1
|
Zhao R, Zhu Z, Wang W, Wen W, Zhang Z, Favoreel HW, Li X. Pseudorabies virus IE180 protein hijacks G3BPs into the nucleus to inhibit stress granule formation. J Virol 2025:e0208824. [PMID: 40145738 DOI: 10.1128/jvi.02088-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Pseudorabies virus (PRV) is a porcine alphaherpesvirus that can infect different animal species and cause pruritus and lethal encephalitis. Stress granules (SGs) are membrane-free cytoplasmic structures formed by liquid-liquid phase separation of G3BP proteins during cell translation inhibition, which generally plays an antiviral role in various viral infections. In this study, we found that infection with different PRV strains inhibits the formation of SGs in host cells. We found that IE180, the only immediate early protein of PRV, has a distinct inhibitory effect on SG formation and colocalizes with SG-nucleating G3BP proteins (G3BP1/2) in the nucleus during PRV infection. Co-immunoprecipitation assays demonstrated an interaction between IE180 and G3BP1/G3BP2, and this interaction appears to depend on the Herpesvirus ICP4-like protein N-terminal (ICP4L-N) domain of IE180 and both NTF2L and RBD domains of G3BP1. Since G3BPs mainly function in the cytoplasm to induce SG formation, we constructed several IE180 protein truncations lacking a nuclear localization sequence to alter the subcellular localization of IE180 to the cytoplasm. Mutant IE180 protein was mainly expressed in the cytoplasm and still suppressed SG formation induced by arsenite or poly(I:C), but its ability to inhibit SG formation was weakened. Importantly, knockout of G3BPs facilitated PRV replication in H1299 cells, while exogenous expression of G3BPs and formation of SGs in wild-type H1299 cells suppressed PRV replication. In summary, our study indicates that PRV IE180 suppresses SG formation and hijacks G3BPs into the nucleus to benefit virus replication.IMPORTANCEHerpesviruses, including pseudorabies virus (PRV), have evolved different strategies to compromise host immune responses. Stress granules (SGs) are one of the targets that viruses can overcome in order to increase replication. The related herpes simplex virus 1 (HSV-1) inhibits SG formation to promote virus replication, but the underlying mechanisms remain unknown. In this study, we confirmed that infection with different PRV strains inhibits SG formation. Interestingly, we found that the PRV immediate early protein IE180 interacts with G3BP proteins and hijacks these proteins into the nucleus to prevent SG formation. In line with the antiviral effect of SGs on PRV replication, exogenous expression of G3BPs and formation of SGs in G3BP1/2 knockout H1299 cells significantly compromised PRV replication. The reported mechanism appears to be also utilized by HSV-1 to prevent SG formation. Therefore, our study elucidates a novel mechanism by which alphaherpesviruses inhibit SG formation, which provides a new perspective to inquire into the immune escape of PRV and other alphaherpesviruses.
Collapse
Affiliation(s)
- Ruihan Zhao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Zhenbang Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Wenqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Wei Wen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Zhendong Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Herman W Favoreel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Xiangdong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University College of Veterinary Medicine, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Duan Y, Liu N, Tan L, Gao L, Zhu G, Tao Z, Liu B, Wang A, Yao J. Isolation and biological characterization of a variant pseudorabies virus strain from goats in Yunnan Province, China. Vet Res Commun 2025; 49:149. [PMID: 40119952 DOI: 10.1007/s11259-025-10703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/01/2025] [Indexed: 03/25/2025]
Abstract
Pseudorabies virus (PRV), the causative agent of Aujeszky's disease, is an infectious pathogen that significantly impacts the global swine industry. The broad host range of PRV enables it to infect various animals, including pigs, cattle, minks, dogs, and even humans. Although PRV infections in ruminants have been reported, the occurrence of natural PRV infection in goats has not been documented. In this study, we present compelling evidence through the characterization of clinical symptoms and detection and analysis using polymerase chain reaction, enzyme-linked immunosorbent assay, and sequence alignment, demonstrating the first case of a PRV variant infection that led to acute illness and death in goats in Yunnan Province, China. Our results indicated that all 10 serum samples from fattening pigs raised near the infected goats tested positive for PRV, suggesting that the PRV infection in goats may have resulted from shared feeding with PRV-infected fattening pigs. Consequently, this report not only underscores the potential threat posed by newly emerging PRV variant strains to the goat industry but also emphasizes the necessity for the development of effective and safe vaccines against PRV variants for goats and other ruminants in the future.
Collapse
Affiliation(s)
- Yuqing Duan
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Ning Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Lei Tan
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, 434025, China.
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China.
| | - Lin Gao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Gangyi Zhu
- Animal Disease Prevention and Control Center of Jiangchuan County in Yunnan Province, Yuxi, 653100, China
| | - Zhengze Tao
- Animal Disease Prevention and Control Center of Jiangchuan County in Yunnan Province, Yuxi, 653100, China
| | - Baoyou Liu
- Animal Disease Prevention and Control Center of Jiangchuan County in Yunnan Province, Yuxi, 653100, China
| | - Aibing Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China.
| | - Jun Yao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China.
| |
Collapse
|
3
|
Kang H, Yang X, Jiang R, Gao P, Zhang Y, Zhou L, Ge X, Han J, Guo X, Yang H. Ultrasensitive and visual detection of pseudorabies virus based on CRISPR-Cas12b system. Microb Pathog 2025; 203:107447. [PMID: 40032004 DOI: 10.1016/j.micpath.2025.107447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/05/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Aujeszky's disease (AD) is an acute infectious disease that infects pigs and other animals, resulting in significant economic losses and posing a threat to human health. Reliable and rapid detection methods are essential for the prevention of AD. In this study, a RAA-Cas12b assay based on recombinase-aided amplification (RAA) and CRISPR-Cas12b system was established, optimized and evaluated for the rapid detection of wild-type Pseudorabies Virus (PRV). The results can not only be detected by real-time fluorescence readout, but also can be visualized by a portable blue light instrument. There was no cross-reaction with PRV Bartha-K61 strain or other swine infectious viruses. The analytical sensitivities of the real-time PRV RAA-Cas12b assay and visual PRV RAA-Cas12b assay were determined to be 15 copies/μL with 95 % confidence interval and 140 copies/μL with 95 % confidence interval, respectively. A total of 31 clinical samples were detected and compared with PRV qPCR assay to evaluate the diagnostic performance of the PRV RAA-Cas12b assay. The diagnostic coincidence rate of the two assays was 100 %. In summary, this convenient and reliable assay has great potential for rapid detection of wild type PRV in point-of-care testing (POCT).
Collapse
Affiliation(s)
- Haoran Kang
- State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Xintan Yang
- State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Ruijiao Jiang
- State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Peng Gao
- State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yongning Zhang
- State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Lei Zhou
- State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Xinna Ge
- State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Jun Han
- State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Xin Guo
- State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.
| | - Hanchun Yang
- State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Zhuang L, Gong J, Shen J, Zhao Y, Yang J, Liu Q, Zhang Y, Shen Q. Advances in molecular epidemiology and detection methods of pseudorabies virus. DISCOVER NANO 2025; 20:45. [PMID: 39992589 PMCID: PMC11850701 DOI: 10.1186/s11671-025-04217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Pseudorabies (PR), a highly contagious disease caused by the pseudorabies virus (PRV), represents a significant threat to the global swine industry. Despite the success of developed countries in controlling the PRV epidemic through swine pseudorabies eradication programs, wild boars, as a potential source of infection, still require sustained attention and effective control measures. Concurrently, there has been considerable global attention directed towards cases of PRV infection in humans. In consideration of the aforementioned factors, this paper presents a comprehensive review of recent developments in the PRV genome, epidemiology, vaccine research, and molecular detection methods. The epidemiology section presents an analysis of the transmission routes, susceptible animal groups, and geographic distribution of PRV, as well as an examination of the trend of the epidemic in recent years. In the field of vaccine research, the current development of genetically engineered vaccines is emphasized, and the immunogenicity and safety of vaccines are discussed. Moreover, the molecular detection techniques utilized to identify PRV, including immunological methods, nucleic acid detection methods, biosensors, and so forth, are presented in a systematic manner. Finally, this paper presents a comprehensive discussion of the current status of PRV-related research and offers insights into future directions, with the aim of providing a foundation for the scientific prevention and control of PRV.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Jingyi Shen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
5
|
Li L, Lv M, Li Y, Sun H, Li J, Li W, Wang X, Bi R, Zhang Z, Bo Z, Shen H, Wang J, Zhuansun M, Zhou J, Xue Y, Suo X, Tong R, Sun P. Berbamine inhibits Pseudorabies virus in vitro and in vivo. Vet Microbiol 2025; 301:110356. [PMID: 39733660 DOI: 10.1016/j.vetmic.2024.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Pseudorabies virus (PRV) is a significant pathogen that causes acute infectious diseases in pigs, resulting in considerable economic losses for the global pig industry. The lack of effective control measures and vaccines against the circulating variants of PRV highlights the pressing need for novel treatment strategies. In this study, a screening of a natural product library identified Berbamine as a promising compound that inhibits PRV replication, with a selectivity index of 17. Preliminary investigations demonstrated that Berbamine impedes viral proliferation by targeting the replication and release stages of the PRV life cycle. In experiments with mice artificially infected with PRV, Berbamine significantly alleviated clinical symptoms and histopathological changes in brain tissue caused by PRV infection. Furthermore, molecular docking studies indicated that Berbamine targets the UL50 protein, not only of PRV but also of HSV-1, FHV-1, and BoHV-1. Given that the UL50 protein is a promising target for antiviral drug development, Berbamine holds considerable potential for broad application in antiviral therapies.
Collapse
Affiliation(s)
- Liang Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China
| | - Muze Lv
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yangfan Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Huihui Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jie Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wenyan Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xuan Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ruimin Bi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zuyao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Haixiao Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wang
- Anhui Provincial Center for Animal Disease Control and Prevention, Hefei, Anhui 230091, China
| | - Minghao Zhuansun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jinchi Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yuting Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xinru Suo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rui Tong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
6
|
Zhang H, Jiang Y, Ding G, Chen J, Liu Y, Wang F, Yu X. Expression and purification of PNGase F protein in yeast and its anti-PRV activity. Virology 2025; 603:110393. [PMID: 39827598 DOI: 10.1016/j.virol.2025.110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Pseudorabies virus (Pseudorabiesvirus, PRV) has caused huge economic losses to the global pig industry. In recent years, it has been reported that there are PRV mutants, but the traditional vaccine can not completely prevent or control the infection of PRV, so there is an urgent need to develop new broad-spectrum anti-disease drugs for prevention and treatment. PNGase F from bacteria can catalyze the hydrolysis of oligosaccharides linked to asparagine residues on peptides, so we speculate that PNGase F can inhibit virus infection by removing the glycosylation of virus membrane glycoproteins. In this study, PNGase F protein was highly expressed and purified in Pichia pastoris, and the deglycosylation activity of PNGase F expressed in Pichia pastoris was verified. In vitro, 15 μM could significantly inhibit the proliferation of virus in cells. The results of cytotoxicity test showed that PNGase F was not toxic to many cells. To further evaluate the effect of PNGase F in different stages of virus infection, it was found that PNGase F had significant inhibitory effect on virus adsorption and invasion. In vivo experiments in mice, PNGase F could significantly inhibit the replication of PRV Ea strain in mice and inhibit PRV, reduced brain lesions. Our experiments show that PNGase F expressed by yeast can inhibit PRV infection in vitro and in vitro, and its inhibitory mechanism is preliminarily discussed, which can provide a new reference for the development of broad-spectrum antiviral drugs based on PNGase F.
Collapse
Affiliation(s)
- Haonan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Yu Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Gang Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Jingyu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Yuda Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Furong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| |
Collapse
|
7
|
Zhang X, Yang J, Liu F, Mo M, Farooq M, Li J, Yao C, Wei W. Antiviral activity of Morus alba L. extract against pseudorabies virus. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118719. [PMID: 39179057 DOI: 10.1016/j.jep.2024.118719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus alba L. are widely used as ethnomedicine and functional food in China, Japan, Korea and other Asian countries. Morus alba L. have a variety of pharmacological activity such as antiviral, antioxidation, anti-cholesterol, anticancer, hypoglycemia, and neuroprotection. Morus alba L. has demonstrated antiviral efficacy against influenza viruses, SARS-CoV-2 and so on, but its potential activity against pseudorabies virus (PRV) remains uncertain. AIM OF THE STUDY This study endeavors to delve into the anti-pseudorabies virus (PRV) potential of the ethanol extract of Morus alba L. leaves (MLE), while simultaneously elucidating its underlying mechanism of action. MATERIALS AND METHODS The anti-PRV activities of Morus alba L. extracts at different concentrations were evaluated by qPCR and immunoblotting. The inhibitory effects of MLE on PRV replication in three distinct treatment modes (pretreatment, co-treatment, and post-treatment) were detected by qPCR and indirect immunofluorescence assays. qPCR was used to investigate the effects of MLE on PRV attachment, entrance, and cytokine expression in PRV-infected cells. The chemical components in MLE were analyzed by UPLC-MS/MS. RESULTS MLE significantly inhibits PRV replication and protein expression in a dose-dependent manner. MLE displays inhibitory effects against PRV at three different modes of treatment. The most significant inhibitory effect of MLE was observed when used in co-treatment mode, resulting in an inhibition rate of 99.42%. MLE inhibits PRV infection in the early stage. MLE inhibits PRV infection by affecting viral attachment and viral entry. Furthermore, MLE exerts its inhibition on PRV replication by mitigating the heightened expression of cytokines (TNF-α and IFN-α) triggered by PRV. Analysis of its chemical composition highlights phenolic acids and flavonoids as the principal constituents of MLE. CONCLUSION The results illustrate that MLE effectively impedes PRV infection by suppressing viral adsorption and entry, while also curbing the expression of antiviral cytokines. Therefore, MLE may be a potential resource for creating new medications to treat human and animal PRV infections.
