1
|
Holland SC, Smith MF, Holland LA, Maqsood R, Hu JC, Murugan V, Driver EM, Halden RU, Lim ES. Wastewater and clinical surveillance of respiratory viral pathogens on a university campus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174981. [PMID: 39053521 DOI: 10.1016/j.scitotenv.2024.174981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/07/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Areas of dense population congregation are prone to experience respiratory virus outbreaks. We monitored wastewater and clinic patients for the presence of respiratory viruses on a large, public university campus. Campus sewer systems were monitored in 16 locations for the presence of viruses using next generation sequencing over 22 weeks in 2023. During this period, we detected a surge in human adenovirus (HAdV) levels in wastewater. Hence, we initiated clinical surveillance at an on-campus clinic from patients presenting with acute respiratory infection. From whole genome sequencing of 123 throat and/or nasal swabs collected, we identified an outbreak of HAdV, specifically of HAdV-E4 and HAdV-B7 genotypes overlapping in time. The temporal dynamics and proportions of HAdV genotypes found in wastewater were corroborated in clinical infections. We tracked specific single nucleotide polymorphisms (SNPs) found in clinical virus sequences and showed that they arose in wastewater signals concordant with the time of clinical presentation, linking community transmission of HAdV to the outbreak. This study demonstrates how wastewater-based epidemiology can be integrated with surveillance at ambulatory healthcare settings to monitor areas prone to respiratory virus outbreaks and provide public health guidance.
Collapse
Affiliation(s)
- Steven C Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Matthew F Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - LaRinda A Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Rabia Maqsood
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - James C Hu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Vel Murugan
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Erin M Driver
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Rolf U Halden
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Efrem S Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Holland SC, Smith MF, Holland LA, Maqsood R, Hu JC, Murugan V, Driver EM, Halden RU, Lim ES. Human adenovirus outbreak at a university campus monitored by wastewater and clinical surveillance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.27.24304990. [PMID: 38586006 PMCID: PMC10996756 DOI: 10.1101/2024.03.27.24304990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Areas of dense population congregation are prone to experience respiratory virus outbreaks. We monitored wastewater and clinic patients for the presence of respiratory viruses on a large, public university campus. Campus sewer systems were monitored in 16 locations for the presence of viruses using next generation sequencing over 22 weeks in 2023. During this period, we detected a surge in human adenovirus (HAdV) levels in wastewater. Hence, we initiated clinical surveillance at an on-campus clinic from patients presenting with acute respiratory infection. From whole genome sequencing of 123 throat and/or nasal swabs collected, we identified an outbreak of HAdV, specifically of HAdV-E4 and HAdV-B7 genotypes overlapping in time. The temporal dynamics and proportions of HAdV genotypes found in wastewater were corroborated in clinical infections. We tracked specific single nucleotide polymorphisms (SNPs) found in clinical virus sequences and showed that they arose in wastewater signals concordant with the time of clinical presentation, linking community transmission of HAdV to the outbreak. This study demonstrates how wastewater-based epidemiology can be integrated with surveillance at ambulatory healthcare settings to monitor areas prone to respiratory virus outbreaks and provide public health guidance.
Collapse
Affiliation(s)
- Steven C. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Matthew F. Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Rabia Maqsood
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James C. Hu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Vel Murugan
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Erin M. Driver
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Rolf U. Halden
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- National Centre for Infectious Diseases, Singapore
| |
Collapse
|
3
|
Sun J, Ma X, Zhang M, Xie M, Zhang X, Han X, Li X, Zhou E, Wang J, Wang J. Comparisons of lymphocytes profiles and inflammatory cytokines levels in blood of patients with differed severity of infection by human adenovirus type 7. BMC Infect Dis 2023; 23:174. [PMID: 36949406 PMCID: PMC10031703 DOI: 10.1186/s12879-023-08132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Human adenovirus (HAdV) infection outbreak causes community-acquired pneumonia. Cellular immune dysfunction and hypercytokinemia play important roles in the pathogenesis of adenovirus respiratory infection. Some soluble factors in peripheral blood can assist in judging the virus-induced disease severity. The expression levels of inflammatory cytokines differ among patients with different disease severity. However, whether and how HAdV-7 infection influences the composition of blood immune cells and serum cytokine levels in patients at different disease stages, as well as the diagnosis values of these parameters, have rarely been intensively studied. We aimed to investigate lymphocytes profiles and cytokines levels in blood of patients at different disease stages upon human adenovirus type 7 (HAdV-7) infections, and explored the diagnosis values of the investigated parameters. METHODS Patients from two outbreaks of HAdV-7 in military of China were categorized into upper respiratory infection (URI) group, common pneumonia (CP) group and severe pneumonia (SP) group according to disease severity. Peripheral blood samples were subjected to routine laboratory tests, while flow cytometry and ELISA were used to measure the lymphocyte subsets and cytokines in blood, respectively. The receiver operating characteristic (ROC) curves were performed to examine the diagnostic of these blood parameters. RESULTS Signs of imbalanced lymphocytes composition and hypercytokinemia were observed in HAdV-7-infected patients. The percentages of CD3+ T cells and NK cells were significantly decreased along with the aggravation of the disease, particularly for NK cells and CD4+ T cells. The neutrophil to lymphocyte ratio (NLR) increased significantly in patients with more severe disease. In addition, the levels of serum CXCL10, IL-2 and TNF-α were positively correlated with disease severity, while reduced levels of IFN-γ and IL-10 were found in SP patients. Furthermore, analysis of ROC showed that multiple parameters including the percentage of blood CD3+ cells and serum CXCL10 level could predict the progression of HAdV-7 infection. CONCLUSION Imbalance of immune state with hypercytokinemia occurred during HAdV-7 infection. The percentages of blood immune cells such as CD3+ T cells and the levels of serum cytokines such as CXCL10 showed potential diagnosis values in HAdV-7 infection.
Collapse
Affiliation(s)
- Junping Sun
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Xidong Ma
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Mingyue Zhang
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Mei Xie
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Xingang Zhang
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Xinjie Han
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Xinfu Li
- Department of respiratory and critical care medicine, West Beijing Medical District of People's Liberation Army General Hospital, West Third Ring North Road, Haidian District, 100048, Beijing, China
| | - Enlu Zhou
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Junyu Wang
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China
| | - Jianxin Wang
- Department of respiratory and critical care medicine, The Chinese PLA General Hospital, Heishanhu Road, Haidian Distrit, 100193, Beijing, China.
| |
Collapse
|
4
|
Wang B, Li J, Wu S, Wang Y, Chen Y, Zhai Y, Song X, Zhao Z, Zhang Z, Zhang J, Yu R, Hou L, Chen W. A seroepidemiological survey of adenovirus type 7 circulation among healthy adults in China and in Sierra Leone, West Africa. Front Public Health 2023; 11:1095343. [PMID: 36815162 PMCID: PMC9940762 DOI: 10.3389/fpubh.2023.1095343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Adenovirus type 7 (HAdV7) is one of the most pathogenic human adenoviruses (HAdVs) and can cause severe illness and even death, particularly in people with weakened immune systems. Many countries worldwide have experienced epidemics of this highly contagious pathogen, including China and Sierra Leone; however, studies describing the seroprevalence of anti-HAdV7 neutralizing antibodies (nAbs) are still lacking. Herein, we established an efficient neutralization assay based on a recombinant luciferase-expressing HAdV7 virus (HAd7-Luc) to monitor historical HAdV7 infections and predict outbreak distributions. Among the 2,350 serum samples collected from eight sites in China and Sierra Leone in this cross-sectional serological survey, the overall proportion of anti-HAdV7-seropositive individuals was nearly 60%, with higher seroprevalence rates in Sierra Leone than in China. Regionally, HAdV7 nAb titers were higher in China than in Sierra Leone and showed a geographic variation across different regions. Regardless of the location, the seropositive rate of HAdV7 nAb was lower than that of HAdV5 nAb, as was the nAb titer. The prevalence rates of antibodies against HAdV7 and HAdV5 were both related to age but not to sex. In addition, serologic cross-reactions were rarely observed among people infected with HAdV7 and HAdV5. These results indicate a humoral immune response acquired through endemic HAdV7 infection and enrich the understanding of not only the epidemiological prevention and control of HAdV7 but also the clinical application of HAdV7-based vaccines or gene therapy tools.
