1
|
Sun X, Belser JA, Pulit-Penaloza JA, Brock N, Pappas C, Zanders N, Jang Y, Jones J, Tumpey TM, Davis CT, Maines TR. Pathogenesis and Transmission Assessment of 3 Swine-Origin Influenza A(H3N2) Viruses With Zoonotic Risk to Humans Isolated in the United States, 2017-2020. J Infect Dis 2024; 229:1107-1111. [PMID: 37602528 PMCID: PMC10879443 DOI: 10.1093/infdis/jiad359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
The sporadic occurrence of human infections with swine-origin influenza A(H3N2) viruses and the continual emergence of novel A(H3N2) viruses in swine herds underscore the necessity for ongoing assessment of the pandemic risk posed by these viruses. Here, we selected 3 recent novel swine-origin A(H3N2) viruses isolated between 2017 to 2020, bearing hemagglutinins from the 1990.1, 2010.1, or 2010.2 clades, and evaluated their ability to cause disease and transmit in a ferret model. We conclude that despite considerable genetic variances, all 3 contemporary swine-origin A(H3N2) viruses displayed a capacity for robust replication in the ferret respiratory tract and were also capable of limited airborne transmission. These findings highlight the continued public health risk of swine-origin A(H3N2) strains, especially in human populations with low cross-reactive immunity.
Collapse
Affiliation(s)
- Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica A Belser
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Nicole Brock
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Claudia Pappas
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Natosha Zanders
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Yunho Jang
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joyce Jones
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - C Todd Davis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Taronna R Maines
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
2
|
Saito T, Sakuma S, Mine J, Uchida Y, Hangalapura BN. Genetic Diversity of the Hemagglutinin Genes of Influenza a Virus in Asian Swine Populations. Viruses 2022; 14:747. [PMID: 35458477 PMCID: PMC9032595 DOI: 10.3390/v14040747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 01/04/2023] Open
Abstract
Swine influenza (SI) is a major respiratory disease of swine; SI is due to the influenza A virus of swine (IAV-S), a highly contagious virus with zoonotic potential. The intensity of IAV-S surveillance varies among countries because it is not a reportable disease and causes limited mortality in swine. Although Asia accounts for half of all pig production worldwide, SI is not well managed in those countries. Rigorously managing SI on pig farms could markedly reduce the economic losses, the likelihood of novel reassortants among IAV-S, and the zoonotic IAV-S infections in humans. Vaccination of pigs is a key control measure for SI, but its efficacy relies on the optimal antigenic matching of vaccine strains with the viral strains circulating in the field. Here, we phylogenetically reviewed the genetic diversity of the hemagglutinin gene among IAVs-S that have circulated in Asia during the last decade. This analysis revealed the existence of country-specific clades in both the H1 and H3 subtypes and cross-border transmission of IAVs-S. Our findings underscore the importance of choosing vaccine antigens for each geographic region according to both genetic and antigenic analyses of the circulating IAV-S to effectively manage SI in Asia.
Collapse
Affiliation(s)
- Takehiko Saito
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | - Saki Sakuma
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | - Junki Mine
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | - Yuko Uchida
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | | |
Collapse
|
3
|
Liu F, Levine MZ. Heterologous Antibody Responses Conferred by A(H3N2) Variant and Seasonal Influenza Vaccination Against Newly Emerged 2016-2018 A(H3N2) Variant Viruses in Healthy Persons. Clin Infect Dis 2021; 71:3061-3070. [PMID: 31858129 DOI: 10.1093/cid/ciz1203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Swine origin A(H3N2) variant [A(H3N2)v] viruses continue to evolve and remain a public health threat. Recent outbreaks in humans in 2016-2018 were caused by a newly emerged A(H3N2)v cluster 2010.1, which are genetically and antigenically distinct from the previously predominant cluster IV. To address the public health risk, we evaluated the levels of heterologous cross-reactive antibodies to A(H3N2)v cluster 2010.1 viruses induced from an existing cluster IV A(H3N2)v vaccine and several seasonal inactivated influenza vaccines (IIVs) in adults, elderly individuals, and children. METHODS Human vaccine sera and ferret antisera were analyzed by hemagglutination inhibition (HI) and neutralization assays against representative A(H3N2)v viruses from clusters IV and 2010.1 and seasonal A(H3N2) viruses. RESULTS Ferret antisera detected no or little cross-reactivity between the 2 A(H3N2)v clusters or between A(H3N2)v and seasonal A(H3N2) viruses. In humans, cluster IV A(H3N2)v vaccine induced antibodies cross-reactive to cluster 2010.1 viruses in approximately one-third of the 89 adult and elderly vaccinees. Seasonal IIVs did not induce seroprotective antibodies (≥40) to A(H3N2)v viruses in young children, but induced higher antibodies to A(H3N2)v viruses in cluster 2010.1 than those in cluster IV in adults. CONCLUSIONS Cluster IV A(H3N2)v vaccine did not provide sufficient heterologous antibody responses against the new 2010.1 cluster A(H3N2)v viruses. Seasonal IIV could not induce seroprotective antibodies to 2010.1 cluster A(H3N2)v viruses in young children, suggesting that young children are still at high risk to the newly emerged A(H3N2)v viruses. Continued surveillance on A(H3N2)v viruses is critical for risk assessment and pandemic preparedness.
Collapse
Affiliation(s)
- Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Nirmala J, Bender JB, Lynfield R, Yang M, Rene Culhane M, Nelson MI, Sreevatsan S, Torremorell M. Genetic diversity of influenza A viruses circulating in pigs between winter and summer in a Minnesota live animal market. Zoonoses Public Health 2019; 67:243-250. [PMID: 31868300 DOI: 10.1111/zph.12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/07/2019] [Accepted: 11/19/2019] [Indexed: 11/26/2022]
Abstract
There has been little surveillance of influenza A viruses (IAVs) circulating in swine at live animal markets, particularly in the United States. To address this gap, we conducted active surveillance of IAVs in pigs, the air, and the environment during a summer and winter season in a live animal market in St. Paul, Minnesota, that had been epidemiologically associated with swine-origin influenza cases in humans previously. High rates of IAV were detected by PCR in swine lungs and oral fluids during both summer and winter seasons. Rates of IAV detection by PCR in the air were similar during summer and winter, although rates of successful virus isolation in the air were lower during summer than in winter (26% and 67%, respectively). H3N2 was the most prevalent subtype in both seasons, followed by H1N2. Genetically diverse viruses with multiple gene constellations were isolated from both winter and summer, with a total of 19 distinct genotypes identified. Comparative phylogenetic analysis of all eight segments of 40 virus isolates from summer and 122 isolates from winter revealed that the summer and winter isolates were genetically distinct, indicating IAVs are not maintained in the market, but rather are re-introduced, likely from commercial swine. These findings highlight the extent of IAV genetic diversity circulating in swine in live animal markets, even during summer months, and the ongoing risk to humans.