Collapse
Affiliation(s)
- Xiaoai Zhang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China.
| | - Jian Yang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Fan Liu
- Sericultural & Agri-Food Research Institute of Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Minying Mo
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China.
| | - Muhammad Farooq
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China.
| | - Jianbo Li
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China.
| | - Chunpeng Yao
- Vegetable Research Institute of Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, PR China.
| | - Wenkang Wei
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China.
| |
Collapse
|
8
|
Xu T, Zhang Y, Tao Q, Xu L, Lai SY, Ai YR, Huang JB, Yang BL, Zhu L, Xu ZW. Transcriptome analysis reveals that PRV XJ delgE/gI/TK protects against intestinal damage in nose-dropping-infected mice by regulating ECM-ITGA/ITGB-P-FAK. Microbiol Spectr 2025; 13:e0182824. [PMID: 39611821 PMCID: PMC11705885 DOI: 10.1128/spectrum.01828-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024] Open
Abstract
Pseudorabies virus (PRV) is an ideal model for mechanistic investigations into α-herpesvirus. The neurotropism and latent infection of PRV have been extensively studied. Apart from neurological symptoms, diarrhea caused by PRV infection is also an essential cause of mortality in newborn and weaned piglets. However, little research has been done on PRV invasion of the gut. To fill this gap, a nasal drip PRV-infection mouse model was developed, consisting of three groups: the challenged group (Group A), the immunization-challenged group (Group B), and a mock group (Group C). The results showed that immunization with PRV XJ delgE/gI/TK successfully prevented intestinal damage caused by PRV drop-nose infection. Subsequently, intestines were collected for transcriptional analysis. Differentially expressed genes analysis revealed that PRV XJ delgE/gI/TK was effective in reducing the organismal intestinal transcriptional activity caused by PRV. The Group A vs Group C and Group A vs Group B had similar Kyoto Encyclopedia of Genes and Genomes (KEGG)-enriched signaling pathways and the differentially expressed genes were primarily enriched in pathways, such as cell adhesion molecules, focal adhesion kinase, and actin cytoskeleton regulation. Notably, transcriptome analysis indicated that genes associated with the focal adhesion kinase (FAK) signaling pathway (ECM-ITGA/ITGB-p-FAK) were significantly more highly expressed in Group A than in Group B and Group C. The results of quantitative real-time PCR (RT-qPCR) and western blotting were consistent with KEGG analysis. Therefore, we hypothesized that PRV promotes self-infection through activation of the ECM-ITGA/ITGB-p-FAK signaling pathway and that PRV XJ delgE/gI/TK immunization could attenuate the intestinal damage caused by PRV by inhibiting the activation of this pathway.IMPORTANCEPseudorabies virus (PRV) poses a significant threat to the swine industry and public health due to its ability to infect multiple species, including humans, leading to substantial economic losses and potential health risks. This study addresses a critical gap in understanding the impact of PRV infection on the gut, which has been less explored compared to its neurological effects. By developing a drip-nose PRV-infection mouse model, the research indicated that PRV might promote self-infection through activation of the ECM-ITGA/ITGB-p-FAK signaling pathway, and PRV XJ delgE/gI/TK immunization effectively prevents intestinal damage by significantly reducing the expression of genes in the ECM-ITGA/ITGB-p-FAK signaling pathway. The research has important implications for the swine industry and public health by contributing to the development of better vaccines and treatments, ultimately helping to control PRV and prevent its cross-species transmission.
Collapse
Affiliation(s)
- Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian Tao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Si-Yuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan-Ru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jian-Bo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ben-Lu Yang
- College Of Animal Science and Technology of Jiangxi Agricultural University, Nanchang, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Wen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Cao L, Lv W, Li A, Yang L, Zhou F, Wen F, Yuan S, Huang S, Li Z, Guo J. A SYBR green I-based multiplex real-time PCR for simultaneous detection of pseudorabies virus, porcine circovirus 3 and porcine parvovirus. BMC Vet Res 2025; 21:10. [PMID: 39773253 PMCID: PMC11705656 DOI: 10.1186/s12917-024-04440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Pseudorabies virus (PRV), porcine parvovirus (PPV) and porcine circovirus 3 (PCV3) are common in swine farms in China. Single infection or co-infection with PRV, PPV and/or PCV3 was difficult to distinguish between their clinical symptoms and pathological changes. Therefore, a quick and accurate detection method is needed for epidemiological surveillance, disease management, import and export control. METHODS In the present study, we established a multiplex real-time PCR assay based on SYBR Green I for the simultaneous detection of PRV, PPV and PCV3 genomes. RESULTS PRV, PPV and PCV3 were distinguished in the same sample by their different melting temperatures (Tm), with melting peaks at 90 °C for PRV, 84 °C for PPV and 80 °C for PCV3, respectively, and other non-targeted swine pathogens did not exhibit specific melting peaks. The assay showed a high degree of linearity (R2≧0.995), and the detection limits were 4.76 copies/μL for PRV, 3.67 copies/μL for PPV, 3.07 copies/μL for PCV3 and 1.87 × 102 copies/μL for the three mixed plasmids, respectively. In this research, 81 clinical samples from pig farms in nine different regions of Guangdong Province were used to evaluate this new method. The detection rate of the multiplex real-time PCR assay was higher than that of the conventional PCR assay. CONCLUSIONS This multiplex real-time PCR assay could be used as a diagnostic tool that is rapid, sensitive and reliable for the detection of co-infection of PRV, PPV and PCV3 as well as for molecular epidemiological surveillance.
Collapse
Affiliation(s)
- Lihua Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Wenke Lv
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Anqi Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Lulu Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Feng Zhou
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China.
| |
Collapse
|
10
|
Yu F, Xiang W, Ou W, Li Y, Shu X, Li X. TLR Agonist Immunoadjuvants Provide Effective Protection Against PCV2 and PRV Infections in a Bivalent Subunit Vaccine for PCV2 and PRV. Vet Sci 2025; 12:25. [PMID: 39852900 PMCID: PMC11768675 DOI: 10.3390/vetsci12010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Diseases associated with porcine circovirus type 2 (PCV2) and pseudorabies virus (PRV) significantly affect the economy of pig farms, particularly when combined infections lead to bacterial co-infections. Antigens from the pseudorabies variant strain gB and gD proteins and PCV2 (genotyped) Cap protein were mixed with the pattern recognition receptor (PRR) agonist FLICd as adjuvants and formulated with a micro-hydrogel adjuvant into PCV2 and PRV bivalent subunit vaccines. Twenty pigs, aged 30-35 days, were divided into groups A (received bivalent subunit vaccine) and B (received bivalent subunit vaccines with recombinant FLICd adjuvant), as well as C (non-vaccinated challenge control) and D (blank control). Groups A and B showed no significant difference in average daily weight gain compared to the unvaccinated controls. Fourteen days post-second vaccination, groups A and B exhibited significantly higher levels of PRV and PCV2 antibodies than groups C and D. Group B showed significantly higher average titers of PRV-specific neutralizing antibodies than group A. Fourteen days post-second vaccination, a PRV (ZJM-1 strain) challenge test was conducted. The vaccinated group achieved 100% protection. Vaccination effectively reduced virus load post-challenge and shortened the PRV shedding period. Vaccination with PCV2 and PRV bivalent subunit vaccines effectively prevents the onset of PCV2-related diseases and infections by wild pseudorabies strains.
Collapse
Affiliation(s)
- Fulai Yu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Dovro Animal Health Products Co., Ltd., 298 Binhong West Road, Jinhua 321017, China; (W.X.); (Y.L.)
| | - Wei Xiang
- Zhejiang Dovro Animal Health Products Co., Ltd., 298 Binhong West Road, Jinhua 321017, China; (W.X.); (Y.L.)
| | - Weiye Ou
- Zhejiang MEBOLO Biotechnology Co., Ltd., Binhong West Road, Jinhua 321017, China;
| | - Yang Li
- Zhejiang Dovro Animal Health Products Co., Ltd., 298 Binhong West Road, Jinhua 321017, China; (W.X.); (Y.L.)
| | - Xinbiao Shu
- Zhejiang Dovro Animal Health Products Co., Ltd., 298 Binhong West Road, Jinhua 321017, China; (W.X.); (Y.L.)
| | - Xiaoliang Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang University-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang 312500, China
| |
Collapse
|
11
|
Shi K, Hu X, Yin Y, Shi Y, Pan Y, Long F, Feng S, Li Z. Development of a triplex crystal digital RT-PCR for the detection of PHEV, PRV, and CSFV. Front Vet Sci 2024; 11:1462880. [PMID: 39726583 PMCID: PMC11669669 DOI: 10.3389/fvets.2024.1462880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), and classical swine fever virus (CSFV) are currently prevalent worldwide and cause similar neurological symptoms in infected pigs. It is very important to establish a detection method that can rapidly and accurately detect and differentiate these three viruses. Targeting the PHEV N gene, PRV gB gene, and CSFV 5' untranslated region (5'UTR), three pairs of specific primers and probes were designed, and a triplex crystal digital reverse transcription-PCR (cdRT-PCR) was developed to detect PHEV, PRV, and CSFV. The results indicated that this assay had high sensitivity, and the limitation of detection (LODs) for PHEV, PRV, and CSFV were 4.812, 4.047, and 5.243 copies/reaction, respectively, which was about 50 times higher than that of multiplex real-time quantitative RT-PCR (RT-qPCR). This assay showed good specificity, without cross-reaction with other important swine pathogens, i.e., FMDV, PRRSV, PEDV, SIV, TGEV, PoRV, and PCV2. This assay had high repeatability, with intra-assay coefficients of variation (CVs) of 0.73-1.87%, and inter-assay CVs of 0.57-2.95%. The developed assay was used to test 1,367 clinical tissue samples from Guangxi province in China, and the positive rates of PHEV, PRV, and CSFV were 3.44% (47/1,367), 1.24% (17/1,367), and 1.90% (26/1,367), respectively, with a coincidence rate of 98.98% and a Kappa value of 0.94 to the reference multiplex RT-qPCR. The established triplex cdRT-PCR was a highly rapid, sensitive, and accurate assay to detect and differentiate PHEV, PRV, and CSFV.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Xin Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Zhang Y, Li X, Zhang J, Duan Y, Chen P, Shi L, Yuan C, Cao L, Sun M, Wang Y, Kong X, Zheng H, Wang Q. A rapid and versatile reverse genetic approach and visualization animal models for emerging zoonotic pseudorabies virus. Antiviral Res 2024; 232:106036. [PMID: 39522887 DOI: 10.1016/j.antiviral.2024.106036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Pseudorabies virus (PRV), a member of the Alphaherpesvirinae subfamily and a causative pathogen of Aujeszky's disease, has a broad host range including domestic and wild animals. PRV has been reported as a causative agent in patients with acute encephalitis in 2021, which suggests PRV might be a novel animal-origin virus in terms of zoonotic spillover and spread potential. To manage current PRV epidemics in pigs and prepare for future pandemics in other species including humans. Fundamental techniques essential for procuring such knowledge on prevention and therapy of PRV. Here, PRV CD22 strain was isolated and phylogenetic analysis showed that PRV CD22 belongs to the current epidemic strains in China. PRV CD22 was highly lethal to mice and piglets in vivo. Moreover, a rapid and efficient system to generate recombinant PRV was constructed based on PRV CD22 genomic DNA fosmid library. Using this system, a recombinant PRV strain expressing engineered labeling protein was rescued for visualization of viral infection in mouse model. Our study allows the generation of PRV that can be used for downstream treatment analyses. Once experimental or surveillance samples are obtained, PRV can be generated and treated efficiently based on our study.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangtong Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Juan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yueyue Duan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Peibin Chen
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Lei Shi
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Cong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Liyan Cao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Maowen Sun
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yating Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangyu Kong
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Qi Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China.
