1
|
Desheva Y, Losev I, Petkova N, Kudar P, Donina S, Mamontov A, Tsai CH, Chao YC. Antigenic Characterization of Neuraminidase of Influenza A/H7N9 Viruses Isolated in Different Years. Pharmaceuticals (Basel) 2022; 15:ph15091127. [PMID: 36145348 PMCID: PMC9503534 DOI: 10.3390/ph15091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza outbreaks caused by A/H7N9 viruses have occurred since 2013. After 2016, A/H7N9 influenza viruses underwent evolutionary changes. In this study, we examined the antigenic properties of influenza neuraminidase (NA) of A/H7N9 viruses as part of a live influenza vaccine (LAIV). It was shown that neuraminidase inhibiting (NI) antibodies obtained after A/Anhui/1/2013(H7N9)-based LAIV vaccination did not inhibit A/Hong Kong/125/2017(H7N9) NA and vice versa. The A/Hong Kong/125/2017(H7N9)-based LAIV elicited higher levels of NI antibodies compared to the A/Anhui/1/2013(H7N9)-based LAIV after two doses. Thelow degree of coincidence of the antibody response to hemagglutinin (HA) and NA after LAIV vaccination allows us to consider an enzyme-linked lectin assay (ELLA) as an additional measure for assessing the immunogenicity of influenza vaccines. In mice, N9-reactive monoclonal antibodies (mABs) for the A/environment/Shanghai/RL01/2013(H7N9) influenza virus partially protected against lung infection from the A/Guangdong/17SF003/2016 IDCDC-RG56N(H7N9) virus, thus showing the cross-protective properties of monoclonal antibodies against the drift variant.
Collapse
Affiliation(s)
- Yulia Desheva
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7-812-234-42-92
| | - Igor Losev
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Nadezhda Petkova
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Polina Kudar
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Svetlana Donina
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Andrey Mamontov
- Virology Department, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Chih-Hsuan Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Department of Entomology, National Chung-Hsing University, Taichung 402, Taiwan
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
2
|
Kwok KO, Wan In W, Huang Y, Wong A, Tang A, Wong SYS. Estimation of early phase local-to-local transmissibility and importation hazard of Coronavirus Disease 2019 (COVID-19) epidemic under assorted containment measures in Hong Kong. Travel Med Infect Dis 2021; 45:102226. [PMID: 34861416 PMCID: PMC8629774 DOI: 10.1016/j.tmaid.2021.102226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Kin On Kwok
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China; Hong Kong Institute of Asia-Pacific Studies, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Wei Wan In
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ying Huang
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Angel Wong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Arthur Tang
- College of Computing and Informatics, Sungkyunkwan University, Seoul, South Korea.
| | - Samuel Yeung Shan Wong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
3
|
Zhu G, Kang M, Wei X, Tang T, Liu T, Xiao J, Song T, Ma W. Different intervention strategies toward live poultry markets against avian influenza A (H7N9) virus: Model-based assessment. ENVIRONMENTAL RESEARCH 2021; 198:110465. [PMID: 33220247 DOI: 10.1016/j.envres.2020.110465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Different interventions targeting live poultry markets (LPMs) are applied in China for controlling avian influenza A (H7N9), including LPM closure and "1110" policy (i.e., daily cleaning, weekly disinfection, monthly rest day, zero poultry stock overnight). However, the interventions' effectiveness has not been comprehensively assessed. METHODS Based on the available data (including reported cases, domestic poultry volume, and climate) collected in Guangdong Province between October 2013 and June 2017, we developed a new compartmental model that enabled us to infer H7N9 transmission dynamics. The model incorporated the intrinsic interplay among humans and poultry as well as the impacts of absolute humidity and LPM intervention, in which intervention strategies were parameterized and estimated by Markov chain Monte Carlo method. RESULTS There were 258 confirmed human H7N9 cases in Guangdong during the study period. If without interventions, the number would reach 646 (95%CI, 575-718) cases. Temporal, seasonal and permanent closures of LPMs can substantially reduce transmission risk, which might respectively reduce human infections by 67.2% (95%CI, 64.3%-70.1%), 75.6% (95%CI, 73.8%-77.5%), 86.6% (95%CI, 85.7-87.6%) in total four epidemic seasons, and 81.9% (95%CI, 78.7%-85.2%), 91.5% (95%CI, 89.9%-93.1%), 99.0% (95%CI, 98.7%-99.3%) in the last two epidemic seasons. Moreover, implementing the "1110" policy from 2014 to 2017 would reduce the cases by 34.1% (95%CI, 20.1%-48.0%), suggesting its limited role in preventing H7N9 transmission. CONCLUSIONS Our study quantified the effects of different interventions and execution time toward LPMs for controlling H7N9 transmission. The results highlighted the importance of closing LPMs during epidemic period, and supported permanent closure as a long-term plan.