Collapse
Affiliation(s)
- Busen Wang
- Vaccine and Antibody Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Jianhua Li
- Zhejiang Provincial Center of Disease Control and Prevention, Hangzhou, China
| | - Shipo Wu
- Vaccine and Antibody Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Yudong Wang
- Vaccine and Antibody Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Yi Chen
- Vaccine and Antibody Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Yanfang Zhai
- Vaccine and Antibody Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaohong Song
- Vaccine and Antibody Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Zhenghao Zhao
- Vaccine and Antibody Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Zhe Zhang
- Vaccine and Antibody Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Jinlong Zhang
- Vaccine and Antibody Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Rui Yu
- Vaccine and Antibody Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Hou
- Vaccine and Antibody Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China,*Correspondence: Lihua Hou ✉
| | - Wei Chen
- Vaccine and Antibody Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China,Wei Chen ✉
| |
Collapse
|
5
|
Lynch JP, Kajon AE. Adenovirus: Epidemiology, Global Spread of Novel Types, and Approach to Treatment. Semin Respir Crit Care Med 2021; 42:800-821. [PMID: 34918322 DOI: 10.1055/s-0041-1733802] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adenoviruses (AdVs) are DNA viruses that typically cause mild infections involving the upper or lower respiratory tract, gastrointestinal tract, or conjunctiva. Rare manifestations of AdV infections include hemorrhagic cystitis, hepatitis, hemorrhagic colitis, pancreatitis, nephritis, or meningoencephalitis. AdV infections are more common in young children, due to lack of humoral immunity. Epidemics of AdV infection may occur in healthy children or adults in closed or crowded settings (particularly military recruits). The vast majority of cases are self-limited. However, the clinical spectrum is broad and fatalities may occur. Dissemination is more likely in patients with impaired immunity (e.g., organ transplant recipients, human immunodeficiency virus infection). Fatality rates for untreated severe AdV pneumonia or disseminated disease may exceed 50%. More than 100 genotypes and 52 serotypes of AdV have been identified and classified into seven species designated HAdV-A through -G. Different types display different tissue tropisms that correlate with clinical manifestations of infection. The predominant types circulating at a given time differ among countries or regions, and change over time. Transmission of novel strains between countries or across continents and replacement of dominant viruses by new strains may occur. Treatment of AdV infections is controversial, as prospective, randomized therapeutic trials have not been done. Cidofovir has been the drug of choice for severe AdV infections, but not all patients require treatment. Live oral vaccines are highly efficacious in reducing the risk of respiratory AdV infection and are in routine use in the military in the United States but currently are not available to civilians.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Adriana E Kajon
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico
| |
Collapse
|
6
|
Coleman KK, Wong CC, Jayakumar J, Nguyen TT, Wong AWL, Yadana S, Thoon KC, Chan KP, Low JG, Kalimuddin S, Dehghan S, Kang J, Shamsaddini A, Seto D, Su YCF, Gray GC. Adenoviral Infections in Singapore: Should New Antiviral Therapies and Vaccines Be Adopted? J Infect Dis 2020; 221:566-577. [PMID: 31563943 PMCID: PMC7107482 DOI: 10.1093/infdis/jiz489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/25/2019] [Indexed: 01/09/2023] Open
Abstract
Background A number of serious human adenovirus (HAdV) outbreaks have been recently reported: HAdV-B7 (Israel, Singapore, and USA), HAdV-B7d (USA and China), HAdV-D8, -D54, and -C2 (Japan), HAdV-B14p1 (USA, Europe, and China), and HAdV-B55 (China, Singapore, and France). Methods To understand the epidemiology of HAdV infections in Singapore, we studied 533 HAdV-positive clinical samples collected from 396 pediatric and 137 adult patients in Singapore from 2012 to 2018. Genome sequencing and phylogenetic analyses were performed to identify HAdV genotypes, clonal clusters, and recombinant or novel HAdVs. Results The most prevalent genotypes identified were HAdV-B3 (35.6%), HAdV-B7 (15.4%), and HAdV-E4 (15.2%). We detected 4 new HAdV-C strains and detected incursions with HAdV-B7 (odds ratio [OR], 14.6; 95% confidence interval [CI], 4.1–52.0) and HAdV-E4 (OR, 13.6; 95% CI, 3.9–46.7) among pediatric patients over time. In addition, immunocompromised patients (adjusted OR [aOR], 11.4; 95% CI, 3.8–34.8) and patients infected with HAdV-C2 (aOR, 8.5; 95% CI, 1.5–48.0), HAdV-B7 (aOR, 3.7; 95% CI, 1.2–10.9), or HAdV-E4 (aOR, 3.2; 95% CI, 1.1–8.9) were at increased risk for severe disease. Conclusions Singapore would benefit from more frequent studies of clinical HAdV genotypes to identify patients at risk for severe disease and help guide the use of new antiviral therapies, such as brincidofovir, and potential administration of HAdV 4 and 7 vaccine.