| |
Collapse
|
13
|
Sun M, Shi Y, Lei B, Zhang W, Feng J, Ge S, Yuan W, Zhao K. A pH-triggered self-releasing humic acid hydrogel loaded with porcine interferon α/γ achieves anti-pseudorabies virus effects by oral administration. Vet Res 2024; 55:153. [PMID: 39568063 PMCID: PMC11580204 DOI: 10.1186/s13567-024-01411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/16/2024] [Indexed: 11/22/2024] Open
Abstract
Interferon α (IFNα) and interferon γ (IFNγ) play pivotal roles in mediating crucial biological functions, including antiviral activity and immune regulation. However, the efficacy of monomeric IFN is limited, and its administration relies solely on injection. To address this issue, we successfully expressed and purified a recombinant porcine IFNα and IFNγ fusion protein (rPoIFNα/γ). Furthermore, we developed a pH-triggered humic acid hydrogel delivery system that effectively protects rPoIFNα/γ from gastric acid degradation, enhancing its oral bioavailability. Neither the humic acid hydrogel nor rPoIFNα/γ exhibited cytotoxic effects on porcine kidney-15 (PK-15) cells in vitro. The replication of vesicular stomatitis virus and pseudorabies virus (PRV) was effectively inhibited by rPoIFNα/γ, resulting in an antiviral activity of approximately 104 U/mL. Scanning electron microscopy revealed that the humic acid hydrogel had a loose and porous honeycomb structure. The IFNα/γ@PAMgel hydrogel effectively adsorbed rPoIFNα/γ, as confirmed by Fourier transform infrared spectroscopy analysis, demonstrating a favourable IFN-loading capacity. In vitro experiments revealed that IFNα/γ@PAMgel swelled and released IFNα/γ rapidly at pH 7.4 but not at pH 1.2. The oral administration of IFNα/γ@PAMgel in mice enhanced the proliferation and differentiation of CD4+ and CD8+ cells. Additionally, mice infected with PRV and treated with IFNα/γ@PAMgel presented increased transcription levels of interferon-stimulated genes in the serum, reduced mortality rates, lower viral loads in various tissues, and decreased levels of organ damage. In conclusion, this study demonstrates that orally administered IFNα/γ@PAMgel has antiviral and immunomodulatory effects, highlighting its potential as a therapeutic agent against PRV infection.
Collapse
Affiliation(s)
- Maoyuan Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yongli Shi
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jingjing Feng
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Shenghu Ge
- Hebei Mingzhu Biotechnology Co., Ltd., Xingtai, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China.
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
14
|
Van Crombrugge E, Ren X, Glorieux S, Zarak I, Van den Broeck W, Bachert C, Zhang N, Van Zele T, Kim D, Smith GA, Laval K, Nauwynck H. The alphaherpesvirus gE/gI glycoprotein complex and proteases jointly orchestrate invasion across the host's upper respiratory epithelial barrier. mBio 2024; 15:e0187324. [PMID: 39382295 PMCID: PMC11558996 DOI: 10.1128/mbio.01873-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
Alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), pseudorabies virus (PRV), and bovine herpesvirus type 1 (BoHV-1), are significant pathogens affecting humans and animals. These viruses penetrate the upper respiratory tract mucosa, yet the mechanisms facilitating this invasion are not fully understood. This study investigates the role of the gE/gI glycoprotein complex and proteases in mucosal invasion by these viruses. Using species-specific respiratory mucosal explants, we observed that the removal of extracellular calcium disrupts epithelial junction integrity, enhancing viral infection across all viruses and suggesting a common mechanism of targeting a basolaterally located receptor. PRV exhibited significantly faster replication and deeper invasion compared to HSV-1 and BoHV-1. The gE glycoprotein was consistently polarized at the basement membrane across all viruses, indicating a critical role in the process of viral entry and subsequent spread through the epithelium. In this context, "infection" refers to the virus's attachment to its cell-surface receptor, entry into the cell, and completion of the viral life cycle, culminating in the production of progeny virions. Notably, in gE/gI null mutants of PRV and HSV-1, while the infection was not abortive and the viral life cycle was completed, the infection was delayed, and the invasion into the deeper layers of the epithelium and underlying mucosa was significantly reduced. In BoHV-1 mutants, this effect was even more pronounced, with infection restricted to the apical cells, failing to progress to the basal cells. In addition, PRV and HSV-1 invasion involved serine protease activity, unlike BoHV-1, which correlates with its slower invasion pace. Notably, the protease facilitating PRV invasion was identified as a urokinase plasminogen activator (uPA), while the specific protease for HSV-1 remains unidentified. These findings highlight the critical roles of the gE/gI complex and proteases in alphaherpesvirus pathogenesis, offering potential targets for therapeutic intervention. IMPORTANCE Herpes simplex virus type 1 (HSV-1) infections are a worldwide issue. More than three billion people are infected with HSV-1 globally. Although most infections with HSV-1 occur subclinically, severe symptoms and complications are numerous and can be life-threatening. Complications include encephalitis and blindness. Recently, HSV-1 infections have been associated with the development of Alzheimer's Disease. To date, no effective vaccines against HSV-1 are on the market. Pseudorabies virus (PRV) and bovine herpesvirus type 1 (BoHV-1) are two alphaherpesviruses of major veterinary importance. Although efforts have been made to eradicate these viruses from livestock animals, clinical problems still occur, resulting in great economic losses for farmers. It is evident that new insights into the pathogenesis of alphaherpesviruses are needed, to develop effective treatments and novel preventive therapies.
Collapse
Affiliation(s)
- E. Van Crombrugge
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| | - X. Ren
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| | - S. Glorieux
- Center for Human Body Material, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - I. Zarak
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| | - W. Van den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - C. Bachert
- Department of Otorhinolaryngology – Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - N. Zhang
- Department of Head and Skin, Upper Airways Research Laboratory, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - T. Van Zele
- Department of Head and Skin, Upper Airways Research Laboratory, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - D. Kim
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - G. A. Smith
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - K. Laval
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| | - H. Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
15
|
Wu J, Zhang J, Zhou J, Luo Y, Wang X, Yang R, Zhu J, Jia M, Zhang L, Fu L, Yan N, Wang Y. Prevalence and Genetic Variation Investigation of the Pseudorabies Virus in Southwest China. Animals (Basel) 2024; 14:3103. [PMID: 39518826 PMCID: PMC11544765 DOI: 10.3390/ani14213103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In 2022, a significant PRV outbreak in a southwestern China pig farm led to a high incidence of sow abortion. A serological analysis using gE antigen-based ELISA revealed a high prevalence (69.30%) of PRV gE antibodies among the affected pigs, with a significant variation across different pig populations (1.11-76.12%). We collected additional 5552 pig serum samples and 580 pig cerebrospinal fluid (CSF) samples from various pig farms in Southwest China between 2022 and 2024. The seropositive rates for PRV gE antibodies ranged from 2.36% and 8.65% in the serum samples, while the positive detection rates for the PRV gE gene in the cerebrospinal fluid samples, as determined by PCR, were between 1.06% and 2.36%. The PCR analysis and sequencing of the PRV gB, gC, gE, and TK genes from eight randomly selected samples identified two distinct strains, CQ1 and CQ2. CQ1's gC gene showed similarity to the vaccine strain Bartha, while the other genes aligned with Chinese classical strains, suggesting its potential genetic recombination. CQ2 aligned with the Chinese classical strain SC. Although the overall PRV infection in Southwest China's pig farms is relatively low, occasional outbreaks with high positivity rates are observed. These findings highlight the necessity for increased surveillance and stringent control measures to safeguard the swine industry.
Collapse
Affiliation(s)
- Jiaqi Wu
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Juan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Jun Zhou
- Sichuan Boce Testing Technology Co., Ltd., Chengdu 610023, China;
| | - Yi Luo
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Rui Yang
- Chongqing Academy of Animal Science, Chongqing 408599, China (L.F.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Junhai Zhu
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Meiyu Jia
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Longxiang Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing 408599, China (L.F.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Nan Yan
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
16
|
Bude SA, Lu Z, Zhao Z, Zhang Q. Pseudorabies Virus Glycoproteins E and B Application in Vaccine and Diagnosis Kit Development. Vaccines (Basel) 2024; 12:1078. [PMID: 39340108 PMCID: PMC11435482 DOI: 10.3390/vaccines12091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Pseudorabies virus (PRV) is a highly infectious pathogen that affects a wide range of mammals and imposes a significant economic burden on the global pig industry. The viral envelope of PRV contains several glycoproteins, including glycoprotein E (gE) and glycoprotein B (gB), which play critical roles in immune recognition, vaccine development, and diagnostic procedures. Mutations in these glycoproteins may enhance virulence, highlighting the need for updated vaccines. Method: This review examines the functions of PRV gE and gB in vaccine development and diagnostics, focusing on their roles in viral replication, immune system interaction, and pathogenicity. Additionally, we explore recent findings on the importance of gE deletion in attenuated vaccines and the potential of gB to induce immunity. Results: Glycoprotein E (gE) is crucial for the virus's axonal transport and nerve invasion, facilitating transmission to the central nervous system. Deletion of gE is a successful strategy in vaccine development, enhancing the immune response. Glycoprotein B (gB) plays a central role in viral replication and membrane fusion, aiding viral spread. Mutations in these glycoproteins may increase PRV virulence, complicating vaccine efficacy. Conclusion: With PRV glycoproteins being essential to both vaccine development and diagnostic approaches, future research should focus on enhancing these components to address emerging PRV variants. Updated vaccines and diagnostic tools are critical for combating new, more virulent strains of PRV.
Collapse
Affiliation(s)
- Sara Amanuel Bude
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| | - Qiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| |
Collapse
|
17
|
Li H, Zhang R, Qu J, Kang Y, Zhang J, Guo R, Li J, Zhang X, Han L, Xie H, Wang X. Development and immunogenicity evaluation of a quadruple-gene-deleted pseudorabies virus strain. Front Microbiol 2024; 15:1479794. [PMID: 39372271 PMCID: PMC11449858 DOI: 10.3389/fmicb.2024.1479794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Since 2011, the emergence of Pseudorabies virus (PRV) variants has led to significant vaccine failures, resulting in severe economic losses in China's swine industry. Conventional PRV vaccines have shown limited efficacy against these emergent variants, underscoring the urgent need for novel immunization strategies. This study aimed to develop and evaluate a novel recombinant PRV vaccine candidate with improved safety and immunogenicity profiles. Utilizing the homology-directed repair (HDR)-CRISPR/Cas9 system, we generated a recombinant PRV strain, designated PRV SX-10ΔgI/gE/TK/UL24, with deletions in the gI, gE, TK, and UL24 genes. In vitro analyses demonstrated that the recombinant virus exhibited similar replication kinetics and growth curves comparable to the parental strain. The immunological properties of the recombinant PRV were assessed in murine and porcine models. All animals inoculated with PRV SX-10ΔgI/gE/TK/UL24 survived without exhibiting significant clinical signs or pathological alterations. Immunological assays revealed that PRV SX-10ΔgI/gE/TK/UL24 elicited significantly higher levels of gB-specific antibodies, neutralizing antibodies, and cytokines (including IFN-γ, IL-2, and IL-4) compared to both the Bartha-K61 and PRV SX-10ΔgI/gE/TK strains. Notably, both murine and porcine subjects immunized with PRV SX-10ΔgI/gE/TK/UL24 demonstrated enhanced protection against challenges with the variant PRV SX-10 strain, compared to other vaccine strains. These findings suggest that PRV SX-10ΔgI/gE/TK/UL24 represents a promising PRV vaccine candidate strain, offering valuable insights for the prevention and control of PRV in clinical applications.
