1
|
Mendoza AP, Muñoz-Maceda A, Ghersi BM, De La Puente M, Zariquiey C, Cavero N, Murillo Y, Sebastian M, Ibañez Y, Parker PG, Perez A, Uhart M, Robinson J, Olson SH, Rosenbaum MH. Diversity and prevalence of zoonotic infections at the animal-human interface of primate trafficking in Peru. PLoS One 2024; 19:e0287893. [PMID: 38324542 PMCID: PMC10849265 DOI: 10.1371/journal.pone.0287893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/01/2023] [Indexed: 02/09/2024] Open
Abstract
Wildlife trafficking creates favorable scenarios for intra- and inter-specific interactions that can lead to parasite spread and disease emergence. Among the fauna affected by this activity, primates are relevant due to their potential to acquire and share zoonoses - infections caused by parasites that can spread between humans and other animals. Though it is known that most primate parasites can affect multiple hosts and that many are zoonotic, comparative studies across different contexts for animal-human interactions are scarce. We conducted a multi-parasite screening targeting the detection of zoonotic infections in wild-caught monkeys in nine Peruvian cities across three contexts: captivity (zoos and rescue centers, n = 187); pet (households, n = 69); and trade (trafficked or recently confiscated, n = 132). We detected 32 parasite taxa including mycobacteria, simian foamyvirus, bacteria, helminths, and protozoa. Monkeys in the trade context had the highest prevalence of hemoparasites (including Plasmodium malariae/brasilianum, Trypanosoma cruzi, and microfilaria) and enteric helminths and protozoa were less common in pet monkeys. However, parasite communities showed overall low variation between the three contexts. Parasite richness (PR) was best explained by host genus and the city where the animal was sampled. Squirrel (genus Saimiri) and wooly (genus Lagothrix) monkeys had the highest PR, which was ~2.2 times the PR found in tufted capuchins (genus Sapajus) and tamarins (genus Saguinus/Leontocebus) in a multivariable model adjusted for context, sex, and age. Our findings illustrate that the threats of wildlife trafficking to One Health encompass exposure to multiple zoonotic parasites well-known to cause disease in humans, monkeys, and other species. We demonstrate these threats continue beyond the markets where wildlife is initially sold; monkeys trafficked for the pet market remain a reservoir for and contribute to the translocation of zoonotic parasites to households and other captive facilities where contact with humans is frequent. Our results have practical applications for the healthcare of rescued monkeys and call for urgent action against wildlife trafficking and ownership of monkeys as pets.
Collapse
Affiliation(s)
- A. Patricia Mendoza
- Wildlife Conservation Society - Peru Program, Lima, Peru
- Department of Biology, University of Missouri - Saint Louis, St Louis, Missouri, United States of America
- Asociación Neotropical Primate Conservation – Perú, Moyobamba, San Martín, Perú
| | - Ana Muñoz-Maceda
- School of Anthropology and Conservation, Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent, United Kingdom
| | - Bruno M. Ghersi
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | | | | | - Nancy Cavero
- Wildlife Conservation Society - Peru Program, Lima, Peru
| | - Yovana Murillo
- Wildlife Conservation Society - Peru Program, Lima, Peru
| | | | - Yohani Ibañez
- Wildlife Conservation Society - Peru Program, Lima, Peru
| | - Patricia G. Parker
- Department of Biology, University of Missouri - Saint Louis, St Louis, Missouri, United States of America
| | - Alberto Perez
- Servicio Nacional de Sanidad y Calidad Agroalimentaria, Buenos Aires, Argentina
| | - Marcela Uhart
- One Health Institute, University of California - Davis, Davis, California, United States of America
| | - Janine Robinson
- School of Anthropology and Conservation, Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent, United Kingdom
| | - Sarah H. Olson
- Wildlife Conservation Society - Health Program, Bronx, New York, United States of America
| | - Marieke H. Rosenbaum
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
2
|
Khalil AM, Martinez-Sobrido L, Mostafa A. Zoonosis and zooanthroponosis of emerging respiratory viruses. Front Cell Infect Microbiol 2024; 13:1232772. [PMID: 38249300 PMCID: PMC10796657 DOI: 10.3389/fcimb.2023.1232772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Lung infections in Influenza-Like Illness (ILI) are triggered by a variety of respiratory viruses. All human pandemics have been caused by the members of two major virus families, namely Orthomyxoviridae (influenza A viruses (IAVs); subtypes H1N1, H2N2, and H3N2) and Coronaviridae (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). These viruses acquired some adaptive changes in a known intermediate host including domestic birds (IAVs) or unknown intermediate host (SARS-CoV-2) following transmission from their natural reservoirs (e.g. migratory birds or bats, respectively). Verily, these acquired adaptive substitutions facilitated crossing species barriers by these viruses to infect humans in a phenomenon that is known as zoonosis. Besides, these adaptive substitutions aided the variant strain to transmit horizontally to other contact non-human animal species including pets and wild animals (zooanthroponosis). Herein we discuss the main zoonotic and reverse-zoonosis events that occurred during the last two pandemics of influenza A/H1N1 and SARS-CoV-2. We also highlight the impact of interspecies transmission of these pandemic viruses on virus evolution and possible prophylactic and therapeutic interventions. Based on information available and presented in this review article, it is important to close monitoring viral zoonosis and viral reverse zoonosis of pandemic strains within a One-Health and One-World approach to mitigate their unforeseen risks, such as virus evolution and resistance to limited prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
3
|
Kirk NM, Liang Y, Ly H. Comparative Pathology of Animal Models for Influenza A Virus Infection. Pathogens 2023; 13:35. [PMID: 38251342 PMCID: PMC10820042 DOI: 10.3390/pathogens13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Animal models are essential for studying disease pathogenesis and to test the efficacy and safety of new vaccines and therapeutics. For most diseases, there is no single model that can recapitulate all features of the human condition, so it is vital to understand the advantages and disadvantages of each. The purpose of this review is to describe popular comparative animal models, including mice, ferrets, hamsters, and non-human primates (NHPs), that are being used to study clinical and pathological changes caused by influenza A virus infection with the aim to aid in appropriate model selection for disease modeling.