Collapse
Affiliation(s)
- Kristen K Coleman
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore
| | - Chui Ching Wong
- Department of Microbiology, Singapore General Hospital, Singapore
| | - Jayanthi Jayakumar
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore
| | - Tham T Nguyen
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore
| | - Abigail W L Wong
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Su Yadana
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore
| | - Koh C Thoon
- Department of Paediatrics, Infectious Disease Service, KK Women's and Children's Hospital, Singapore
| | - Kwai Peng Chan
- Department of Microbiology, Singapore General Hospital, Singapore.,Academic Clinical Programme for Pathology, Duke-NUS Medical School, Singapore
| | - Jenny G Low
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore.,Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Shoaleh Dehghan
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA.,Chemistry Department, American University, Washington, District of Columbia, USA
| | - June Kang
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Amirhossein Shamsaddini
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Yvonne C F Su
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore
| | - Gregory C Gray
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore.,Division of Infectious Diseases, Global Health Institute, and Nicholas School of the Environment, Duke University, Durham, North Carolina, USA.,Global Health Center, Duke Kunshan University, Kunshan, China
| |
Collapse
|
7
|
Majee P, Shankar U, Pasadi S, Muniyappa K, Nayak D, Kumar A. Genome-wide analysis reveals a regulatory role for G-quadruplexes during Adenovirus multiplication. Virus Res 2020; 283:197960. [DOI: 10.1016/j.virusres.2020.197960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
|
8
|
Guo Z, Tong L, Xu S, Li B, Wang Z, Liu Y. Epidemiological analysis of an outbreak of an adenovirus type 7 infection in a boot camp in China. PLoS One 2020; 15:e0232948. [PMID: 32479490 PMCID: PMC7263602 DOI: 10.1371/journal.pone.0232948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/24/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND An outbreak of respiratory disease associated with adenovirus type 7 occurred in a boot camp in China and was characterized by many cases, severe symptoms, and intrapulmonary infection in many patients. METHODS We implemented a series of comprehensive preventive and control measures. We analyzed the incubation period and generation time by using the maximum likelihood method, assessed the symptom period and hospitalization duration using the Kaplan-Meier method, and estimated the basic reproductive number and dormitory transmission rate by using established methods. RESULTS The epidemic lasted for 30 days, and 375 individuals were affected. Overall, 109 patients were hospitalized, and 266 individuals were isolated and treated. The median incubation period was 5.2 days (95% confidence interval [CI]: 5.0 to 5.4 days). The median generation time was 7.3 days (95% CI: 7.1 to 7.6 days). The median symptom period was 6 days (95% CI: 6 to 7 days). The median hospitalization duration was 9 days (95% CI: 9 to 11 days). The basic reproductive number was 5.1 (95% CI: 4.6 to 5.6), and the dormitory transmission rate was 0.15 (95% CI: 0.12 to 0.18). CONCLUSION Patients in the early stage of the epidemic were treated as having a regular cold and were not isolated; therefore, the virus continued to be transmitted to other susceptible individuals.
Collapse
Affiliation(s)
- Zuiyuan Guo
- Department of Disease Control, Center for Disease Control and Prevention in Northern Theater Command, Shenyang, Liaoning, China
| | - Libo Tong
- Department of Disease Control, Center for Disease Control and Prevention in Northern Theater Command, Shenyang, Liaoning, China
| | - Shuang Xu
- Department of Disease Control, Center for Disease Control and Prevention in Northern Theater Command, Shenyang, Liaoning, China
| | - Bing Li
- Department of Disease Control, Center for Disease Control and Prevention in Northern Theater Command, Shenyang, Liaoning, China
| | - Zhuo Wang
- Department of Disease Control, Center for Disease Control and Prevention in Northern Theater Command, Shenyang, Liaoning, China
| | - Yuandong Liu
- Department of Disease Control, Center for Disease Control and Prevention in Northern Theater Command, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
9
|
Cai R, Mao N, Dai J, Xiang X, Xu J, Ma Y, Li Z, Han G, Yu D, Yin J, Cui A, Zhang Y, Li H, Yu P, Guan L, Tian Y, Sun L, Li Y, Wei Y, Zhu Z, Xu W. Genetic variability of human adenovirus type 7 circulating in mainland China. PLoS One 2020; 15:e0232092. [PMID: 32352995 PMCID: PMC7192419 DOI: 10.1371/journal.pone.0232092] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Human adenovirus (HAdV-7) is a highly contagious pathogen that causes severe respiratory illnesses. However, the epidemic patterns and genetic variability of HAdV-7 circulating in mainland China have not been well elucidated. In this study, we used Chinese HAdV sentinel surveillance data obtained from 2012-2015 to investigate the clinical features of 122 HAdV-7-positive cases and performed amplification and sequence determination of three capsid genes (penton base, hexon, and fiber) from 69 isolated viruses covering from seven provinces of China. Additionally, we compared with data from representative sequences of 21 strains covering seven more provinces in China and 32 international HAdV-7 strains obtained from GenBank database to determine the phylogenetic, sequence variations, and molecular evolution of HAdV-7. The results indicated that HAdV-7 infection occurred throughout the year, and a high proportion of severe cases (27 cases, 22.1%) exhibited infantile pneumonia. Moreover, phylogenetic analysis showed that all HAdV-7 strains could be divided into two major evolutionary branches, including subtype 1 and subtype 2, and subtype 3 was also formed according to analysis of the penton base gene. Subtypes 1 and 2 co-circulated in China before 2008, and HAdV-7 strains currently circulating in China belonged to subtype 2, which was also the predominant strain circulating worldwide in recent years. Further sequence variation analysis indicated that three genes of HAdV-7 were relatively stable across time and geographic space, particularly for viruses within subtypes, which shared almost the same variation sites. Owing to continuous outbreaks caused by HAdV-7, resulting in increased illness severity and fatality rates in China, the establishment of a national HAdV surveillance system is urgently needed for the development of effective preventive and infection-control interventions for adenovirus respiratory infections in China.
Collapse
Affiliation(s)
- Ru Cai
- Medical School, Anhui University of Science and Technology, Huainan city, Anhui province, People’s Republic of China
| | - Naiying Mao
- NHC Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jingjing Dai
- Medical School, Anhui University of Science and Technology, Huainan city, Anhui province, People’s Republic of China
- Department of Medical Laboratory, the Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an city, Jiangsu province, People’s Republic of China
| | - Xingyu Xiang
- Hunan Provincial Center for Disease Control and Prevention, Changsha city, Hunan province, People’s Republic of China
| | - Jing Xu
- Shaanxi Provincial Center for Disease Control and Prevention, Xi’an city, Shaanxi province, People’s Republic of China
| | - Yingwei Ma
- Changchun Children’s Hospital, Changchun city, Jilin province, People’s Republic of China
| | - Zhong Li
- Shandong Provincial Center for Disease Control and Prevention, Jinan city, Shandong province, People’s Republic of China
| | - Guangyue Han
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang city, Hebei province, People’s Republic of China
| | - Deshan Yu
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou city, Gansu province, People’s Republic of China
| | - Jie Yin
- Yunnan Provincial Center for Disease Control and Prevention, Kunming city, Yunnan province, People’s Republic of China
| | - Aili Cui
- NHC Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yan Zhang
- NHC Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Hong Li
- Medical School, Anhui University of Science and Technology, Huainan city, Anhui province, People’s Republic of China
- The Affiliated Hospital of Southwest Medical University, Luzhou city, Sichuan province, People’s Republic of China
| | - Pengbo Yu
- Shaanxi Provincial Center for Disease Control and Prevention, Xi’an city, Shaanxi province, People’s Republic of China
| | - Luyuan Guan
- Shaanxi Provincial Center for Disease Control and Prevention, Xi’an city, Shaanxi province, People’s Republic of China
| | - Yuling Tian
- Changchun Children’s Hospital, Changchun city, Jilin province, People’s Republic of China
| | - Liwei Sun
- Changchun Children’s Hospital, Changchun city, Jilin province, People’s Republic of China
| | - Yan Li
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang city, Hebei province, People’s Republic of China
| | - Yamei Wei
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang city, Hebei province, People’s Republic of China
| | - Zhen Zhu
- NHC Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- * E-mail: (ZZ); (WX)
| | - Wenbo Xu
- Medical School, Anhui University of Science and Technology, Huainan city, Anhui province, People’s Republic of China
- NHC Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- * E-mail: (ZZ); (WX)
| |
Collapse
|
10
|
Guo Z, Xu S, Tong L, Dai B, Liu Y, Xiao D. An artificially simulated outbreak of a respiratory infectious disease. BMC Public Health 2020; 20:135. [PMID: 32000737 PMCID: PMC6993344 DOI: 10.1186/s12889-020-8243-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/20/2020] [Indexed: 11/20/2022] Open
Abstract
Background Outbreaks of respiratory infectious diseases often occur in crowded places. To understand the pattern of spread of an outbreak of a respiratory infectious disease and provide a theoretical basis for targeted implementation of scientific prevention and control, we attempted to establish a stochastic model to simulate an outbreak of a respiratory infectious disease at a military camp. This model fits the general pattern of disease transmission and further enriches theories on the transmission dynamics of infectious diseases. Methods We established an enclosed system of 500 people exposed to adenovirus type 7 (ADV 7) in a military camp. During the infection period, the patients transmitted the virus randomly to susceptible people. The spread of the epidemic under militarized management mode was simulated using a computer model named “the random collision model”, and the effects of factors such as the basic reproductive number (R0), time of isolation of the patients (TOI), interval between onset and isolation (IOI), and immunization rates (IR) on the developmental trend of the epidemic were quantitatively analysed. Results Once the R0 exceeded 1.5, the median attack rate increased sharply; when R0 = 3, with a delay in the TOI, the attack rate increased gradually and eventually remained stable. When the IOI exceeded 2.3 days, the median attack rate also increased dramatically. When the IR exceeded 0.5, the median attack rate approached zero. The median generation time was 8.26 days, (95% confidence interval [CI]: 7.84–8.69 days). The partial rank correlation coefficients between the attack rate of the epidemic and R0, TOI, IOI, and IR were 0.61, 0.17, 0.45, and − 0.27, respectively. Conclusions The random collision model not only simulates how an epidemic spreads with superior precision but also allows greater flexibility in setting the activities of the exposure population and different types of infectious diseases, which is conducive to furthering exploration of the epidemiological characteristics of epidemic outbreaks.