Collapse
Affiliation(s)
- Hui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jiahao Qu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yahao Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingnan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruhai Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - JunDa Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiao Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Likang Han
- College of Veterinary Medicine, Gansu Agricultural University, Anning, China
| | - Honglin Xie
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Xu L, Tao Q, Xu T, Yang Y, Zhang Y, Liu Z, Zhou Y, Zhu L, Xu Z. Pathogenicity characteristics of different subgenotype pseudorabies virus in newborn piglets. Front Vet Sci 2024; 11:1438354. [PMID: 39170631 PMCID: PMC11335603 DOI: 10.3389/fvets.2024.1438354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Pseudorabies virus is a major pathogen in the pig industry, causing substantial economic losses. The emergence of pseudorabies virus variant strains in China has led to extensive spread, raising concerns about their potential impact. However, the differences in pathogenicity between the classical strains and the variant strains of genotype II are not well understood. In this study, we isolated three pseudorabies virus strains to evaluate their replication characteristics and to examine the differences in virulence genes among various subgenotypes strains. Additionally, a piglet infection model was utilized to investigate the clinical features of infection, tissue tropism, and the inflammatory responses induced by these strains. Our results showed that the genotype II variant strains (MS, XJ, LS, and CZ) had significantly larger plaque sizes and higher replication capacities than the genotype II classical strain Fa. The animal experiments revealed significant differences in pathogenicity among the pseudorabies virus subgenotype strains, with the variant strains showing higher mortality rates, more severe clinical symptoms, increased nasal virus shedding, and a more robust inflammatory response compared to the genotype II classical strain. There were also notable differences in tissue tropism among the strains. In terms of tissue viral loads, the genotype II variant strains did not exhibit a significant advantage over the genotype I classical strain. Furthermore, our findings indicate that antibodies against the genotype II classical strains have a reduced neutralizing capacity against the genotype II variant strains. On the other hand, antibodies against the genotype II variant strains displayed similar neutralizing abilities against both classical and variant strains. Overall, these findings offer important insights into the distinctions among pseudorabies virus subgenotypes and their implications for the clinical control of pseudorabies virus infections in pig farming.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian Tao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanting Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zheyan Liu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Jiang L, Cheng J, Pan H, Yang F, Zhu X, Wu J, Pan H, Yan P, Zhou J, Gao Q, Huan C, Gao S. Analysis of the recombination and evolution of the new type mutant pseudorabies virus XJ5 in China. BMC Genomics 2024; 25:752. [PMID: 39090561 PMCID: PMC11295580 DOI: 10.1186/s12864-024-10664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Pseudorabies have caused enormous economic losses in China's pig industry and have recurred on many large pig farms since late 2011. The disease is caused by highly pathogenic, antigenic variant pseudorabies virus (vPRV) strains. Our laboratory isolated a pseudorabies virus in 2015 and named it XJ5. The pathogenic ability of this mutant strain was much stronger than that of the original isolate. After we sequenced its whole genome (GenBank accession number: OP512542), we found that its overall structure was not greatly changed compared with that of the previous strain Ea (KX423960.1). The whole genome alignment showed that XJ5 had a strong genetic relationship with the strains isolated in China after 2012 reported in GenBank. Based on the isolation time of XJ5 and the mutation and recombination analysis of programs, we found that the whole genome homology of XJ5 and other strains with Chinese isolates was greater than 95%, while the homology with strains outside Asia was less than 94%, which indicated that there may be some recombination and mutation patterns. We found that virulent PRV isolates emerged successively in China in 2011 and formed two different evolutionary clades from foreign isolates. At the same time, this may be due to improper immunization and the presence of wild strains in the field, and recent reports have confirmed that Bartha vaccine strains recombine with wild strains to obtain new pathogenic strains. We performed genetic evolution analysis of XJ5 isolated and sequenced in our laboratory to trace its possible mutations and recombination. We found that XJ5 may be the result of natural mutation of a virus in a branch of mutant strains widely existing in China.
Collapse
Affiliation(s)
- Luyao Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jinlong Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hao Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Fan Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Xiemin Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jiayan Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Haochun Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Ping Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jinzhu Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
- Jiangsu Academy of Agricultural Sciences Veterinary Institute, Nanjing, 210014, Jiangsu, China
| | - Qingqing Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Changchao Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China.
| | - Song Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
20
|
Chen X, Wang S, Chen K, Han Q. The global landscapes of lysine crotonylation in pseudorabies virus infection. Virology 2024; 598:110172. [PMID: 39018683 DOI: 10.1016/j.virol.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Lysine crotonylation is a common occurrence in eukaryotic cells, regulating various physiological functions, including chromatin remodeling, cellular growth, and development. However, its involvement in viral infections has rarely been documented. In this study, we reveal that pseudorabies virus (PRV) infection significantly alters the global lysine crotonylation levels in porcine kidney PK-15 cells. Specifically, we identified a few viral proteins, including UL54, gM, gD, UL19, UL37, and UL46, which undergo crotonylation modification. Our observations indicate that at 20 h post-infection (hpi), 551 crotonylation sites were reduced across 345 proteins, while 47 new sites emerged in 37 proteins compared to the control group. By 40 hpi, 263 sites had decreased in 190 proteins, while 389 new sites appeared in 240 proteins. Deeper analysis revealed that the proteins with altered crotonylation levels were primarily involved in binding, catalytic activity, biosynthetic processes, ribosome activity, and metabolic processes. Additionally, our findings underscored the significance of ribosomes and the endoplasmic reticulum (ER), which were enriched with proteins exhibiting altered crotonylation. Overall, our study for the first time offers new insights into the relationship between crotonylation and herpes virus infection, paving the way for future investigations into the role of crotonylation in viral infections.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Xingzhi College, Zhejiang Normal University, Jinhua, Zhejiang, PR China.
| | - Shuaiwei Wang
- Wenzhou Vocational College of Technology and Science, Wenzhou, Zhejiang, PR China
| | - Keyuan Chen
- Union Hospital, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Qingsong Han
- Wenzhou Vocational College of Technology and Science, Wenzhou, Zhejiang, PR China
| |
Collapse
|
21
|
Kong Z, Chen X, Gong L, Wang L, Zhang Y, Guan K, Yao W, Kang Y, Lu X, Zhang Y, Du Y, Sun A, Zhuang G, Zhao J, Wan B, Zhang G. Pseudorabies virus tegument protein US2 antagonizes antiviral innate immunity by targeting cGAS-STING signaling pathway. Front Immunol 2024; 15:1403070. [PMID: 39015575 PMCID: PMC11250390 DOI: 10.3389/fimmu.2024.1403070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 07/18/2024] Open
Abstract
Background The cGAS-STING axis-mediated type I interferon pathway is a crucial strategy for host defense against DNA virus infection. Numerous evasion strategies developed by the pseudorabies virus (PRV) counteract host antiviral immunity. To what extent PRV-encoded proteins evade the cGAS-STING signaling pathway is unknown. Methods Using US2 stably expressing cell lines and US2-deficient PRV model, we revealed that the PRV tegument protein US2 reduces STING protein stability and downregulates STING-mediated antiviral signaling. Results To promote K48-linked ubiquitination and STING degradation, US2 interacts with the LBD structural domain of STING and recruits the E3 ligase TRIM21. TRIM21 deficiency consistently strengthens the host antiviral immune response brought on by PRV infection. Additionally, US2-deficient PRV is less harmful in mice. Conclusions Our study implies that PRV US2 inhibits IFN signaling by a new mechanism that selectively targets STING while successfully evading the host antiviral response. As a result, the present study reveals a novel strategy by which PRV evades host defense and offers explanations for why the Bartha-K61 classical vaccine strain failed to offer effective defense against PRV variant strains in China, indicating that US2 may be a key target for developing gene-deficient PRV vaccines.
Collapse
Affiliation(s)
- Zhengjie Kong
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xing Chen
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lele Gong
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lele Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yifeng Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Wanzi Yao
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yu Kang
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xinyi Lu
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yuhang Zhang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yongkun Du
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Aijun Sun
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guoqing Zhuang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bo Wan
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Yan Z, Xie J, Hou Z, Zhang Y, Yue J, Zhang X, Chen L, Yang Y, Li X, Li H, Feng R. Pseudorabies virus UL38 attenuates the cGAS-STING signaling pathway by recruiting Tollip to promote STING for autophagy degradation. Virol J 2024; 21:107. [PMID: 38720392 PMCID: PMC11080157 DOI: 10.1186/s12985-024-02379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Natural immunity is the first defense line of the host immune system, which plays a significant role in combating foreign pathogenic microorganisms. The IFN-β (interferon-beta) signaling pathway, being a typical example of innate immunity, plays a vital function. This study aimed to elucidate the function of pseudorabies virus (PRV) UL38 protein (unique long region 38) in suppressing the activation of the IFN-β signaling pathway. The findings from our study indicate that the PRV UL38 protein effectively hampers the activation of IFN-β by poly (dA: dT) (poly(deoxyadenylic-deoxythymidylic)) and 2'3'-cGAMP (2'-3'-cyclic GMP-AMP). Furthermore, UL38 exhibits spatial co-localization with STING (stimulator of interferon genes) and effectively hinders STING dimerization. Subsequently, STING was downgraded to suppress the production of IFN-β and ISGs (interferon stimulated genes). Immunoprecipitation analysis revealed that the interaction between UL38 and STING, which subsequently initiated the degradation of STING via selective autophagy mediated by TOLLIP (toll interacting protein). To summarize, this research elucidates the function of UL38 in counteracting the cGAS (cGAMP synthase)-STING-induced IFN-β pathway. The PRV UL38 protein may attenuate the activation of IFN-β as a means of regulating the virus's persistence in the host.
Collapse
Affiliation(s)
- Zhenfang Yan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, No.1 Xibeixincun, Lanzhou, 730030, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, No.1 Xibeixincun, Lanzhou, 730030, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhengyang Hou
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, No.1 Xibeixincun, Lanzhou, 730030, China
| | - Yaxin Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, No.1 Xibeixincun, Lanzhou, 730030, China
| | - Jiayu Yue
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, No.1 Xibeixincun, Lanzhou, 730030, China
| | - Xiangbo Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, No.1 Xibeixincun, Lanzhou, 730030, China
| | - Lei Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, No.1 Xibeixincun, Lanzhou, 730030, China
| | - Yanmei Yang
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, No.1 Xibeixincun, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, No.1 Xibeixincun, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, No.1 Xibeixincun, Lanzhou, 730030, China.
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
23
|
Yin J, Liu H, Chen Y, Zhou J, Liu Y, Liang Z, Zhu X, Liu H, Ding P, Liu E, Zhang Y, Wu S, Wang A. Development and application of a high-sensitivity immunochromatographic test strip for detecting pseudorabies virus. Front Microbiol 2024; 15:1399123. [PMID: 38765685 PMCID: PMC11099248 DOI: 10.3389/fmicb.2024.1399123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Pseudorabies (PR) is a multi-animal comorbid disease caused by pseudorabies virus (PRV), which are naturally found in pigs. At the end of 2011, the emergence of PRV variant strains in many provinces in China had caused huge economic losses to pig farms. Rapid detection diagnosis of pigs infected with the PRV variant helps prevent outbreaks of PR. The immunochromatography test strip with colloidal gold nanoparticles is often used in clinical testing due to its low cost and high throughput. Methods This study was designed to produce monoclonal antibodies targeting PRV through immunization of mice using the eukaryotic system to express the gE glycoprotein. Subsequently, paired monoclonal antibodies were screened based on their sensitivity and specificity for use in the preparation of test strips. Results and discussion The strip prepared in this study was highly specific, only PRV was detected, and there was no cross-reactivity with glycoprotein gB, glycoprotein gC, glycoprotein gD, and glycoprotein gE of herpes simplex virus and varicellazoster virus, porcine epidemic diarrhea virus, Senecavirus A, classical swine fever virus, porcine reproductive and respiratory syndrome virus, and porcine parvovirus. Moreover, it demonstrated high sensitivity with a detection limit of 1.336 × 103 copies/μL (the number of viral genome copies per microliter); the coincidence rate with the RT-PCR detection method was 96.4%. The strip developed by our laboratory provides an effective method for monitoring PRV infection and controlling of PR vaccine quality.
Collapse
Affiliation(s)
- Jiajia Yin
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Huimin Liu
- Longhu Laboratory, Zhengzhou, China
- College of Basic Science, Zhengzhou University of Technology, Zhengzhou, Henan, China
| | - Yumei Chen
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Jingming Zhou
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Yankai Liu
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Zhenglun Liang
- Longhu Laboratory, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Xifang Zhu
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Hongliang Liu
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Peiyang Ding
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Enping Liu
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Ying Zhang
- Longhu Laboratory, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Sixuan Wu
- Longhu Laboratory, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| | - Aiping Wang
- Longhu Laboratory, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Immunobiology, Zhengzhou, China
| |
Collapse
|
24
|
Wu Z, Deng J, Chen M, Lu P, Yan Z, Wu X, Ji Q, Fan H, Luo Y, Ju C. Additional Insertion of gC Gene Triggers Better Immune Efficacy of TK/gI/gE-Deleted Pseudorabies Virus in Mice. Viruses 2024; 16:706. [PMID: 38793591 PMCID: PMC11125823 DOI: 10.3390/v16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, pseudorabies virus (PRV) variants have resulted in an epidemic in swine herds and huge economic losses in China. Therefore, it is essential to develop an efficacious vaccine against the spread of PRV variants. Here, the triple-gene-deletion virus and the triple-gene-deletion plus gC virus were constructed by homologous recombination (HR). And then, their growth capacity, proliferation ability, and immune efficacy were evaluated. The results showed that the growth kinetics of the recombinant viruses were similar to those of the parental strain PRV-AH. Compared with the triple-gene-deletion virus group, the more dominant level of neutralizing antibody (NA) can be induced in the triple-gene-deletion plus gC virus group with the same 106.0 TCID50 dose after 4 and 6 weeks post-initial immunization (PII) (p < 0.0001). In addition, the antibody titers in mice immunized with the triple-gene-deletion plus gC virus were significantly higher than those immunized with triple-gene deletion virus with the same 105.0 TCID50 dose after 6 weeks PII (p < 0.001). More importantly, in the triple-gene-deletion plus gC virus group with 105.0 TCID50, the level of NA was close to that in the triple-gene deletion virus group with 106.0 TCID50 at 6 weeks PII. Meanwhile, the cytokines IL-4 and IFN-γ in sera were tested by enzyme-linked immunosorbent assay (ELISA) in each group. The highest level of IL-4 or IFN-γ was also elicited in the triple-gene deletion plus gC virus group at a dose of 106.0 TCID50. After challenge with PRV-AH, the survival rates of the triple-gene deletion plus gC virus immunized groups were higher than those of other groups. In immunized groups with 105.0 TCID50, the survival rate shows a significant difference between the triple-gene deletion plus gC virus group (75%, 6/8) and the triple-gene deletion virus group (12.5%, 1/8). In general, the immune efficacy of the PRV TK/gI/gE-deleted virus can be increased with additional gC insertion in mice, which has potential for developing an attenuated vaccine candidate for PRV control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yongwen Luo
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.D.); (M.C.); (P.L.); (Z.Y.); (X.W.); (Q.J.); (H.F.)