Collapse
Affiliation(s)
- Jayaveeramuthu Nirmala
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Jeff B Bender
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.,School of Public Health, Environmental Health Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ruth Lynfield
- Minnesota State Health Department, St. Paul, MN, USA
| | - My Yang
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Marie Rene Culhane
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Martha Irene Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Montserrat Torremorell
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
5
|
Daly RF, House J, Stanek D, Stobierski MG. Compendium of Measures to Prevent Disease Associated with Animals in Public Settings, 2017. J Am Vet Med Assoc 2018; 251:1268-1292. [PMID: 29154705 DOI: 10.2460/javma.251.11.1268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Liu F, Veguilla V, Gross FL, Gillis E, Rowe T, Xu X, Tumpey TM, Katz JM, Levine MZ, Lu X. Effect of Priming With Seasonal Influenza A(H3N2) Virus on the Prevalence of Cross-Reactive Hemagglutination-Inhibition Antibodies to Swine-Origin A(H3N2) Variants. J Infect Dis 2017; 216:S539-S547. [PMID: 28934461 DOI: 10.1093/infdis/jix093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Recent outbreaks of swine-origin influenza A(H3N2) variant (H3N2v) viruses have raised public health concerns. Previous studies indicated that older children and young adults had the highest levels of hemagglutination-inhibition (HI) antibodies to 2010-2011 H3N2v viruses. However, newly emerging 2013 H3N2v have acquired antigenic mutations in the hemagglutinin at amino acid position 145 (N145K/R). We estimated the levels of serologic cross-reactivity among humans primed with seasonal influenza A(H3N2) (sH3N2), using postinfection ferret antisera. We also explored age-related HI antibody responses to 2012-2013 H3N2v viruses. Methods Human and ferret antisera were tested in HI assays against 1 representative 2012 H3N2v (145N) and 2 2013 H3N2v (145K/R) viruses, together with 9 sH3N2 viruses circulating since 1968. Results Low levels of cross-reactivity between the H3N2v and sH3N2 viruses from the 1970s-1990s were observed using postinfection ferret antisera. The overall seroprevalence among the sH3N2-primed population against 2012-2013 H3N2v viruses was >50%, and age-related seroprevalence was observed. Seroprevalence was significantly higher to 2013 H3N2v than to 2012 H3N2v viruses among some children likely to have been primed with A/Sydney/5/97-like (145K) or A/Wuhan/359/95-like viruses (145K). Conclusions A single substitution (N145K/R) was sufficient to affect seropositivity to H3N2v viruses in some individuals. Insight into age-related antibody responses to newly emerging H3N2v viruses is critical for risk assessment and pandemic preparedness.
Collapse
Affiliation(s)
- Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Vic Veguilla
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - F Liaini Gross
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric Gillis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Thomas Rowe
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Xiyan Xu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jacqueline M Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Xiuhua Lu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
7
|
Bliss N, Nelson SW, Nolting JM, Bowman AS. Prevalence of Influenza A Virus in Exhibition Swine during Arrival at Agricultural Fairs. Zoonoses Public Health 2016; 63:477-85. [PMID: 26750204 DOI: 10.1111/zph.12252] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 11/28/2022]
Abstract
The exhibition swine at agricultural fairs provides a critical human-swine interface that allows for the bidirectional transmission of influenza A virus (IAV). Previous IAV surveillance at the end of fairs has resulted in frequent detection of IAV-infected swine; little is known, however, about the frequency with which swine arrive at fairs already infected with IAV. We investigated the IAV prevalence among exhibition swine entering fairs to better understand the epidemiology of IAV in this unique human-swine interface. In 2014, snout wipes were collected from 3547 swine during the first day of nine agricultural exhibitions in Indiana and Ohio. Samples were screened for IAV using rRT-PCR and positive samples were inoculated into cultured cells for virus isolation. The overall IAV prevalence detected among swine arriving at exhibitions was 5.3% (188/3547) via rRT-PCR and 1.5% (53/3547) via virus isolation, with IAV being detected and recovered from swine at 5 of the 9 exhibitions. Within the fairs with IAV-positive swine, the individual exhibition IAV prevalence ranged from 0.2% (1/523) to 34.4% (144/419) using rRT-PCR and 0.2% (1/523) to 10.3% (43/419) with virus isolation. Single IAV subtypes were detected at three of the fairs but subtype diversity was detected among the pigs at two fairs as both H1N1 and H3N2 were recovered from incoming swine. At two of the exhibitions, a temporal relationship was observed between the order of the individual swine in sampling and the associated IAV rRT-PCR results, indicating the fomite transmission of IAV through common contact surfaces may occur. With the knowledge that a small proportion of swine arrive at fairs shedding IAV, resources should be directed towards preventive strategies focused on limiting transmission during fairs to protect swine and humans during exhibitions.
Collapse
Affiliation(s)
- N Bliss
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - S W Nelson
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - J M Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - A S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Short KR, Richard M, Verhagen JH, van Riel D, Schrauwen EJA, van den Brand JMA, Mänz B, Bodewes R, Herfst S. One health, multiple challenges: The inter-species transmission of influenza A virus. One Health 2015; 1:1-13. [PMID: 26309905 PMCID: PMC4542011 DOI: 10.1016/j.onehlt.2015.03.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Influenza A viruses are amongst the most challenging viruses that threaten both human and animal health. Influenza A viruses are unique in many ways. Firstly, they are unique in the diversity of host species that they infect. This includes waterfowl (the original reservoir), terrestrial and aquatic poultry, swine, humans, horses, dog, cats, whales, seals and several other mammalian species. Secondly, they are unique in their capacity to evolve and adapt, following crossing the species barrier, in order to replicate and spread to other individuals within the new species. Finally, they are unique in the frequency of inter-species transmission events that occur. Indeed, the consequences of novel influenza virus strain in an immunologically naïve population can be devastating. The problems that influenza A viruses present for human and animal health are numerous. For example, influenza A viruses in humans represent a major economic and disease burden, whilst the poultry industry has suffered colossal damage due to repeated outbreaks of highly pathogenic avian influenza viruses. This review aims to provide a comprehensive overview of influenza A viruses by shedding light on interspecies virus transmission and summarising the current knowledge regarding how influenza viruses can adapt to a new host.
