1
|
Holzer C, Ho J, Tiehm A, Stange C. Wastewater monitoring - passive sampling for the detection of SARS-CoV-2 and antibiotic resistance genes in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178244. [PMID: 39729846 DOI: 10.1016/j.scitotenv.2024.178244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
As a lesson learned from the COVID-19 pandemic, wastewater-based epidemiology was recognised and used as an important method for surveillance and early detection of SARS-CoV-2. As a result, consideration of wastewater as a source of public health information has gained new prominence, and there is consensus that similar approaches can be used to detect the spread of other viral pathogens or antimicrobial resistance (AMR) in populations. However, the implementation of wastewater monitoring poses challenges in terms of obtaining representative and meaningful samples. In particular, it is difficult to sample small catchments, critical facilities (e.g. hospitals) or low-income countries where the use of automatic water samplers is not possible or the samplers are not available. To overcome these problems, this study developed a low-cost and easy-to-use passive sampler based on activated carbon as an adsorbent with a corresponding elution/extraction protocol that allows the detection of viruses and antibiotic resistance genes in wastewater. Monitoring of SARS-CoV-2 with these passive samplers at the influent of a wastewater treatment plant over a period of 1.5 months showed a positive correlation with monitoring with 24-h composite samples in the catchment area. Analysis of the nucleic acid extracts for antibiotic resistance genes showed the presence of clinically relevant carbapenemase genes such as blaKPC-3 and blaNDM-1 in the wastewater samples, with these genes being detected more reliably by the passive samplers than in the 24-h composite samples. This study therefore demonstrated that passive samplers provide reproducible SARS-CoV-2 RNA and antibiotic resistance gene signals from wastewater and a time-integrated measurement of the sampled matrix with high sensitivity.
Collapse
Affiliation(s)
- C Holzer
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - J Ho
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - A Tiehm
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - C Stange
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany.
| |
Collapse
|
2
|
Shetty N, Shephard MJ, Rockey NC, Macenczak H, Traenkner J, Danzy S, Vargas-Maldonado N, Arts PJ, Le Sage V, Anderson EJ, Lyon GM, Fitts EC, Gulick DA, Mehta AK, El-Chami MF, Kraft CS, Wigginton KR, Lowen AC, Marr LC, Rouphael NG, Lakdawala SS. Influenza virus infection and aerosol shedding kinetics in a controlled human infection model. J Virol 2024; 98:e0161224. [PMID: 39589151 DOI: 10.1128/jvi.01612-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 11/27/2024] Open
Abstract
Establishing effective mitigation strategies to reduce the spread of influenza virus requires an improved understanding of the mechanisms of transmission. We evaluated the use of a controlled human infection model using an H3N2 seasonal influenza virus to study critical aspects of transmission, including symptom progression and the dynamics of virus shedding. Eight volunteers were challenged with influenza A/Perth/16/2009 (H3N2) virus between July and September 2022 at Emory University Hospital. Viral shedding in the nasopharynx, saliva, stool, urine, and respiratory aerosols was monitored over the quarantine period, and symptoms were tracked until day 15. In addition, environmental swabs were collected from participant rooms to examine fomite contamination, and participant sera were collected to assess seroconversion by hemagglutination inhibition or microneutralization assays. Among the eight participants, influenza virus infection was confirmed in six (75%). Infectious virus or viral RNA was found in multiple physiological compartments, fecal samples, aerosol particles, and on surfaces in the immediate environment. Illness was moderate, with upper respiratory symptoms dominating. In participants with the highest viral loads, antibody titers rose by day 15 post-inoculation, while in participants with low or undetectable viral loads, there was little or no increase in functional antibody titers. These data demonstrate the safety and utility of the human infection model to study features critical to influenza virus transmission dynamics in a controlled manner and will inform the design of future challenge studies focused on modeling and limiting transmission.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT05332899. IMPORTANCE We use a controlled human infection model to assess respiratory and aerosol shedding kinetics to expand our knowledge of influenza infection dynamics and help inform future studies aimed at understanding human-to-human transmission.