| | - Chunmei Ju
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (J.D.); (M.C.); (P.L.); (Z.Y.); (X.W.); (Q.J.); (H.F.)
| |
Collapse
|
25
|
Ma Y, Shi K, Chen Z, Shi Y, Zhou Q, Mo S, Wei H, Hu L, Mo M. Simultaneous Detection of Porcine Respiratory Coronavirus, Porcine Reproductive and Respiratory Syndrome Virus, Swine Influenza Virus, and Pseudorabies Virus via Quadruplex One-Step RT-qPCR. Pathogens 2024; 13:341. [PMID: 38668296 PMCID: PMC11054806 DOI: 10.3390/pathogens13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Porcine respiratory coronavirus (PRCoV), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), and pseudorabies virus (PRV) are significant viruses causing respiratory diseases in pigs. Sick pigs exhibit similar clinical symptoms such as fever, cough, runny nose, and dyspnea, making it very difficult to accurately differentially diagnose these diseases on site. In this study, a quadruplex one-step reverse-transcription real-time quantitative PCR (RT-qPCR) for the detection of PRCoV, PRRSV, SIV, and PRV was established. The assay showed strong specificity, high sensitivity, and good repeatability. It could detect only PRCoV, PRRSV, SIV, and PRV, without cross-reactions with TGEV, PEDV, PRoV, ASFV, FMDV, PCV2, PDCoV, and CSFV. The limits of detection (LODs) for PRCoV, PRRSV, SIV, and PRV were 129.594, 133.205, 139.791, and 136.600 copies/reaction, respectively. The intra-assay and inter-assay coefficients of variation (CVs) ranged from 0.29% to 1.89%. The established quadruplex RT-qPCR was used to test 4909 clinical specimens, which were collected in Guangxi Province, China, from July 2022 to September 2023. PRCoV, PRRSV, SIV, and PRV showed positivity rates of 1.36%, 10.17%, 4.87%, and 0.84%, respectively. In addition, the previously reported RT-qPCR was also used to test these specimens, and the agreement between these methods was higher than 99.43%. The established quadruplex RT-qPCR can accurately detect these four porcine respiratory viruses simultaneously, providing an accurate and reliable detection technique for clinical diagnosis.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| | - Qingan Zhou
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Shenglan Mo
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Haina Wei
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Liping Hu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Meilan Mo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| |
Collapse
|
26
|
Huan C, Yan P, Yang F, Pan H, Hou Y, Jiang L, Yao J, Chen H, Li J, Gao S. The 25-kDa linear polyethylenimine exerts specific antiviral activity against pseudorabies virus through interferencing its adsorption via electrostatic interaction. J Virol 2024; 98:e0000724. [PMID: 38305153 PMCID: PMC10949462 DOI: 10.1128/jvi.00007-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease, which is responsible for enormous economic losses to the global pig industry. Although vaccination has been used to prevent PRV infection, the effectiveness of vaccines has been greatly diminished with the emergence of PRV variants. Therefore, there is an urgent need to develop anti-PRV drugs. Polyethylenimine (PEI) is a cationic polymer and has a wide range of antibacterial and antiviral activities. This study found that a low dose of 1 µg/mL of the 25-kDa linear PEI had significantly specific anti-PRV activity, which became more intense with increasing concentrations. Mechanistic studies revealed that the viral adsorption stage was the major target of PEI without affecting viral entry, replication stages, and direct inactivation effects. Subsequently, we found that cationic polymers PEI and Polybrene interfered with the interaction between viral proteins and cell surface receptors through electrostatic interaction to exert the antiviral function. In conclusion, cationic polymers such as PEI can be a category of options for defense against PRV. Understanding the anti-PRV mechanism also deepens host-virus interactions and reveals new drug targets for anti-PRV.IMPORTANCEPolyethylenimine (PEI) is a cationic polymer that plays an essential role in the host immune response against microbial infections. However, the specific mechanisms of PEI in interfering with pseudorabies virus (PRV) infection remain unclear. Here, we found that 25-kDa linear PEI exerted mechanisms of antiviral activity and the target of its antiviral activity was mainly in the viral adsorption stage. Correspondingly, the study demonstrated that PEI interfered with the virus adsorption stage by electrostatic adsorption. In addition, we found that cationic polymers are a promising novel agent for controlling PRV, and its antiviral mechanism may provide a strategy for the development of antiviral drugs.
Collapse
Affiliation(s)
- Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Ping Yan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Fan Yang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Haochun Pan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Yutong Hou
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Luyao Jiang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Jingting Yao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Haozhen Chen
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiarun Li
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Song Gao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Guo Z, Xu H, Zhang S, Kang H, Li C, Sun Q, Zhao J, Li J, Zhou G, Wang Q, Xiang L, Tang Y, Liu H, Leng C, An T, Cai X, Tian Z, Zhang H, Peng J. Improved detection sensitivity of anti-PRV variant antibodies through preparation of anti-gB and anti-gE monoclonal antibodies and development of blocking ELISAs. Int J Biol Macromol 2024; 260:129425. [PMID: 38219937 DOI: 10.1016/j.ijbiomac.2024.129425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Since 2011, PRV has resurged in China and is characterized by a mutated strain with significant alterations in antigenicity and virulence. Therefore, we hypothesized that antibody detection kits based on classic PRV strains may have limitations in detecting PRV variants. For more sensitive antibody detection of PRV variants, two MABs targeting the gB and gE proteins were developed. IFA revealed that these MABs exhibited strong reactivity toward both classic and variant PRV strains. MAB-gE recognizes a novel conserved linear B-cell epitope (41PSAEVWD47), while MAB-gB recognizes a conformational B-cell epitope. The binding of both MABs was effectively inhibited in the PRV-positive pig blood samples. Accordingly, we established blocking-ELISAs to detect anti-PRV gB and gE antibodies, which achieved higher sensitivity than commercial kits. Moreover, the clinical serum samples results of our method and that of IFA were in high agreement, and our test results had a higher coincidence rate than that of a commercial kit. Assessing antibody levels by our methods at various times following immunization and challenge accurately reflected the trend of antibody-level changes and revealed the conversion to positive antibody status before the commercial kit. Our method is crucial for monitoring PRV infections, assessing immune responses, and controlling disease.
Collapse
Affiliation(s)
- Zhenyang Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Siyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Haonan Kang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Chao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qi Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jinhao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Guohui Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lirun Xiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yandong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Huairan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Jinmei Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
28
|
Zhang L, van den Born E, Segers RPAM, Raes M, Di D, Liu BB, Li WL, Hao F, Wang J, Gan Y, Yuan T, Feng ZX, Liu F, Shao GQ. Intradermal vaccination with Porcilis® Begonia can clinically protect against fatal PRV challenge with the highly virulent ZJ01 field strain. Microb Pathog 2024; 187:106513. [PMID: 38147968 DOI: 10.1016/j.micpath.2023.106513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Since pseudorabies (PR) re-emerged and rapidly spread in China at the end of 2011, researchers have focused on effective vaccine strategies to prevent and control pseudorabies virus (PRV) infection in pig herds. Due to the extensive application of an attenuated vaccine based on the Bartha-K61 strain isolated in Hungary in 1961 and the variation of the PRV strain, it has been suggested that traditional vaccines based on the Bartha-K61 strain offer only partial protection against variant strains. It was therefore evaluated whether the Porcilis® Begonia vaccine, which is based on the NIA-3 strain with deletions in the gE and TK genes, is efficacious against experimental infection with the virulent, contemporary Chinese PRV strain ZJ01. In this study, piglets were vaccinated with Porcilis® Begonia through either the intradermal (ID) route or the intramuscular (IM) route and subsequently challenged intranasally with strain ZJ01 at 4 weeks post-vaccination. An unvaccinated challenge group and an unvaccinated/nonchallenged group were also included in the study. All animals were monitored for 14 days after challenge. Vaccinated and negative control pigs stayed healthy during the study, while the unvaccinated control animals developed lesions associated with PRV ZJ01 challenge, and 44% of these pigs died before the end of the experiment. This study demonstrated that ID or IM vaccination of pigs with a vaccine based on the NIA-3 strain Porcilis® Begonia clinically protects against fatal PRV challenge with the ZJ01 strain.
Collapse
Affiliation(s)
- Lei Zhang
- Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| | | | | | - Maurice Raes
- MSD Animal Health, P.O. Box 31, 5830 AA, Boxmeer, the Netherlands
| | - Di Di
- MSD (Ningbo) Animal Health Technology Co., Ltd, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Bei-Bei Liu
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Wen-Liang Li
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Fei Hao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Jia Wang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Yuan Gan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Ting Yuan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Zhi-Xin Feng
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Fei Liu
- Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Guo-Qing Shao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| |
Collapse
|
29
|
Wang H, Li H, Tang B, Ye C, Han M, Teng L, Yue M, Li Y. Fast and sensitive differential diagnosis of pseudorabies virus-infected versus pseudorabies virus-vaccinated swine using CRISPR-Cas12a. Microbiol Spectr 2024; 12:e0261723. [PMID: 38078715 PMCID: PMC10783010 DOI: 10.1128/spectrum.02617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Pseudorabies virus (PRV) causes high mortality and miscarriage rates in the infected swine, and the eradication policy coupled with large-scale vaccination of live attenuated vaccines has been adopted globally against PRV. Differential diagnosis of the vaccinated and infected swine is highly demanded. Our multienzyme isothermal rapid amplification (MIRA)-Cas12a detection method described in this study can diagnose PRV with a superior sensitivity comparable to the quantitative PCR (qPCR) and a competitive detection speed (only half the time as qPCR needs). The portable feature and the simple procedure of MIRA-Cas12a make it easier to deploy for clinical diagnosis, even in resource-limited settings. The MIRA-Cas12a method would provide immediate and accurate diagnostic information for policymakers to respond promptly.
Collapse
Affiliation(s)
- Hao Wang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
| | - Hongzhao Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
| | - Bo Tang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Chen Ye
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Meiqing Han
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Lin Teng
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Geng XM, Xi YM, Huang XM, Wang YL, Wang XY, Ouyang K, Chen Y, Wei ZZ, Qin YF, Huang WJ. Construction of and evaluation of the immune response to two recombinant pseudorabies viruses expressing the B119L and EP364R proteins of African swine fever virus. Arch Virol 2024; 169:22. [PMID: 38193974 DOI: 10.1007/s00705-023-05935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/31/2023] [Indexed: 01/10/2024]
Abstract
African swine fever (ASF) is an infectious disease caused by ASF virus (ASFV), which is characterized by high infectivity, rapid onset of disease, and a high mortality rate. Outbreaks of ASFV have caused great economic losses to the global pig industry, and there is a need to develop safe and effective vaccines. In this study, two recombinant pseudorabies virus (PRV) strains, rGXGG-2016-ΔgI/ΔgE-EP364R and rGXGG-2016-ΔgI/ΔgE-B119L, expressing the EP364R and B119L protein, respectively, of ASFV, were constructed by homologous recombination technology. Western blotting and immunofluorescence analysis showed that these foreign proteins were expressed in cells infected with the recombinant strains. The strains showed good genetic stability and proliferative characteristics for 20 passages in BHK-21 cells. Both of these strains were immunogenic in mice, inducing the production of specific antibodies against the expressed ASFV proteins while providing protection against lethal challenge with PRV. Thus, the recombinant strains rGXGG-2016-ΔgI/ΔgE-EP364R and rGXGG-2016-ΔgI/ΔgE-B119L could be used as candidate vaccines for both ASFV and PRV. In addition, our study identifies two potential target genes for the development of safe and efficient ASFV vaccines, provides a reference for the construction of bivalent ASFV and PRV vaccines, and demonstrates the feasibility of developing a live ASFV vector vaccine.