Collapse
Affiliation(s)
- Kirsty R Short
- Department of Viroscience, Erasmus Medical Centre, the Netherlands ; School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | | | - Debby van Riel
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | | | | | - Benjamin Mänz
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | - Rogier Bodewes
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Centre, the Netherlands
| |
Collapse
|
9
|
Choi MJ, Torremorell M, Bender JB, Smith K, Boxrud D, Ertl JR, Yang M, Suwannakarn K, Her D, Nguyen J, Uyeki TM, Levine M, Lindstrom S, Katz JM, Jhung M, Vetter S, Wong KK, Sreevatsan S, Lynfield R. Live Animal Markets in Minnesota: A Potential Source for Emergence of Novel Influenza A Viruses and Interspecies Transmission. Clin Infect Dis 2015; 61:1355-62. [PMID: 26223994 PMCID: PMC4599395 DOI: 10.1093/cid/civ618] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/07/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Live animal markets have been implicated in transmission of influenza A viruses (IAVs) from animals to people. We sought to characterize IAVs at 2 live animal markets in Minnesota to assess potential routes of occupational exposure and risk for interspecies transmission. METHODS We implemented surveillance for IAVs among employees, swine, and environment (air and surfaces) during a 12-week period (October 2012-January 2013) at 2 markets epidemiologically associated with persons with swine-origin IAV (variant) infections. Real-time reverse transcription polymerase chain reaction (rRT-PCR), viral culture, and whole-genome sequencing were performed on respiratory and environmental specimens, and serology on sera from employees at beginning and end of surveillance. RESULTS Nasal swabs from 11 of 17 (65%) employees tested positive for IAVs by rRT-PCR; 7 employees tested positive on multiple occasions and 1 employee reported influenza-like illness. Eleven of 15 (73%) employees had baseline hemagglutination inhibition antibody titers ≥40 to swine-origin IAVs, but only 1 demonstrated a 4-fold titer increase to both swine-origin and pandemic A/Mexico/4108/2009 IAVs. IAVs were isolated from swine (72/84), air (30/45), and pen railings (5/21). Whole-genome sequencing of 122 IAVs isolated from swine and environmental specimens revealed multiple strains and subtype codetections. Multiple gene segment exchanges among and within subtypes were observed, resulting in new genetic constellations and reassortant viruses. Genetic sequence similarities of 99%-100% among IAVs of 1 market customer and swine indicated interspecies transmission. CONCLUSIONS At markets where swine and persons are in close contact, swine-origin IAVs are prevalent and potentially provide conditions for novel IAV emergence.
Collapse
Affiliation(s)
- Mary J. Choi
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Montserrat Torremorell
- University of Minnesota College of Veterinary Medicine, Minnesota Center of Excellence for Influenza Research and Surveillance
| | - Jeff B. Bender
- University of Minnesota College of Veterinary Medicine, Minnesota Center of Excellence for Influenza Research and Surveillance
| | | | | | - Jon R. Ertl
- University of Minnesota College of Veterinary Medicine, Minnesota Center of Excellence for Influenza Research and Surveillance
| | - My Yang
- University of Minnesota College of Veterinary Medicine, Minnesota Center of Excellence for Influenza Research and Surveillance
| | - Kamol Suwannakarn
- University of Minnesota College of Veterinary Medicine, Minnesota Center of Excellence for Influenza Research and Surveillance
| | | | | | | | - Min Levine
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Michael Jhung
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Karen K. Wong
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Srinand Sreevatsan
- University of Minnesota College of Veterinary Medicine, Minnesota Center of Excellence for Influenza Research and Surveillance
| | | |
Collapse
|
10
|
Decorte I, Steensels M, Lambrecht B, Cay AB, De Regge N. Detection and Isolation of Swine Influenza A Virus in Spiked Oral Fluid and Samples from Individually Housed, Experimentally Infected Pigs: Potential Role of Porcine Oral Fluid in Active Influenza A Virus Surveillance in Swine. PLoS One 2015; 10:e0139586. [PMID: 26431039 PMCID: PMC4592207 DOI: 10.1371/journal.pone.0139586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/15/2015] [Indexed: 12/31/2022] Open
Abstract
Background The lack of seasonality of swine influenza A virus (swIAV) in combination with the capacity of swine to harbor a large number of co-circulating IAV lineages, resulting in the risk for the emergence of influenza viruses with pandemic potential, stress the importance of swIAV surveillance. To date, active surveillance of swIAV worldwide is barely done because of the short detection period in nasal swab samples. Therefore, more sensitive diagnostic methods to monitor circulating virus strains are requisite. Methods qRT-PCR and virus isolations were performed on oral fluid and nasal swabs collected from individually housed pigs that were infected sequentially with H1N1 and H3N2 swIAV strains. The same methods were also applied to oral fluid samples spiked with H1N1 to study the influence of conservation time and temperature on swIAV infectivity and detectability in porcine oral fluid. Results All swIAV infected animals were found qRT-PCR positive in both nasal swabs and oral fluid. However, swIAV could be detected for a longer period in oral fluid than in nasal swabs. Despite the high detectability of swIAV in oral fluid, virus isolation from oral fluid collected from infected pigs was rare. These results are supported by laboratory studies showing that the PCR detectability of swIAV remains unaltered during a 24 h incubation period in oral fluid, while swIAV infectivity drops dramatically immediately upon contact with oral fluid (3 log titer reduction) and gets lost after 24 h conservation in oral fluid at ambient temperature. Conclusions Our data indicate that porcine oral fluid has the potential to replace nasal swabs for molecular diagnostic purposes. The difficulty to isolate swIAV from oral fluid could pose a drawback for its use in active surveillance programs.