Collapse
Affiliation(s)
| | | | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (N.M.K.); (Y.L.)
| |
Collapse
|
4
|
Abdelwhab EM, Mettenleiter TC. Zoonotic Animal Influenza Virus and Potential Mixing Vessel Hosts. Viruses 2023; 15:980. [PMID: 37112960 PMCID: PMC10145017 DOI: 10.3390/v15040980] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Influenza viruses belong to the family Orthomyxoviridae with a negative-sense, single-stranded segmented RNA genome. They infect a wide range of animals, including humans. From 1918 to 2009, there were four influenza pandemics, which caused millions of casualties. Frequent spillover of animal influenza viruses to humans with or without intermediate hosts poses a serious zoonotic and pandemic threat. The current SARS-CoV-2 pandemic overshadowed the high risk raised by animal influenza viruses, but highlighted the role of wildlife as a reservoir for pandemic viruses. In this review, we summarize the occurrence of animal influenza virus in humans and describe potential mixing vessel or intermediate hosts for zoonotic influenza viruses. While several animal influenza viruses possess a high zoonotic risk (e.g., avian and swine influenza viruses), others are of low to negligible zoonotic potential (e.g., equine, canine, bat and bovine influenza viruses). Transmission can occur directly from animals, particularly poultry and swine, to humans or through reassortant viruses in "mixing vessel" hosts. To date, there are less than 3000 confirmed human infections with avian-origin viruses and less than 7000 subclinical infections documented. Likewise, only a few hundreds of confirmed human cases caused by swine influenza viruses have been reported. Pigs are the historic mixing vessel host for the generation of zoonotic influenza viruses due to the expression of both avian-type and human-type receptors. Nevertheless, there are a number of hosts which carry both types of receptors and can act as a potential mixing vessel host. High vigilance is warranted to prevent the next pandemic caused by animal influenza viruses.
Collapse
Affiliation(s)
- Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
5
|
Suwannarong K, Soonthornworasiri N, Maneekan P, Balthip K, Yimsamran S, Maneewatchararangsri S, Ponlap T, Saengkul C, Lantican C, Thammasutti K, Singhasivanon P. Love or conflict: A qualitative study of the human-long tailed macaque interface in Nakhon Sawan Province, Thailand. Acta Trop 2023; 240:106861. [PMID: 36781095 DOI: 10.1016/j.actatropica.2023.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/01/2022] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
A wide range of zoonotic pathogens can be transmitted during human-wildlife interactions. Few qualitative studies have been conducted on human-nonhuman primate interfaces in Thailand, notably direct and indirect contact. Since Long-tailed macaques (LTMs) are prevalent in Thailand's Banphot Phisai district, part of Nakhon Sawan province, this qualitative study was conducted in 2019 to determine in-depth contact characteristics between humans and LTMs in the communities. Key informant interviews (KIIs) and focus group discussions (FGDs) were conducted with 35 villagers who reported close contact with LTMs in this study location. The results showed that villagers had different levels of contact with LTMs, depending on their occupations, perceptions, beliefs, religions, previous experiences, and local regulations. Monks in temples and vendors selling food for LTMs were reported to have the closest contact with them. LTMs have been reported to destroy personal property, houses, buildings, and crops. However, the villagers do not hurt them due to their religious beliefs relating to a respected abbot (a man who headed an abbey of monks). Even community members have had extensive interaction with LTMs, but they lacked awareness and information regarding diseases transmitted to humans directly or indirectly by non-human primates. Therefore, individuals who have frequent and close contact with LTMs should be provided health education, and appropriate behavioral change communication interventions should be performed. Furthermore, the results could be used to develop future disease prevention strategies and public awareness campaigns in the area.
Collapse
Affiliation(s)
- Kanokwan Suwannarong
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; SUPA71 Co., Ltd, Bangkok, Thailand
| | | | - Pannamas Maneekan
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Surapon Yimsamran
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Santi Maneewatchararangsri
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Chutarat Saengkul
- Faculty of Public Health, Nakhon Sawan Campus, Mahidol University, Nakhon Sawan, Thailand
| | | | | | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Andrade MCR, Lemos BRP, Silva LM, Pecotte JK. Eliminating Potential Effects of Other Infections During Selection of Nonhuman Primates for COVID-19 Research. Comp Med 2023; 73:45-57. [PMID: 36744555 PMCID: PMC9948906 DOI: 10.30802/aalas-cm-21-000086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The study of nonhuman primates (NHP) can provide significant insights into our understanding numerous infectious agents. The etiological agent of COVID-19, SARS-CoV-2 virus, first emerged in 2019 and has so far been responsible for the deaths of over 4 million people globally. In the frenzied search to understand its pathogenesis and immunology and to find measures for prevention and control of this pandemic disease, NHP, particularly macaques, are the preferred model because they manifest similar clinical signs and immunologic features as humans. However, possible latent, subclinical, and opportunistic infections not previously detected in animals participating in a study may obscure experimental results and confound data interpretations in testing treatments and vaccine studies for COVID-19. Certain pathophysiologic changes that occur with SARS-CoV-2 virus infection are similar to those of simian pathogens. The current review discusses numerous coinfections of COVID-19 with other diseases and describes possible outcomes and mechanisms in COVID-19 studies of NHP that have coinfections. Due to the urgency triggered by the pandemic, screening that is more rigorous than usual is necessary to limit background noise and maximize the reliability of data from NHP COVID-19 studies. Screening for influenza virus, selected respiratory bacteria, and regional endemic pathogens such as vector-borne agents, together with the animal's individual exposure history, should be the main considerations in selecting a NHP for a COVID-19 study. In addition, because NHP are susceptible to the SARS-CoV-2 virus, management and surveillance measures should be established to prevent transmission to healthy animals from infected colony animals and husbandry staff. This review presents compiled data on the use of NHP in COVID-19 studies, emphasizing the need to create the most reliable NHP model for those studies by extensive screening for other pathogens.
Collapse
Key Words
- absl, animal biosafety level
- ace-2, angiotensin-converting enzyme
- ards, acute respiratory distress syndrome
- cnprc, california national primate research center
- e, envelope
- esr, erythrocyte sedimentation rate
- hav, hepatitis a virus
- hbv, hepatitis b virus
- hgf hepatocyte growth factor
- htlv, human t-cell lymphotropic virus
- ifn, interferon
- il, interleukin
- ip, inducible protein
- m, matrix
- mcp, monocyte chemotactic proteins
- mcsf, macrophage colony-stimulating factor
- mip, macrophage inflammatory protein
- n, nucleocapsid
- nsp, non-structural proteins
- rdrp, rna-dependent rna polymerase
- s, spike
- sars-cov-2, severe acute respiratory syndrome-coronavirus-2
- sfv, simian foamy virus
- sop, standard operating procedures
- srv/d, simian retrovirus type d
- stlv, simian t-lymphotropic virus
- tb, tuberculosis
- tgf, transforming growth factor
- tmprss2 transmembrane serine protease 2
Collapse
Affiliation(s)
- Marcia C R Andrade
- Institute of Science and Technology on Biomodels, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil;,
| | - Bárbara R P Lemos
- Institute of Science and Technology on Biomodels, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa M Silva
- Institute of Science and Technology on Biomodels, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; University of Grande Rio, Duque de Caxias, Brazil
| | | |
Collapse
|
7
|
Paungpin W, Thongdee M, Ketchim N, Chaiwattanarungruengpaisan S, Saechin A, Sariya L, Kaewchot S, Puthavathana P, Wiriyarat W. Evidence of Influenza A Virus Infection in Cynomolgus Macaques, Thailand. Vet Sci 2022; 9:vetsci9030132. [PMID: 35324860 PMCID: PMC8950150 DOI: 10.3390/vetsci9030132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Little is known about the ecology of influenza A virus (IAV) in nonhuman primates (NHPs). We conducted active surveillance of IAV among 672 cynomolgus macaques (Macaca fascicularis) living in 27 free-ranging colonies in Thailand between March and November 2019. A hemagglutination inhibition (HI) assay was employed as the screening test against 16 subtypes of avian influenza virus (AIV) and two strains of the H1 subtype of human influenza virus. The serum samples with HI titers ≥20 were further confirmed by microneutralization (MN) assay. Real-time RT-PCR assay was performed to detect the conserved region of the influenza matrix (M) gene. The seropositive rate for subtypes of IAV, including AIV H1 (1.6%, 11/672), AIV H2 (15.2%, 102/672), AIV H3 (0.3%, 2/672), AIV H9 (3.4%, 23/672), and human H1 (NP-045) (0.9%, 6/672), was demonstrated. We also found antibody against more than one subtype of IAV in 15 out of 128 positive tested sera (11.7%). Moreover, influenza genome could be detected in 1 out of 245 pool swab samples (0.41%). Evidence of IAV infection presented here emphasizes the role of NHPs in the ecology of the virus. Our findings highlight the need to further conduct a continuous active surveillance program in NHP populations.