Collapse
Affiliation(s)
- Nishit Shetty
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
- Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Meredith J Shephard
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicole C Rockey
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA
| | | | | | - Shamika Danzy
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nahara Vargas-Maldonado
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Peter J Arts
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Evan J Anderson
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - G Marshall Lyon
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric Charles Fitts
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dalia A Gulick
- Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, Kansas, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Aneesh K Mehta
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mikhael F El-Chami
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Colleen S Kraft
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Sridhar S, Tonto PB, Lumkong L, Netto EM, Brites C, Wang WK, Herrera BB. RT-RPA as a dual tool for detection and phylogenetic analysis of epidemic arthritogenic alphaviruses. Sci Rep 2024; 14:30134. [PMID: 39627454 PMCID: PMC11615341 DOI: 10.1038/s41598-024-81763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Chikungunya (CHIKV), o'nyong-nyong (ONNV), and Mayaro (MAYV) viruses are transmitted by mosquitoes and known to cause a debilitating arthritogenic syndrome. These alphaviruses have emerged and re-emerged, leading to outbreaks in tropical and subtropical regions of Asia, South America, and Africa. Despite their prevalence, there persists a critical gap in the availability of sensitive and virus-specific point-of-care (POC) diagnostics. Traditional immunoglobulin-based tests such as enzyme-linked immunosorbent assay (ELISA) often yield cross-reactive results due to the close genetic relationship between these viruses. Molecular diagnostics such as quantitative polymerase chain reaction (qPCR) offer high sensitivity but are limited by the need for specialized laboratory equipment. Recombinase polymerase amplification (RPA), an isothermal amplification method, is a promising alternative to qPCR, providing rapid results with minimal equipment requirements. Here, we report the development and validation of three virus-specific RT-RPA-based rapid tests for CHIKV, ONNV, and MAYV. These tests demonstrated both speed and sensitivity, capable of detecting 10-100 viral copies within 20 min of amplification, without exhibiting cross-reactivity. Furthermore, we evaluated the clinical potential of these tests using serum and tissue samples from CHIKV, ONNV, and MAYV-infected mice, as well as CHIKV-infected human patients. We demonstrate that the RPA amplicons derived from the patient samples can be sequenced, enabling cost-effective molecular epidemiological studies. Our findings highlight the significance of these rapid and specific diagnostics in improving the early detection and management of these arboviral infections, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Sainetra Sridhar
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases, and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Prince Baffour Tonto
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases, and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Lily Lumkong
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases, and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Eduardo Martins Netto
- School of Medicine, LAPI-Laboratório de Pesquisa em Infectologia- Hospital Universitário Professor Edgard Santos, Federal University of Bahia/EBSERH, Salvador, Brazil
| | - Carlos Brites
- School of Medicine, LAPI-Laboratório de Pesquisa em Infectologia- Hospital Universitário Professor Edgard Santos, Federal University of Bahia/EBSERH, Salvador, Brazil
| | - Wei-Kung Wang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Bobby Brooke Herrera
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ, USA.
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases, and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
4
|
Badar N, Salman M, Nisar N, Mirza HA, Ahad A, Ahmad F, Daud B. Unraveling influenza sentinel surveillance in Pakistan 2008-2024: Epidemiological insights during the pre and post pandemic period of COVID-19. J Infect Public Health 2024; 17:102595. [PMID: 39577019 DOI: 10.1016/j.jiph.2024.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The coronavirus pandemic has substantially influenced the transmission pattern of other respiratory viruses. However, screening and detecting other respiratory pathogens was unheeded during this time to combat the COVID-19 pandemic. High virulence and re assortment factors intensify the importance of influenza virus surveillance for effective disease management. Therefore, the present surveillance study was designed to determine the influenza positivity rate from 2008-24. This study will provide integral support in depicting a panoramic representation of two respiratory-pandemic periods, 2010-11 and 2019-2021, for influenza and COVID-19 pandemics, respectively. METHODS An inferential cross-sectional study was conducted from 2008 to 2024 by collecting influenza surveillance data from twelve sentinel sites in Pakistan. Clinical and demographic data was recorded at sample collection time. Specimens were collected through nasopharyngeal/throat swabs and stored in viral transport medium (VTM) at the sentinel site laboratory at 2-4 °C. Viral RNA was isolated from the samples using KingFisher TM Flex Purification System and MagMAX™ Viral/Pathogen Nucleic Acid Extraction Kit. RESULTS Within 16 years, 78118 samples were tested for influenza, of which 7999 (10.2 %) appeared positive. The positivity rate appeared very low in recent years, with only a 3.5 % positivity rate observed in 2020. Influenza A strain H1N1pdm09 seemed to be the prominent strain (n = 3407, 42.6 %), followed by influenza B (n = 2125, 26.6 %). CONCLUSION The positivity of influenza samples was 10.2 % and recorded in patients where typical clinical representation of influenza was absent. Fewer samples were reported during the coronavirus pandemic, which might be because influenza screening was hindered and overlooked to combat the SARS-CoV-2 virus, and the patient threshold was very high for COVID-19 virus screening.