Collapse
Affiliation(s)
- Xin-Mei Geng
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Ying-Mu Xi
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Xiang-Mei Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Yang-Lin Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Xu-Ying Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Zu-Zhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Yi-Feng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China.
| | - Wei-Jian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China.
| |
Collapse
|
31
|
Zhang Y, Xu L, Tao Q, Liu Z, Wen J, Xu T, Lai S, Ai Y, Xu Z, Zhu L. The immunity protection of intestine induced by pseudorabies virus del gI/gE/TK in piglets. Front Microbiol 2024; 14:1295524. [PMID: 38249453 PMCID: PMC10796999 DOI: 10.3389/fmicb.2023.1295524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Compared to the classical strain of Pseudorabies virus (PRV), the PRV variant exhibits stronger transmissibility and pathogenicity, causing immense disasters for the global pig industry. Based on this variant, our laboratory has preliminarily constructed a modified pseudorabies virus with deletions in the gE/gI/TK genes. In this study, the protective efficacy of PRV XJ del gI/gE/TK against piglet intestinal damage was evaluated. The results demonstrated that piglets immunized with PRV XJ del gI/gE/TK exhibited alleviated intestinal damage caused by the PRV XJ variant strain. This included reduced viral load, suppressed inflammation, and maintenance of intestinal structure and function. Additionally, PRV XJ del gI/gE/TK also strongly activated the innate immune response in the intestines, increasing the expression of antiviral factor mRNA and the secretion of SIgA to counteract the attack of the PRV XJ variant strain. Our study indicates that PRV XJ del gI/gE/TK can inhibit intestinal damage caused by PRV XJ variant strain and activate the innate immune response in the intestines.
Collapse
Affiliation(s)
- Yang Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian Tao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zheyan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianhua Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
32
|
Ma Z, Jiang C, Liu D, Gao Y, Bai J, Jiang P, Liu X. Pathogenicity and immunogenicity of a quadruple gene-deleted pseudorabies virus variant as a vaccine candidate. Vet Microbiol 2024; 288:109931. [PMID: 38056181 DOI: 10.1016/j.vetmic.2023.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
Since late 2011, the PRV variants have emerged in China, characterized by the increased virulence. The traditional attenuated vaccines have proven insufficient in providing complete protection, resulting in substantial economic losses to swine industry. In this study, a vaccine candidate strain, ZJ01-ΔgI/gE/TK/UL21, carrying the quadruple gene deletion was derived from the previously generated three gene-deleted virus ZJ01-ΔgI/gE/TK. As anticipated, piglets inoculated with ZJ01-ΔgI/gE/TK/UL21 exhibited normal body temperatures and showed no viral shedding, consistent with the observations from piglets treated with ZJ01-ΔgI/gE/TK. Importantly, a significant higher level of interferon induction was observed among piglets in the ZJ01-ΔgI/gE/TK/UL21 group compared to those in the ZJ01-ΔgI/gE/TK group. Upon challenge with the PRV variant ZJ01, piglets immunized with ZJ01-ΔgI/gE/TK/UL21 exhibited reduced viral shedding compared to the ZJ01-ΔgI/gE/TK group. Furthermore, piglets vaccinated with ZJ01-ΔgI/gE/TK/UL21 exhibited minimal pathological lesions in brain tissues, similar to those in the ZJ01-ΔgI/gE/TK group. These results underscore the potential of ZJ01-ΔgI/gE/TK/UL21 as a promising vaccine for controlling PRV infection.
Collapse
Affiliation(s)
- Zicheng Ma
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenlong Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Depeng Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
33
|
Wei J, Liu C, He X, Abbas B, Chen Q, Li Z, Feng Z. Generation and Characterization of Recombinant Pseudorabies Virus Delivering African Swine Fever Virus CD2v and p54. Int J Mol Sci 2023; 25:335. [PMID: 38203508 PMCID: PMC10779401 DOI: 10.3390/ijms25010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
African swine fever (ASF) leads to high mortality in domestic pigs and wild boar, and it is caused by the African swine fever virus (ASFV). Currently, no commercially available vaccine exists for its prevention in China. In this study, we engineered a pseudorabies recombinant virus (PRV) expressing ASFV CD2v and p54 proteins (PRV-∆TK-(CD2v)-∆gE-(p54)) using CRISPR/Cas9 and homologous recombination technology. PRV-∆TK-(CD2v)-∆gE-(p54) effectively delivers CD2v and p54, and it exhibits reduced virulence. Immunization with PRV-∆TK-(CD2v)-∆gE-(p54) neither induces pruritus nor causes systemic infection and inflammation. Furthermore, a double knockout of the TK and gE genes eliminates the depletion of T, B, and monocytes/macrophages in the blood caused by wild-type viral infection, decreases the proliferation of granulocytes to eliminate T-cell immunosuppression from granulocytes, and enhances the ability of the immune system against PRV infection. An overexpression of CD2v and p54 proteins does not alter the characteristics of PRV-∆TK/∆gE. Moreover, PRV-∆TK-(CD2v)-∆gE-(p54) successfully induces antibody production via intramuscular (IM) vaccination and confers effective protection for vaccinated mice upon challenge. Thus, PRV-∆TK-(CD2v)-∆gE-(p54) demonstrates good immunogenicity and safety, providing highly effective protection against PRV and ASFV. It potentially represents a suitable candidate for the development of a bivalent vaccine against both PRV and ASFV infections.
Collapse
Affiliation(s)
- Jianhui Wei
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Chuancheng Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Xinyan He
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Bilal Abbas
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350117, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| |
Collapse
|
34
|
Wang X, Li Y, Dong S, Wang C, Wang Y, Zhang H. Transcriptomic analysis reveals impact of gE/gI/TK deletions on host response to PRV infection. Virol J 2023; 20:303. [PMID: 38115115 PMCID: PMC10731697 DOI: 10.1186/s12985-023-02265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Pseudorabies virus (PRV) causes substantial losses in the swine industry worldwide. Attenuated PRV strains with deletions of immunomodulatory genes glycoprotein E (gE), glycoprotein I (gI) and thymidine kinase (TK) are candidate vaccines. However, the effects of gE/gI/TK deletions on PRV-host interactions are not well understood. METHODS To characterize the impact of gE/gI/TK deletions on host cells, we analyzed and compared the transcriptomes of PK15 cells infected with wild-type PRV (SD2017), PRV with gE/gI/TK deletions (SD2017gE/gI/TK) using RNA-sequencing. RESULTS The attenuated SD2017gE/gI/TK strain showed increased expression of inflammatory cytokines and pathways related to immunity compared to wild-type PRV. Cell cycle regulation and metabolic pathways were also perturbed. CONCLUSIONS Deletion of immunomodulatory genes altered PRV interactions with host cells and immune responses. This study provides insights into PRV vaccine design.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yingguang Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Shaoming Dong
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Cong Wang
- China animal husbandry industry Co., Ltd, Beijing, China
| | - Yongming Wang
- Shandong Huahong Biological Engineering Co., Ltd, Binzhou, China
| | - Hongliang Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
35
|
Gao W, Jiang X, Hu Z, Wang Q, Shi Y, Tian X, Qiao M, Zhang J, Li Y, Li X. Epidemiological investigation, determination of related factors, and spatial-temporal cluster analysis of wild type pseudorabies virus seroprevalence in China during 2022. Front Vet Sci 2023; 10:1298434. [PMID: 38111735 PMCID: PMC10726123 DOI: 10.3389/fvets.2023.1298434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Pseudorabies virus (PRV) is a linear DNA virus with a double-stranded structure, capable of infecting a diverse array of animal species, including humans. This study sought to ascertain the seroprevalence of Pseudorabies Virus (PRV) in China by conducting a comprehensive collection of blood samples from 16 provinces over the course of 2022. Methods The presence of PRV gE antibodies was detected through the utilization of an enzyme-linked immunosorbent assay (ELISA) technique. Logistic regression analysis was conducted to identify potential related factors associated with the serologic status of PRV gE at the animal level. Additionally, the SaTScan 10.1 software was used to analyze the spatial and temporal clusters of PRV gE seroprevalence. Results A comprehensive collection of 161,880 samples was conducted, encompassing 556 swine farms throughout the country. The analysis revealed that the seroprevalence of PRV gE antibodies was 12.36% (95% confidence interval [CI], 12.20% to 12.52%) at the individual animal level. However, at the swine farm level, the seroprevalence was considerably higher, reaching 46.22% (95% CI, 42.08% to 50.37%). Related factors for PRV infection at the farm level included the geographic distribution of farms and seasonal variables. Moreover, five distinct high seroprevalence clusters of PRV gE were identified across China, with the peak prevalence observed during the months of April through June 2022. Conclusion Our findings serve as a valuable addition to existing research on the seroprevalence, related factors, and temporal clustering of PRV gE in China. Furthermore, our study provides a reference point for the development of effective strategies for the prevention and control of pseudorabies and wild virus outbreaks.
Collapse
Affiliation(s)
- Wenchao Gao
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Xiaoxue Jiang
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Zhiqiang Hu
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Qing Wang
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Yuntong Shi
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Xiaogang Tian
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Mengli Qiao
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
| | - Jinyong Zhang
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
| | - Yang Li
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
| | - Xiaowen Li
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong, China
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Qingdao, Shandong, China
- New Hope Liuhe Co., Ltd., Chengdu, Sichuan, China
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., Dezhou, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (New Hope Liuhe Academy of Swine Research), Dezhou, China
| |
Collapse
|
36
|
Huang X, Qin S, Wang X, Xu L, Zhao S, Ren T, Ouyang K, Chen Y, Wei Z, Qin Y, Huang W. Molecular epidemiological and genetic characterization of pseudorabies virus in Guangxi, China. Arch Virol 2023; 168:285. [PMID: 37938380 DOI: 10.1007/s00705-023-05907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 11/09/2023]
Abstract
Pseudorabies virus (PRV) is an important pathogen that can cause harm to the pig population. Since 2011, there have been a number of large-scale outbreaks of pseudorabies on Chinese farms where animals had been vaccinated with the Bartha-K61 vaccine. In order to understand the epidemiological trend and genetic variations of PRV in Guangxi province, China, 819 tissue samples were collected from swine farms where PRV infection was suspected from 2013 to 2019, and these were tested for infectious wild strains of PRV. The results showed a positive rate of PRV in Guangxi province of 28.21% (231/819). Thirty-six wild-type PRV strains were successfully isolated from PRV-positive tissue samples, and a genetic evolutionary analysis was performed based on the gB, gC, gD, gE, and TK genes. Thirty of the PRV strains were found to be closely related to the Chinese variant strains HeN1-China-2012 and HLJ8-China-2013. In addition, five PRV strains were genetically related to Chinese classical strains, and one isolate was a recombinant of the PRV variant and the vaccine strain Bartha-K61. Amino acid sequence analysis showed that all 36 PRV strains had characteristic variant sites in the amino acid sequences of the gB, gC, gD, and gE proteins. Pathogenicity analysis showed that, compared to classical PRV strains, the PRV variant strains were more pathogenic in mice and had a lower LD50. Taken together, our results show that wild-type PRV infections are common on pig farms in Guangxi province of China and that the dominant prevalent strains were those of the PRV variants. The PRV variant strains also had increased pathogenicity in mice. Our data will provide a useful reference for understanding the prevalence and genetic evolution of PRV in China.
Collapse
Affiliation(s)
- Xiangmei Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Shuying Qin
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Xuying Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Lishi Xu
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Shuo Zhao
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Tongwei Ren
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China.
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China.
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China.
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China.
| |
Collapse
|
37
|
Singh N, Batra K, Chaudhary D, Punia M, Kumar A, Maan NS, Maan S. Prevalence of porcine viral respiratory diseases in India. Anim Biotechnol 2023; 34:1642-1654. [PMID: 35112631 DOI: 10.1080/10495398.2022.2032117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pig industry is growing rapidly in India and contributes a major share of growth in the livestock sector. Over the last few years, there is a gradual increase in the adoption of pigs for production by economically weaker sections of the country. However, this production is affected by many respiratory diseases which are responsible for significant economic loss. The occurrence and impact of these diseases are still under-documented. The four important pathogens including porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza A viruses (SIV) and classical swine fever virus (CSFV) are documented here. These diseases are highly devastating in nature and frequent outbreaks have been reported from different parts of the country. The rapid and specific diagnosis, effective prevention and control measures are required for the eradication of these diseases which is urgently required for the growth of the pig industry. This review highlights the prevalence, epidemiology, diagnostics and information gaps on important respiratory viral pathogens of pigs reported from different parts of India. This review also emphasizes the importance of these viral diseases and the urgent need to develop vaccines and effective measures for the eradication of these diseases.