Collapse
Affiliation(s)
- Weena Paungpin
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (W.P.); (M.T.); (N.K.); (S.C.); (A.S.); (L.S.)
| | - Metawee Thongdee
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (W.P.); (M.T.); (N.K.); (S.C.); (A.S.); (L.S.)
| | - Natthaphat Ketchim
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (W.P.); (M.T.); (N.K.); (S.C.); (A.S.); (L.S.)
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (W.P.); (M.T.); (N.K.); (S.C.); (A.S.); (L.S.)
| | - Aeknarin Saechin
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (W.P.); (M.T.); (N.K.); (S.C.); (A.S.); (L.S.)
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (W.P.); (M.T.); (N.K.); (S.C.); (A.S.); (L.S.)
| | - Supakarn Kaewchot
- Department of National Parks, Wildlife and Plant Conservation, Bangkok 10900, Thailand;
| | - Pilaipan Puthavathana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Witthawat Wiriyarat
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (W.P.); (M.T.); (N.K.); (S.C.); (A.S.); (L.S.)
- Correspondence:
| |
Collapse
|
8
|
Korzaya LI, Dogadov DI, Goncharenko AM, Karlsen AA, Kyuregyan KK, Mikhailov MI. [Prevalence of laboratory markers of human respiratory viruses in monkeys of Adler primate center]. Vopr Virusol 2022; 66:425-433. [PMID: 35019249 DOI: 10.36233/0507-4088-77] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The relevance of studying the circulation of human respiratory viruses among laboratory primates is associated with the need to test vaccines and antiviral drugs against these infections on monkeys.The aim of this work was to study the prevalence of serological and molecular markers of human respiratory viral infections in laboratory primates born at the Adler Primate Center and in imported monkeys. MATERIAL AND METHODS Blood serum samples (n = 1971) and lung autopsy material (n = 26) were obtained from different monkey species. These samples were tested for the presence of serological markers of measles, parainfluenza (PI) types 1, 2, 3, influenza A and B, respiratory syncytial (RS) and adenovirus infections using enzyme immunoassay (ELISA). Detection of RS virus, metapneumovirus, PI virus types 1-4, rhinovirus, coronavirus, and adenoviruses B, C, E and bocavirus nucleic acids in this material was performed by reverse transcription polymerase chain reaction (RT-PCR). RESULTS AND DISCUSSION The overall prevalence of antibodies (Abs) among all monkeys was low and amounted 11.3% (95% CI: 9.2-13.7%, n = 811) for measles virus, 8.9% (95% CI: 6.2-12.2%, n = 381) for PI type 3 virus, 2.5% (95% CI: 0.8-5.6%, n = 204) for PI type 1 virus, and 7.7% (95% CI: 3.8-13.7%, n = 130) for adenoviruses. When testing 26 autopsy lung samples from monkeys of different species that died from pneumonia, 2 samples from Anubis baboons (Papio аnubis) were positive for of parainfluenza virus type 3 RNA. CONCLUSION Our data suggest the importance of the strict adherence to the terms of quarantine and mandatory testing of monkey sera for the presence of IgM antibodies to the measles virus that indicate the recent infection. The role of PI virus type 3 in the pathology of the respiratory tract in Anubis baboons has been established.
Collapse
Affiliation(s)
- L I Korzaya
- FSBRI «Research Institute of Medical Primatology» of the Ministry of Higher Education and Science of Russia
| | - D I Dogadov
- FSBRI «Research Institute of Medical Primatology» of the Ministry of Higher Education and Science of Russia
| | - A M Goncharenko
- FSBRI «Research Institute of Medical Primatology» of the Ministry of Higher Education and Science of Russia
| | - A A Karlsen
- FSBEI FPE «Russian Medical Academy of Continuous Professional Education» of the Ministry of Health of Russia; FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - K K Kyuregyan
- FSBEI FPE «Russian Medical Academy of Continuous Professional Education» of the Ministry of Health of Russia; FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| | - M I Mikhailov
- FSBEI FPE «Russian Medical Academy of Continuous Professional Education» of the Ministry of Health of Russia; FSBRI «I.I. Mechnikov Research Institute of Vaccines and Sera»
| |
Collapse
|
9
|
Li Y, Zhang X, Liu Y, Feng Y, Wang T, Ge Y, Kong Y, Sun H, Xiang H, Zhou B, Fang S, Xia Q, Hu X, Sun W, Wang X, Meng K, Lv C, Li E, Xia X, He H, Gao Y, Jin N. Characterization of Canine Influenza Virus A (H3N2) Circulating in Dogs in China from 2016 to 2018. Viruses 2021; 13:v13112279. [PMID: 34835084 PMCID: PMC8618230 DOI: 10.3390/v13112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022] Open
Abstract
Avian H3N2 influenza virus follows cross-host transmission and has spread among dogs in Asia since 2005. After 2015–2016, a new H3N2 subtype canine influenza epidemic occurred in dogs in North America and Asia. The disease prevalence was assessed by virological and serological surveillance in dogs in China. Herein, five H3N2 canine influenza virus (CIV) strains were isolated from 1185 Chinese canine respiratory disease samples in 2017–2018; these strains were on the evolutionary branch of the North American CIVs after 2016 and genetically far from the classical canine H3N2 strain discovered in China before 2016. Serological surveillance showed an HI antibody positive rate of 6.68%. H3N2 was prevalent in the coastal areas and northeastern regions of China. In 2018, it became the primary epidemic strain in the country. The QK01 strain of H3N2 showed high efficiency in transmission among dogs through respiratory droplets. Nevertheless, the virus only replicated in the upper respiratory tract and exhibited low pathogenicity in mice. Furthermore, highly efficient transmission by direct contact other than respiratory droplet transmission was found in a guinea pig model. The low-level replication in avian species other than ducks could not facilitate contact and airborne transmission in chickens. The current results indicated that a novel H3N2 virus has become a predominant epidemic strain in dogs in China since 2016 and acquired highly efficient transmissibility but could not be replicated in avian species. Thus, further monitoring is required for designing optimal immunoprophylactic tools for dogs and estimating the zoonotic risk of CIV in China.
