avian host. In birds, WNV develops high viremias and elicits mortality whereas SLEV has not been associated with avian virulence. West Nile viral non-structural genetic elements have been demonstrated herein to dictate higher viremias in competent avian hosts and virulence in AMCRs. In contrast, non-structural SLEV elements previously have been shown to dictate increased oral infectivity in Culex mosquitoes, likely as a compensation for the lower viremias generated by SLEV. These findings coupled with the co-circulation of WNV and SLEV in Arizona in 2015 demonstrate that pre-existing flaviviral immunity does not necessarily preclude concurrent circulation of these viruses.
Collapse
Affiliation(s)
- Payal D Maharaj
- Division of Vector-Borne Diseases, Arboviral Disease Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America.,Center for Vectorborne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Angela M Bosco-Lauth
- Division of Vector-Borne Diseases, Arboviral Disease Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America.,Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Stanley A Langevin
- Center for Vectorborne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Michael Anishchenko
- Division of Vector-Borne Diseases, Arboviral Disease Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America.,Center for Vectorborne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - William K Reisen
- Center for Vectorborne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Arboviral Disease Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America.,Center for Vectorborne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
25
|
Increases in the competitive fitness of West Nile virus isolates after introduction into California. Virology 2017; 514:170-181. [PMID: 29195094 DOI: 10.1016/j.virol.2017.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 11/23/2022]
Abstract
To investigate the phenotypic evolution of West Nile virus (WNV) in California, we competed sixteen isolates made during 2007-08 against COAV997-5nt, a genetically marked clone from the founding 2003 California isolate COAV997-2003. Using in vivo fitness competitions in House Finches (HOFI) and Culex tarsalis mosquitoes, we found that the majority of WNV WN02 and SW03 genotype isolates exhibited elevated replicative fitness in both hosts compared to COAV997-5nt. Increased replicative capacity in HOFIs was not associated with increased mortality, indicating that these isolates had not gained avian virulence. One WN02 isolate from Coachella Valley, a region geographically close to the isolation of COAV997, showed neutral fitness in HOFIs and reduced fitness in Cx. tarsalis. Two isolates from Kern County and Sacramento/Yolo County out-competed COAV997-nt in HOFIs, but were transmitted less efficiently by Cx. tarsalis. Competition demonstrated neutral or increased fitness that appeared independent of both WN02 and SW03 genotypes.
Collapse
|
26
|
Duggal NK, Ritter JM, Pestorius SE, Zaki SR, Davis BS, Chang GJJ, Bowen RA, Brault AC. Frequent Zika Virus Sexual Transmission and Prolonged Viral RNA Shedding in an Immunodeficient Mouse Model. Cell Rep 2017; 18:1751-1760. [PMID: 28199846 PMCID: PMC5683178 DOI: 10.1016/j.celrep.2017.01.056] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/14/2016] [Accepted: 01/23/2017] [Indexed: 11/30/2022] Open
Abstract
Circulation of Zika virus (ZIKV) was first identified in the Western hemisphere in late 2014. Primarily transmitted through mosquito bite, ZIKV can also be transmitted through sex and from mother to fetus, and maternal ZIKV infection has been associated with fetal malformations. We assessed immunodeficient AG129 mice for their capacity to shed ZIKV in semen and to infect female mice via sexual transmission. Infectious virus was detected in semen between 7 and 21 days post-inoculation, and ZIKV RNA was detected in semen through 58 days post-inoculation. During mating, 73% of infected males transmitted ZIKV to uninfected females, and 50% of females became infected, with evidence of fetal infection in resulting pregnancies. Semen from vasectomized mice contained significantly lower levels of infectious virus, though sexual transmission still occurred. This model provides a platform for studying the kinetics of ZIKV sexual transmission and prolonged RNA shedding also observed in human semen.
Collapse
Affiliation(s)
- Nisha K Duggal
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Jana M Ritter
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Samuel E Pestorius
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sherif R Zaki
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Brent S Davis
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Gwong-Jen J Chang
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| |
Collapse
|
27
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán-Beck B, Kohnle L, Morgado J, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): West Nile fever. EFSA J 2017; 15:e04955. [PMID: 32625621 PMCID: PMC7009844 DOI: 10.2903/j.efsa.2017.4955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
West Nile fever (WNF) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of WNF to be listed, Article 9 for the categorisation of WNF according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to WNF. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, WNF can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in Sections 2 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (b) and (e) of Article 9(1). The animal species to be listed for WNF according to Article 8(3) criteria are several orders of birds and mammals as susceptible species and several families of birds as reservoir. Different mosquito species can serve as vectors.
Collapse
|
28
|
Altamura LA, Cazares LH, Coyne SR, Jaissle JG, Jespersen AM, Ahmed S, Wasieloski LP, Garrison J, Kulesh DA, Brueggemann EE, Kenny T, Ward MD, Harbourt DE, Minogue TD. Inactivation of West Nile virus in serum with heat, ionic detergent, and reducing agent for proteomic applications. J Virol Methods 2017; 248:1-6. [PMID: 28532602 DOI: 10.1016/j.jviromet.2017.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022]
Abstract
Research involving biosafety level 3 pathogens such as West Nile virus (WNV) is often limited by the limited space and technical constraints of these environments. To conduct complex analytical studies outside of high containment, robust and reliable inactivation methods are needed that maintain compatibility with downstream assays. Here we report the inactivation of WNV in spiked serum samples using a commercially available SDS-PAGE sample buffer for proteomic studies. Using this method, we demonstrate its utility by identification proteins differentially expressed in the serum of mice experimentally infected with WNV.