Collapse
Affiliation(s)
- Guanghu Zhu
- School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, 541004, China; Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Min Kang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Xueli Wei
- School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Tian Tang
- Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Tao Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Tie Song
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China.
| | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China.
| |
Collapse
|
4
|
Mummah RO, Hoff NA, Rimoin AW, Lloyd-Smith JO. Controlling emerging zoonoses at the animal-human interface. ONE HEALTH OUTLOOK 2020; 2:17. [PMID: 33073176 PMCID: PMC7550773 DOI: 10.1186/s42522-020-00024-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/09/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND For many emerging or re-emerging pathogens, cases in humans arise from a mixture of introductions (via zoonotic spillover from animal reservoirs or geographic spillover from endemic regions) and secondary human-to-human transmission. Interventions aiming to reduce incidence of these infections can be focused on preventing spillover or reducing human-to-human transmission, or sometimes both at once, and typically are governed by resource constraints that require policymakers to make choices. Despite increasing emphasis on using mathematical models to inform disease control policies, little attention has been paid to guiding rational disease control at the animal-human interface. METHODS We introduce a modeling framework to analyze the impacts of different disease control policies, focusing on pathogens exhibiting subcritical transmission among humans (i.e. pathogens that cannot establish sustained human-to-human transmission). We quantify the relative effectiveness of measures to reduce spillover (e.g. reducing contact with animal hosts), human-to-human transmission (e.g. case isolation), or both at once (e.g. vaccination), across a range of epidemiological contexts. RESULTS We provide guidelines for choosing which mode of control to prioritize in different epidemiological scenarios and considering different levels of resource and relative costs. We contextualize our analysis with current zoonotic pathogens and other subcritical pathogens, such as post-elimination measles, and control policies that have been applied. CONCLUSIONS Our work provides a model-based, theoretical foundation to understand and guide policy for subcritical zoonoses, integrating across disciplinary and species boundaries in a manner consistent with One Health principles.
Collapse
Affiliation(s)
- Riley O. Mummah
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E Young Dr S, Los Angeles, CA 90095 USA
- Department of Epidemiology, University of California, Los Angeles, CA 90095 USA
| | - Nicole A. Hoff
- Department of Epidemiology, University of California, Los Angeles, CA 90095 USA
| | - Anne W. Rimoin
- Department of Epidemiology, University of California, Los Angeles, CA 90095 USA
| | - James O. Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E Young Dr S, Los Angeles, CA 90095 USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
5
|
Wang W, Artois J, Wang X, Kucharski AJ, Pei Y, Tong X, Virlogeux V, Wu P, Cowling BJ, Gilbert M, Yu H. Effectiveness of Live Poultry Market Interventions on Human Infection with Avian Influenza A(H7N9) Virus, China. Emerg Infect Dis 2020; 26:891-901. [PMID: 32141425 PMCID: PMC7181931 DOI: 10.3201/eid2605.190390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Various interventions for live poultry markets (LPMs) have emerged to control outbreaks of avian influenza A(H7N9) virus in mainland China since March 2013. We assessed the effectiveness of various LPM interventions in reducing transmission of H7N9 virus across 5 annual waves during 2013-2018, especially in the final wave. With the exception of waves 1 and 4, various LPM interventions reduced daily incidence rates significantly across waves. Four LPM interventions led to a mean reduction of 34%-98% in the daily number of infections in wave 5. Of these, permanent closure provided the most effective reduction in human infection with H7N9 virus, followed by long-period, short-period, and recursive closures in wave 5. The effectiveness of various LPM interventions changed with the type of intervention across epidemics. Permanent LPM closure should be considered to maintain sufficient effectiveness of interventions and prevent the recurrence of H7N9 epidemics.
Collapse
|
6
|
Abstract
In 1918, a strain of influenza A virus caused a human pandemic resulting in the deaths of 50 million people. A century later, with the advent of sequencing technology and corresponding phylogenetic methods, we know much more about the origins, evolution and epidemiology of influenza epidemics. Here we review the history of avian influenza viruses through the lens of their genetic makeup: from their relationship to human pandemic viruses, starting with the 1918 H1N1 strain, through to the highly pathogenic epidemics in birds and zoonoses up to 2018. We describe the genesis of novel influenza A virus strains by reassortment and evolution in wild and domestic bird populations, as well as the role of wild bird migration in their long-range spread. The emergence of highly pathogenic avian influenza viruses, and the zoonotic incursions of avian H5 and H7 viruses into humans over the last couple of decades are also described. The threat of a new avian influenza virus causing a human pandemic is still present today, although control in domestic avian populations can minimize the risk to human health. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.