Collapse
Affiliation(s)
- Yuanguo Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China;
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Xinghai Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuxiu Liu
- National Research Center for Veterinary Medicine, Luoyang 471003, China;
| | - Ye Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Ye Ge
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Yunyi Kong
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Hongyu Sun
- College of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China;
| | - Haiyang Xiang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Bo Zhou
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Shushan Fang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Qing Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Xinyu Hu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Xuefeng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Keyin Meng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Chaoxiang Lv
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Hongbin He
- College of Life Science, Shandong Normal University, Jinan 250014, China
- Correspondence: (H.H.); (Y.G.); (N.J.)
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
- Correspondence: (H.H.); (Y.G.); (N.J.)
| | - Ningyi Jin
- College of Veterinary Medicine, Jilin University, Changchun 130062, China;
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
- Correspondence: (H.H.); (Y.G.); (N.J.)
| |
Collapse
|
10
|
Spruit CM, Nemanichvili N, Okamatsu M, Takematsu H, Boons GJ, de Vries RP. N-Glycolylneuraminic Acid in Animal Models for Human Influenza A Virus. Viruses 2021; 13:815. [PMID: 34062844 PMCID: PMC8147317 DOI: 10.3390/v13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in influenza virus infection is the binding of hemagglutinin to sialic acid-containing glycans present on the cell surface. Over 50 different sialic acid modifications are known, of which N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the two main species. Animal models with α2,6 linked Neu5Ac in the upper respiratory tract, similar to humans, are preferred to enable and mimic infection with unadapted human influenza A viruses. Animal models that are currently most often used to study human influenza are mice and ferrets. Additionally, guinea pigs, cotton rats, Syrian hamsters, tree shrews, domestic swine, and non-human primates (macaques and marmosets) are discussed. The presence of NeuGc and the distribution of sialic acid linkages in the most commonly used models is summarized and experimentally determined. We also evaluated the role of Neu5Gc in infection using Neu5Gc binding viruses and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH)-/- knockout mice, which lack Neu5Gc and concluded that Neu5Gc is unlikely to be a decoy receptor. This article provides a base for choosing an appropriate animal model. Although mice are one of the most favored models, they are hardly naturally susceptible to infection with human influenza viruses, possibly because they express mainly α2,3 linked sialic acids with both Neu5Ac and Neu5Gc modifications. We suggest using ferrets, which resemble humans closely in the sialic acid content, both in the linkages and the lack of Neu5Gc, lung organization, susceptibility, and disease pathogenesis.
Collapse
Affiliation(s)
- Cindy M. Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
| | - Nikoloz Nemanichvili
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan;
| | - Hiromu Takematsu
- Department of Molecular Cell Biology, Faculty of Medical Technology, Graduate School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake 470-1192, Aichi, Japan;
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
| |
Collapse
|
11
|
Jimenez-Bluhm P, Sepulveda A, Baumberger C, Di Pillo F, Ruiz S, Salazar C, Marambio V, Berrios F, Galdames P, Amaro A, Tapia D, Sharp B, Freiden P, Meliopoulos V, Schultz-Cherry S, Hamilton-West C. Evidence of influenza infection in dogs and cats in central Chile. Prev Vet Med 2021; 191:105349. [PMID: 33892254 PMCID: PMC8521552 DOI: 10.1016/j.prevetmed.2021.105349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
As companion animals, dogs and cats live in close contact with humans, generating the possibility of interspecies pathogen transmission events. Equine origin H3N8 and avian origin H5N1 influenza virus have been reported in dogs and cats respectively since 2004 with outbreaks associated with different strains recorded for both species in Asia and North America. To date, there have been no reports of influenza viruses from companion animals in South America. To fill this gap in knowledge, we performed active epidemiological surveillance in shelters that received abandoned animals, backyard production systems and veterinary clinics between May 2017 and January 2019 to estimate the burden of influenza infection in cats and dogs in the central region of Chile. Blood samples, oropharyngeal swabs or both were collected for influenza A virus detection by RT-qPCR, NP-ELISA, and hemagglutination inhibition assay. Logistic regression models were performed to assess the association between NP-ELISA-positivity and variables including sex and animal origin. The percentage of ELISA-positive samples was 43.5 % (95 % CI: 37.0-50.1) and 23.3 % (95 % CI: 10.6-42.7) for dogs and cats, respectively. No association was found between NP-ELISA results and sex or animal origin for either dogs or cats. Two ELISA positive samples showed hemagglutination inhibition titers against pandemic H1N1 influenza. One dog sample tested positive by RT-qPCR, indicating an overall RT-qPCR positivity in dogs of 1.1 % (95 % CI: 0.05-6.7). None of the tested cat samples were positive by this assay.
Collapse
Affiliation(s)
- Pedro Jimenez-Bluhm
- Department of Preventive Animal Medicine, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Alejandra Sepulveda
- Department of Preventive Animal Medicine, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Cecilia Baumberger
- Department of Preventive Animal Medicine, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Francisca Di Pillo
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Soledad Ruiz
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Carla Salazar
- Department of Preventive Animal Medicine, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Victor Marambio
- Department of Preventive Animal Medicine, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Fernanda Berrios
- Department of Preventive Animal Medicine, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Pablo Galdames
- Department of Preventive Animal Medicine, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Alicia Amaro
- Department of Preventive Animal Medicine, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - David Tapia
- Department of Preventive Animal Medicine, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Bridgett Sharp
- Department of Infectious Diseases, St. Jude Children's Hospital, Memphis, TN, USA
| | - Pamela Freiden
- Department of Infectious Diseases, St. Jude Children's Hospital, Memphis, TN, USA
| | - Victoria Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Hospital, Memphis, TN, USA
| | | | - Christopher Hamilton-West
- Department of Preventive Animal Medicine, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
12
|
Boumart Z, Bamouh Z, Jazouli M, Zecchin B, Fusaro A, Salviato A, Monne I, Tadlaoui KO, Harrak ME. Pathogenicity and Full Genome Sequencing of the Avian Influenza H9N2 Moroccan Isolate 2016. Avian Dis 2019; 63:24-30. [PMID: 31251516 DOI: 10.1637/11941-080418-reg.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 11/05/2022]
Abstract
In Morocco in early 2016, a low pathogenic avian influenza virus serotype H9N2 caused large economic losses to the poultry industry, with specific clinical symptoms and high mortality rates on infected farms. Subsequent to the H9N2 outbreak, the causal agent was successfully isolated from chicken flocks with high morbidity and mortality rates, propagated on embryonated eggs, and fully sequenced. The phylogenetic analysis suggested that the Moroccan isolate could have derived from the Middle East isolate A/chicken/Dubai/D2506.A/2015. This study was designed to assess the pathogenicity of the Moroccan isolate H9N2 in experimentally infected broiler and specific-pathogen-free (SPF) chickens. At 22 days of age, one broiler and two SPF chicken groups were inoculated by dropping 0.2 ml of the H9N2 isolate (107.5 EID50/ml) in both nostrils and eyes. Clinically inoculated chickens with H9N2 displayed mild lesions, low mortality rates, and an absence of clinical signs. The H9N2 virus was more pathogenic in broiler chickens and produced more severe tissue lesions compared to SPF chickens. The viral shedding was detected up to 6 days postinoculation (pi) in oropharyngeal and cloacal swabs in infected birds with a maximum shedding in the oropharynges of the broiler group. All experimental chickens seroconverted and registered high hemagglutination inhibition titers as early as day 7 pi. The present study indicates that the H9N2 virus isolated from a natural outbreak was of low pathogenicity under experimental conditions. However, under field conditions infection with other pathogens might have aggravated the disease.