Collapse
Affiliation(s)
- Louis A Altamura
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States.
| | - Lisa H Cazares
- Molecular and Translational Sciences Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States; DOD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick, MD 21702, United States
| | - Susan R Coyne
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - James G Jaissle
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Alyssa M Jespersen
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Sundus Ahmed
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Leonard P Wasieloski
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Jeff Garrison
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - David A Kulesh
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Ernst E Brueggemann
- Molecular and Translational Sciences Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Tara Kenny
- Molecular and Translational Sciences Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Michael D Ward
- Molecular and Translational Sciences Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - David E Harbourt
- Biosafety Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Timothy D Minogue
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| |
Collapse
|
29
|
High levels of local inter- and intra-host genetic variation of West Nile virus and evidence of fine-scale evolutionary pressures. INFECTION GENETICS AND EVOLUTION 2017; 51:219-226. [PMID: 28411164 DOI: 10.1016/j.meegid.2017.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023]
Abstract
West Nile virus (WNV; Flaviviridae, Flavivirus) has been endemic in New York State (NYS) since its 1999 introduction, yet prevalence in Culex mosquitoes varies substantially over small spatial and temporal scales. It is unclear if viral genetics plays a role in this variability, as genetic and phenotypic characterization on local scales has generally been lacking. In addition, intrahost diversity of circulating strains have not been fully characterized despite the documented role of minority variants in viral fitness and virulence. In an effort to characterize WNV variability within epidemiologically relevant scales, we performed phylogenetic analyses on NYS isolates from 1999 to 2012. In addition, we performed full-genome, deep-sequencing and genetic analyses on 15 WNV strains isolated in 2012 from Cx. pipiens in an endemic focus of Suffolk County, NY. Our results indicate continued evolution and seasonal maintenance in NYS, yet also widespread mixing and high levels of genetic diversity within geographic foci and individual seasons. Well supported local clusters with shared amino acid differences were identified and suggest local evolutionary pressures and the potential for phenotypic variability. Intrahost diversity of focal isolates was also high, with polymorphism at levels >1.0% identified in approximately 10% of the WNV genome. Although most minority mutations were unique, mutational hotspots shared among local isolates were identified, particularly in C, NS1 and NS2A genes. The most polymorphic region, positions 3198-3388 of the NS1 gene, was comprised predominately of non-synonymous mutations, suggesting a selective advantage for amino acid diversity in this region.
Collapse
|
30
|
DeFelice NB, Little E, Campbell SR, Shaman J. Ensemble forecast of human West Nile virus cases and mosquito infection rates. Nat Commun 2017; 8:14592. [PMID: 28233783 PMCID: PMC5333106 DOI: 10.1038/ncomms14592] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/17/2017] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) is now endemic in the continental United States; however, our ability to predict spillover transmission risk and human WNV cases remains limited. Here we develop a model depicting WNV transmission dynamics, which we optimize using a data assimilation method and two observed data streams, mosquito infection rates and reported human WNV cases. The coupled model-inference framework is then used to generate retrospective ensemble forecasts of historical WNV outbreaks in Long Island, New York for 2001–2014. Accurate forecasts of mosquito infection rates are generated before peak infection, and >65% of forecasts accurately predict seasonal total human WNV cases up to 9 weeks before the past reported case. This work provides the foundation for implementation of a statistically rigorous system for real-time forecast of seasonal outbreaks of WNV. Since its introduction to the US in 1999, the West Nile virus (WNV) has become endemic in the Americas. Here, the authors develop a model of WNV transmission dynamics between birds, mosquitoes and humans, which they integrate in conjunction with data assimilation methods, mosquito infection data and reported human cases in a New York county to show its utility for forecasting infection rates.
Collapse
Affiliation(s)
- Nicholas B DeFelice
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Eliza Little
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Scott R Campbell
- Arthropod-Borne Disease Laboratory, Suffolk County Department of Health Services, Yaphank, New York 11980, USA
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| |
Collapse
|
31
|
Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone. J Virol 2016; 91:JVI.01765-16. [PMID: 27795432 DOI: 10.1128/jvi.01765-16] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/13/2016] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV; family Flaviviridae, genus Flavivirus) is a rapidly expanding global pathogen that has been associated with severe clinical manifestations, including devastating neurological disease in infants. There are currently no molecular clones of a New World ZIKV available that lack significant attenuation, hindering progress toward understanding determinants of transmission and pathogenesis. Here we report the development and characterization of a novel ZIKV reverse genetics system based on a 2015 isolate from Puerto Rico (PRVABC59). We generated a two-plasmid infectious clone system from which infectious virus was rescued that replicates in human and mosquito cells with growth kinetics representative of wild-type ZIKV. Infectious clone-derived virus initiated infection and transmission rates in Aedes aegypti mosquitoes comparable to those of the primary isolate and displayed similar pathogenesis in AG129 mice. This infectious clone system provides a valuable resource to the research community to explore ZIKV molecular biology, vaccine development, antiviral development, diagnostics, vector competence, and disease pathogenesis. IMPORTANCE ZIKV is a rapidly spreading mosquito-borne pathogen that has been linked to Guillain-Barré syndrome in adults and congenital microcephaly in developing fetuses and infants. ZIKV can also be sexually transmitted. The viral molecular determinants of any of these phenotypes are not well understood. There is no reverse genetics system available for the current epidemic virus that will allow researchers to study ZIKV immunity, develop novel vaccines, or develop antiviral drugs. Here we provide a novel infectious clone system generated from a recent ZIKV isolated from a patient infected in Puerto Rico. This infectious clone produces virus with in vitro and in vivo characteristics similar to those of the primary isolate, providing a critical tool to study ZIKV infection and disease.
Collapse
|
32
|
Poore EA, Slifka DK, Raué HP, Thomas A, Hammarlund E, Quintel BK, Torrey LL, Slifka AM, Richner JM, Dubois ME, Johnson LP, Diamond MS, Slifka MK, Amanna IJ. Pre-clinical development of a hydrogen peroxide-inactivated West Nile virus vaccine. Vaccine 2016; 35:283-292. [PMID: 27919629 DOI: 10.1016/j.vaccine.2016.11.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 02/08/2023]
Abstract
West Nile virus (WNV) is a mosquito-transmitted pathogen with a wide geographical range that can lead to long-term disability and death in some cases. Despite the public health risk posed by WNV, including an estimated 3 million infections in the United States alone, no vaccine is available for use in humans. Here, we present a scaled manufacturing approach for production of a hydrogen peroxide-inactivated whole virion WNV vaccine, termed HydroVax-001WNV. Vaccination resulted in robust virus-specific neutralizing antibody responses and protection against WNV-associated mortality in mice or viremia in rhesus macaques (RM). A GLP-compliant toxicology study performed in rats demonstrated an excellent safety profile with clinical findings limited to minor and transient irritation at the injection site. An in vitro relative potency (IVRP) assay was developed and shown to correlate with in vivo responses following forced degradation studies. Long-term in vivo potency comparisons between the intended storage condition (2-8°C) and a thermally stressed condition (40±2°C) demonstrated no loss in vaccine efficacy or protective immunity over a 6-month span of time. Together, the positive pre-clinical findings regarding immunogenicity, safety, and stability indicate that HydroVax-001WNV is a promising vaccine candidate.