Collapse
Affiliation(s)
- Inge Decorte
- Operational Direction Viral Diseases, Enzootic and (re)emerging diseases, CODA-CERVA, Ukkel, Belgium
| | - Mieke Steensels
- Operational Direction Viral Diseases, Avian virology and immunology, CODA-CERVA, Ukkel, Belgium
| | - Bénédicte Lambrecht
- Operational Direction Viral Diseases, Avian virology and immunology, CODA-CERVA, Ukkel, Belgium
| | - Ann Brigitte Cay
- Operational Direction Viral Diseases, Enzootic and (re)emerging diseases, CODA-CERVA, Ukkel, Belgium
| | - Nick De Regge
- Operational Direction Viral Diseases, Enzootic and (re)emerging diseases, CODA-CERVA, Ukkel, Belgium
- * E-mail:
| |
Collapse
|
11
|
Neumann G, Kawaoka Y. Transmission of influenza A viruses. Virology 2015; 479-480:234-46. [PMID: 25812763 PMCID: PMC4424116 DOI: 10.1016/j.virol.2015.03.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 12/25/2022]
Abstract
Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
12
|
Emerging and Reemerging Infectious Disease Threats. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7151803 DOI: 10.1016/b978-1-4557-4801-3.00014-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Pathogenicity and transmissibility of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 genes in pigs. J Virol 2014; 89:2831-41. [PMID: 25540372 DOI: 10.1128/jvi.03355-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. IMPORTANCE Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza viruses with 3 or 5 genes from A(H1N1)pdm09 isolated from diseased pigs are pathogenic and transmissible in pigs, but the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes displayed less efficient transmissibility than the endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies revealed that an avian-like glycine at the HA 228 receptor binding site of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes is responsible for less efficient transmissibility in pigs. Our results provide insights into viral pathogenesis and the transmission of novel reassortant H3N2 viruses that are circulating in U.S. swine herds and warrant future surveillance.
Collapse
|
14
|
Powell JD, Dlugolenski D, Nagy T, Gabbard J, Lee C, Tompkins SM, Tripp RA. Polymerase discordance in novel swine influenza H3N2v constellations is tolerated in swine but not human respiratory epithelial cells. PLoS One 2014; 9:e110264. [PMID: 25330303 PMCID: PMC4199677 DOI: 10.1371/journal.pone.0110264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/04/2014] [Indexed: 12/03/2022] Open
Abstract
Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09) in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA) segment occurred within swine H3N2 with ∼80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA) showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection.
Collapse
Affiliation(s)
- Joshua D. Powell
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Daniel Dlugolenski
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Jon Gabbard
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Christopher Lee
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Stephen M. Tompkins
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Ralph A. Tripp
- Department of Infectious Diseases, Animal Health Research Center, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Cellular and humoral cross-immunity against two H3N2v influenza strains in presumably unexposed healthy and HIV-infected subjects. PLoS One 2014; 9:e105651. [PMID: 25162670 PMCID: PMC4146513 DOI: 10.1371/journal.pone.0105651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/22/2014] [Indexed: 11/19/2022] Open
Abstract
Human cases of infection due to a novel swine-origin variant of influenza A virus subtype H3N2 (H3N2v) have recently been identified in the United States. Pre-existing humoral and cellular immunity has been recognized as one of the key factors in limiting the infection burden of an emerging influenza virus strain, contributing to restrict its circulation and to mitigate clinical presentation. Aim of this study was to assess humoral and cell-mediated cross immune responses to H3N2v in immuno-competent (healthy donors, n = 45) and immuno-compromised hosts (HIV-infected subjects, n = 46) never exposed to H3N2v influenza strain. Humoral response against i) H3N2v (A/H3N2/Ind/08/11), ii) animal vaccine H3N2 strain (A/H3N2/Min/11/10), and iii) pandemic H1N1 virus (A/H1N1/Cal/07/09) was analysed by hemagglutination inhibition assay; cell-mediated response against the same influenza strains was analysed by ELISpot assay. A large proportion of healthy and HIV subjects displayed cross-reacting humoral and cellular immune responses against two H3N2v strains, suggesting the presence of B- and T-cell clones able to recognize epitopes from emerging viral strains in both groups. Specifically, humoral response was lower in HIV subjects than in HD, and a specific age-related pattern of antibody response against different influenza strains was observed both in HD and in HIV. Cellular immune response was similar between HD and HIV groups and no relationship with age was reported. Finally, no correlation between humoral and cellular immune response was observed. Overall, a high prevalence of HD and HIV patients showing cross reactive immunity against two H3N2v strains was observed, with a slightly lower proportion in HIV persons. Other studies focused on HIV subjects at different stages of diseases are needed in order to define how cross immunity can be affected by advanced immunosuppression.
Collapse
|
16
|
Choi MJ, Morin CA, Scheftel J, Vetter SM, Smith K, Lynfield R. Variant Influenza Associated with Live Animal Markets, Minnesota. Zoonoses Public Health 2014; 62:326-30. [DOI: 10.1111/zph.12139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Indexed: 11/30/2022]
Affiliation(s)
- M. J. Choi
- Minnesota Department of Health; St. Paul MN USA
- Epidemic Intelligence Service; Centers for Disease Control and Prevention; Atlanta GA USA
| | - C. A. Morin
- Minnesota Department of Health; St. Paul MN USA
| | - J. Scheftel
- Minnesota Department of Health; St. Paul MN USA
| | - S. M. Vetter
- Minnesota Department of Health Public Health Laboratory; St. Paul MN USA
| | - K. Smith
- Minnesota Department of Health; St. Paul MN USA
| | - R. Lynfield
- Minnesota Department of Health; St. Paul MN USA
| | | |
Collapse
|
17
|
Compendium of measures to prevent disease associated with animals in public settings, 2013. J Am Vet Med Assoc 2014; 243:1270-88. [PMID: 24134577 DOI: 10.2460/javma.243.9.1270] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Freidl GS, Meijer A, de Bruin E, de Nardi M, Munoz O, Capua I, Breed AC, Harris K, Hill A, Kosmider R, Banks J, von Dobschuetz S, Stark K, Wieland B, Stevens K, van der Werf S, Enouf V, van der Meulen K, Van Reeth K, Dauphin G, Koopmans M, FLURISK Consortium. Influenza at the animal–human interface: a review of the literature for virological evidence of human infection with swine or avian influenza viruses other than A(H5N1). Euro Surveill 2014; 19. [DOI: 10.2807/1560-7917.es2014.19.18.20793] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Factors that trigger human infection with animal influenza virus progressing into a pandemic are poorly understood. Within a project developing an evidence-based risk assessment framework for influenza viruses in animals, we conducted a review of the literature for evidence of human infection with animal influenza viruses by diagnostic methods used. The review covering Medline, Embase, SciSearch and CabAbstracts yielded 6,955 articles, of which we retained 89; for influenza A(H5N1) and A(H7N9), the official case counts of the World Health Organization were used. An additional 30 studies were included by scanning the reference lists. Here, we present the findings for confirmed infections with virological evidence. We found reports of 1,419 naturally infected human cases, of which 648 were associated with avian influenza virus (AIV) A(H5N1), 375 with other AIV subtypes, and 396 with swine influenza virus (SIV). Human cases naturally infected with AIV spanned haemagglutinin subtypes H5, H6, H7, H9 and H10. SIV cases were associated with endemic SIV of H1 and H3 subtype descending from North American and Eurasian SIV lineages and various reassortants thereof. Direct exposure to birds or swine was the most likely source of infection for the cases with available information on exposure.