Collapse
Affiliation(s)
- Neha Singh
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Kanisht Batra
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Deepika Chaudhary
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Monika Punia
- Department of Biotechnology, Ch. Devi Lal University, Sirsa, India
| | - Aman Kumar
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Narender Singh Maan
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Sushila Maan
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| |
Collapse
|
38
|
Wu H, Qi H, Wang B, Li M, Qu L, Li S, Luo Y, Li LF, Zheng GL, Qiu HJ, Sun Y. The mutations on the envelope glycoprotein D contribute to the enhanced neurotropism of the pseudorabies virus variant. J Biol Chem 2023; 299:105347. [PMID: 37838171 PMCID: PMC10652121 DOI: 10.1016/j.jbc.2023.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023] Open
Abstract
The pseudorabies virus (PRV) TJ strain, a variant of PRV, induces more severe neurological symptoms and higher mortality in piglets and mice than the PRV SC strain isolated in 1980. However, the mechanism underlying responsible for the discrepancy in virulence between these strains remains unclear. Our study investigated the differences in neurotropism between PRV TJ and PRV SC using both in vitro and in vivo models. We discovered that PRV TJ enters neural cells more efficiently than PRV SC. Furthermore, we found that PRV TJ has indistinguishable genomic DNA replication capability and axonal retrograde transport dynamics compared to the PRV SC. To gain deeper insights into the mechanisms underlying these differences, we constructed gene-interchanged chimeric virus constructs and assessed the affinity between envelope glycoprotein B, C, and D (gD) and corresponding receptors. Our findings confirmed that mutations in these envelope proteins, particularly gD, significantly contributed to the heightened attachment and penetration capabilities of PRV TJ. Our study revealed the critical importance of the gDΔR278/P279 and gDV338A in facilitating viral invasion. Furthermore, our observations indicated that mutations in envelope proteins have a more significant impact on viral invasion than on virulence in the mouse model. Our findings provide valuable insights into the roles of natural mutations on the PRV envelope glycoproteins in cell tropism, which sheds light on the relationship between cell tropism and clinical symptoms and offers clues about viral evolution.
Collapse
Affiliation(s)
- Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hansong Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingzhi Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liang Qu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guang-Lai Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
39
|
Xu M, Zhu L, Ge A, Liu Y, Chen S, Wei Z, Zheng Y, Tong L, Wang Z, Fei R, Wang J, Zhang C. Construction of pseudorabies virus variant attenuated vaccine: codon deoptimization of US3 and UL56 genes based on PRV gE/TK deletion strain. Front Microbiol 2023; 14:1248573. [PMID: 37881250 PMCID: PMC10595036 DOI: 10.3389/fmicb.2023.1248573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023] Open
Abstract
Since 2011, pseudorabies based on the pseudorabies virus (PRV) variant has emerged as a serious health issue in pig farms in China. The PRV gE/TK or gE/gI/TK deletion strains protect against emerging PRV variants. However, these variants may cause lethal infections in newborn piglets without PRV antibodies. Previous studies have shown that codon deoptimization of a virulence gene causes virus attenuation. Accordingly, we deoptimized US3-S (US3 gene encoding a short isoform that represents approximately 95% of the total US3 transcription) and UL56 genes (first 10 or all codons) of PRV gE/TK deletion strain (PRVΔTK&gE-AH02) to generate six recombinant PRVs through bacterial artificial chromosome technology. In swine testicular cells, recombinant PRVs with all codon deoptimization of US3-S or UL56 genes were grown to lower titers than the parental virus. Notably, US3-S or UL56 with all codon deoptimization reduced mRNA and protein expressions. Subsequently, the safety and immunogenicity of recombinant PRVs with codon deoptimization of US3-S or UL56 are evaluated as vaccine candidates in mice and piglets. The mice inoculated with recombinant PRVs with codon deoptimization of US3-S or UL56 showed exceptional survival ability without severe clinical signs. All codons deoptimized (US3-S and UL56) significantly decreased virus load and attenuated pathological changes in the brains of the mice. Moreover, the protection efficiency offered by recombinant PRVs with codon deoptimization of US3-S or UL56 showed similar effects to PRVΔTK&gE-AH02. Remarkably, the 1-day-old PRV antibody-negative piglets inoculated with PRVΔTK&gE-US3-ST-CD (a recombinant PRV with all codon deoptimization of US3-S) presented no abnormal clinical symptoms, including fever. The piglets inoculated with PRVΔTK&gE-US3-ST-CD showed a high serum neutralization index against the PRV variant. In conclusion, these results suggest using codon deoptimization to generate innovative live attenuated PRV vaccine candidates.
Collapse
Affiliation(s)
- Mengwei Xu
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Laixu Zhu
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Aimin Ge
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Yamei Liu
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Saisai Chen
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ziwen Wei
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yating Zheng
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ling Tong
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zhisheng Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Rongmei Fei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jichun Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chuanjian Zhang
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
40
|
Bo Z, Zhu J, Li X, Zhang C, Guo M, Cao Y, Zhang X, Wu Y. Identification of Na +/K +-ATPase Inhibitor Bufalin as a Novel Pseudorabies Virus Infection Inhibitor In Vitro and In Vivo. Int J Mol Sci 2023; 24:14479. [PMID: 37833925 PMCID: PMC10572507 DOI: 10.3390/ijms241914479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/02/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Pseudorabies virus (PRV), an alpha herpesvirus, induces significant economic losses to the swine industry and infects multiple kinds of animals. Therefore, it is of great importance to explore anti-PRV compounds. In this study, to explore the anti-PRV compounds, a library of natural compounds was screened through a cell-based ELISA assay, and it was discovered that bufalin, a Na+/K+-ATPase inhibitor, had a robust inhibitory effect on PRV replication. A time-of-addition experiment and temperature-shift assay showed that bufalin significantly inhibited the entry stage of PRV. NaCl- or KCl-treatment showed that NaCl could enhance the inhibitory effect of bufalin on PRV replication, whereas there was no significant effect under the treatment of KCl. Meanwhile, it was also found that bufalin possessed antiviral activity against other alpha herpesviruses, including human herpes simplex virus type 1 (HSV-1) and chicken Marek's disease virus (MDV). Finally, it was found that bufalin could decrease the viral load in multiple tissues, and reduce the morbidity and mortality in PRV-challenged BALB/c mice. Overall, our findings demonstrated that bufalin has the potential to be developed as an anti-PRV compound.
Collapse
Affiliation(s)
- Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.B.)
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Jinjin Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.B.)
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Xiaojuan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.B.)
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Chengcheng Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Mengjiao Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.B.)
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Xiaorong Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| | - Yantao Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.B.)
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
41
|
Lian Z, Liu P, Zhu Z, Sun Z, Yu X, Deng J, Li R, Li X, Tian K. Isolation and Characterization of a Novel Recombinant Classical Pseudorabies Virus in the Context of the Variant Strains Pandemic in China. Viruses 2023; 15:1966. [PMID: 37766372 PMCID: PMC10536572 DOI: 10.3390/v15091966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Pseudorabies virus (PRV) variants were discovered in immunized pigs in Northern China and have become the dominant strains since 2011, which caused huge economic losses. In this study, a classical PRV strain was successfully isolated in a PRV gE positive swine farm. The complete genome sequence was obtained using a high-throughput sequencing method and the virus was named JS-2020. The nucleotide homology analysis and phylogenetic tree based on complete genome sequences or gC gene showed that the JS-2020 strain was relatively close to the classical Ea strain in genotype II clade. However, a large number of amino acid variations occurred in the JS-2020 strain compared with the Ea strain, including multiple immunogenic and virulence-related genes. In particular, the gE protein of JS-2020 was similar to earlier Chinese PRV strains without Aspartate insertion. However, the amino acid variations analysis based on major immunogenic and virulence-related genes showed that the JS-2020 strain was not only homologous with earlier PRV strains, but also with strains isolated in recent years. Moreover, the JS-2020 strain was identified as a recombinant between the GXGG-2016 and HLJ-2013 strains. The pathogenicity analysis proved that the PRV JS-2020 strain has typical neurogenic infections and a strong pathogenicity in mice. Together, a novel recombinant classical strain was isolated and characterized in the context of the PRV variant pandemic in China. This study provided some valuable information for the study of the evolution of PRV in China.
Collapse
Affiliation(s)
- Zhengmin Lian
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Panrao Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhe Sun
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Xiuling Yu
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Junhua Deng
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Kegong Tian
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| |
Collapse
|
42
|
Cai X, Wang Z, Li X, Zhang J, Ren Z, Shao Y, Xu Y, Zhu Y. Emodin as an Inhibitor of PRV Infection In Vitro and In Vivo. Molecules 2023; 28:6567. [PMID: 37764342 PMCID: PMC10537396 DOI: 10.3390/molecules28186567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Pseudorabies (PR) is an acute and severe infectious disease caused by pseudorabies virus (PRV). Once the virus infects pigs, it is difficult to eliminate, resulting in major economic losses to the global pig industry. In addition, reports of human infection with PRV suggest that the virus is a potential threat to human health; thus, its significance to public health should be considered. In this paper, the anti-PRV activities of emodin in vitro and in vivo, and its mechanism of action were studied. The results showed that emodin inhibited the proliferation of PRV in PK15 cells in a dose-dependent manner, with an IC50 of 0.127 mg/mL and a selection index of 5.52. The addition of emodin at different stages of viral infection showed that emodin inhibited intracellular replication. Emodin significantly inhibited the expression of the IE180, EP0, UL29, UL44, US6, and UL27 genes of PRV within 48 h. Emodin also significantly inhibited the expression of PRV gB and gD proteins. The molecular docking results suggested that emodin might form hydrogen bonds with PRV gB and gD proteins and affect the structure of viral proteins. Emodin effectively inhibited the apoptosis induced by PRV infection. Moreover, emodin showed a good protective effect on PRV-infected mice. During the experimental period, all the control PRV-infected mice died resulting in a survival rate of 0%, while the survival rate of emodin-treated mice was 28.5%. Emodin also significantly inhibited the replication of PRV in the heart, liver, brain, kidneys and lungs of mice and alleviated tissue and organ damage caused by PRV infection. Emodin was able to combat viral infection by regulating the levels of the cytokines TNF-α, IFN-γ, IL-6, and IL-4 in the sera of infected mice. These results indicate that emodin has good anti-PRV activity in vitro and in vivo, and is expected to be a new agent for the prevention and control of PRV infection.
Collapse
Affiliation(s)
- Xiaojing Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.W.); (Z.R.); (Y.S.); (Y.X.)
| | - Zhiying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.W.); (Z.R.); (Y.S.); (Y.X.)
| | - Xiaocheng Li
- Harbin Da BEINONG Animal Husbandry Technology Co., Ltd., Harbin 150030, China; (X.L.); (J.Z.)
| | - Jing Zhang
- Harbin Da BEINONG Animal Husbandry Technology Co., Ltd., Harbin 150030, China; (X.L.); (J.Z.)
| | - Zhiyuan Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.W.); (Z.R.); (Y.S.); (Y.X.)
| | - Yi Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.W.); (Z.R.); (Y.S.); (Y.X.)
| | - Yongkang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.W.); (Z.R.); (Y.S.); (Y.X.)
| | - Yan Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.C.); (Z.W.); (Z.R.); (Y.S.); (Y.X.)
| |
Collapse
|
43
|
Ren X, Cao N, Tian L, Liu W, Zhu H, Rong Z, Yao M, Li X, Qian P. A self-assembled nanoparticle vaccine based on pseudorabies virus glycoprotein D induces potent protective immunity against pseudorabies virus infection. Vet Microbiol 2023; 284:109799. [PMID: 37327558 DOI: 10.1016/j.vetmic.2023.109799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
Pseudorabies virus (PRV) mainly causes pseudorabies (PR) or Aujeszky's disease in pigs and can infect humans, raising public health concerns about zoonotic and interspecies transmission of PR. With the emergence of PRV variants in 2011, the classic attenuated PRV vaccine strains have failed to protect many swine herds against PR. Herein, we developed a self-assembled nanoparticle vaccine that induces potent protective immunity against PRV infection. PRV glycoprotein D (gD) was expressed using the baculovirus expression system and further presented on the lumazine synthase (LS) 60-meric protein scaffolds via the SpyTag003/SpyCatcher003 covalent coupling system. In mouse and piglet models, LSgD nanoparticles emulsified with the ISA 201VG adjuvant elicited robust humoral and cellular immune responses. Furthermore, LSgD nanoparticles provided effective protection against PRV infection and eliminated pathological symptoms in the brain and lungs. Collectively, the gD-based nanoparticle vaccine design appears to be a promising candidate for potent protection against PRV infection.