Collapse
Affiliation(s)
| | | | - Paul Digard
- The Roslin Institute, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
7
|
Wang WH, Erazo EM, Ishcol MRC, Lin CY, Assavalapsakul W, Thitithanyanont A, Wang SF. Virus-induced pathogenesis, vaccine development, and diagnosis of novel H7N9 avian influenza A virus in humans: a systemic literature review. J Int Med Res 2019; 48:300060519845488. [PMID: 31068040 PMCID: PMC7140199 DOI: 10.1177/0300060519845488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
H7N9 avian influenza virus (AIV) caused human infections in 2013 in China.
Phylogenetic analyses indicate that H7N9 AIV is a novel reassortant strain with
pandemic potential. We conducted a systemic review regarding virus-induced
pathogenesis, vaccine development, and diagnosis of H7N9 AIV infection in
humans. We followed PRISMA guidelines and searched PubMed, Web of Science, and
Google Scholar to identify relevant articles published between January 2013 and
December 2018. Pathogenesis data indicated that H7N9 AIV belongs to low
pathogenic avian influenza, which is mostly asymptomatic in avian species;
however, H7N9 induces high mortality in humans. Sporadic human infections have
recently been reported, caused by highly pathogenic avian influenza viruses
detected in poultry. H7N9 AIVs resistant to adamantine and oseltamivir cause
severe human infection by rapidly inducing progressive acute community-acquired
pneumonia, multiorgan dysfunction, and cytokine dysregulation; however,
mechanisms via which the virus induces severe syndromes remain unclear. An H7N9
AIV vaccine is lacking; designs under evaluation include synthesized peptide,
baculovirus-insect system, and virus-like particle vaccines. Molecular diagnosis
of H7N9 AIVs is suggested over conventional assays, for biosafety reasons.
Several advanced or modified diagnostic assays are under investigation and
development. We summarized virus-induced pathogenesis, vaccine development, and
current diagnostic assays in H7N9 AIVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung
| | - Esmeralda Merari Erazo
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Max R Chang Ishcol
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Chih-Yen Lin
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung
| |
Collapse
|
8
|
Fogarty International Center collaborative networks in infectious disease modeling: Lessons learnt in research and capacity building. Epidemics 2019; 26:116-127. [PMID: 30446431 PMCID: PMC7105018 DOI: 10.1016/j.epidem.2018.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/06/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022] Open
Abstract
Due to a combination of ecological, political, and demographic factors, the emergence of novel pathogens has been increasingly observed in animals and humans in recent decades. Enhancing global capacity to study and interpret infectious disease surveillance data, and to develop data-driven computational models to guide policy, represents one of the most cost-effective, and yet overlooked, ways to prepare for the next pandemic. Epidemiological and behavioral data from recent pandemics and historic scourges have provided rich opportunities for validation of computational models, while new sequencing technologies and the 'big data' revolution present new tools for studying the epidemiology of outbreaks in real time. For the past two decades, the Division of International Epidemiology and Population Studies (DIEPS) of the NIH Fogarty International Center has spearheaded two synergistic programs to better understand and devise control strategies for global infectious disease threats. The Multinational Influenza Seasonal Mortality Study (MISMS) has strengthened global capacity to study the epidemiology and evolutionary dynamics of influenza viruses in 80 countries by organizing international research activities and training workshops. The Research and Policy in Infectious Disease Dynamics (RAPIDD) program and its precursor activities has established a network of global experts in infectious disease modeling operating at the research-policy interface, with collaborators in 78 countries. These activities have provided evidence-based recommendations for disease control, including during large-scale outbreaks of pandemic influenza, Ebola and Zika virus. Together, these programs have coordinated international collaborative networks to advance the study of emerging disease threats and the field of computational epidemic modeling. A global community of researchers and policy-makers have used the tools and trainings developed by these programs to interpret infectious disease patterns in their countries, understand modeling concepts, and inform control policies. Here we reflect on the scientific achievements and lessons learnt from these programs (h-index = 106 for RAPIDD and 79 for MISMS), including the identification of outstanding researchers and fellows; funding flexibility for timely research workshops and working groups (particularly relative to more traditional investigator-based grant programs); emphasis on group activities such as large-scale modeling reviews, model comparisons, forecasting challenges and special journal issues; strong quality control with a light touch on outputs; and prominence of training, data-sharing, and joint publications.