Collapse
Affiliation(s)
| | | | - Hans-Peter Raué
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | - Erika Hammarlund
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | | | - Justin M Richner
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Michael S Diamond
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark K Slifka
- Najít Technologies, Inc, Beaverton, OR, USA; Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | | |
Collapse
|
33
|
Dynamics of West Nile virus evolution in mosquito vectors. Curr Opin Virol 2016; 21:132-138. [PMID: 27788400 DOI: 10.1016/j.coviro.2016.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 01/24/2023]
Abstract
West Nile virus remains the most common cause of arboviral encephalitis in North America. Since it was introduced, it has undergone adaptive genetic change as it spread throughout the continent. The WNV transmission cycle is relatively tractable in the laboratory. Thus the virus serves as a convenient model system for studying the population biology of mosquito-borne flaviviruses as they undergo transmission to and from mosquitoes and vertebrates. This review summarizes the current knowledge regarding the population dynamics of this virus within mosquito vectors.
Collapse
|
34
|
Brostoff T, Pesavento PA, Barker CM, Kenney JL, Dietrich EA, Duggal NK, Bosco-Lauth AM, Brault AC. MicroRNA reduction of neuronal West Nile virus replication attenuates and affords a protective immune response in mice. Vaccine 2016; 34:5366-5375. [PMID: 27637937 DOI: 10.1016/j.vaccine.2016.08.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 01/09/2023]
Abstract
West Nile virus (WNV) is an important agent of human encephalitis that has quickly become endemic across much of the United States since its identification in North America in 1999. While the majority (∼75%) of infections are subclinical, neurologic disease can occur in a subset of cases, with outcomes including permanent neurologic damage and death. Currently, there are no WNV vaccines approved for use in humans. This study introduces a novel vaccine platform for WNV to reduce viral replication in the central nervous system while maintaining peripheral replication to elicit strong neutralizing antibody titers. Vaccine candidates were engineered to incorporate microRNA (miRNA) target sequences for a cognate miRNA expressed only in neurons, allowing the host miRNAs to target viral transcription through endogenous RNA silencing. To maintain stability, these targets were incorporated in multiple locations within the 3'-untranslated region, flanking sequences essential for viral replication without affecting the viral open reading frame. All candidates replicated comparably to wild type WNV in vitro within cells that did not express the cognate miRNA. Insertional control viruses were also capable of neuroinvasion and neurovirulence in vivo in CD-1 mice. Vaccine viruses were safe at all doses tested and did not demonstrate mutations associated with a reversion to virulence when serially passaged in mice. All vaccine constructs were protective from lethal challenge in mice, producing 93-100% protection at the highest dose tested. Overall, this is a safe and effective attenuation strategy with broad potential application for vaccine development.
Collapse
Affiliation(s)
- Terza Brostoff
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Christopher M Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Joan L Kenney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Elizabeth A Dietrich
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Nisha K Duggal
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Angela M Bosco-Lauth
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| |
Collapse
|
35
|
Godsey MS, Savage HM, Burkhalter KL, Bosco-Lauth AM, Delorey MJ. Transmission of Heartland Virus (Bunyaviridae: Phlebovirus) by Experimentally Infected Amblyomma americanum (Acari: Ixodidae). JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:1226-1233. [PMID: 27330103 DOI: 10.1093/jme/tjw080] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/03/2016] [Indexed: 06/06/2023]
Abstract
Heartland virus (HRTV; Bunyaviridae: Phlebovirus) is a recently described cause of human illness in the United States. After field studies conducted in 2012 implicated Amblyomma americanum (L.) as a vector of HRTV, we initiated experiments to assess the vector competence of A. americanum. Larval and nymphal ticks were immersed in high-titered suspensions of HRTV, and then tested for virus at various intervals postimmersion. In a later trial larval ticks were immersed in HRTV, followed by engorgement on a rabbit. A subset of postmolt nymphs was tested for HRTV to document transstadial transmission. Putatively infected nymphs were cofed with uninfected colony larvae to assess nonviremic transmission. In another trial, nymphs were fed on a rabbit and allowed to molt to the adult stage. Male and female ticks fed and mated upon a rabbit, and females were allowed to oviposit. Male and spent female ticks were tested for HRTV, and offspring of infected females were tested to assess vertical transmission. Infection rates of ≤50% were observed in immersed larvae and nymphs tested at intervals following immersion. Transstadial transmission from larvae to nymphs and then to adults was documented. HRTV was detected in a pool of nymphs molted from uninfected larvae cofed with infected nymphs. Vertical transmission of HRTV was observed in progeny of infected females. Infected females took longer to oviposit and produced fewer offspring. Serologic conversions (without viremia) in rabbits fed upon by immersed larvae or transstadially infected ticks indicate horizontal transmission of HRTV.