Collapse
Affiliation(s)
- Zineb Boumart
- Research and Development Department, Multi-Chemical Industry, Lot 157, Z I, Sud-Ouest (ERAC) B. P. 278, Mohammedia 28810, Morocco,
| | - Zahra Bamouh
- Research and Development Department, Multi-Chemical Industry, Lot 157, Z I, Sud-Ouest (ERAC) B. P. 278, Mohammedia 28810, Morocco
| | - Mohammed Jazouli
- Research and Development Department, Multi-Chemical Industry, Lot 157, Z I, Sud-Ouest (ERAC) B. P. 278, Mohammedia 28810, Morocco
| | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy
| | | | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy
| | - Khalid Omari Tadlaoui
- Research and Development Department, Multi-Chemical Industry, Lot 157, Z I, Sud-Ouest (ERAC) B. P. 278, Mohammedia 28810, Morocco
| | - Mehdi El Harrak
- Research and Development Department, Multi-Chemical Industry, Lot 157, Z I, Sud-Ouest (ERAC) B. P. 278, Mohammedia 28810, Morocco
| |
Collapse
|
13
|
Abstract
INTRODUCTION Influenza continues to be a major public health concern. Antivirals play an important role in limiting the burden of disease and preventing infection and/or transmission. The developments of such agents are heavily dependent on pre-clinical evaluation where animal models are used to answer questions that cannot be easily addressed in human clinical trials. There are numerous animal models available to study the potential benefits of influenza antivirals but each animal model has its own pros and cons. Areas covered: In this review, the authors describe the advantages and disadvantages of using mice, ferrets, guinea pigs, cotton rats, golden hamsters and non-human primates to evaluate influenza therapeutics. Expert opinion: Animals used for evaluating influenza therapeutics differ in their susceptibility to influenza virus infection, their ability to display clinical signs of illness following viral infection and in their practical requirements such as housing. Therefore, defining the scientific question being asked and the data output required will assist in selecting the most appropriate animal model.
Collapse
Affiliation(s)
- Edin J Mifsud
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Celeste Mk Tai
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Aeron C Hurt
- a WHO Collaborating Centre for Reference and Research on Influenza , VIDRL, Peter Doherty Institute for Infection and Immunity , Melbourne , Australia.,b Department of Microbiology and Immunology , University of Melbourne , Melbourne , Victoria , Australia
| |
Collapse
|
14
|
Koch RM, Kox M, Thijs EJM, Rahamat-Langendoen JC, van de Veerdonk FL, Gerretsen J, Schloesser J, Diavatopoulos D, Rimmelzwaan GF, Netea MG, van der Hoeven JG, de Jonge MI, Pickkers P. Development of Endotoxin Tolerance Does Not Influence the Response to a Challenge with the Mucosal Live-Attenuated Influenza Vaccine in Humans In Vivo. Front Immunol 2017; 8:1600. [PMID: 29312282 PMCID: PMC5732479 DOI: 10.3389/fimmu.2017.01600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023] Open
Abstract
Introduction The effects of bacterial infections on the response to subsequent viral infections are largely unknown. This is important to elucidate to increase insight into the pathophysiology of bacterial and viral co-infections, and to assess whether bacterial infections may influence the course of viral infections. Methods Healthy male subjects received either bacterial endotoxin [Escherichia coli-derived lipopolysaccharide (LPS), 2 ng/kg, n = 15] or placebo (n = 15) intravenously, followed by intranasal Fluenz (live-attenuated influenza vaccine) 1 week later. Results LPS administration resulted in increased plasma cytokine levels and development of endotoxin tolerance in vivo and ex vivo, illustrated by attenuated cytokine production upon rechallenge with LPS. Following Fluenz administration, infectivity for the Fluenz A/B strains was similar between the LPS-Fluenz and placebo-Fluenz groups (13/15 subjects in both groups). Also, the Fluenz-induced increase in temperature and IL-6, G-CSF and IP-10 concentrations in nasal wash were similar between both groups. Conclusion While endotoxemia profoundly attenuates the immune response upon a second LPS challenge, it does not influence the Fluenz-induced immune response. These results suggest immune suppression after bacterial infection does not alter the response to a subsequent viral infection.
Collapse
Affiliation(s)
- Rebecca M Koch
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Nijmegen, Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Nijmegen, Netherlands
| | - Eleonora J M Thijs
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Janette C Rahamat-Langendoen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank L van de Veerdonk
- Radboud Center for Infectious Diseases (RCI), Nijmegen, Netherlands.,Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Nijmegen, Netherlands
| | | | - Dimitri Diavatopoulos
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Mihai G Netea
- Radboud Center for Infectious Diseases (RCI), Nijmegen, Netherlands.,Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Nijmegen, Netherlands
| | - Marien I de Jonge
- Radboud Center for Infectious Diseases (RCI), Nijmegen, Netherlands.,Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Nijmegen, Netherlands
| |
Collapse
|
15
|
Muehlenbein MP. Primates on display: Potential disease consequences beyond bushmeat. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 162 Suppl 63:32-43. [PMID: 28105720 DOI: 10.1002/ajpa.23145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/11/2022]
Abstract
Human interactions with nonhuman primates vary tremendously, from daily cultural engagements and food commodities, to pet ownership and tourist encounters. These interactions provide opportunities for the exchange of pathogenic organisms (both zoonoses and anthroponoses). As exposures are not limited to areas where bushmeat usage continues to be a major problem, we must work to understand better our motivations for engaging in activities like owning primates as pets and having direct physical contact with wild primates within the context of nature-based tourism. These topics, and the theoretical potential for pathogen transmission, are reviewed in the present manuscript. This is followed by a case study utilizing 3845 survey responses collected from four international locations known for primate-based tourism, with results indicating that while a majority of people understand that they can give/get diseases to/from wild primates, a surprising percentage would still touch or feed these animals if given the opportunity. Many people still choose to touch and/or own primates, as their drive to bond with animals outweighs some basic health behaviors. Desires to tame, control, or otherwise establish emotional connections with other species, combined with the central role of touch for exploring our environment, necessitate the development of better communication and educational campaigns to minimize risks of emerging infectious diseases.