Collapse
Affiliation(s)
- G S Freidl
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Bilthoven, the Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - A Meijer
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Bilthoven, the Netherlands
| | - E de Bruin
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Bilthoven, the Netherlands
| | - M de Nardi
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human–Animal Interface, Padova, Italy
| | - O Munoz
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human–Animal Interface, Padova, Italy
| | - I Capua
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human–Animal Interface, Padova, Italy
| | - A C Breed
- Animal Health and Veterinary Agency (AHVLA), Surrey, United Kingdom
| | - K Harris
- Animal Health and Veterinary Agency (AHVLA), Surrey, United Kingdom
| | - A Hill
- Animal Health and Veterinary Agency (AHVLA), Surrey, United Kingdom
- Royal Veterinary College (RVC), London, United Kingdom
| | - R Kosmider
- Animal Health and Veterinary Agency (AHVLA), Surrey, United Kingdom
| | - J Banks
- Animal Health and Veterinary Agency (AHVLA), Surrey, United Kingdom
| | - S von Dobschuetz
- United Nations Food and Agricultural Organization (FAO), Rome, Italy
- Royal Veterinary College (RVC), London, United Kingdom
| | - K Stark
- Royal Veterinary College (RVC), London, United Kingdom
| | - B Wieland
- Royal Veterinary College (RVC), London, United Kingdom
| | - K Stevens
- Royal Veterinary College (RVC), London, United Kingdom
| | | | - V Enouf
- Institut Pasteur, Paris, France
| | | | | | - G Dauphin
- United Nations Food and Agricultural Organization (FAO), Rome, Italy
| | - M Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Bilthoven, the Netherlands
| | - FLURISK Consortium
- http://www.izsvenezie.it/index.php?option=com_content&view=article&id=1203&Itemid=629
| |
Collapse
|
19
|
Li C, Chen H. Enhancement of influenza virus transmission by gene reassortment. Curr Top Microbiol Immunol 2014; 385:185-204. [PMID: 25048543 DOI: 10.1007/82_2014_389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Influenza A virus is characterized by a genome composed of eight single-stranded, negative sense RNA segments, which allow for reassortment between different strains when they co-infect the same host cell. Reassortment is an important driving force for the evolution of influenza viruses. The ability of reassortment allows influenza virus to endlessly reinvent itself and pose a constant threat to the health of humans and other animals. Of the four human influenza pandemics since the beginning of the last century, three of them were caused by reassortant viruses bearing genes of avian, human or swine influenza virus origin. In the past decade, great efforts have been made to understand the transmissibility of influenza viruses. The use of reverse genetics technology has made it substantially easier to generate reassortant viruses and evaluate the contribution of individual virus gene on virus transmissibility in animal models such as ferrets and guinea pigs. H5, H7, and H9 avian influenza viruses represent the top three subtypes that are candidates to cause the next human influenza pandemic. Many studies have been conducted to determine whether the transmission of these avian influenza viruses could be enhanced by acquisition of gene segments from human influenza viruses. Moreover, the 2009 pdmH1N1 viruses and the triple reassortant swine influenza viruses were extensively studied to identify the gene segments that contribute to their transmissibility. These studies have greatly deepened our understanding of the transmissibility of reassortant influenza viruses, which, in turn, has improved our ability to be prepared for reassortant influenza virus with enhanced transmissibility and pandemic potential.
Collapse
Affiliation(s)
- Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Nangang, China,
| | | |
Collapse
|
20
|
Epperson S, Jhung M, Richards S, Quinlisk P, Ball L, Moll M, Boulton R, Haddy L, Biggerstaff M, Brammer L, Trock S, Burns E, Gomez T, Wong KK, Katz J, Lindstrom S, Klimov A, Bresee JS, Jernigan DB, Cox N, Finelli L. Human infections with influenza A(H3N2) variant virus in the United States, 2011-2012. Clin Infect Dis 2013; 57 Suppl 1:S4-S11. [PMID: 23794729 DOI: 10.1093/cid/cit272] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND. During August 2011-April 2012, 13 human infections with influenza A(H3N2) variant (H3N2v) virus were identified in the United States; 8 occurred in the prior 2 years. This virus differs from previous variant influenza viruses in that it contains the matrix (M) gene from the Influenza A(H1N1)pdm09 pandemic influenza virus. METHODS. A case was defined as a person with laboratory-confirmed H3N2v virus infection. Cases and contacts were interviewed to determine exposure to swine and other animals and to assess potential person-to-person transmission. RESULTS. Median age of cases was 4 years, and 12 of 13 (92%) were children. Pig exposure was identified in 7 (54%) cases. Six of 7 cases with swine exposure (86%) touched pigs, and 1 (14%) was close to pigs without known direct contact. Six cases had no swine exposure, including 2 clusters of suspected person-to-person transmission. All cases had fever; 12 (92%) had respiratory symptoms, and 3 (23%) were hospitalized for influenza. All 13 cases recovered. CONCLUSIONS. H3N2v virus infections were identified at a high rate from August 2011 to April 2012, and cases without swine exposure were identified in influenza-like illness outbreaks, indicating that limited person-to-person transmission likely occurred. Variant influenza viruses rarely result in sustained person-to-person transmission; however, the potential for this H3N2v virus to transmit efficiently is of concern. With minimal preexisting immunity in children and the limited cross-protective effect from seasonal influenza vaccine, the majority of children are susceptible to infection with this novel influenza virus.