Collapse
|
9
|
Lei X, Jing S, Zeng X, Lin Y, Li X, Xing Q, Zhong X, Østbye T. Knowledge, attitudes and practices towards avian influenza among live poultry market workers in Chongqing, China. Prev Vet Med 2019; 162:151-159. [DOI: 10.1016/j.prevetmed.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/24/2018] [Accepted: 12/06/2018] [Indexed: 01/07/2023]
|
10
|
Virlogeux V, Feng L, Tsang TK, Jiang H, Fang VJ, Qin Y, Wu P, Wang X, Zheng J, Lau EHY, Peng Z, Yang J, Cowling BJ, Yu H. Evaluation of animal-to-human and human-to-human transmission of influenza A (H7N9) virus in China, 2013-15. Sci Rep 2018; 8:552. [PMID: 29323268 PMCID: PMC5765021 DOI: 10.1038/s41598-017-17335-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 11/23/2017] [Indexed: 11/09/2022] Open
Abstract
A novel avian-origin influenza A(H7N9) virus emerged in China in March 2013 and by 27 September 2017 a total of 1533 laboratory-confirmed cases have been reported. Occurrences of animal-to-human and human-to-human transmission have been previously identified, and the force of human-to-human transmission is an important component of risk assessment. In this study, we constructed an ecological model to evaluate the animal-to-human and human-to-human transmission of H7N9 during the first three epidemic waves in spring 2013, winter/spring 2013-2014 and winter/spring 2014-2015 in China based on 149 laboratory-confirmed urban cases. Our analysis of patterns in incidence in major cities allowed us to estimate a mean incubation period in humans of 2.6 days (95% credibility interval, CrI: 1.4-3.1) and an effective reproduction number Re of 0.23 (95% CrI: 0.05-0.47) for the first wave, 0.16 (95% CrI: 0.01-0.41) for the second wave, and 0.16 (95% CrI: 0.01-0.45) for the third wave without a significant difference between waves. There was a significant decrease in the incidence of H7N9 cases after live poultry market closures in various major cities. Our analytic framework can be used for continued assessment of the risk of human to human transmission of A(H7N9) virus as human infections continue to occur in China.
Collapse
Affiliation(s)
- Victor Virlogeux
- Department of Biology, Ecole Normale Supérieure de Lyon, Lyon, France.,Cancer Research Center of Lyon, UMR Inserm U1052, CNRS 5286, Lyon, France.,School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Luzhao Feng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tim K Tsang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hui Jiang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Vicky J Fang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ying Qin
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Wu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiling Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Xuhui District, Shanghai, 200032, China
| | - Jiandong Zheng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Eric H Y Lau
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zhibin Peng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Yang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Benjamin J Cowling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
11
|
Fox SJ, Miller JC, Meyers LA. Seasonality in risk of pandemic influenza emergence. PLoS Comput Biol 2017; 13:e1005749. [PMID: 29049288 PMCID: PMC5654262 DOI: 10.1371/journal.pcbi.1005749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/30/2017] [Indexed: 11/18/2022] Open
Abstract
Influenza pandemics can emerge unexpectedly and wreak global devastation. However, each of the six pandemics since 1889 emerged in the Northern Hemisphere just after the flu season, suggesting that pandemic timing may be predictable. Using a stochastic model fit to seasonal flu surveillance data from the United States, we find that seasonal flu leaves a transient wake of heterosubtypic immunity that impedes the emergence of novel flu viruses. This refractory period provides a simple explanation for not only the spring-summer timing of historical pandemics, but also early increases in pandemic severity and multiple waves of transmission. Thus, pandemic risk may be seasonal and predictable, with the accuracy of pre-pandemic and real-time risk assessments hinging on reliable seasonal influenza surveillance and precise estimates of the breadth and duration of heterosubtypic immunity.
Collapse
Affiliation(s)
- Spencer J. Fox
- Integrative Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| | - Joel C. Miller
- Mathematical Sciences, Monash University, Frankston, Victoria, Australia
- The Institute for Disease Modeling, Bellevue, Washington, United States of America
| | - Lauren Ancel Meyers
- Integrative Biology, The University of Texas at Austin, Austin, Texas, United States of America
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
12
|
de Bruin E, Zhang X, Ke C, Sikkema R, Koopmans M. Serological evidence for exposure to avian influenza viruses within poultry workers in southern China. Zoonoses Public Health 2017; 64:e51-e59. [PMID: 28220658 DOI: 10.1111/zph.12346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 01/20/2023]
Abstract
The risk of infection with avian influenza viruses for poultry workers is relatively unknown in China, and study results are often biased by the notification of only the severe human cases. Protein microarray was used to detect binding antibodies to 13 different haemagglutinin (HA1-part) antigens of avian influenza A(H5N1), A(H7N7), A(H7N9) and A(H9N2) viruses, in serum samples from poultry workers and healthy blood donors collected in the course of 3 years in Guangdong Province, China. Significantly higher antibody titre levels were detected in poultry workers when compared to blood donors for the most recent H5 and H9 strains tested. These differences were most pronounced in younger age groups for antigens from older strains, but were observed in all age groups for the recent H5 and H9 antigens. For the H7 strains tested, only poultry workers from two retail live poultry markets had significantly higher antibody titres compared to blood donors.