Collapse
Affiliation(s)
- Xujiao Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nan Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Linxing Tian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wenqiang Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hechao Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenxiang Rong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Manman Yao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| |
Collapse
|
44
|
Xing Y, Cui Y, Xu G, Qi C, Zhang M, Cheng G, Liu Y, Liu J. Protective effect of Platycodon grandiflorus polysaccharide on apoptosis and mitochondrial damage induced by pseudorabies virus in PK-15 cells. Cell Biochem Biophys 2023; 81:493-502. [PMID: 37310618 DOI: 10.1007/s12013-023-01141-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 04/24/2023] [Indexed: 06/14/2023]
Abstract
Previous studies have confirmed that Platycodon grandiflorus polysaccharide (PGPSt) has the effects of regulating immunity and anti-apoptosis, but its effect on mitochondrial damage and apoptosis caused by PRV infection is still unclear. In this research, the effects of PGPSt on the cell viability, mitochondria morphology, mitochondrial membrane potential and apoptosis caused by PRV based on PK-15 cells were respectively examined by CCK-F assay, Mito-Tracker Red CMXRos, JC-1 staining method and Western blot etc. CCK-F test results showed that PGPSt had a protective effect on the decrease of cell viability caused by PRV. The results of morphological observation found that PGPSt can improve mitochondrial morphology damage, mitochondrial swelling and thickening, and cristae fracture. Fluorescence staining test results showed that PGPSt alleviated the decrease of mitochondrial membrane potential and apoptosis in infected cells. The expression of apoptosis-related proteins showed that PGPSt down-regulated the expression of the pro-apoptotic protein Bax and up-regulated the expression of the anti-apoptotic protein Bcl-2 in infected cells. These results indicated that PGPSt protected against PRV-induced PK-15 cell apoptosis by inhibiting mitochondrial damage.
Collapse
Affiliation(s)
- Yuxiao Xing
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yukun Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Guanlong Xu
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Changxi Qi
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Meihua Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Guodong Cheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Jianzhu Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
45
|
Xu M, Wang Y, Liu Y, Chen S, Zhu L, Tong L, Zheng Y, Osterrieder N, Zhang C, Wang J. A Novel Strategy of US3 Codon De-Optimization for Construction of an Attenuated Pseudorabies Virus against High Virulent Chinese Pseudorabies Virus Variant. Vaccines (Basel) 2023; 11:1288. [PMID: 37631856 PMCID: PMC10458909 DOI: 10.3390/vaccines11081288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we applied bacterial artificial chromosome (BAC) technology with PRVΔTK/gE/gI as the base material to replace the first, central, and terminal segments of the US3 gene with codon-deoptimized fragments via two-step Red-mediated recombination in E. coli GS1783 cells. The three constructed BACs were co-transfected with gI and part of gE fragments carrying homologous sequences (gI+gE'), respectively, in swine testicular cells. These three recombinant viruses with US3 codon de-optimization ((PRVΔTK&gE-US3deop-1, PRVΔTK&gE-US3deop-2, and PRVΔTK&gE-US3deop-3) were obtained and purified. These three recombinant viruses exhibited similar growth kinetics to the parental AH02LA strain, stably retained the deletion of TK and gE gene fragments, and stably inherited the recoded US3. Mice were inoculated intraperitoneally with the three recombinant viruses or control virus PRVΔTK&gEAH02 at a 107.0 TCID50 dose. Mice immunized with PRVΔTK&gE-US3deop-1 did not develop clinical signs and had a decreased virus load and attenuated pathological changes in the lungs and brain compared to the control group. Moreover, immunized mice were challenged with 100 LD50 of the AH02LA strain, and PRVΔTK&gE-US3deop-1 provided similar protection to that of the control virus PRVΔTK&gEAH02. Finally, PRVΔTK&gE-US3deop-1 was injected intramuscularly into 1-day-old PRV-negative piglets at a dose of 106.0 TCID50. Immunized piglets showed only slight temperature reactions and mild clinical signs. However, high levels of seroneutralizing antibody were produced at 14 and 21 days post-immunization. In addition, the immunization of PRVΔTK&gE-US3deop-1 at a dose of 105.0 TCID50 provided complete clinical protection and prevented virus shedding in piglets challenged by 106.5 TCID50 of the PRV AH02LA variant at 1 week post immunization. Together, these findings suggest that PRVΔTK&gE-US3deop-1 displays great potential as a vaccine candidate.
Collapse
Affiliation(s)
- Mengwei Xu
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiwei Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yamei Liu
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Saisai Chen
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Laixu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Tong
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yating Zheng
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | | | - Chuanjian Zhang
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jichun Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals, Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China (S.C.); (J.W.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of the Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
46
|
Huang Y, Zhu X, Guo X, Zhou Y, Liu D, Mao J, Xiong Y, Deng Y, Gao X. Advances in mRNA vaccines for viral diseases. J Med Virol 2023; 95:e28924. [PMID: 37417396 DOI: 10.1002/jmv.28924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Since the onset of the pandemic caused by severe acute respiratory syndrome coronavirus 2, messenger RNA (mRNA) vaccines have demonstrated outstanding performance. mRNA vaccines offer significant advantages over conventional vaccines in production speed and cost-effectiveness, making them an attractive option against other viral diseases. This article reviewed recent advances in viral mRNA vaccines and their delivery systems to provide references and guidance for developing mRNA vaccines for new viral diseases.
Collapse
Affiliation(s)
- Yukai Huang
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuerui Zhu
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiao Guo
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Dongying Liu
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingrui Mao
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yongai Xiong
- Department of Pharmaceutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Youcai Deng
- Department of Hematology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xinghong Gao
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Provincial Department of Education, Key Laboratory of Infectious Disease & Bio-Safety, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
47
|
Ren J, Madera R, Cunningham C, Shi J, Wang L. An easy method to generate recombinant pseudorabies virus expressing the capsid protein of Porcine circovirus type 2d. Front Microbiol 2023; 14:1206021. [PMID: 37323914 PMCID: PMC10264633 DOI: 10.3389/fmicb.2023.1206021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Homologous recombination is an effective way to generate recombinant viruses for vaccine research such as pseudorabies virus (PRV) and adenovirus. Its efficiency can be affected by the integrity of viral genome and the linearization sites. Methods In the study, we described a simple approach to isolate the viral DNA with high genomic integrity for large DNA viruses and a time-saving method to generate recombinant PRVs. Several cleavage sites in the PRV genome were investigated by using the EGFP as a reporter gene for identification of PRV recombination. Results Our study showed that cleavage sites of XbaI and AvrII are ideal for PRV recombination which showed higher recombinant efficiency than others. The recombinant PRV-EGFP virus can be easily plaque purified in 1-2 weeks after the transfection. By using PRV-EGFP virus as the template and XbaI as the linearizing enzyme, we successfully constructed the PRV-PCV2d_ORF2 recombiant virus within a short period by simply transfecting the linearized PRV-EGFP genome and PCV2d_ORF2 donor vector into BHK-21 cells. This easy and efficient method for producing recombinant PRV might be adapted in other DNA viruses for the generation of recombinant viruses.
Collapse
Affiliation(s)
- Jingqiang Ren
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
- Institute of Virology, Wenzhou University, Chashan University Town, Wenzhou, China
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rachel Madera
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Chase Cunningham
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Lihua Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
48
|
Ren J, Tan S, Chen X, Yao J, Niu Z, Wang Y, Ma L, Gao X, Niu S, Liang L, Li J, Zhao Y, Tian WX. Genomic Characterization and gE/gI-Deleted Strain Construction of Novel PRV Variants Isolated in Central China. Viruses 2023; 15:1237. [PMID: 37376537 DOI: 10.3390/v15061237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Pseudorabies virus (PRV) variants have caused substantial economic losses in the swine industry in China since 2011. To surveil the genetic variation in PRV field strains, here, two novel variant strains of PRV were isolated from Shanxi Province in central China and were designated SX1910 and SX1911. To identify the genetic characteristics of the two isolates, their complete genomes were sequenced, and phylogenetic analysis and sequence alignment revealed that field PRV variants have undergone genetic variations; notably, the protein-coding sequences UL5, UL36, US1 and IE180 exhibited extensive variation and contained one or more hypervariable regions. Furthermore, we also found that the glycoproteins gB and gD of the two isolates had some novel amino acid (aa) mutations. Importantly, most of these mutations were located on the surface of the protein molecule, according to protein structure model analysis. We constructed a mutant virus of SX1911 with deletion of the gE and gI genes via CRISPR/Cas9. When tested in mice, SX1911-ΔgE/gI-vaccinated mice were protected within a comparable range to Bartha-K61-vaccinated mice. Additionally, a higher dose of inactivated Bartha-K61 protected the mice from lethal SX1911 challenge, while a lower neutralization titer, higher viral load and more severe microscopic lesions were displayed in Bartha-K61-vaccinated mice. These findings highlight the need for continuous monitoring of PRV and novel vaccine development or vaccination program design for PRV control in China.
Collapse
Affiliation(s)
- Jianle Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shanshan Tan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xinxin Chen
- Beijing Solarbio Science & Technology Co., Ltd., Beijing 101102, China
| | - Jiying Yao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhihong Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ying Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Lei Ma
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Xiaolong Gao
- Beijing Animal Disease Prevention and Control Center, Beijing 102629, China
| | - Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Libin Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Junping Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yujun Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wen-Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
49
|
Zhang HL, Zhang RH, Liu G, Li GM, Wang FX, Wen YJ, Shan H. Evaluation of immunogenicity of gene-deleted and subunit vaccines constructed against the emerging pseudorabies virus variants. Virol J 2023; 20:98. [PMID: 37221518 DOI: 10.1186/s12985-023-02051-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Pseudorabies (PR) (also called Aujeszky's disease, AD) is a serious infectious disease affecting pigs and other animals worldwide. The emergence of variant strains of pseudorabies virus (PRV) since 2011 has led to PR outbreaks in China and a vaccine that antigenically more closely matches these PRV variants could represent an added value to control these infections. METHODS The objective of this study was to develop new live attenuated and subunit vaccines against PRV variant strains. Genomic alterations of vaccine strains were based on the highly virulent SD-2017 mutant strain and gene-deleted strains SD-2017ΔgE/gI and SD-2017ΔgE/gI/TK, which constructed using homologous recombination technology. PRV gB-DCpep (Dendritic cells targeting peptide) and PorB (the outer membrane pore proteins of N. meningitidis) proteins containing gp67 protein secretion signal peptide were expressed using the baculovirus system for the preparation of subunit vaccines. We used experimental animal rabbits to test immunogenicity to evaluate the effect of the newly constructed PR vaccines. RESULTS Compared with the PRV-gB subunit vaccine and SD-2017ΔgE/gI inactivated vaccines, rabbits (n = 10) that were intramuscularly vaccinated with SD-2017ΔgE/gI/TK live attenuated vaccine and PRV-gB + PorB subunit vaccine showed significantly higher anti-PRV-specific antibodies as well as neutralizing antibodies and IFN-γ levels in serum. In addition, the SD-2017ΔgE/gI/TK live attenuated vaccine and PRV-gB + PorB subunit vaccine protected (90-100%) rabbits against homologous infection by the PRV variant strain. No obvious pathological damage was observed in these vaccinated rabbits. CONCLUSIONS The SD-2017ΔgE/gI/TK live attenuated vaccine provided 100% protection against PRV variant challenge. Interestingly, the subunit vaccines with gB protein linked to DCpep and PorB protein as adjuvant may also be a promising and effective PRV variant vaccine candidate.
Collapse
Affiliation(s)
- Hong-Liang Zhang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Rui-Hua Zhang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Gang Liu
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Gui-Mei Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Feng-Xue Wang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Yong-Jun Wen
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China.
| | - Hu Shan
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China.
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China.
| |
Collapse
|
50
|
Qin Y, Qin S, Huang X, Xu L, Ouyang K, Chen Y, Wei Z, Huang W. Isolation and identification of two novel pseudorabies viruses with natural recombination or TK gene deletion in China. Vet Microbiol 2023; 280:109703. [PMID: 36842367 DOI: 10.1016/j.vetmic.2023.109703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023]
Abstract
Pseudorabies virus (PRV), the causative agent of Aujeszky's disease, has gained increased attention in China in recent years due to outbreaks of emergent pseudorabies. However, there is limited information about the evolution and pathogenicity of emergent PRV field strains in China. In this study, two PRV field strains were isolated from an intensive pig farm with suspected PRV infection. These were named the GXLB-2015 and GXGG-2016 strains and their growth characteristics together with their genome sequences and pathogenicity were determined. Nucleotide homology and phylogenetic analysis revealed the GXLB-2015 stain was relatively close to the foreign PRV isolated strains with respect to the whole genome sequence. However, it formed an independent branch between the foreign PRV isolates and the previous PRV variants isolated in China. Further recombination and genetic evolution analysis showed that the GXLB-2015 strain was a natural recombinant between the Bartha strain and PRV variants. The GXGG-2016 strain was highly homologous with the Chinese classical strains, but it has a natural deletion of 69 aa in the thymidine kinase (TK) gene. Pathogenicity analysis showed that, the GXLB-2015 strain had the strongest pathogenicity to mice with an LD50 of 103.5, while the GXGG-2016 strain with the TK gene deletion was not pathogenic to mice. Taken together, our data provide direct evidence for the genomic recombination and natural TK gene deletion of PRVs, which may provide a reference for a better understanding of PRV evolution in China and contribute to the clinical control of PRV infection in pig farms.
Collapse
Affiliation(s)
- Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Shuying Qin
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Xiangmei Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Lishi Xu
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China.
| |
Collapse
|