Collapse
Affiliation(s)
- Marvin S Godsey
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (; ; ; ; )
| | - Harry M Savage
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (; ; ; ; )
| | - Kristen L Burkhalter
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (; ; ; ; )
| | - Angela M Bosco-Lauth
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (; ; ; ; )
| | - Mark J Delorey
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (; ; ; ; )
| |
Collapse
|
36
|
Dietrich EA, Langevin SA, Huang CYH, Maharaj PD, Delorey MJ, Bowen RA, Kinney RM, Brault AC. West Nile Virus Temperature Sensitivity and Avian Virulence Are Modulated by NS1-2B Polymorphisms. PLoS Negl Trop Dis 2016; 10:e0004938. [PMID: 27548738 PMCID: PMC4993437 DOI: 10.1371/journal.pntd.0004938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/01/2016] [Indexed: 01/29/2023] Open
Abstract
West Nile virus (WNV) replicates in a wide variety of avian species, which serve as reservoir and amplification hosts. WNV strains isolated in North America, such as the prototype strain NY99, elicit a highly pathogenic response in certain avian species, notably American crows (AMCRs; Corvus brachyrhynchos). In contrast, a closely related strain, KN3829, isolated in Kenya, exhibits a low viremic response with limited mortality in AMCRs. Previous work has associated the difference in pathogenicity primarily with a single amino acid mutation at position 249 in the helicase domain of the NS3 protein. The NY99 strain encodes a proline residue at this position, while KN3829 encodes a threonine. Introduction of an NS3-T249P mutation in the KN3829 genetic background significantly increased virulence and mortality; however, peak viremia and mortality were lower than those of NY99. In order to elucidate the viral genetic basis for phenotype variations exclusive of the NS3-249 polymorphism, chimeric NY99/KN3829 viruses were created. We show herein that differences in the NS1-2B region contribute to avian pathogenicity in a manner that is independent of and additive with the NS3-249 mutation. Additionally, NS1-2B residues were found to alter temperature sensitivity when grown in avian cells. West Nile virus (WNV) is a mosquito-borne virus that has caused outbreaks in humans in many regions of the world. Birds are the natural hosts for WNV. However, different strains of WNV cause different disease outcomes in birds. Here, we compared two WNV strains, one of which causes higher mortality and generates more virus in American crows than the other. Previous research has shown that this difference is due in large part to a difference between the two strains at a single amino acid in the NS3 gene; however, this difference does not completely explain the observed effect. Here we show that another region of the viral genome also affects disease outcomes in American crows, and changes the sensitivity of the virus to temperature when grown in bird cells. These findings help us to understand the genetic features that affect WNV infection and disease outcomes in its natural host. Detection of such features in new strains of WNV and related viruses could help to understand and predict future outbreaks.
Collapse
Affiliation(s)
- Elizabeth A. Dietrich
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Stanley A. Langevin
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Claire Y.-H. Huang
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Payal D. Maharaj
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Mark J. Delorey
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard M. Kinney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Aaron C. Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
37
|
Reisen WK, Wheeler SS. Surveys for Antibodies Against Mosquitoborne Encephalitis Viruses in California Birds, 1996-2013. Vector Borne Zoonotic Dis 2016; 16:264-82. [PMID: 26974395 PMCID: PMC4800269 DOI: 10.1089/vbz.2015.1888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
From 1996 through 2013, 54,546 individual birds comprising 152 species and 7 orders were banded, bled, and released at four study areas within California, from which 28,388 additional serum samples were collected at one or more recapture encounters. Of these, 142, 99, and 1929 birds from 41 species were positive for neutralizing antibodies against western equine encephalomyelitis virus (WEEV), St. Louis encephalitis virus (SLEV), or West Nile virus (WNV) at initial capture or recapture, respectively. Overall, 83% of the positive serum samples were collected from five species: House Finch, House Sparrow, Mourning Dove, California Quail, and Western Scrub-Jay. Temporal data supported concurrent arbovirus surveillance and documented the disappearance of birds positive for WEEV in 2008 and SLEV in 2003 and the appearance of birds positive for WNV after its invasion in 2003. Results of these serosurveys agreed well with the host selection patterns of the Culex vectors as described from bloodmeal sequencing data and indicated that transmission of WNV seemed most effective within urban areas where avian and mosquito host diversity was limited to relatively few competent species.
Collapse
Affiliation(s)
- William K Reisen
- Department of Pathology, Microbiology and Immunology, Center for Vectorborne Diseases, School of Veterinary Medicine, University of California , Davis, California
| | - Sarah S Wheeler
- Department of Pathology, Microbiology and Immunology, Center for Vectorborne Diseases, School of Veterinary Medicine, University of California , Davis, California
| |
Collapse
|
38
|
Lim SM, Brault AC, van Amerongen G, Bosco-Lauth AM, Romo H, Sewbalaksing VD, Bowen RA, Osterhaus AD, Koraka P, Martina BE. Susceptibility of Carrion Crows to Experimental Infection with Lineage 1 and 2 West Nile Viruses. Emerg Infect Dis 2016. [PMID: 26197093 PMCID: PMC4517732 DOI: 10.3201/eid2108.140714] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
These birds are highly susceptible to strains circulating in Europe and, thus, may serve as surveillance sentinels. West Nile virus (WNV) outbreaks in North America have been characterized by substantial die-offs of American crows (Corvus brachyrhynchos). In contrast, a low incidence of bird deaths has been observed during WNV epidemic activity in Europe. To examine the susceptibility of the western European counterpart of American crows, we inoculated carrion crows (Corvus corone) with WNV strains isolated in Greece (Gr-10), Italy (FIN and Ita09), and Hungary (578/10) and with the highly virulent North American genotype strain (NY99). We also inoculated American crows with a selection of these strains to examine the strains’ virulence in a highly susceptible bird species. Infection with all strains, except WNV FIN, resulted in high rates of death and high-level viremia in both bird species and virus dissemination to several organs. These results suggest that carrion crows are highly susceptible to WNV and may potentially be useful as part of dead bird surveillance for early warning of WNV activity in Europe.