Collapse
Affiliation(s)
- E de Bruin
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.,Laboratory for Infectious Diseases and Perinatal Screening, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - X Zhang
- Guangdong Province Center for Disease Control and Prevention, Panyu District, Guangzhou, Guangdong, China
| | - C Ke
- Guangdong Province Center for Disease Control and Prevention, Panyu District, Guangzhou, Guangdong, China
| | - R Sikkema
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.,Laboratory for Infectious Diseases and Perinatal Screening, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - M Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.,Laboratory for Infectious Diseases and Perinatal Screening, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
13
|
Offeddu V, Cowling BJ, Peiris JM. Interventions in live poultry markets for the control of avian influenza: a systematic review. One Health 2016; 2:55-64. [PMID: 27213177 PMCID: PMC4871622 DOI: 10.1016/j.onehlt.2016.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/17/2016] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
Background Live poultry markets (LPMs) pose a threat to public health by promoting the amplification and dissemination of avian influenza viruses (AIVs) and by providing the ideal setting for zoonotic influenza transmission. Objective This review assessed the impact of different interventions implemented in LPMs to control the emergence of zoonotic influenza. Methods Publications were identified through a systematic literature search in the PubMed, MEDLINE and Web of Science databases. Eligible studies assessed the impact of different interventions, such as temporary market closure or a ban on holding poultry overnight, in reducing i) AIV-detection rates in birds and the market environment or ii) influenza incidence in humans. Unpublished literature, reviews, editorials, cross-sectional studies, theoretical models and publications in languages other than English were excluded. Relevant findings were extracted and critically evaluated. For the comparative analysis of findings across studies, standardized outcome measures were computed as i) the relative risk reduction (RRR) of AIV-detection in LPMs and ii) incidence rate ratios (IRRs) of H7N9-incidence in humans. Results A total of 16 publications were identified and reviewed. Collectively, the data suggest that AIV-circulation can be significantly reduced in the LPM-environment and among market-birds through (i) temporary LPM closure, (ii) periodic rest days (iii) market depopulation overnight and (iv) improved hygiene and disinfection. Overall, the findings indicate that the length of stay of poultry in the market is a critical control point to interrupt the AIV-replication cycle within LPMs. In addition, temporary LPM closure was associated with a significant reduction of the incidence of zoonotic influenza. The interpretation of these findings is limited by variations in the implementation of interventions. In addition, some of the included studies were of ecologic nature or lacked an inferential framework, which might have lead to cosiderable confounding and bias. Conclusions The evidence collected in this review endorses permanent LPM-closure as a long-term objective to reduce the zoonotic risk of avian influenza, although its economic and socio-political implications favour less drastic interventions, e.g. weekly rest days, for implementation in the short-term. •Avian influenza viruses (AIVs) can infect humans. Bird-to-human transmission is particularly intense in live poultry markets. •Periodic rest days, overnight depopulation or sale bans of certain species significantly reduce AIV-circulation in the markets. •Market closure would lastingly reduce the risk of animal and human infection.