Collapse
|
16
|
Kumar N, Bera BC, Greenbaum BD, Bhatia S, Sood R, Selvaraj P, Anand T, Tripathi BN, Virmani N. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses. PLoS One 2016; 11:e0154376. [PMID: 27119730 PMCID: PMC4847779 DOI: 10.1371/journal.pone.0154376] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/12/2016] [Indexed: 11/18/2022] Open
Abstract
Equine influenza viruses (EIVs) of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc) analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse) in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Animals
- Biological Evolution
- Codon
- Gene Expression Regulation, Viral
- Genetic Code
- Genome, Viral
- Horse Diseases/virology
- Horses
- Host-Pathogen Interactions
- Influenza A Virus, H3N8 Subtype/genetics
- Influenza A Virus, H3N8 Subtype/metabolism
- Influenza A Virus, H7N7 Subtype/genetics
- Influenza A Virus, H7N7 Subtype/metabolism
- Models, Statistical
- Mutation Rate
- Orthomyxoviridae Infections/veterinary
- Orthomyxoviridae Infections/virology
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Species Specificity
- Virus Replication
Collapse
Affiliation(s)
- Naveen Kumar
- Immunology Lab, National Institute of High Security Animal Diseases (NIHSAD), Bhopal, Madhya Pradesh, India
| | - Bidhan Chandra Bera
- Biotechnology Lab, Veterinary Type Culture Collection, National Research Center on Equines (NRCE), Hisar, Haryana, India
| | - Benjamin D. Greenbaum
- Tisch Cancer Institute, Departments of Medicine, Hematology and Medical Pathology, and Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Sandeep Bhatia
- Immunology Lab, National Institute of High Security Animal Diseases (NIHSAD), Bhopal, Madhya Pradesh, India
| | - Richa Sood
- Immunology Lab, National Institute of High Security Animal Diseases (NIHSAD), Bhopal, Madhya Pradesh, India
| | - Pavulraj Selvaraj
- Equine Pathology Lab, National Research Center on Equines (NRCE), Hisar, Haryana, India
| | - Taruna Anand
- Biotechnology Lab, Veterinary Type Culture Collection, National Research Center on Equines (NRCE), Hisar, Haryana, India
| | | | - Nitin Virmani
- Equine Pathology Lab, National Research Center on Equines (NRCE), Hisar, Haryana, India
- * E-mail:
| |
Collapse
|
17
|
Nijman V, Spaan D, Rode-Margono EJ, Wirdateti, Nekaris KAI. Changes in the primate trade in indonesian wildlife markets over a 25-year period: Fewer apes and langurs, more macaques, and slow lorises. Am J Primatol 2015; 79. [PMID: 26713673 DOI: 10.1002/ajp.22517] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/20/2015] [Accepted: 12/06/2015] [Indexed: 11/07/2022]
Abstract
Indonesia has amongst the highest primate species richness, and many species are included on the country's protected species list, partially to prevent over-exploitation. Nevertheless traders continue to sell primates in open wildlife markets especially on the islands of Java and Bali. We surveyed 13 wildlife markets in 2012-2014 and combined our results with previous surveys from 1990-2009 into a 122-survey dataset with 2,424 records of 17 species. These data showed that the diversity of species in trade decreased over time, shifting from rare rainforest-dwelling primates traded alongside more widespread species that are not confined to forest to the latter type only. In the 1990s and early 2000s orangutans, gibbons and langurs were commonly traded alongside macaques and slow lorises but in the last decade macaques and slow lorises comprised the bulk of the trade. In 2012-2014 we monitored six wildlife markets in Jakarta, Bandung and Garut (all on Java), and Denpasar (Bali). During 51 surveys we recorded 1,272 primates of eight species. Traders offered long-tailed macaque (total 1,007 individuals) and three species of slow loris (228 individuals) in five of the six markets, whereas they traded ebony langurs (18 individuals), and pig-tailed macaques (14 individuals) mostly in Jakarta. Pramuka and Jatinegara markets, both in Jakarta, stood out as important hubs for the primate trade, with a clear shift in importance over time from the former to the latter. Slow lorises, orangutans, gibbons and some langurs are protected under Indonesian law, which prohibits all trade in them; of these protected species, only the slow lorises remained common in trade throughout the 25-year period. Trade in non-protected macaques and langurs is subject to strict regulations-which market traders did not follow-making all the market trade in primates that we observed illegal. Trade poses a substantial threat to Indonesian primates, and without enforcement, the sheer volume of trade may mean that species of Least Concern or Near Threatened may rapidly decline. Am. J. Primatol. 79:e22517, 2017. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vincent Nijman
- Nocturnal Primate Research Group, Oxford Brookes University, Oxford, United Kingdom.,Oxford Wildlife Trade Research Group, Oxford Brookes University, Oxford, United Kingdom
| | - Denise Spaan
- Institute of Neuroethology, University of Veracruz, Xalapa, Mexico
| | | | - Wirdateti
- Zoological Division, Indonesian Institute of Sciences, Cibinong, Indonesia
| | - K A I Nekaris
- Nocturnal Primate Research Group, Oxford Brookes University, Oxford, United Kingdom.,Oxford Wildlife Trade Research Group, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
18
|
Karlsson EA, Small CT, Freiden P, Feeroz MM, Matsen FA, San S, Hasan MK, Wang D, Jones-Engel L, Schultz-Cherry S. Non-Human Primates Harbor Diverse Mammalian and Avian Astroviruses Including Those Associated with Human Infections. PLoS Pathog 2015; 11:e1005225. [PMID: 26571270 PMCID: PMC4646697 DOI: 10.1371/journal.ppat.1005225] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Astroviruses (AstVs) are positive sense, single-stranded RNA viruses transmitted to a wide range of hosts via the fecal-oral route. The number of AstV-infected animal hosts has rapidly expanded in recent years with many more likely to be discovered because of the advances in viral surveillance and next generation sequencing. Yet no study to date has identified human AstV genotypes in animals, although diverse AstV genotypes similar to animal-origin viruses have been found in children with diarrhea and in one instance of encephalitis. Here we provide important new evidence that non-human primates (NHP) can harbor a wide variety of mammalian and avian AstV genotypes, including those only associated with human infection. Serological analyses confirmed that >25% of the NHP tested had antibodies to human AstVs. Further, we identified a recombinant AstV with parental relationships to known human AstVs. Phylogenetic analysis suggests AstVs in NHP are on average evolutionarily much closer to AstVs from other animals than are AstVs from bats, a frequently proposed reservoir. Our studies not only demonstrate that human astroviruses can be detected in NHP but also suggest that NHP are unique in their ability to support diverse AstV genotypes, further challenging the paradigm that astrovirus infection is species-specific.