Collapse
|
39
|
Lim SM, Brault AC, van Amerongen G, Bosco-Lauth AM, Romo H, Sewbalaksing VD, Bowen RA, Osterhaus ADME, Koraka P, Martina BEE. Susceptibility of Carrion Crows to Experimental Infection with Lineage 1 and 2 West Nile Viruses. Emerg Infect Dis 2016. [PMID: 26197093 DOI: 10.3201/2108.140714] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
West Nile virus (WNV) outbreaks in North America have been characterized by substantial die-offs of American crows (Corvus brachyrhynchos). In contrast, a low incidence of bird deaths has been observed during WNV epidemic activity in Europe. To examine the susceptibility of the western European counterpart of American crows, we inoculated carrion crows (Corvus corone) with WNV strains isolated in Greece (Gr-10), Italy (FIN and Ita09), and Hungary (578/10) and with the highly virulent North American genotype strain (NY99). We also inoculated American crows with a selection of these strains to examine the strains' virulence in a highly susceptible bird species. Infection with all strains, except WNV FIN, resulted in high rates of death and high-level viremia in both bird species and virus dissemination to several organs. These results suggest that carrion crows are highly susceptible to WNV and may potentially be useful as part of dead bird surveillance for early warning of WNV activity in Europe.
Collapse
|
40
|
Alsaleh K, Khou C, Frenkiel MP, Lecollinet S, Vàzquez A, de Arellano ER, Després P, Pardigon N. The E glycoprotein plays an essential role in the high pathogenicity of European-Mediterranean IS98 strain of West Nile virus. Virology 2016; 492:53-65. [PMID: 26896935 DOI: 10.1016/j.virol.2016.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 01/25/2023]
Abstract
West Nile virus (WNV) is the most widespread arbovirus in the world. Several recent outbreaks and epizootics have been reported in Europe and the Mediterranean basin with increased virulence. In contrast to the well-characterized American and Australian strains, little is known about the virulence determinants of the WNV European-Mediterranean strains. To investigate the viral factors involved in the virulence of these strains, we generated chimeras between the highly neuropathogenic Israel 1998 (IS-98-ST1, IS98) strain and the non-pathogenic Malaysian Kunjin virus (KJMP-502). In vivo analyses in a mouse model of WNV pathogenesis shows that chimeric virus where KJMP-502 E glycoprotein was replaced by that of IS98 is neuropathogenic, demonstrating that this protein is a major virulence determinant. Presence of the N-glycosylation site had limited impact on virus virulence and the 5'UTR does not seem to influence pathogenesis. Finally, mice inoculated with KJMP-502 virus were protected against lethal IS98 infection.
Collapse
Affiliation(s)
| | - Cécile Khou
- Institut Pasteur, URE ERI/CIBU, Paris, France
| | | | - Sylvie Lecollinet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Animal Health Laboratory, UMR1161 Virology, INRA, ANSES, ENVA, Maisons-Alfort, France
| | - Ana Vàzquez
- Arbovirus & Imported Viral Diseases, Centro Nacional de Microbiología, Ctra. Pozuelo, Madrid, Spain
| | - Eva Ramírez de Arellano
- Arbovirus & Imported Viral Diseases, Centro Nacional de Microbiología, Ctra. Pozuelo, Madrid, Spain
| | - Philippe Després
- University of La Réunion Island, UM134 PIMIT, INSERM U1187, CNRS UMR9192, IRD UMR249, Technology Platform CYROI, 97490 Saint-Clotilde, La Réunion, France
| | | |
Collapse
|
41
|
Wellehan • JF, Lierz • M, Phalen • D, Raidal • S, Styles • DK, Crosta • L, Melillo • A, Schnitzer • P, Lennox • A, Lumeij JT. Infectious disease. CURRENT THERAPY IN AVIAN MEDICINE AND SURGERY 2016. [PMCID: PMC7158187 DOI: 10.1016/b978-1-4557-4671-2.00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
42
|
Staley M, Bonneaud C. Immune responses of wild birds to emerging infectious diseases. Parasite Immunol 2015; 37:242-54. [PMID: 25847450 DOI: 10.1111/pim.12191] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 12/17/2022]
Abstract
Over the past several decades, outbreaks of emerging infectious diseases (EIDs) in wild birds have attracted worldwide media attention, either because of their extreme virulence or because of alarming spillovers into agricultural animals or humans. The pathogens involved have been found to infect a variety of bird hosts ranging from relatively few species (e.g. Trichomonas gallinae) to hundreds of species (e.g. West Nile Virus). Here we review and contrast the immune responses that wild birds are able to mount against these novel pathogens. We discuss the extent to which these responses are associated with reduced clinical symptoms, pathogen load and mortality, or conversely, how they can be linked to worsened pathology and reduced survival. We then investigate how immune responses to EIDs can evolve over time in response to pathogen-driven selection using the illustrative case study of the epizootic outbreak of Mycoplasma gallisepticum in wild North American house finches (Haemorhous mexicanus). We highlight the need for future work to take advantage of the substantial inter- and intraspecific variation in disease progression and outcome following infections with EID to elucidate the extent to which immune responses confer increased resistance through pathogen clearance or may instead heighten pathogenesis.