Collapse
Affiliation(s)
- Scott Epperson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Scientific opinion on the possible risks posed by the influenza A (H3N2v) virus for animal health and its potential spread and implications for animal and human health. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Jhung MA, Epperson S, Biggerstaff M, Allen D, Balish A, Barnes N, Beaudoin A, Berman L, Bidol S, Blanton L, Blythe D, Brammer L, D'Mello T, Danila R, Davis W, de Fijter S, Diorio M, Durand LO, Emery S, Fowler B, Garten R, Grant Y, Greenbaum A, Gubareva L, Havers F, Haupt T, House J, Ibrahim S, Jiang V, Jain S, Jernigan D, Kazmierczak J, Klimov A, Lindstrom S, Longenberger A, Lucas P, Lynfield R, McMorrow M, Moll M, Morin C, Ostroff S, Page SL, Park SY, Peters S, Quinn C, Reed C, Richards S, Scheftel J, Simwale O, Shu B, Soyemi K, Stauffer J, Steffens C, Su S, Torso L, Uyeki TM, Vetter S, Villanueva J, Wong KK, Shaw M, Bresee JS, Cox N, Finelli L. Outbreak of variant influenza A(H3N2) virus in the United States. Clin Infect Dis 2013; 57:1703-12. [PMID: 24065322 PMCID: PMC5733625 DOI: 10.1093/cid/cit649] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background. Variant influenza virus infections are rare but may have pandemic potential if person-to-person transmission is efficient. We describe the epidemiology of a multistate outbreak of an influenza A(H3N2) variant virus (H3N2v) first identified in 2011. Methods. We identified laboratory-confirmed cases of H3N2v and used a standard case report form to characterize illness and exposures. We considered illness to result from person-to-person H3N2v transmission if swine contact was not identified within 4 days prior to illness onset. Results. From 9 July to 7 September 2012, we identified 306 cases of H3N2v in 10 states. The median age of all patients was 7 years. Commonly reported signs and symptoms included fever (98%), cough (85%), and fatigue (83%). Sixteen patients (5.2%) were hospitalized, and 1 fatal case was identified. The majority of those infected reported agricultural fair attendance (93%) and/or contact with swine (95%) prior to illness. We identified 15 cases of possible person-to-person transmission of H3N2v. Viruses recovered from patients were 93%–100% identical and similar to viruses recovered from previous cases of H3N2v. All H3N2v viruses examined were susceptible to oseltamivir and zanamivir and resistant to adamantane antiviral medications. Conclusions. In a large outbreak of variant influenza, the majority of infected persons reported exposures, suggesting that swine contact at an agricultural fair was a risk for H3N2v infection. We identified limited person-to-person H3N2v virus transmission, but found no evidence of efficient or sustained person-to-person transmission. Fair managers and attendees should be aware of the risk of swine-to-human transmission of influenza viruses in these settings.
Collapse
Affiliation(s)
- Michael A Jhung
- Influenza Division, National Center for Immunization and Respiratory Disease
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Feng Z, Gomez J, Bowman AS, Ye J, Long LP, Nelson SW, Yang J, Martin B, Jia K, Nolting JM, Cunningham F, Cardona C, Zhang J, Yoon KJ, Slemons RD, Wan XF. Antigenic characterization of H3N2 influenza A viruses from Ohio agricultural fairs. J Virol 2013; 87:7655-67. [PMID: 23637412 PMCID: PMC3700273 DOI: 10.1128/jvi.00804-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 04/23/2013] [Indexed: 01/22/2023] Open
Abstract
The demonstrated link between the emergence of H3N2 variant (H3N2v) influenza A viruses (IAVs) and swine exposure at agricultural fairs has raised concerns about the human health risk posed by IAV-infected swine. Understanding the antigenic profiles of IAVs circulating in pigs at agricultural fairs is critical to developing effective prevention and control strategies. Here, 68 H3N2 IAV isolates recovered from pigs at Ohio fairs (2009 to 2011) were antigenically characterized. These isolates were compared with other H3 IAVs recovered from commercial swine, wild birds, and canines, along with human seasonal and variant H3N2 IAVs. Antigenic cartography demonstrated that H3N2 IAV isolates from Ohio fairs could be divided into two antigenic groups: (i) the 2009 fair isolates and (ii) the 2010 and 2011 fair isolates. These same two antigenic clusters have also been observed in commercial swine populations in recent years. Human H3N2v isolates from 2010 and 2011 are antigenically clustered with swine-origin IAVs from the same time period. The isolates recovered from pigs at fairs did not cross-react with ferret antisera produced against the human seasonal H3N2 IAVs circulating during the past decade, raising the question of the degree of immunity that the human population has to swine-origin H3N2 IAVs. Our results demonstrate that H3N2 IAVs infecting pigs at fairs and H3N2v isolates were antigenically similar to the IAVs circulating in commercial swine, demonstrating that exhibition swine can function as a bridge between commercial swine and the human population.
Collapse
Affiliation(s)
- Zhixin Feng
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Janet Gomez
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jianqiang Ye
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Li-Ping Long
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Sarah W. Nelson
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jialiang Yang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Brigitte Martin
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Kun Jia
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Fred Cunningham
- USDA/APHIS/WS, National Wildlife Research Center, Mississippi Field Station, Mississippi State, Mississippi, USA
| | - Carol Cardona
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Richard D. Slemons
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Xiu-Feng Wan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
24
|
Baz M, Paskel M, Matsuoka Y, Zengel J, Cheng X, Jin H, Subbarao K. Replication and immunogenicity of swine, equine, and avian h3 subtype influenza viruses in mice and ferrets. J Virol 2013; 87:6901-10. [PMID: 23576512 PMCID: PMC3676140 DOI: 10.1128/jvi.03520-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/04/2013] [Indexed: 01/11/2023] Open
Abstract
Since it is difficult to predict which influenza virus subtype will cause an influenza pandemic, it is important to prepare influenza virus vaccines against different subtypes and evaluate the safety and immunogenicity of candidate vaccines in preclinical and clinical studies prior to a pandemic. In addition to infecting humans, H3 influenza viruses commonly infect pigs, horses, and avian species. We selected 11 swine, equine, and avian H3 influenza viruses and evaluated their kinetics of replication and ability to induce a broadly cross-reactive antibody response in mice and ferrets. The swine and equine viruses replicated well in the upper respiratory tract of mice. With the exception of one avian virus that replicated poorly in the lower respiratory tract, all of the viruses replicated in mouse lungs. In ferrets, all of the viruses replicated well in the upper respiratory tract, but the equine viruses replicated poorly in the lungs. Extrapulmonary spread was not observed in either mice or ferrets. No single virus elicited antibodies that cross-reacted with viruses from all three animal sources. Avian and equine H3 viruses elicited broadly cross-reactive antibodies against heterologous viruses isolated from the same or other species, but the swine viruses did not. We selected an equine and an avian H3 influenza virus for further development as vaccines.