Collapse
Affiliation(s)
- Zuiyuan Guo
- Department of Disease Control, Center for Disease Control and Prevention in Northern Theater Command, No. 6, Longshan Road, Shenyang, 110034, China
| | - Shuang Xu
- Department of Disease Control, Center for Disease Control and Prevention in Northern Theater Command, No. 6, Longshan Road, Shenyang, 110034, China
| | - Libo Tong
- Department of Disease Control, Center for Disease Control and Prevention in Northern Theater Command, No. 6, Longshan Road, Shenyang, 110034, China
| | - Botao Dai
- Liaoning Agricultural Development Service Center, Shenyang, China
| | - Yuandong Liu
- Department of Disease Control, Center for Disease Control and Prevention in Northern Theater Command, No. 6, Longshan Road, Shenyang, 110034, China.
| | - Dan Xiao
- China National Clinical Research Center for Neurological Diseases, Beijing Tian Tan Hospital, No. 119, South 4th Ring Road West, Fengtai District, Beijing, China.
| |
Collapse
|
11
|
Lim LM, Woo YY, de Bruyne JA, Nathan AM, Kee SY, Chan YF, Chiam CW, Eg KP, Thavagnanam S, Sam IC. Epidemiology, clinical presentation and respiratory sequelae of adenovirus pneumonia in children in Kuala Lumpur, Malaysia. PLoS One 2018; 13:e0205795. [PMID: 30321228 PMCID: PMC6188781 DOI: 10.1371/journal.pone.0205795] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/02/2018] [Indexed: 12/23/2022] Open
Abstract
Objectives To describe the severity, human adenovirus (HAdV) type and respiratory morbidity following adenovirus pneumonia in children. Methodology Retrospective review of children under 12 years of age, admitted with HAdV pneumonia, between January 2011 and July 2013, in a single centre in Malaysia. HAdV isolated from nasopharyngeal secretions were typed by sequencing hypervariable regions 1–6 of the hexon gene. Patients were reviewed for respiratory complications. Results HAdV was detected in 131 children of whom 92 fulfilled inclusion criteria. Median (range) age was 1.1 (0.1–8.0) years with 80% under 2 years. Twenty percent had severe disease with a case-fatality rate of 5.4%. Duration of admission (p = 0.02) was independently associated with severe illness. Twenty-two percent developed respiratory complications, the commonest being bronchiolitis obliterans (15.2%) and recurrent wheeze (5.4%). The predominant type shifted from HAdV1 and HAdV3 in 2011 to HAdV7 in 2013. The commonest types identified were types 7 (54.4%), 1(17.7%) and 3 (12.6%). Four out of the five patients who died were positive for HAdV7. Infection with type 7 (OR 8.90, 95% CI 1.32, 59.89), family history of asthma (OR 14.80, 95% CI 2.12–103.21) and need for invasive or non-invasive ventilation (OR 151.84, 95% CI 9.93–2.32E) were independent predictors of respiratory complications. Conclusions One in five children admitted with HAdV pneumonia had severe disease and 22% developed respiratory complications. Type 7 was commonly isolated in children with severe disease. Family history of asthma need for invasive or non-invasive ventilation and HAdV 7 were independent predictors of respiratory complications.
Collapse
Affiliation(s)
- Li Min Lim
- Department of Paediatrics, University Malaya, Kuala Lumpur, Malaysia
| | - Yen Yen Woo
- Department of Medical Microbiology, University Malaya, Kuala Lumpur, Malaysia
| | | | - Anna Marie Nathan
- Department of Paediatrics, University Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Sze Ying Kee
- Department of Paediatrics, University Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, University Malaya, Kuala Lumpur, Malaysia
| | - Chun Wei Chiam
- Department of Medical Microbiology, University Malaya, Kuala Lumpur, Malaysia
| | - Kah Peng Eg
- Department of Paediatrics, University Malaya, Kuala Lumpur, Malaysia
| | | | - I-Ching Sam
- Department of Medical Microbiology, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Bailey ES, Fieldhouse JK, Choi JY, Gray GC. A Mini Review of the Zoonotic Threat Potential of Influenza Viruses, Coronaviruses, Adenoviruses, and Enteroviruses. Front Public Health 2018; 6:104. [PMID: 29686984 PMCID: PMC5900445 DOI: 10.3389/fpubh.2018.00104] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/27/2018] [Indexed: 01/16/2023] Open
Abstract
During the last two decades, scientists have grown increasingly aware that viruses are emerging from the human–animal interface. In particular, respiratory infections are problematic; in early 2003, World Health Organization issued a worldwide alert for a previously unrecognized illness that was subsequently found to be caused by a novel coronavirus [severe acute respiratory syndrome (SARS) virus]. In addition to SARS, other respiratory pathogens have also emerged recently, contributing to the high burden of respiratory tract infection-related morbidity and mortality. Among the recently emerged respiratory pathogens are influenza viruses, coronaviruses, enteroviruses, and adenoviruses. As the genesis of these emerging viruses is not well understood and their detection normally occurs after they have crossed over and adapted to man, ideally, strategies for such novel virus detection should include intensive surveillance at the human–animal interface, particularly if one believes the paradigm that many novel emerging zoonotic viruses first circulate in animal populations and occasionally infect man before they fully adapt to man; early detection at the human–animal interface will provide earlier warning. Here, we review recent emerging virus treats for these four groups of viruses.