Collapse
Key Words
- influenza a virus
- live poultry market
- a/h7n9
- a/h9n2
- closure
- rest day
- c/d, cleansing and disinfection
- glm, general linear model
- irr, incidence rate ratio
- lbm, live bird market
- lpm, live poultry market
- ndv, newcastle disease virus
- or, odds ratio
- pue, pneumonia of unknown etiology
- rlpm, retail live poultry market
- rr, relative risk
- rrr, relative risk reduction
- rt-pcr, reverse transcription polymerase chain reaction
- wlpm, wholesale live poultry market
Collapse
Affiliation(s)
- Vittoria Offeddu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Benjamin J. Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - J.S. Malik Peiris
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Centre of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
14
|
Lipsitch M, Barclay W, Raman R, Russell CJ, Belser JA, Cobey S, Kasson PM, Lloyd-Smith JO, Maurer-Stroh S, Riley S, Beauchemin CA, Bedford T, Friedrich TC, Handel A, Herfst S, Murcia PR, Roche B, Wilke CO, Russell CA. Viral factors in influenza pandemic risk assessment. eLife 2016; 5. [PMID: 27834632 PMCID: PMC5156527 DOI: 10.7554/elife.18491] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
The threat of an influenza A virus pandemic stems from continual virus spillovers from reservoir species, a tiny fraction of which spark sustained transmission in humans. To date, no pandemic emergence of a new influenza strain has been preceded by detection of a closely related precursor in an animal or human. Nonetheless, influenza surveillance efforts are expanding, prompting a need for tools to assess the pandemic risk posed by a detected virus. The goal would be to use genetic sequence and/or biological assays of viral traits to identify those non-human influenza viruses with the greatest risk of evolving into pandemic threats, and/or to understand drivers of such evolution, to prioritize pandemic prevention or response measures. We describe such efforts, identify progress and ongoing challenges, and discuss three specific traits of influenza viruses (hemagglutinin receptor binding specificity, hemagglutinin pH of activation, and polymerase complex efficiency) that contribute to pandemic risk.
Collapse
Affiliation(s)
- Marc Lipsitch
- Center for Communicable Disease Dynamics, Harvard T. H Chan School of Public Health, Boston, United States.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, United States.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
| | - Wendy Barclay
- Division of Infectious Disease, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Rahul Raman
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, United States
| | - Jessica A Belser
- Centers for Disease Control and Prevention, Atlanta, United States
| | - Sarah Cobey
- Department of Ecology and Evolutionary Biology, University of Chicago, Chicago, United States
| | - Peter M Kasson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States.,Fogarty International Center, National Institutes of Health, Bethesda, United States
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore.,National Public Health Laboratory, Communicable Diseases Division, Ministry of Health, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Steven Riley
- MRC Centre for Outbreak Analysis and Modelling, School of Public Health, Imperial College London, London, United Kingdom.,Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, United States
| | - Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, United States
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Pablo R Murcia
- MRC-University of Glasgow Centre For Virus Research, Glasgow, United Kingdom
| | | | - Claus O Wilke
- Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States.,Department of Integrative Biology, The University of Texas at Austin, Austin, United States
| | - Colin A Russell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Detection of influenza A virus from live-bird market poultry swab samples in China by a pan-IAV, one-step reverse-transcription FRET-PCR. Sci Rep 2016; 6:30015. [PMID: 27445010 PMCID: PMC4957103 DOI: 10.1038/srep30015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
The persistent public health threat of animal to human transmission of influenza A virus (IAV) has stimulated interest in rapid and accurate detection of all IAV subtypes in clinical specimens of animal origin. In this study, a new set of primers and probes was designed for one-step pan-IAV reverse-transcription fluorescence resonance energy transfer (FRET)-PCR. The detection limit of one-step pan-IAV RT FRET-PCR was 10 copies of the matrix gene per reaction, and proved to be equivalent or superior to virus isolation in detecting nine IAV subtypes. Application of the pan-IAV RT FRET-PCR to oral-pharyngeal and cloacal swab specimens collected from healthy poultry in 34 live bird markets in 24 provinces of China revealed that 9.2% of the animals (169/1,839) or 6.3% of their oral-pharyngeal or cloacal swabs (233/3,678) were positive for IAV, and 56.8% of IAV-positive samples were of the H9N2 subtype. Paralleling detection of IAV in H9N2-infected SPF chickens and chickens from LBM showed that pan-IAV FRET-PCR had a higher detection limit than virus isolation in eggs while the results by FRET-PCR and virus isolation overall matched. It is expected that this strategy can be useful for facile surveillance for IAV in clinical samples from a variety of sources.
Collapse
|
16
|
Wu KM, Riley S. Estimation of the Basic Reproductive Number and Mean Serial Interval of a Novel Pathogen in a Small, Well-Observed Discrete Population. PLoS One 2016; 11:e0148061. [PMID: 26849644 PMCID: PMC4744020 DOI: 10.1371/journal.pone.0148061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/12/2016] [Indexed: 11/29/2022] Open
Abstract
Background Accurately assessing the transmissibility and serial interval of a novel human pathogen is public health priority so that the timing and required strength of interventions may be determined. Recent theoretical work has focused on making best use of data from the initial exponential phase of growth of incidence in large populations. Methods We measured generational transmissibility by the basic reproductive number R0 and the serial interval by its mean Tg. First, we constructed a simulation algorithm for case data arising from a small population of known size with R0 and Tg also known. We then developed an inferential model for the likelihood of these case data as a function of R0 and Tg. The model was designed to capture a) any signal of the serial interval distribution in the initial stochastic phase b) the growth rate of the exponential phase and c) the unique combination of R0 and Tg that generates a specific shape of peak incidence when the susceptible portion of a small population is depleted. Findings Extensive repeat simulation and parameter estimation revealed no bias in univariate estimates of either R0 and Tg. We were also able to simultaneously estimate both R0 and Tg. However, accurate final estimates could be obtained only much later in the outbreak. In particular, estimates of Tg were considerably less accurate in the bivariate case until the peak of incidence had passed. Conclusions The basic reproductive number and mean serial interval can be estimated simultaneously in real time during an outbreak of an emerging pathogen. Repeated application of these methods to small scale outbreaks at the start of an epidemic would permit accurate estimates of key parameters.