Collapse
Affiliation(s)
- Erik A Karlsson
- Department of Infectious Disease, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Christopher T Small
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Pamela Freiden
- Department of Infectious Disease, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - MM Feeroz
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - Frederick A Matsen
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sorn San
- National Veterinary Research Institute, Phnom Penh, Cambodia
| | - M Kamrul Hasan
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - David Wang
- Department of Pathology & Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Lisa Jones-Engel
- University of Washington, National Primate Research Center, Seattle, Washington, United States of America
| | - Stacey Schultz-Cherry
- Department of Infectious Disease, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
19
|
Brotcorne F, Fuentes A, Wandia IN, Beudels-Jamar RC, Huynen MC. Changes in Activity Patterns and Intergroup Relationships After a Significant Mortality Event in Commensal Long-Tailed Macaques (Macaca Fascicularis) in Bali, Indonesia. INT J PRIMATOL 2015. [DOI: 10.1007/s10764-015-9841-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
The use of nonhuman primates in research on seasonal, pandemic and avian influenza, 1893-2014. Antiviral Res 2015; 117:75-98. [PMID: 25746173 DOI: 10.1016/j.antiviral.2015.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 11/22/2022]
Abstract
Attempts to reproduce the features of human influenza in laboratory animals date from the early 1890s, when Richard Pfeiffer inoculated apes with bacteria recovered from influenza patients and produced a mild respiratory illness. Numerous studies employing nonhuman primates (NHPs) were performed during the 1918 pandemic and the following decade. Most used bacterial preparations to infect animals, but some sought a filterable agent for the disease. Since the viral etiology of influenza was established in the early 1930s, studies in NHPs have been supplemented by a much larger number of experiments in mice, ferrets and human volunteers. However, the emergence of a novel swine-origin H1N1 influenza virus in 1976 and the highly pathogenic H5N1 avian influenza virus in 1997 stimulated an increase in NHP research, because these agents are difficult to study in naturally infected patients and cannot be administered to human volunteers. In this paper, we review the published literature on the use of NHPs in influenza research from 1893 through the end of 2014. The first section summarizes observational studies of naturally occurring influenza-like syndromes in wild and captive primates, including serologic investigations. The second provides a chronological account of experimental infections of NHPs, beginning with Pfeiffer's study and covering all published research on seasonal and pandemic influenza viruses, including vaccine and antiviral drug testing. The third section reviews experimental infections of NHPs with avian influenza viruses that have caused disease in humans since 1997. The paper concludes with suggestions for further studies to more clearly define and optimize the role of NHPs as experimental animals for influenza research.
Collapse
|
21
|
Poole DS, Yú S, Caì Y, Dinis JM, Müller MA, Jordan I, Friedrich TC, Kuhn JH, Mehle A. Influenza A virus polymerase is a site for adaptive changes during experimental evolution in bat cells. J Virol 2014; 88:12572-85. [PMID: 25142579 PMCID: PMC4248895 DOI: 10.1128/jvi.01857-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/12/2014] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED The recent identification of highly divergent influenza A viruses in bats revealed a new, geographically dispersed viral reservoir. To investigate the molecular mechanisms of host-restricted viral tropism and the potential for transmission of viruses between humans and bats, we exposed a panel of cell lines from bats of diverse species to a prototypical human-origin influenza A virus. All of the tested bat cell lines were susceptible to influenza A virus infection. Experimental evolution of human and avian-like viruses in bat cells resulted in efficient replication and created highly cytopathic variants. Deep sequencing of adapted human influenza A virus revealed a mutation in the PA polymerase subunit not previously described, M285K. Recombinant virus with the PA M285K mutation completely phenocopied the adapted virus. Adaptation of an avian virus-like virus resulted in the canonical PB2 E627K mutation that is required for efficient replication in other mammals. None of the adaptive mutations occurred in the gene for viral hemagglutinin, a gene that frequently acquires changes to recognize host-specific variations in sialic acid receptors. We showed that human influenza A virus uses canonical sialic acid receptors to infect bat cells, even though bat influenza A viruses do not appear to use these receptors for virus entry. Our results demonstrate that bats are unique hosts that select for both a novel mutation and a well-known adaptive mutation in the viral polymerase to support replication. IMPORTANCE Bats constitute well-known reservoirs for viruses that may be transferred into human populations, sometimes with fatal consequences. Influenza A viruses have recently been identified in bats, dramatically expanding the known host range of this virus. Here we investigated the replication of human influenza A virus in bat cell lines and the barriers that the virus faces in this new host. Human influenza A and B viruses infected cells from geographically and evolutionarily diverse New and Old World bats. Viruses mutated during infections in bat cells, resulting in increased replication and cytopathic effects. These mutations were mapped to the viral polymerase and shown to be solely responsible for adaptation to bat cells. Our data suggest that replication of human influenza A viruses in a nonnative host drives the evolution of new variants and may be an important source of genetic diversity.
Collapse
Affiliation(s)
- Daniel S Poole
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shuǐqìng Yú
- NIH/NIAID Integrated Research Facility at Fort Detrick, Frederick, Maryland, USA
| | - Yíngyún Caì
- NIH/NIAID Integrated Research Facility at Fort Detrick, Frederick, Maryland, USA
| | - Jorge M Dinis
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marcel A Müller
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | | | - Thomas C Friedrich
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Jens H Kuhn
- NIH/NIAID Integrated Research Facility at Fort Detrick, Frederick, Maryland, USA
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
22
|
Animal models for influenza viruses: implications for universal vaccine development. Pathogens 2014; 3:845-74. [PMID: 25436508 PMCID: PMC4282889 DOI: 10.3390/pathogens3040845] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 01/22/2023] Open
Abstract
Influenza virus infections are a significant cause of morbidity and mortality in the human population. Depending on the virulence of the influenza virus strain, as well as the immunological status of the infected individual, the severity of the respiratory disease may range from sub-clinical or mild symptoms to severe pneumonia that can sometimes lead to death. Vaccines remain the primary public health measure in reducing the influenza burden. Though the first influenza vaccine preparation was licensed more than 60 years ago, current research efforts seek to develop novel vaccination strategies with improved immunogenicity, effectiveness, and breadth of protection. Animal models of influenza have been essential in facilitating studies aimed at understanding viral factors that affect pathogenesis and contribute to disease or transmission. Among others, mice, ferrets, pigs, and nonhuman primates have been used to study influenza virus infection in vivo, as well as to do pre-clinical testing of novel vaccine approaches. Here we discuss and compare the unique advantages and limitations of each model.