Collapse
Affiliation(s)
- Mariana Baz
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Myeisha Paskel
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Yumiko Matsuoka
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Xing Cheng
- MedImmune LLC, Mountain View, California, USA
| | - Hong Jin
- MedImmune LLC, Mountain View, California, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Wong KK, Greenbaum A, Moll ME, Lando J, Moore EL, Ganatra R, Biggerstaff M, Lam E, Smith EE, Storms AD, Miller JR, Dato V, Nalluswami K, Nambiar A, Silvestri SA, Lute JR, Ostroff S, Hancock K, Branch A, Trock SC, Klimov A, Shu B, Brammer L, Epperson S, Finelli L, Jhung MA. Outbreak of influenza A (H3N2) variant virus infection among attendees of an agricultural fair, Pennsylvania, USA, 2011. Emerg Infect Dis 2013; 18:1937-44. [PMID: 23171635 PMCID: PMC3557885 DOI: 10.3201/eid1812.121097] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Avoiding or limiting contact with swine at agricultural events may help prevent A(H3N2)v virus infections in such settings. During August 2011, influenza A (H3N2) variant [A(H3N2)v] virus infection developed in a child who attended an agricultural fair in Pennsylvania, USA; the virus resulted from reassortment of a swine influenza virus with influenza A(H1N1)pdm09. We interviewed fair attendees and conducted a retrospective cohort study among members of an agricultural club who attended the fair. Probable and confirmed cases of A(H3N2)v virus infection were defined by serology and genomic sequencing results, respectively. We identified 82 suspected, 4 probable, and 3 confirmed case-patients who attended the fair. Among 127 cohort study members, the risk for suspected case status increased as swine exposure increased from none (4%; referent) to visiting swine exhibits (8%; relative risk 2.1; 95% CI 0.2–53.4) to touching swine (16%; relative risk 4.4; 95% CI 0.8–116.3). Fairs may be venues for zoonotic transmission of viruses with epidemic potential; thus, health officials should investigate respiratory illness outbreaks associated with agricultural events.
Collapse
Affiliation(s)
- Karen K Wong
- Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Seasonal trivalent inactivated influenza vaccine does not protect against newly emerging variants of influenza A (H3N2v) virus in ferrets. J Virol 2012; 87:1261-3. [PMID: 23115290 DOI: 10.1128/jvi.02625-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent increase in human cases of influenza A H3N2 variant virus [A(H3N2)v] highlights the need to assess whether seasonal influenza vaccination provides cross-protection against A(H3N2)v virus. Our data demonstrate that the 2011-2012 trivalent inactivated influenza vaccine (TIV) protected ferrets against homologous H3N2 virus challenge but provided minimal to no protection against A(H3N2)v virus. The complete absence of specific hemagglutination inhibition antibody response to A(H3N2)v is consistent with the poor cross-protection observed among TIV-immune animals.
Collapse
|
27
|
Barman S, Krylov PS, Fabrizio TP, Franks J, Turner JC, Seiler P, Wang D, Rehg JE, Erickson GA, Gramer M, Webster RG, Webby RJ. Pathogenicity and transmissibility of North American triple reassortant swine influenza A viruses in ferrets. PLoS Pathog 2012; 8:e1002791. [PMID: 22829764 PMCID: PMC3400563 DOI: 10.1371/journal.ppat.1002791] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 05/22/2012] [Indexed: 01/06/2023] Open
Abstract
North American triple reassortant swine (TRS) influenza A viruses have caused sporadic human infections since 2005, but human-to-human transmission has not been documented. These viruses have six gene segments (PB2, PB1, PA, HA, NP, and NS) closely related to those of the 2009 H1N1 pandemic viruses. Therefore, understanding of these viruses' pathogenicity and transmissibility may help to identify determinants of virulence of the 2009 H1N1 pandemic viruses and to elucidate potential human health threats posed by the TRS viruses. Here we evaluated in a ferret model the pathogenicity and transmissibility of three groups of North American TRS viruses containing swine-like and/or human-like HA and NA gene segments. The study was designed only to detect informative and significant patterns in the transmissibility and pathogenicity of these three groups of viruses. We observed that irrespective of their HA and NA lineages, the TRS viruses were moderately pathogenic in ferrets and grew efficiently in both the upper and lower respiratory tracts. All North American TRS viruses studied were transmitted between ferrets via direct contact. However, their transmissibility by respiratory droplets was related to their HA and NA lineages: TRS viruses with human-like HA and NA were transmitted most efficiently, those with swine-like HA and NA were transmitted minimally or not transmitted, and those with swine-like HA and human-like NA (N2) showed intermediate transmissibility. We conclude that the lineages of HA and NA may play a crucial role in the respiratory droplet transmissibility of these viruses. These findings have important implications for pandemic planning and warrant confirmation.
Collapse
Affiliation(s)
- Subrata Barman
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Petr S. Krylov
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Thomas P. Fabrizio
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - John Franks
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jasmine C. Turner
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Patrick Seiler
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - David Wang
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jerold E. Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Gene A. Erickson
- Veterinary Diagnostic Laboratory (NCVDL) System, North Carolina Department of Agriculture, Raleigh, North Carolina, United States of America
| | - Marie Gramer
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Robert G. Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J. Webby
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
28
|
Lindstrom S, Garten R, Balish A, Shu B, Emery S, Berman L, Barnes N, Sleeman K, Gubareva L, Villanueva J, Klimov A. Human infections with novel reassortant influenza A(H3N2)v viruses, United States, 2011. Emerg Infect Dis 2012; 18:834-7. [PMID: 22516540 PMCID: PMC3358066 DOI: 10.3201/eid1805.111922] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
During July-December 2011, a variant virus, influenza A(H3N2)v, caused 12 human cases of influenza. The virus contained genes originating from swine, avian, and human viruses, including the M gene from influenza A(H1N1)pdm09 virus. Influenza A(H3N2)v viruses were antigenically distinct from seasonal influenza viruses and similar to proposed vaccine virus A/Minnesota/11/2010.