Collapse
Affiliation(s)
- Nazish Badar
- Public Health Laboratories Division National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan.
| | - Muhammad Salman
- National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan.
| | - Nadia Nisar
- Public Health Laboratories Division National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan.
| | - Hamza Ahmed Mirza
- Public Health Laboratories Division National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan.
| | - Abdul Ahad
- Public Health Laboratories Division National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan; National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan; World Health Organization Islamabad, 44000, Pakistan.
| | - Faisal Ahmad
- World Health Organization Islamabad, 44000, Pakistan.
| | - Bisma Daud
- Public Health Laboratories Division National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan.
| |
Collapse
|
5
|
Conte DD, Watanabe RAS, Chaves APC, Alberto-Lei F, Perosa AHS, Barbosa G, Bellei N. Impact of Variants, Epidemiological Trends, and Comorbidities on Hospitalization Rates of Unvaccinated Children in Brazil: A Retrospective Study (2020-2022). Influenza Other Respir Viruses 2024; 18:e70011. [PMID: 39686624 DOI: 10.1111/irv.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 12/18/2024] Open
Abstract
This retrospective study aimed to investigate the impact of the emergence of new variants and the epidemiological scenario on hospitalization rates of unvaccinated children (0-12 years) in Brazil. The study included 1614 children admitted to a hospital between March 2020 and December 2022 but 101 (6.3%) of them testing positive for COVID-19 via RT-PCR. The frequency of COVID-19 cases increased from 7.5% in 2020 to 9.3% in 2022 with the emergence of the Omicron variant. Children over 5 years old with comorbidities accounted for most cases (69% [70/101]). Sickle cell anemia was the most frequent comorbidity (20%), and influenza-like illness (36% [36/101]) and decompensation of underlying disease (33% [33/101]) were the main reasons for hospitalization. Coinfection was detected in 11% of cases, with respiratory syncytial virus (RSV) being the most common viral pathogen (71%). Hospital readmission occurred in 26% of cases, with a higher frequency in children over 5 years old. The death rate was 1.9%, with comorbidities such as cystic fibrosis and congenital heart disease as risk factors. These findings emphasize the need to prioritize vaccination with monovalent Omicron XBB for high-risk groups, including children over 5 years old with comorbidities, to mitigate the impact of new variants and reduce severe disease outcomes.
Collapse
Affiliation(s)
- Danielle Dias Conte
- Infectious Diseases Division, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | | | - Ana Paula Cunha Chaves
- Infectious Diseases Division, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Felipe Alberto-Lei
- Infectious Diseases Division, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Ana Helena Sita Perosa
- Infectious Diseases Division, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Gabriela Barbosa
- Infectious Diseases Division, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Nancy Bellei
- Infectious Diseases Division, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| |
Collapse
|
6
|
Zhao L, Guzman HP, Xagoraraki I. Comparative analyses of SARS-CoV-2 RNA concentrations in Detroit wastewater quantified with CDC N1, N2, and SC2 assays reveal optimal target for predicting COVID-19 cases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174140. [PMID: 38906283 DOI: 10.1016/j.scitotenv.2024.174140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
To monitor COVID-19 through wastewater surveillance, global researchers dedicated significant endeavors and resources to develop and implement diverse RT-qPCR or RT-ddPCR assays targeting different genes of SARS-CoV-2. Effective wastewater surveillance hinges on the appropriate selection of the most suitable assay, especially for resource-constrained regions where scant technical and socioeconomic resources restrict the options for testing with multiple assays. Further research is imperative to evaluate the existing assays through comprehensive comparative analyses. Such analyses are crucial for health agencies and wastewater surveillance practitioners in the selection of appropriate methods for monitoring COVID-19. In this study, untreated wastewater samples were collected weekly from the Detroit wastewater treatment plant, Michigan, USA, between January and December 2023. Polyethylene glycol precipitation (PEG) was applied to concentrate the samples followed by RNA extraction and RT-ddPCR. Three assays including N1, N2 (US CDC Real-Time Reverse Transcription PCR Panel for Detection of SARS-CoV-2), and SC2 assay (US CDC Influenza SARS-CoV-2 Multiplex Assay) were implemented to detect SARS-CoV-2 in wastewater. The limit of blank and limit of detection for the three assays were experimentally determined. SARS-CoV-2 RNA concentrations were evaluated and compared through three statistical approaches, including Pearson and Spearman's rank correlations, Dynamic Time Warping, and vector autoregressive models. N1 and N2 demonstrated the highest correlation and most similar time series patterns. Conversely, N2 and SC2 assay demonstrated the lowest correlation and least similar time series patterns. N2 was identified as the optimal target to predict COVID-19 cases. This study presents a rigorous effort in evaluating and comparing SARS-CoV-2 RNA concentrations quantified with N1, N2, and SC2 assays and their interrelations and correlations with clinical cases. This study provides valuable insights into identifying the optimal target for monitoring COVID-19 through wastewater surveillance.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct., East Lansing, MI 48823, USA
| | - Heidy Peidro Guzman
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct., East Lansing, MI 48823, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct., East Lansing, MI 48823, USA.