Collapse
Affiliation(s)
- Emily S Bailey
- Duke Global Health Institute, Duke University, Durham, NC, United States.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States
| | - Jane K Fieldhouse
- Duke Global Health Institute, Duke University, Durham, NC, United States.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States
| | - Jessica Y Choi
- Duke Global Health Institute, Duke University, Durham, NC, United States.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States
| | - Gregory C Gray
- Duke Global Health Institute, Duke University, Durham, NC, United States.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States.,Global Health Research Center, Duke-Kunshan University, Kunshan, China.,Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
13
|
Lau YF, Koh WHV, Kan C, Dua PCA, Lim ASE, Liaw CWJ, Gao QH, Chng J, Lee VJ, Tan BH, Loh JP. Epidemiologic analysis of respiratory viral infections among Singapore military servicemen in 2016. BMC Infect Dis 2018. [PMID: 29529993 PMCID: PMC5848554 DOI: 10.1186/s12879-018-3040-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Respiratory illnesses have been identified as a significant factor leading to lost training time and morbidity among Singapore military recruits. A surveillance programme has been put in place to determine etiological agents responsible for febrile, as well as afebrile respiratory illnesses in a military camp. The goal of the study is to better understand the epidemiology of these diseases and identify potential countermeasures to protect military recruits against them. Methods From Jan 2016 - Jan 2017, a total of 2647 respiratory cases were enrolled into the surveillance programme. The cases were further stratified into Febrile Respiratory Illness (FRI, with body temperature > 37.5 °C) or Acute Respiratory Illness (ARI, with body temperature < 37.5 °C). Nasal washes were collected and tested by multiplex PCR to detect 26 different pathogens. Results One thousand ninety five cases (41% of total cases) met the criteria of FRI in which 932 cases (85% of FRI cases) were screened positive for at least one virus. The most common etiological agents for FRI mono-infection cases were Adenovirus E and Rhinovirus. Recruits infected with H3N2 influenza, Influenza B and Adenovirus E viruses were most likely presented as FRI cases. Notably, H3N2 influenza resulted in the greatest rise in body temperature. The remaining 1552 cases (59% of total cases) met the criteria of ARI in which 1198 cases (77% of ARI cases) were screened positive for at least one virus. The most common etiological agent for ARI mono-infection was Rhinovirus. The distribution pattern for dual infections was different for ARI and FRI cases. Maximum number of pathogens detected in a sample was five for both groups. Conclusion Previous studies on respiratory diseases in military focused largely on FRI cases. With the expanded surveillance to ARI cases, this study allows unbiased evaluation of the impact of respiratory disease pathogens among recruits in a military environment. The results show that several pathogens have a much bigger role in causing respiratory diseases in this cohort. Electronic supplementary material The online version of this article (10.1186/s12879-018-3040-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuk-Fai Lau
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore.
| | - Wee-Hong Victor Koh
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Clement Kan
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Poh-Choo Alethea Dua
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Ai-Sim Elizabeth Lim
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Chin-Wen Jasper Liaw
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Qiu-Han Gao
- Biodefence Centre, Ministry of Defence, Singapore, Singapore
| | - Jeremiah Chng
- Biodefence Centre, Ministry of Defence, Singapore, Singapore
| | - Vernon J Lee
- Biodefence Centre, Ministry of Defence, Singapore, Singapore
| | - Boon-Huan Tan
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Jin-Phang Loh
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| |
Collapse
|
14
|
Abstract
Adenoviridae is a family of double-stranded DNA viruses that are a significant cause of upper respiratory tract infections in children and adults. Less commonly, the adenovirus family can cause a variety of gastrointestinal, ophthalmologic, genitourinary, and neurologic diseases. Most adenovirus infections are self-limited in the immunocompetent host and are treated with supportive measures. Fatal infections can occur in immunocompromised patients and less frequently in the healthy. Adenoviral vectors are being studied for novel biomedical applications including gene therapy and immunization. In this review we will focus on the spectrum of adenoviral infections in humans.
Collapse
Affiliation(s)
- Subrat Khanal
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| | - Pranita Ghimire
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| | - Amit S Dhamoon
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
15
|
Yang X, Wang Q, Liang B, Wu F, Li H, Liu H, Sheng C, Ma Q, Yang C, Xie J, Li P, Jia L, Wang L, Du X, Qiu S, Song H. An outbreak of acute respiratory disease caused by a virus associated RNA II gene mutation strain of human adenovirus 7 in China, 2015. PLoS One 2017; 12:e0172519. [PMID: 28225804 PMCID: PMC5321423 DOI: 10.1371/journal.pone.0172519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/06/2017] [Indexed: 01/17/2023] Open
Abstract
Human adenovirus 7 (HAdV-7) strains are a major cause of acute respiratory disease (ARD) among adults and children, associated with fatal pneumonia. An ARD outbreak caused by HAdV-7 that involved 739 college students was reported in this article. To better understand the underlying cause of this large-scale epidemic, virus strains were isolated from infected patients and sequence variations of the whole genome sequence were detected. Evolutionary trees and alignment results indicated that the major capsid protein genes hexon and fibre were strongly conserved among serotype 7 strains in China at that time. Instead, the HAdV-7 strains presented three thymine deletions in the virus associated RNA (VA RNA) II terminal region. We also found that the mutation might lead to increased mRNA expression of an adjacent gene, L1 52/55K, and thus promoted faster growth. These findings suggest that sequence variation of VA RNA II gene was a potential cause of such a severe HAdV-7 infection and this gene should be a new-emerging factor to be monitored for better understanding of HAdV-7 infection.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Qiongshu Wang
- Deprtment of Infection Control, Wuhan General Hospital of Guangzhou Military Command, Wuhan, China
| | - Beibei Liang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Fuli Wu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Hao Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Hongbo Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Chunyu Sheng
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Qiuxia Ma
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Chaojie Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Jing Xie
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Peng Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Leili Jia
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Ligui Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xinying Du
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Shaofu Qiu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (HS); (SQ)
| | - Hongbin Song
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (HS); (SQ)
| |
Collapse
|
16
|
Fatal Community-acquired Pneumonia in Children Caused by Re-emergent Human Adenovirus 7d Associated with Higher Severity of Illness and Fatality Rate. Sci Rep 2016; 6:37216. [PMID: 27848998 PMCID: PMC5110970 DOI: 10.1038/srep37216] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022] Open
Abstract
Human adenoviruses (HAdVs) are highly contagious pathogens causing acute respiratory disease (ARD), such as community-acquired pneumonia. HAdV-7d, a re-emergent genomic variant, has been recently reported in Asia and the United States after a several-decade absence. However, whether HAdV-7d is associated with higher severity than other types is currently unclear. In this study, the clinical and epidemiological investigation showed that fever, cough, and sore throat were the three most common respiratory symptoms of HAdV infections. HAdV-7 caused longer duration of fever, higher morbidity of tachypnea/dyspnea, pleural effusion, diarrhea, hepatosplenomegaly, consciousness alteration, as well as higher rates of pneumonia, mechanical ventilation and higher fatality rate (28.6%) than other types, particularly HAdV-3 and HAdV-2. The genomes of seven HAdV-7d isolates from mild, severe, and fatal cases were sequenced and highly similar with each other. Surprisingly, two isolates (2011, 2012) had 100% identical genomes with an earlier strain from a fatal ARD outbreak in China (2009), which elucidates the virus origin and confirms the unexpected HAdV genomic conservation and stability. Phylogenetic analysis indicated that L1 52/55-kDa DNA packaging protein may be associated with the higher severity of illness and fatality rate of HAdV-7. Clinicians need to be aware of HAdVs in children with ARD.