Collapse
Affiliation(s)
- M Staley
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
43
|
West Nile Virus: High Transmission Rate in North-Western European Mosquitoes Indicates Its Epidemic Potential and Warrants Increased Surveillance. PLoS Negl Trop Dis 2015. [PMID: 26225555 PMCID: PMC4520649 DOI: 10.1371/journal.pntd.0003956] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background West Nile virus (WNV) is a highly pathogenic flavivirus transmitted by Culex spp. mosquitoes. In North America (NA), lineage 1 WNV caused the largest outbreak of neuroinvasive disease to date, while a novel pathogenic lineage 2 strain circulates in southern Europe. To estimate WNV lineage 2 epidemic potential it is paramount to know if mosquitoes from currently WNV-free areas can support further spread of this epidemic. Methodology/Principal Findings We assessed WNV vector competence of Culex pipiens mosquitoes originating from north-western Europe (NWE) in direct comparison with those from NA. We exposed mosquitoes to infectious blood meals of lineage 1 or 2 WNV and determined the infection and transmission rates. We explored reasons for vector competence differences by comparing intrathoracic injection versus blood meal infection, and we investigated the influence of temperature. We found that NWE mosquitoes are highly competent for both WNV lineages, with transmission rates up to 25%. Compared to NA mosquitoes, transmission rates for lineage 2 WNV were significantly elevated in NWE mosquitoes due to better virus dissemination from the midgut and a shorter extrinsic incubation time. WNV infection rates further increased with temperature increase. Conclusions/Significance Our study provides experimental evidence to indicate markedly different risk levels between both continents for lineage 2 WNV transmission and suggests a degree of genotype-genotype specificity in the interaction between virus and vector. Our experiments with varying temperatures explain the current localized WNV activity in southern Europe, yet imply further epidemic spread throughout NWE during periods with favourable climatic conditions. This emphasizes the need for intensified surveillance of virus activity in current WNV disease-free regions and warrants increased awareness in clinics throughout Europe. West Nile virus (WNV) is on the rise in Europe, with increasing numbers of human cases of neurological disease and death since 2010. However, it is currently unknown whether or not WNV will continue to spread to north-western Europe (NWE), in a fashion similar to the WNV epidemic sweep in the United States (1999–2004). The presence of competent mosquitoes is a strict requirement for WNV transmission, but no laboratory studies have been conducted with the new European lineage 2 WNV outbreak strain. Our study is the first to investigate transmissibility in NWE Culex pipiens for lineage 2 WNV in a systematic, direct comparison with North American Culex pipiens and with the lineage 1 WNV strain. We demonstrate that European mosquitoes are highly competent for both WNV lineages, which underscores the epidemic potential of WNV in Europe. However, the transmission rate for lineage 2 WNV was significantly lower in North American mosquitoes, which indicates different risk levels between both continents for lineage 2 but not lineage 1 WNV. Based on our result, we propose that WNV surveillance in mosquitoes and birds must be intensified in Europe to allow early detection, timely intervention strategies and prevent outbreaks of WNV neurological disease.
Collapse
|
44
|
Dietrich EA, Bowen RA, Brault AC. An ex vivo avian leukocyte culture model for West Nile virus infection. J Virol Methods 2015; 218:19-22. [PMID: 25783683 PMCID: PMC4583197 DOI: 10.1016/j.jviromet.2015.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/20/2015] [Accepted: 03/06/2015] [Indexed: 12/22/2022]
Abstract
West Nile virus (WNV) replicates in a wide variety of avian species, which act as amplification hosts. In particular, WNV generates high titers and elicits severe pathology in American crows (AMCRs; Corvus brachyrhynchos), a species that has been used as a sentinel for WNV transmission. Although the specific cellular targets of WNV replication in AMCRs are not well defined, preliminary evidence suggests that leukocytes may be an important target of early replication. Therefore, development of a protocol for ex vivo culture of AMCR leukocytes as a model for assessing differential avian host susceptibility is described herein. WNV growth in these cultures mirrored in vivo viremia profiles. These data indicate that ex vivo leukocyte cultures can be used for preliminary pathological assessment of novel WNV strains and potentially of other flaviviruses that use avian reservoir hosts.
Collapse
Affiliation(s)
- Elizabeth A Dietrich
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, 1683 Campus Delivery, Fort Collins, CO 80523-1683, United States
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, United States.
| |
Collapse
|
45
|
Grubaugh ND, Smith DR, Brackney DE, Bosco-Lauth AM, Fauver JR, Campbell CL, Felix TA, Romo H, Duggal NK, Dietrich EA, Eike T, Beane JE, Bowen RA, Black WC, Brault AC, Ebel GD. Experimental evolution of an RNA virus in wild birds: evidence for host-dependent impacts on population structure and competitive fitness. PLoS Pathog 2015; 11:e1004874. [PMID: 25993022 PMCID: PMC4439088 DOI: 10.1371/journal.ppat.1004874] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/12/2015] [Indexed: 01/13/2023] Open
Abstract
Within hosts, RNA viruses form populations that are genetically and phenotypically complex. Heterogeneity in RNA virus genomes arises due to error-prone replication and is reduced by stochastic and selective mechanisms that are incompletely understood. Defining how natural selection shapes RNA virus populations is critical because it can inform treatment paradigms and enhance control efforts. We allowed West Nile virus (WNV) to replicate in wild-caught American crows, house sparrows and American robins to assess how natural selection shapes RNA virus populations in ecologically relevant hosts that differ in susceptibility to virus-induced mortality. After five sequential passages in each bird species, we examined the phenotype and population diversity of WNV through fitness competition assays and next generation sequencing. We demonstrate that fitness gains occur in a species-specific manner, with the greatest replicative fitness gains in robin-passaged WNV and the least in WNV passaged in crows. Sequencing data revealed that intrahost WNV populations were strongly influenced by purifying selection and the overall complexity of the viral populations was similar among passaged hosts. However, the selective pressures that control WNV populations seem to be bird species-dependent. Specifically, crow-passaged WNV populations contained the most unique mutations (~1.7× more than sparrows, ~3.4× more than robins) and defective genomes (~1.4× greater than sparrows, ~2.7× greater than robins), but the lowest average mutation frequency (about equal to sparrows, ~2.6× lower than robins). Therefore, our data suggest that WNV replication in the most disease-susceptible bird species is positively associated with virus mutational tolerance, likely via complementation, and negatively associated with the strength of selection. These differences in genetic composition most likely have distinct phenotypic consequences for the virus populations. Taken together, these results reveal important insights into how different hosts may contribute to the emergence of RNA viruses.