Collapse
Affiliation(s)
- Kendra M. Wu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- * E-mail:
| | - Steven Riley
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Xiao C, Ma W, Sun N, Huang L, Li Y, Zeng Z, Wen Y, Zhang Z, Li H, Li Q, Yu Y, Zheng Y, Liu S, Hu P, Zhang X, Ning Z, Qi W, Liao M. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. Sci Rep 2016; 6:19474. [PMID: 26782141 PMCID: PMC4726052 DOI: 10.1038/srep19474] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
Human infections with avian influenza H7N9 or H10N8 viruses have been reported in China, raising concerns that they might cause human epidemics and pandemics. However, how these viruses adapt to mammalian hosts is unclear. Here we show that besides the commonly recognized viral polymerase subunit PB2 residue 627 K, other residues including 87E, 292 V, 340 K, 588 V, 648 V, and 676 M in PB2 also play critical roles in mammalian adaptation of the H10N8 virus. The avian-origin H10N8, H7N9, and H9N2 viruses harboring PB2-588 V exhibited higher polymerase activity, more efficient replication in mammalian and avian cells, and higher virulence in mice when compared to viruses with PB2-588 A. Analyses of available PB2 sequences showed that the proportion of avian H9N2 or human H7N9 influenza isolates bearing PB2-588 V has increased significantly since 2013. Taken together, our results suggest that the substitution PB2-A588V may be a new strategy for an avian influenza virus to adapt mammalian hosts.
Collapse
Affiliation(s)
- Chencheng Xiao
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66502, USA
| | - Na Sun
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Lihong Huang
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Yaling Li
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Zhaoyong Zeng
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Yijun Wen
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Zaoyue Zhang
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Huanan Li
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Qian Li
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Yuandi Yu
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Yi Zheng
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Shukai Liu
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Pingsheng Hu
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Xu Zhang
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Zhangyong Ning
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Wenbao Qi
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Ming Liao
- National and Local Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| |
Collapse
|
18
|
Rudenko L, Isakova-Sivak I, Naykhin A, Kiseleva I, Stukova M, Erofeeva M, Korenkov D, Matyushenko V, Sparrow E, Kieny MP. H7N9 live attenuated influenza vaccine in healthy adults: a randomised, double-blind, placebo-controlled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2015; 16:303-10. [PMID: 26673391 DOI: 10.1016/s1473-3099(15)00378-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND H7N9 avian influenza viruses characterised by high virulence and presence of mammalian adaptation markers have pandemic potential. Specific influenza vaccines remain the main defence. We assessed the safety and immunogenicity of an H7N9 live attenuated influenza vaccine (LAIV) candidate in healthy adult volunteers. METHODS We did a phase 1, double-blind, randomised, placebo-controlled trial in Saint Petersburg, Russia. Eligible participants were healthy adults aged 18-49 years. The participants were randomised 3:1 to receive live vaccine or placebo, according to a computer-generated randomisation scheme. Two doses of vaccine or placebo were administered intranasally 28 days apart, each followed by 7 day stays in hospital. Immune responses were assessed in nasal swabs, saliva, and serum specimens collected before and 28 days after each vaccine dose. The primary outcome was the safety profile. This trial is registered with ClinicalTrials.gov, number NCT02480101. FINDINGS Between Oct 21, 2014, and Oct 31, 2014, 40 adults were randomised, of whom 39 (98%) were included in the per-protocol analysis (29 in the vaccine group and ten in the placebo group). The frequency of adverse events did not differ between the vaccine and placebo groups. Seroconversion of neutralising antibodies was seen in 14 participants after the first vaccine dose (48%, 95% CI 29·4-67·5) and 21 after the second vaccine dose (72%, 52·8-87·3). Immune responses were seen in 27 of 29 recipients (93%, 95% CI 77·2-99·2). Adverse effects were seen in 19 (63%) vaccine recipients and nine (90%) placebo recipients after the first dose and in nine (31%) and four (40%), respectively, after the second dose. These effects were mainly local and all were mild. INTERPRETATION The H7N9 LAIV was well tolerated and safe and showed good immunogenicity. FUNDING WHO.