Collapse
|
17
|
Genotyping of human adenoviruses circulating in Southwest India. Virusdisease 2016; 27:266-270. [PMID: 28466038 DOI: 10.1007/s13337-016-0337-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022] Open
Abstract
Adenoviruses are found to be associated with a wide range of diseases in children and adults. There is little data available on the circulating serotypes of Human Adenoviruses (HAdVs) in the southwest region of India. In this study, we explore the molecular epidemiology of HAdVs circulating in southwest India. Twenty-three samples (Adenovirus PCR positive), collected between January 2011 and March 2013, have been typed based on the partial hexon gene sequence and phylogenetic analysis. The commonest serotypes were HAdV-3 and HAdV-2. The other serotypes were HAdV-7, HAdV-1, HAdV-8 and HAdV-40. Respiratory illness was the most common clinical manifestation of HAdV-3, HAdV-2 and HAdV-7 serotypes. HAdV-3, HAdV-7 and HAdV-8 were found to cause conjunctivitis, whereas HAdV-1, HAdV-2 and HAdV-3 caused encephalitis. In conclusion, this study documents the circulating HAdV strains and the epidemiology in southwest India. To the best of our knowledge, this is the first study on the molecular epidemiology of HAdVs in India.
Collapse
|
18
|
Cheng J, Qi X, Chen D, Xu X, Wang G, Dai Y, Cui D, Chen Q, Fan P, Ni L, Liu M, Zhu F, Yang M, Wang C, Li Y, Sun C, Wang Z. Epidemiology and transmission characteristics of human adenovirus type 7 caused acute respiratory disease outbreak in military trainees in East China. Am J Transl Res 2016; 8:2331-2342. [PMID: 27347341 PMCID: PMC4891446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Human adenovirus type 7 (HAdV7) is globally attracting great concern as its high morbidity and severity in respiratory diseases, especially in Asia. OBJECTIVE To investigate the clinical and epidemiologic characteristics of HAdV7 infection outbreak in East China. METHODS The clinical samples were collected from the patients of an ARD outbreak in East Chinafor the detection of causative pathogens by multiplex PCR. The molecular type of human adenovirus isolates were identified by sequencing and homologous comparison based on their hexon genes. The spatiotemporal dynamics of global HAdV7 was investigated using the phylogenetic and phylogeographic analyses. Total 67 referenced HAdV7 hexon sequences (>800 bp) from GenBank were selected for constructing the maximum likelihood tree by MEGA 5.1.0, grouped according to the tree topology for the further migration analysis by PAUP* 4.0 and MigraPhyla 1.0 b to understand the transmission patterns of HAdV7 in global epidemics. RESULTS The results showed HAdV7 as the causative pathogen in this outbreak, and the outbreak strains had the hexon sequences highly identical with the isolates in Shaanxi (2012). The origin of HAdV7 was inferred as California, meanwhile a total of 21 migration routes were acquired. HAdV7 in this outbreak was statistically proven dispersed from Shaanxi province (2012). CONCLUSIONS The analyses of epidemiology and transmission pattern of HAdV7 would not only enrich the molecular biological basic database but also provide theoretical basis for HAdV7 prevention and control strategy.
Collapse
Affiliation(s)
- Jun Cheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
- Department of Clinical Laboratory Science, The 117th Hospital of PLAHangzhou,China
| | - Xiaoping Qi
- Department of Respiratory Medicine, The 117th Hospital of PLAHangzhou, China
| | - Dawei Chen
- Department of Respiratory Medicine, The 117th Hospital of PLAHangzhou, China
| | - Xujian Xu
- Department of Biotechnology, The University of TokyoTokyo, Japan
| | - Guozheng Wang
- Department of Clinical Laboratory Science, The 117th Hospital of PLAHangzhou,China
| | - Yuzhu Dai
- Department of Clinical Laboratory Science, The 117th Hospital of PLAHangzhou,China
| | - Dawei Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou, China
| | - Qingyong Chen
- Department of Respiratory Medicine, The 117th Hospital of PLAHangzhou, China
| | - Ping Fan
- Department of Infectious Diseases, The 113rd Hospital of PLANingbo, China
| | - Liuda Ni
- Department of Infectious Diseases, The 85th Hospital of PLAShanghai, China
| | - Miao Liu
- Department of Radio Diagnosis and Imaging, The 117th Hospital of PLAHangzhou, China
| | - Feiyan Zhu
- Department of Infectious Diseases, The 117th Hospital of PLAHangzhou, China
| | - Mei Yang
- Department of Epidemiology and Infection Control, The 117th Hospital of PLAHangzhou, China
| | - Changjun Wang
- Institute of Military Medical Sciences of Nanjing Military CommandNanjing, China
| | - Yuexi Li
- Center for Disease Control and Prevention of Nanjing Military CommandNanjing, China
| | - Changgui Sun
- Department of Clinical Laboratory Science, The 117th Hospital of PLAHangzhou,China
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
19
|
Molecular Identification and Epidemiological Features of Human Adenoviruses Associated with Acute Respiratory Infections in Hospitalized Children in Southern China, 2012-2013. PLoS One 2016; 11:e0155412. [PMID: 27171486 PMCID: PMC4865050 DOI: 10.1371/journal.pone.0155412] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/28/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Acute respiratory infections (ARI) are the major worldwide health problem associated with high morbidity and mortality rates. Human adenovirus (HAdV) is one of the most common pathogens associated with viral ARI, and thus calls for specific diagnosis and better understanding of the epidemiology and clinical characteristics. METHODS Total 4,130 children with ARI requiring hospitalization from 2012 to 2013 were retrospectively studied. Throat swab specimens were collected from each patient. Fluorescence Quantitative PCR was performed to detect adenovirus as well as other common ARI-related pathogens. The seven HAdV hypervariable regions (HVRs) of the hexon gene from fifty-seven HAdVs-positive samples collected in the seasonal peaks were sequenced. Phylogenetic analysis of HVRs was also conducted to confirm the molecular types and genetic variation. In addition, epidemiological features and co-infection with other human respiratory pathogens were investigated and analyzed. RESULTS Of 4,130 hospitalized pediatric patients tested, the positive rates of respiratory syncytial virus (RSV), Mycoplasma pneumoniae (MP), and HAdV were 13.7%, 13.2%, and 12.0%, respectively. The HAdV positive patients accounted for 7.9%, 17.2%, 17.5% and 10.7% in age groups <1, 1-3, 3-6 and 6-14 years, respectively. Eighty-four HAdV positive children were co-infected with other respiratory pathogens (84/495, 17.0%). The most common co-infection pathogens with HAdV were MP (57.1%) and Human Bocavirus (HBoV) (16.7%). The majority of HAdV infected patients were totally recovered (96.9%, 480/495); However, four (0.8%) patients, who were previously healthy and at the age of 2 years or younger died of pneumonia. Seasonal peaks of HAdV infection occurred in the summer season of 2012 and 2013; the predominant HAdV type was HAdV-3 (70%), followed by HAdV-7 (28%). These epidemiological features were different from those in Northern China. The HAdV-55 was identified and reported for the first time in Guangzhou metropolitan area. Phylogenetic analysis indicated that all the HVR sequences of the hexon gene of HAdV-3 and -7 strains have high similarity within their individual types, and these strains were also similar to those circulating in China currently, indicating the conservation of hexon genes of both HAdV-3 and HAdV-7. CONCLUSIONS Knowledge of the epidemiological features and molecular types of HAdV, a major pathogen of pediatric ARI, as well as other co-infected respiratory pathogens circulating in Guangzhou, southern China, is vital to predict and prevent future disease outbreaks in children. This study will certainly facilitate HAdV vaccine development and treatment of HAdV infections in children.