Collapse
|
23
|
Retrospective serology study of respiratory virus infections in captive great apes. Viruses 2014; 6:1442-53. [PMID: 24662675 PMCID: PMC3970160 DOI: 10.3390/v6031442] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 12/11/2022] Open
Abstract
Great apes are extremely sensitive to infections with human respiratory viruses. In this study, we retrospectively analyzed sera from captive chimpanzees, gorillas and orang-utans. More than 1000 sera (403 chimpanzee, 77 gorilla, and 535 orang-utan sera) were analyzed for antibodies to the human respiratory viruses RSV (respiratory syncytial virus, hMPV (human metapneumovirus), H1N1 and H3N2 influenza A viruses, and influenza B virus. In all ape species high seroprevalences were found for RSV, hMPV, and influenza B virus. A high percentage of captive chimpanzees also showed evidence of influenza A H1N1 infections, and had low levels of H3N2 antibodies, while in sera from gorillas and orang-utans antibody levels to influenza A and B viruses were much lower or practically absent. Transmission of respiratory viruses was examined in longitudinal sera of young chimpanzees, and in chimpanzee sera taken during health checks. In young animals isolated cases of influenza infections were monitored, but evidence was found for single introductions followed by a rapid dissemination of RSV and hMPV within the group. Implementation of strict guidelines for handling and housing of nonhuman primates was shown to be an efficient method to reduce the introduction of respiratory infections in colonies of captive animals. RSV seroprevalence rates of chimpanzees remained high, probably due to circulating virus in the chimpanzee colony.
Collapse
|
24
|
Assessing the fitness of distinct clades of influenza A (H9N2) viruses. Emerg Microbes Infect 2013; 2:e75. [PMID: 26038443 PMCID: PMC3924558 DOI: 10.1038/emi.2013.75] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/20/2013] [Accepted: 09/05/2013] [Indexed: 01/17/2023]
Abstract
Influenza A (H9N2) viruses are a genetically diverse population that infects wild and domestic avian species and mammals and contributed the internal gene segments to the A/H5N1 and A/H7N9 viruses associated with lethal human infections. Here we comprehensively assess the potential risk to mammals of a diverse panel of A/H9N2 viruses, representing the major H9N2 clades, using a combination of in vitro assays (e.g., antiviral susceptibility and virus growth in primary differentiated human airway cells) and in vivo assays (e.g., replication, transmission and/or pathogenicity of viruses in ducks, pigs, mice and ferrets). We observed that viruses isolated from humans, A/Hong Kong/1073/1999 and A/Hong Kong/33982/2009, had the highest risk potential. However, the A/swine/Hong Kong/9A-1/1998 and A/chicken/Hong Kong/G9/1997 viruses also displayed several features suggesting a fitness profile adapted to human infection and transmission. The North American avian H9N2 clade virus had the lowest risk profile, and the other viruses tested displayed various levels of fitness across individual assays. In many cases, the known genotypic polymorphisms alone were not sufficient to accurately predict the virus' phenotype. Therefore, we conclude that comprehensive risk analyses based on surveillance of circulating influenza virus strains are necessary to assess the potential for human infection by emerging influenza A viruses.
Collapse
|
25
|
Engel GA, Small CT, Soliven K, Feeroz MM, Wang X, Kamrul Hasan M, Oh G, Rabiul Alam SM, Craig KL, Jackson DL, Matsen Iv FA, Linial ML, Jones-Engel L. Zoonotic simian foamy virus in Bangladesh reflects diverse patterns of transmission and co-infection. Emerg Microbes Infect 2013; 2:e58. [PMID: 26038489 PMCID: PMC3820988 DOI: 10.1038/emi.2013.60] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 12/21/2022]
Abstract
Simian foamy viruses (SFVs) are ubiquitous in non-human primates (NHPs). As in all retroviruses, reverse transcription of SFV leads to recombination and mutation. Because more humans have been shown to be infected with SFV than with any other simian borne virus, SFV is a potentially powerful model for studying the virology and epidemiology of viruses at the human/NHP interface. In Asia, SFV is likely transmitted to humans through macaque bites and scratches that occur in the context of everyday life. We analyzed multiple proviral sequences from the SFV gag gene from both humans and macaques in order to characterize retroviral transmission at the human/NHP interface in Bangladesh. Here we report evidence that humans can be concurrently infected with multiple SFV strains, with some individuals infected by both an autochthonous SFV strain as well as a strain similar to SFV found in macaques from another geographic area. These data, combined with previous results, suggest that both human-facilitated movement of macaques leading to the introduction of non-resident strains of SFV and retroviral recombination in macaques contribute to SFV diversity among humans in Bangladesh.
Collapse
Affiliation(s)
- Gregory A Engel
- National Primate Research Center, University of Washington , Seattle, WA 98195, USA ; Department of Family Medicine, Swedish Medical Center , Seattle, WA 98122, USA
| | - Christopher T Small
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle, WA 98109, USA
| | - Khanh Soliven
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center , Seattle, WA 98109, USA
| | - Mostafa M Feeroz
- Department of Zoology, Jahangirnagar University , Savar, Dhaka-1342, Bangladesh
| | - Xiaoxing Wang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center , Seattle, WA 98109, USA
| | - M Kamrul Hasan
- Department of Zoology, Jahangirnagar University , Savar, Dhaka-1342, Bangladesh
| | - Gunwha Oh
- National Primate Research Center, University of Washington , Seattle, WA 98195, USA
| | - S M Rabiul Alam
- Department of Zoology, Jahangirnagar University , Savar, Dhaka-1342, Bangladesh
| | - Karen L Craig
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center , Seattle, WA 98109, USA
| | - Dana L Jackson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center , Seattle, WA 98109, USA
| | - Frederick A Matsen Iv
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle, WA 98109, USA
| | - Maxine L Linial
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center , Seattle, WA 98109, USA
| | - Lisa Jones-Engel
- National Primate Research Center, University of Washington , Seattle, WA 98195, USA
| |
Collapse
|
26
|
Population dynamics of rhesus macaques and associated foamy virus in Bangladesh. Emerg Microbes Infect 2013; 2:e29. [PMID: 26038465 PMCID: PMC3675400 DOI: 10.1038/emi.2013.23] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 11/16/2022]
Abstract
Foamy viruses are complex retroviruses that have been shown to be transmitted from nonhuman primates to humans. In Bangladesh, infection with simian foamy virus (SFV) is ubiquitous among rhesus macaques, which come into contact with humans in diverse locations and contexts throughout the country. We analyzed microsatellite DNA from 126 macaques at six sites in Bangladesh in order to characterize geographic patterns of macaque population structure. We also included in this study 38 macaques owned by nomadic people who train them to perform for audiences. PCR was used to analyze a portion of the proviral gag gene from all SFV-positive macaques, and multiple clones were sequenced. Phylogenetic analysis was used to infer long-term patterns of viral transmission. Analyses of SFV gag gene sequences indicated that macaque populations from different areas harbor genetically distinct strains of SFV, suggesting that geographic features such as forest cover play a role in determining the dispersal of macaques and SFV. We also found evidence suggesting that humans traveling the region with performing macaques likely play a role in the translocation of macaques and SFV. Our studies found that individual animals can harbor more than one strain of SFV and that presence of more than one SFV strain is more common among older animals. Some macaques are infected with SFV that appears to be recombinant. These findings paint a more detailed picture of how geographic and sociocultural factors influence the spectrum of simian-borne retroviruses.
Collapse
|