Collapse
Affiliation(s)
- Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia.
| | - Anatoly Naykhin
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Irina Kiseleva
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Marina Stukova
- Department of Molecular Virology, Research Institute of Influenza, Saint Petersburg, Russia
| | - Mariana Erofeeva
- Department of Epidemiology and Prophylaxis, Research Institute of Influenza, Saint Petersburg, Russia
| | - Daniil Korenkov
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Erin Sparrow
- Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland
| | - Marie-Paule Kieny
- Department of Health Systems and Innovation, World Health Organization, Geneva, Switzerland
| |
Collapse
|
19
|
Zhou P, Ma J, Lai A, Gray GC, Su S, Li S. Avian influenza A(H7N9) virus and mixed live poultry-animal markets in Guangdong province: a perfect storm in the making? Emerg Microbes Infect 2015; 4:e63. [PMID: 26576340 PMCID: PMC4631930 DOI: 10.1038/emi.2015.63] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/02/2015] [Accepted: 08/23/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Pei Zhou
- College of Veterinary Medicine, South China Agricultural University , Guangzhou 510642, Guangdong Province, China ; Key Laboratory of Zoonosis Prevention and Control of Guangdong , Guangzhou 510642, Guangdong Province, China
| | - Jun Ma
- College of Veterinary Medicine, South China Agricultural University , Guangzhou 510642, Guangdong Province, China ; Key Laboratory of Zoonosis Prevention and Control of Guangdong , Guangzhou 510642, Guangdong Province, China
| | - Alexander Lai
- College of Arts and Sciences, Kentucky State University , Frankfort, KY 40601, USA
| | - Gregory C Gray
- Division of Infectious Diseases, Global Health Institute, Nicholas School of the Environment, Duke University , Durham, NC 27710 USA
| | - Shuo Su
- College of Veterinary Medicine, South China Agricultural University , Guangzhou 510642, Guangdong Province, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University , Guangzhou 510642, Guangdong Province, China ; Key Laboratory of Zoonosis Prevention and Control of Guangdong , Guangzhou 510642, Guangdong Province, China
| |
Collapse
|
20
|
Sanchez JL, Cooper MJ, Myers CA, Cummings JF, Vest KG, Russell KL, Sanchez JL, Hiser MJ, Gaydos CA. Respiratory Infections in the U.S. Military: Recent Experience and Control. Clin Microbiol Rev 2015; 28:743-800. [PMID: 26085551 PMCID: PMC4475643 DOI: 10.1128/cmr.00039-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This comprehensive review outlines the impact of military-relevant respiratory infections, with special attention to recruit training environments, influenza pandemics in 1918 to 1919 and 2009 to 2010, and peacetime operations and conflicts in the past 25 years. Outbreaks and epidemiologic investigations of viral and bacterial infections among high-risk groups are presented, including (i) experience by recruits at training centers, (ii) impact on advanced trainees in special settings, (iii) morbidity sustained by shipboard personnel at sea, and (iv) experience of deployed personnel. Utilizing a pathogen-by-pathogen approach, we examine (i) epidemiology, (ii) impact in terms of morbidity and operational readiness, (iii) clinical presentation and outbreak potential, (iv) diagnostic modalities, (v) treatment approaches, and (vi) vaccine and other control measures. We also outline military-specific initiatives in (i) surveillance, (ii) vaccine development and policy, (iii) novel influenza and coronavirus diagnostic test development and surveillance methods, (iv) influenza virus transmission and severity prediction modeling efforts, and (v) evaluation and implementation of nonvaccine, nonpharmacologic interventions.
Collapse
Affiliation(s)
- Jose L Sanchez
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Michael J Cooper
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | | | - James F Cummings
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Kelly G Vest
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Kevin L Russell
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA
| | - Joyce L Sanchez
- Mayo Clinic, Division of General Internal Medicine, Rochester, Minnesota, USA
| | - Michelle J Hiser
- Armed Forces Health Surveillance Center, Silver Spring, Maryland, USA Oak Ridge Institute for Science and Education, Postgraduate Research Participation Program, U.S. Army Public Health Command, Aberdeen Proving Ground, Aberdeen, Maryland, USA
| | - Charlotte A Gaydos
- International STD, Respiratory, and Biothreat Research Laboratory, Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|