Collapse
|
20
|
Ng OT, Thoon KC, Chua HY, Tan NWH, Chong CY, Tee NWS, Lin RTP, Cui L, Venkatachalam I, Tambyah PA, Chew J, Fong RKC, Oh HML, Krishnan PU, Lee VJM, Tan BH, Ng SH, Ting PJ, Maurer-Stroh S, Gunalan V, Khong WX. Severe Pediatric Adenovirus 7 Disease in Singapore Linked to Recent Outbreaks across Asia. Emerg Infect Dis 2016; 21:1192-6. [PMID: 26079293 PMCID: PMC4480382 DOI: 10.3201/eid2107.141443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During November 2012–July 2013, a marked increase of adenovirus type 7 (Ad7) infections associated with severe disease was documented among pediatric patients in Singapore. Phylogenetic analysis revealed close genetic links with severe Ad7 outbreaks in China, Taiwan, and other parts of Asia.
Collapse
|
21
|
Mölsä M, Hemmilä H, Rönkkö E, Virkki M, Nikkari S, Ziegler T. Molecular characterization of adenoviruses among finnish military conscripts. J Med Virol 2015; 88:571-7. [PMID: 26308159 DOI: 10.1002/jmv.24364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2015] [Indexed: 11/07/2022]
Abstract
Although adenoviruses were identified as important respiratory pathogens many years ago, little information is available concerning the prevalence of different adenovirus serotypes, which are circulating and causing epidemics in Finnish military training centers. Over a period of five years from 2008 to 2012, 3577 respiratory specimens were collected from military conscripts presenting with symptoms compatible with acute respiratory tract infection. Upon initial testing for certain respiratory viruses by real-time PCR, 837 of these specimens were identified as adenovirus-positive. For 672 of these specimens, the serotype of the adenovirus responsible was successfully determined by DNA sequencing. Serotypes 1, 2, 3, and 4 were detected in 1, 3, 181, and 487 samples, respectively. Adenovirus epidemics were observed during each year of this study. Based on these findings, adenovirus vaccination should be considered for military conscripts in the Finnish Defence Forces.
Collapse
Affiliation(s)
- Markos Mölsä
- Centres for Military Medicine and for Biological Threat Preparedness, Helsinki, Finland
| | - Heidi Hemmilä
- Centres for Military Medicine and for Biological Threat Preparedness, Helsinki, Finland
| | - Esa Rönkkö
- National Institute for Health and Welfare (THL), Virology Unit, Helsinki, Finland
| | - Maria Virkki
- Päijät-Häme Social and Health Care Group, Lahti, Finland
| | - Simo Nikkari
- Centres for Military Medicine and for Biological Threat Preparedness, Helsinki, Finland
| | - Thedi Ziegler
- National Institute for Health and Welfare (THL), Virology Unit, Helsinki, Finland.,Research Center for Child Psychiatry, University of Turku, Turku, Finland
| |
Collapse
|
22
|
Qiu S, Li P, Liu H, Wang Y, Liu N, Li C, Li S, Li M, Jiang Z, Sun H, Li Y, Xie J, Yang C, Wang J, Li H, Yi S, Wu Z, Jia L, Wang L, Hao R, Sun Y, Huang L, Ma H, Yuan Z, Song H. Whole-genome Sequencing for Tracing the Transmission Link between Two ARD Outbreaks Caused by a Novel HAdV Serotype 7 Variant, China. Sci Rep 2015; 5:13617. [PMID: 26338697 PMCID: PMC4559894 DOI: 10.1038/srep13617] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/31/2015] [Indexed: 02/01/2023] Open
Abstract
From December 2012 to February 2013, two outbreaks of acute respiratory disease caused by HAdV-7 were reported in China. We investigated possible transmission links between these two seemingly unrelated outbreaks by integration of epidemiological and whole-genome sequencing (WGS) data. WGS analyses showed that the HAdV-7 isolates from the two outbreaks were genetically indistinguishable; however, a 12 bp deletion in the virus-associated RNA gene distinguished the outbreak isolates from other HAdV-7 isolates. Outbreak HAdV-7 isolates demonstrated increased viral replication compared to non-outbreak associated HAdV-7 isolate. Epidemiological data supported that the first outbreak was caused by introduction of the novel HAdV-7 virus by an infected recruit upon arrival at the training base. Nosocomial transmission by close contacts was the most likely source leading to onset of the second HAdV-7 outbreak, establishing the apparent transmission link between the outbreaks. Our findings imply that in-hospital contact investigations should be encouraged to reduce or interrupt further spread of infectious agents when treating outbreak cases, and WGS can provide useful information guiding infection-control interventions.
Collapse
Affiliation(s)
- Shaofu Qiu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Peng Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Hongbo Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yong Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Nan Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Chengyi Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shenlong Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ming Li
- The No. 477 Hospital of PLA, Xiangyang 441003, China
| | - Zhengjie Jiang
- Air Force Center for Disease Control and Prevention, Beijing 100076, China
| | - Huandong Sun
- Air Force Center for Disease Control and Prevention, Beijing 100076, China
| | - Ying Li
- The No. 477 Hospital of PLA, Xiangyang 441003, China
| | - Jing Xie
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Chaojie Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jian Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Hao Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shengjie Yi
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhihao Wu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Leili Jia
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ligui Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Rongzhang Hao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yansong Sun
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Liuyu Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Hui Ma
- Health Department of General Logistics Department, PLA, 22 Fuxing Road, Beijing 100842, China
| | - Zhengquan Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Hongbin Song
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
23
|
Sanchez JL, Cooper MJ, Myers CA, Cummings JF, Vest KG, Russell KL, Sanchez JL, Hiser MJ, Gaydos CA. Respiratory Infections in the U.S. Military: Recent Experience and Control. Clin Microbiol Rev 2015; 28:743-800. [PMID: 26085551 PMCID: PMC4475643 DOI: 10.1128/cmr.00039-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This comprehensive review outlines the impact of military-relevant respiratory infections, with special attention to recruit training environments, influenza pandemics in 1918 to 1919 and 2009 to 2010, and peacetime operations and conflicts in the past 25 years. Outbreaks and epidemiologic investigations of viral and bacterial infections among high-risk groups are presented, including (i) experience by recruits at training centers, (ii) impact on advanced trainees in special settings, (iii) morbidity sustained by shipboard personnel at sea, and (iv) experience of deployed personnel. Utilizing a pathogen-by-pathogen approach, we examine (i) epidemiology, (ii) impact in terms of morbidity and operational readiness, (iii) clinical presentation and outbreak potential, (iv) diagnostic modalities, (v) treatment approaches, and (vi) vaccine and other control measures. We also outline military-specific initiatives in (i) surveillance, (ii) vaccine development and policy, (iii) novel influenza and coronavirus diagnostic test development and surveillance methods, (iv) influenza virus transmission and severity prediction modeling efforts, and (v) evaluation and implementation of nonvaccine, nonpharmacologic interventions.