Collapse
Affiliation(s)
- Nathan D. Grubaugh
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Darci R. Smith
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Doug E. Brackney
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Angela M. Bosco-Lauth
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Joseph R. Fauver
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Corey L. Campbell
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Todd A. Felix
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Lakewood, Colorado, United States of America
| | - Hannah Romo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Nisha K. Duggal
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Elizabeth A. Dietrich
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Tyler Eike
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jennifer E. Beane
- Section for Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - William C. Black
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Aaron C. Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
46
|
Worwa G, Wheeler SS, Brault AC, Reisen WK. Comparing competitive fitness of West Nile virus strains in avian and mosquito hosts. PLoS One 2015; 10:e0125668. [PMID: 25965850 PMCID: PMC4428627 DOI: 10.1371/journal.pone.0125668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/23/2015] [Indexed: 11/21/2022] Open
Abstract
Enzootic transmission of West Nile virus (WNV; Flaviviridae, Flavivirus) involves various species of birds and ornithophilic mosquitoes. Single nucleotide substitutions in the WNV genome may impact viral fitness necessary for WNV adaptation and evolution as previously shown for the WN02 genotype. In an effort to study phenotypic change, we developed an in vivo fitness competition model in two biologically relevant hosts for WNV. The House Finch (HOFI; Haemorhous mexicanus) and Culex tarsalis mosquitoes represent moderately susceptible hosts for WNV, are highly abundant in Western North America and frequently are infected with WNV in nature. Herein, we inoculated HOFIs and Cx. tarsalis competitively (dually) and singly with infectious-clone derived viruses of the founding California isolate COAV997-2003 (COAV997-IC), the founding North American isolate NY99 (NY99-IC), and a 2004 field isolate from California (CA-04), and compared the replicative capacities (fitness) of these viruses to a genetically marked virus of COAV997 (COAV997-5nt) by measuring RNA copy numbers. COAV997 and COAV997-5nt exhibited neutral fitness in HOFIs and Cx. tarsalis, and the temperature-sensitive phenotype of COAV997 did not affect replication in HOFIs as none of the infected birds became febrile. The NY99 and CA-04 isolates demonstrated elevated fitness in HOFIs compared to COAV997-5nt, whereas all viruses replicated to similar titers and RNA copies in Cx. tarsalis, and the only fitness differences were related to infection rates. Our data demonstrated that competitive replication allows for the sensitive comparison of fitness differences among two genetically closely related viruses using relevant hosts of WNV while eliminating host-to-host differences. In conclusion, our approach may be helpful in understanding the extent of phenotypic change in fitness associated with genetic changes in WNV.
Collapse
Affiliation(s)
- Gabriella Worwa
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Sarah S. Wheeler
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Aaron C. Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - William K. Reisen
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Bosco-Lauth AM, Panella NA, Root JJ, Gidlewski T, Lash RR, Harmon JR, Burkhalter KL, Godsey MS, Savage HM, Nicholson WL, Komar N, Brault AC. Serological investigation of heartland virus (Bunyaviridae: Phlebovirus) exposure in wild and domestic animals adjacent to human case sites in Missouri 2012-2013. Am J Trop Med Hyg 2015; 92:1163-7. [PMID: 25870419 DOI: 10.4269/ajtmh.14-0702] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/04/2015] [Indexed: 11/07/2022] Open
Abstract
Heartland virus (HRTV; Bunyaviridae: Phlebovirus) has recently emerged as a causative agent of human disease characterized by thrombocytopenia and leukopenia in the United States. The lone star tick (Amblyomma americanum L.) has been implicated as a vector. To identify candidate vertebrate amplification hosts associated with enzootic maintenance of the virus, sera and ticks were sampled from 160 mammals (8 species) and 139 birds (26 species) captured near 2 human case residences in Andrew and Nodaway Counties in northwest Missouri. HRTV-specific neutralizing antibodies were identified in northern raccoons (42.6%), horses (17.4%), white-tailed deer (14.3%), dogs (7.7%), and Virginia opossums (3.8%), but not in birds. Virus isolation attempts from sera and ticks failed to detect HRTV. The high antibody prevalence coupled with local abundance of white-tailed deer and raccoons identifies these species as candidate amplification hosts.
Collapse
Affiliation(s)
- Angela M Bosco-Lauth
- Division of Vector-Borne Diseases, Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado; Division of Vector-Borne Diseases, Rickettsial Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Nicholas A Panella
- Division of Vector-Borne Diseases, Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado; Division of Vector-Borne Diseases, Rickettsial Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - J Jeffrey Root
- Division of Vector-Borne Diseases, Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado; Division of Vector-Borne Diseases, Rickettsial Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Tom Gidlewski
- Division of Vector-Borne Diseases, Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado; Division of Vector-Borne Diseases, Rickettsial Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - R Ryan Lash
- Division of Vector-Borne Diseases, Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado; Division of Vector-Borne Diseases, Rickettsial Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R Harmon
- Division of Vector-Borne Diseases, Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado; Division of Vector-Borne Diseases, Rickettsial Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kristen L Burkhalter
- Division of Vector-Borne Diseases, Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado; Division of Vector-Borne Diseases, Rickettsial Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marvin S Godsey
- Division of Vector-Borne Diseases, Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado; Division of Vector-Borne Diseases, Rickettsial Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Harry M Savage
- Division of Vector-Borne Diseases, Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado; Division of Vector-Borne Diseases, Rickettsial Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - William L Nicholson
- Division of Vector-Borne Diseases, Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado; Division of Vector-Borne Diseases, Rickettsial Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Nicholas Komar
- Division of Vector-Borne Diseases, Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado; Division of Vector-Borne Diseases, Rickettsial Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado; Division of Vector-Borne Diseases, Rickettsial Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
48
|
Melian EB, Hall-Mendelin S, Du F, Owens N, Bosco-Lauth AM, Nagasaki T, Rudd S, Brault AC, Bowen RA, Hall RA, van den Hurk AF, Khromykh AA. Programmed ribosomal frameshift alters expression of west nile virus genes and facilitates virus replication in birds and mosquitoes. PLoS Pathog 2014; 10:e1004447. [PMID: 25375107 PMCID: PMC4223154 DOI: 10.1371/journal.ppat.1004447] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/04/2014] [Indexed: 01/28/2023] Open