Collapse
Affiliation(s)
- Stephen Lindstrom
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pathogenesis and transmission of swine origin A(H3N2)v influenza viruses in ferrets. Proc Natl Acad Sci U S A 2012; 109:3944-9. [PMID: 22355116 DOI: 10.1073/pnas.1119945109] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent isolation of a novel swine-origin influenza A H3N2 variant virus [A(H3N2)v] from humans in the United States has raised concern over the pandemic potential of these viruses. Here, we analyzed the virulence, transmissibility, and receptor-binding preference of four A(H3N2)v influenza viruses isolated from humans in 2009, 2010, and 2011. High titers of infectious virus were detected in nasal turbinates and nasal wash samples of A(H3N2)v-inoculated ferrets. All four A(H3N2)v viruses possessed the capacity to spread efficiently between cohoused ferrets, and the 2010 and 2011 A(H3N2)v isolates transmitted efficiently to naïve ferrets by respiratory droplets. A dose-dependent glycan array analysis of A(H3N2)v showed a predominant binding to α2-6-sialylated glycans, similar to human-adapted influenza A viruses. We further tested the viral replication efficiency of A(H3N2)v viruses in a relevant cell line, Calu-3, derived from human bronchial epithelium. The A(H3N2)v viruses replicated in Calu-3 cells to significantly higher titers compared with five common seasonal H3N2 influenza viruses. These findings suggest that A(H3N2)v viruses have the capacity for efficient replication and transmission in mammals and underscore the need for continued public health surveillance.
Collapse
|
30
|
Ma W, Liu Q, Bawa B, Qiao C, Qi W, Shen H, Chen Y, Ma J, Li X, Webby RJ, García-Sastre A, Richt JA. The neuraminidase and matrix genes of the 2009 pandemic influenza H1N1 virus cooperate functionally to facilitate efficient replication and transmissibility in pigs. J Gen Virol 2012; 93:1261-1268. [PMID: 22337640 DOI: 10.1099/vir.0.040535-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 2009 pandemic H1N1 virus (pH1N1) contains neuraminidase (NA) and matrix (M) genes from Eurasian avian-like swine influenza viruses (SIVs), with the remaining six genes from North American triple-reassortant SIVs. To characterize the role of the pH1N1 NA and M genes in pathogenesis and transmission, their impact was evaluated in the background of an H1N1 triple-reassortant (tr1930) SIV in which the HA (H3) and NA (N2) of influenza A/swine/Texas/4199-2/98 virus were replaced with those from the classical H1N1 A/swine/Iowa/15/30 (1930) virus. The laboratory-adapted 1930 virus did not shed nor transmit in pigs, but tr1930 was able to shed in infected pigs. The NA, M or both genes of the tr1930 virus were then substituted by those of pH1N1. The resulting virus with both NA and M from pH1N1 grew to significantly higher titre in cell cultures than the viruses with single NA or M from pH1N1. In a pig model, only the virus containing both NA and M from pH1N1 was transmitted to and infected sentinels, whereas the viruses with single NA or M from pH1N1 did not. These results demonstrate that the right combination of NA and M genes is critical for the replication and transmissibility of influenza viruses in pigs.
Collapse
Affiliation(s)
- Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Qinfang Liu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Bhupinder Bawa
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Chuanling Qiao
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Wenbao Qi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Huigang Shen
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Ying Chen
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jingqun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Xi Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Richard J Webby
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Adolfo García-Sastre
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, NY, USA.,Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY, USA.,Department of Microbiology, Mount Sinai School of Medicine, New York, NY, USA
| | - Jürgen A Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
31
|
Emergence of novel reassortant H3N2 swine influenza viruses with the 2009 pandemic H1N1 genes in the United States. Arch Virol 2011; 157:555-62. [PMID: 22198410 DOI: 10.1007/s00705-011-1203-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
Reassortant H1 swine influenza viruses (SIVs) carrying 2009 pandemic H1N1 virus (pH1N1) genes have been isolated from pigs worldwide. Seven novel reassortant H3N2 SIVs were identified from diseased pigs in the USA from winter 2010 to spring 2011. These novel viruses contain three or five internal genes from pH1N1 and continue to circulate in swine herds. The emergence of novel reassortant H3N2 SIVs demonstrates reassortment between pH1N1 and endemic SIVs in pigs and justifies continuous surveillance.
Collapse
|
32
|
Shu B, Garten R, Emery S, Balish A, Cooper L, Sessions W, Deyde V, Smith C, Berman L, Klimov A, Lindstrom S, Xu X. Genetic analysis and antigenic characterization of swine origin influenza viruses isolated from humans in the United States, 1990-2010. Virology 2011; 422:151-60. [PMID: 22078166 DOI: 10.1016/j.virol.2011.10.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/03/2011] [Accepted: 10/14/2011] [Indexed: 12/01/2022]
Abstract
Swine influenza viruses (SIV) have been recognized as important pathogens for pigs and occasional human infections with swine origin influenza viruses (SOIV) have been reported. Between 1990 and 2010, a total of twenty seven human cases of SOIV infections have been identified in the United States. Six viruses isolated from 1990 to 1995 were recognized as classical SOIV (cSOIV) A(H1N1). After 1998, twenty-one SOIV recovered from human cases were characterized as triple reassortant (tr_SOIV) inheriting genes from classical swine, avian and human influenza viruses. Of those twenty-one tr_SOIV, thirteen were of A(H1N1), one of A(H1N2), and seven of A(H3N2) subtype. SOIV characterized were antigenically and genetically closely related to the subtypes of influenza viruses circulating in pigs but distinct from contemporary influenza viruses circulating in humans. The diversity of subtypes and genetic lineages in SOIV cases highlights the importance of continued surveillance at the animal-human interface.
Collapse
Affiliation(s)
- Bo Shu
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|