Collapse
Affiliation(s)
- Jose L Sanchez
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Michael J Cooper
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | | | - James F Cummings
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Kelly G Vest
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Kevin L Russell
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Joyce L Sanchez
- Mayo Clinic, Division of General Internal Medicine, Rochester, Minnesota, USA
| | - Michelle J Hiser
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA Oak Ridge Institute for Science and Education, Postgraduate Research Participation Program, U.S. Army Public Health Command, Aberdeen Proving Ground, Aberdeen, Maryland, USA
| | - Charlotte A Gaydos
- International STD, Respiratory, and Biothreat Research Laboratory, Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Lin YC, Lu PL, Lin KH, Chu PY, Wang CF, Lin JH, Liu HF. Molecular Epidemiology and Phylogenetic Analysis of Human Adenovirus Caused an Outbreak in Taiwan during 2011. PLoS One 2015; 10:e0127377. [PMID: 25992619 PMCID: PMC4436380 DOI: 10.1371/journal.pone.0127377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/15/2015] [Indexed: 12/19/2022] Open
Abstract
An outbreak of adenovirus has been surveyed in Taiwan in 2011. To better understand the evolution and epidemiology of adenovirus in Taiwan, full-length sequence of hexon and fiber coapsid protein was analyzed using series of phylogenetic and dynamic evolution tools. Six different serotypes were identified in this outbreak and the species B was predominant (HAdV-3, 71.50%; HAdV-7, 15.46%). The most frequent diagnosis was acute tonsillitis (54.59%) and bronchitis (47.83%). Phylogenetic analysis revealed that hexon protein gene sequences were highly conserved for HAdV-3 and HAdV-7 circulation in Taiwan. However, comparison of restriction fragment length polymorphism (RFLP) analysis and phylogenetic trees of fiber gene in HAdV-7 clearly indicated that the predominant genotype in Taiwan has shifted from 7b to 7d. Several positive selection sites were observed in hexon protein. The estimated nucleotide substitution rates of hexon protein of HAdV-3 and HAdV-7 were 0.234×10-3 substitutions/site/year (95% HPD: 0.387~0.095×10-3) and 1.107×10-3 (95% HPD: 0. 541~1.604) respectively; those of the fiber protein of HAdV-3 and HAdV-7 were 1.085×10-3 (95% HPD: 1.767~0.486) and 0.132×10-3 (95% HPD: 0.283~0.014) respectively. Phylodynamic analysis by Bayesian skyline plot (BSP) suggested that using individual gene to evaluate the effective population size might possibly cause miscalculation. In summary, the virus evolution is ongoing, and continuous surveillance of this virus evolution will contribute to the control of the epidemic.
Collapse
Affiliation(s)
- Yung-Cheng Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Po-Liang Lu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuei-Hsiang Lin
- Department of Clinical Laboratory, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Yu Chu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chu-Feng Wang
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jih-Hui Lin
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
- * E-mail: (HFL); (JHL)
| | - Hsin-Fu Liu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
- Center for General Education, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- * E-mail: (HFL); (JHL)
| |
Collapse
|
25
|
Radin JM, Hawksworth AW, Blair PJ, Faix DJ, Raman R, Russell KL, Gray GC. Dramatic decline of respiratory illness among US military recruits after the renewed use of adenovirus vaccines. Clin Infect Dis 2014; 59:962-8. [PMID: 24991024 DOI: 10.1093/cid/ciu507] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In late 2011, after a 12-year hiatus, oral vaccines against adenovirus types 4 (Ad4) and 7 (Ad7) were again produced and administered to US military recruits. This study examined the impact of the new adenovirus vaccines on febrile respiratory illness (FRI) and adenovirus rates and investigated if new serotypes emerged. FRI rates and their associated hospitalizations had markedly risen since vaccine production ceased in 1999. METHODS From 1996 to 2013, the Naval Health Research Center conducted FRI surveillance at 8 military recruit training centers in the United States. During this period, 58 103 FRI pharyngeal swab specimens were studied, yielding 37 048 adenovirus-positive cases, among which 64% were typed. RESULTS During the 2 years after reintroduction of the vaccines, military trainees experienced a 100-fold decline in adenovirus disease burden (from 5.8 to 0.02 cases per 1000 person-weeks, P < .0001), without evidence that vaccine pressure had increased the impact of adenovirus types other than Ad4 and Ad7. Although the percentage of type 14 increased following reintroduction of the vaccination, the actual number of cases decreased. We estimate that the vaccines prevent approximately 1 death, 1100-2700 hospitalizations, and 13 000 febrile adenovirus cases each year among the trainees. CONCLUSIONS These data strongly support the continued production and use of Ad4 and Ad7 vaccines in controlling FRI among US military trainees. Continued surveillance for emerging adenovirus subtypes is warranted.
Collapse
Affiliation(s)
- Jennifer M Radin
- Operational Infectious Diseases Department, Naval Health Research Center Joint Doctoral Program in Public Health (Epidemiology), San Diego State University/University of California
| | | | - Patrick J Blair
- Operational Infectious Diseases Department, Naval Health Research Center
| | - Dennis J Faix
- Deployment Health Research Department, Naval Health Research Center
| | - Rema Raman
- Department of Family and Preventive Medicine, University of California, San Diego
| | - Kevin L Russell
- Armed Forces Health Surveillance Center, Silver Spring, Maryland
| | - Gregory C Gray
- College of Public Health and Health Professions Emerging Pathogens Institute, University of Florida, Gainesville
| |
Collapse
|
26
|
Tsou TP, Tan BF, Chang HY, Chen WC, Huang YP, Lai CY, Chao YN, Wei SH, Hung MN, Hsu LC, Lu CY, Shao PL, Mu JJ, Chang LY, Liu MT, Huang LM. Community outbreak of adenovirus, Taiwan, 2011. Emerg Infect Dis 2013; 18:1825-32. [PMID: 23092602 PMCID: PMC3559173 DOI: 10.3201/eid1811.120629] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Adenovirus type 7 caused a high proportion of severe infections. In 2011, a large community outbreak of human adenovirus (HAdV) in Taiwan was detected by a nationwide surveillance system. The epidemic lasted from week 11 through week 41 of 2011 (March 14–October 16, 2011). Although HAdV-3 was the predominant strain detected (74%), an abrupt increase in the percentage of infections caused by HAdV-7 occurred, from 0.3% in 2008–2010 to 10% in 2011. Clinical information was collected for 202 inpatients infected with HAdV; 31 (15.2%) had severe infection that required intensive care, and 7 of those patients died. HAdV-7 accounted for 10%, 12%, and 41% of infections among outpatients, inpatients with nonsevere infection, and inpatients with severe infection, respectively (p<0.01). The HAdV-7 strain detected in this outbreak is identical to a strain recently reported in the People’s Republic of China (HAdV7-HZ/SHX/CHN/2009). Absence of circulating HAdV-7 in previous years and introduction of an emerging strain are 2 factors that caused this outbreak.
Collapse
|
27
|
Health and the Myrmidons. Emerg Infect Dis 2012. [PMCID: PMC3358081 DOI: 10.3201/eid1805.ac1805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|