Abstract
West Nile virus (WNV) is a human pathogen of significant medical importance with close to 40,000 cases of encephalitis and more than 1,600 deaths reported in the US alone since its first emergence in New York in 1999. Previous studies identified a motif in the beginning of non-structural gene NS2A of encephalitic flaviviruses including WNV which induces programmed −1 ribosomal frameshift (PRF) resulting in production of an additional NS protein NS1′. We have previously demonstrated that mutant WNV with abolished PRF was attenuated in mice. Here we have extended our previous observations by showing that PRF does not appear to have a significant role in virus replication, virion formation, and viral spread in several cell lines in vitro. However, we have also shown that PRF induces an over production of structural proteins over non-structural proteins in virus-infected cells and that mutation abolishing PRF is present in ∼11% of the wild type virus population. In vivo experiments in house sparrows using wild type and PRF mutant of New York 99 strain of WNV viruses showed some attenuation for the PRF mutant virus. Moreover, PRF mutant of Kunjin strain of WNV showed significant decrease compared to wild type virus infection in dissemination of the virus from the midgut through the haemocoel, and ultimately the capacity of infected mosquitoes to transmit virus. Thus our results demonstrate an important role for PRF in regulating expression of viral genes and consequently virus replication in avian and mosquito hosts. Programmed ribosomal frameshift (PRF) is a strategy used by some viruses to regulate expression of viral genes and/or generate additional gene products for the benefit of the virus. Encephalitic flaviruses from Japanese encephalitis virus serogroup encode PRF motif in the beginning of nonstructural gene NS2A that results in production of an additional nonstructural protein NS1′ which for West Nile virus (WNV) consists of NS1 protein with 52 amino acid addition at the C terminus. Our previous studies showed that abolishing PFR and NS1′ production attenuated WNV virulence in mice. Here we show by using wild type and PRF-deficient WNV mutant that PRF induces overproduction of structural proteins, which facilitates virus replication in birds and mosquitoes while having no advantage for virus replication in cell lines in vitro. Presence of PRF/NS1′ allowed more efficient virus dissemination in the body of mosquitoes after taking infected blood meal and subsequent accumulation of the virus in saliva to facilitate transmission. Combined with our previous data in mice, the results obtained in this study demonstrate that while having no advantage for WNV replication in vitro, PRF provides advantage for WNV replication in vivo in mammalian, avian and mosquito hosts most likely by overproducing viral structural proteins and generating NS1′.
Collapse
Affiliation(s)
- Ezequiel Balmori Melian
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Sonja Hall-Mendelin
- Virology, Public and Environmental Health, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| | - Fangyao Du
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Nick Owens
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Angela M. Bosco-Lauth
- Division of Vector-Borne Diseases, Centers for Disease Prevention and Control, Fort Collins, Colorado, United States of America
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tomoko Nagasaki
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Stephen Rudd
- Queensland Facility for Advanced Bioinformatics (QFAB), University of Queensland, Brisbane, Queensland, Australia
| | - Aaron C. Brault
- Division of Vector-Borne Diseases, Centers for Disease Prevention and Control, Fort Collins, Colorado, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Roy A. Hall
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Andrew F. van den Hurk
- Virology, Public and Environmental Health, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| | - Alexander A. Khromykh
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
- * E-mail:
| |
Collapse
|
49
|
Duggal NK, Bosco-Lauth A, Bowen RA, Wheeler SS, Reisen WK, Felix TA, Mann BR, Romo H, Swetnam DM, Barrett ADT, Brault AC. Evidence for co-evolution of West Nile Virus and house sparrows in North America. PLoS Negl Trop Dis 2014; 8:e3262. [PMID: 25357248 PMCID: PMC4214623 DOI: 10.1371/journal.pntd.0003262] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/09/2014] [Indexed: 01/28/2023] Open
Abstract
West Nile virus (WNV) has been maintained in North America in enzootic cycles between mosquitoes and birds since it was first described in North America in 1999. House sparrows (HOSPs; Passer domesticus) are a highly competent host for WNV that have contributed to the rapid spread of WNV across the U.S.; however, their competence has been evaluated primarily using an early WNV strain (NY99) that is no longer circulating. Herein, we report that the competence of wild HOSPs for the NY99 strain has decreased significantly over time, suggesting that HOSPs may have developed resistance to this early WNV strain. Moreover, recently isolated WNV strains generate higher peak viremias and mortality in contemporary HOSPs compared to NY99. These data indicate that opposing selective pressures in both the virus and avian host have resulted in a net increase in the level of host competence of North American HOSPs for currently circulating WNV strains.
Collapse
Affiliation(s)
- Nisha K. Duggal
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Angela Bosco-Lauth
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sarah S. Wheeler
- Center for Vectorborne Diseases, University of California, Davis, Davis, California, United States of America
| | - William K. Reisen
- Center for Vectorborne Diseases, University of California, Davis, Davis, California, United States of America
| | - Todd A. Felix
- United States Department of Agriculture, Lakewood, Colorado, United States of America
| | - Brian R. Mann
- Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hannah Romo
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Daniele M. Swetnam
- Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alan D. T. Barrett
- Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Aaron C. Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- * E-mail: .
| |
Collapse
|
50
|
Wheeler SS, Woods LW, Boyce WM, Eckstrand CD, Langevin SA, Reisen WK, Townsend AK. West Nile virus and non-West Nile virus mortality and coinfection of American crows (Corvus brachyrhynchos) in California. Avian Dis 2014; 58:255-61. [PMID: 25055630 DOI: 10.1637/10691-101413-reg.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
American crows are acutely sensitive to West Nile virus (WNV) infection, and crow mortality has been used in WNV surveillance to monitor enzootic transmission. However, non-WNV sources of mortality could reduce the reliability of crow death as a surveillance tool. Here, using a combination of histopathologic, toxicologic, virologic, and molecular techniques we describe causes of mortality in 67 American crows (Corvus brachyrhynchos) that were collected from a population in the Sacramento Valley of California in 2012 and 2013. Evidence of infectious disease was detected in 70% (47/67) of carcasses. The majority of deaths were linked to a suite of non-WNV viral, bacterial, and fungal infections (39%; 23/59 cases), WNV (36%; 24/67 cases), and an acute toxic event (25%; 15/59 cases). Coinfections were detected in 20% (12/59) of birds and frequently were associated with WNV and poxviral dermatitis. Inferences about WNV activity based on crow mortality should be supported by laboratory confirmation because crow mortality frequently can be caused by other infectious diseases or toxic events.
Collapse
|