| |
Collapse
|
7
|
Kirby MK, Shu B, Keller MW, Wilson MM, Rambo-Martin BL, Jang Y, Liddell J, Salinas Duron E, Nolting JM, Bowman AS, Davis CT, Wentworth DE, Barnes JR. Discriminating North American Swine Influenza Viruses with a Portable, One-Step, Triplex Real-Time RT-PCR Assay, and Portable Sequencing. Viruses 2024; 16:1557. [PMID: 39459891 PMCID: PMC11512246 DOI: 10.3390/v16101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Swine harbors a genetically diverse population of swine influenza A viruses (IAV-S), with demonstrated potential to transmit to the human population, causing outbreaks and pandemics. Here, we describe the development of a one-step, triplex real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay that detects and distinguishes the majority of the antigenically distinct influenza A virus hemagglutinin (HA) clades currently circulating in North American swine, including the IAV-S H1 1A.1 (α), 1A.2 (β), 1A.3 (γ), 1B.2.2 (δ1) and 1B.2.1 (δ2) clades, and the IAV-S H3 2010.1 clade. We performed an in-field test at an exhibition swine show using in-field viral concentration and RNA extraction methodologies and a portable real-time PCR instrument, and rapidly identified three distinct IAV-S clades circulating within the N.A. swine population. Portable sequencing is used to further confirm the results of the in-field test of the swine triplex assay. The IAV-S triplex rRT-PCR assay can be easily transported and used in-field to characterize circulating IAV-S clades in North America, allowing for surveillance and early detection of North American IAV-S with human outbreak and pandemic potential.
Collapse
Affiliation(s)
- Marie K. Kirby
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Bo Shu
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Matthew W. Keller
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Malania M. Wilson
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Benjamin L. Rambo-Martin
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Yunho Jang
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Jimma Liddell
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - Eduardo Salinas Duron
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
- Chippewa Government Solutions (CGS), Sault Tribe Incorporated (STI), Cherokee Nation Operational Solutions (CNOS), Sault Sainte Marie, MI 49783, USA
| | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - C. Todd Davis
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - David E. Wentworth
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| | - John R. Barnes
- Virology, Surveillance and Diagnostic Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (M.K.K.); (B.S.); (E.S.D.)
| |
Collapse
|
8
|
Turner JCM, Walker D, Hasan MK, Akhtar S, Barman S, Mukherjee N, McKenzie P, Webby RJ, Feeroz MM. Unusual A(H1N7) influenza A virus isolated from free-range domestic ducks in Bangladesh, 2023. Microbiol Resour Announc 2024; 13:e0021824. [PMID: 39046228 PMCID: PMC11320921 DOI: 10.1128/mra.00218-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 07/25/2024] Open
Abstract
In Bangladesh, free-range duck farms provide opportunities for the generation of novel influenza A viruses as evidenced by the emergence of an unusual A(H1N7) virus in 2023. Continued surveillance of such environments for the potential emergence of influenza A viruses with novel properties remains a priority.
Collapse
Affiliation(s)
- Jasmine C. M. Turner
- Deptartment of Host-Microbes Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David Walker
- Deptartment of Host-Microbes Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Md. Kamrul Hasan
- Department of Zoology, Wildlife Rescue Center, Jahangirnagar University, Savar, Bangladesh
| | - Sharmin Akhtar
- Department of Zoology, Wildlife Rescue Center, Jahangirnagar University, Savar, Bangladesh
| | - Subrata Barman
- Deptartment of Host-Microbes Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nabanita Mukherjee
- Deptartment of Host-Microbes Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Pamela McKenzie
- Deptartment of Host-Microbes Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J. Webby
- Deptartment of Host-Microbes Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mohammed M. Feeroz
- Department of Zoology, Wildlife Rescue Center, Jahangirnagar University, Savar, Bangladesh
| |
Collapse
|
9
|
Lopes TRR, Silva Júnior JVJ, Trindade PDA, Gregianini TS, Weiblen R, Flores EF. An end-point multiplex RT-PCR for SARS-CoV-2, Influenza A and B detection, including simultaneous RNAse P amplification: a timely tool for more accessible differential diagnosis. J Med Microbiol 2024; 73. [PMID: 39140993 DOI: 10.1099/jmm.0.001868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
The multiplex molecular diagnostic assays described for severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), influenza A (IAV) and B (IBV) viruses have been mainly based on real-time reaction, which limits their access to many laboratories or diagnostic institutions. To contribute to available strategies and expand access to differential diagnosis, we describe an end-point multiplex RT-PCR targeting SARS-CoV-2, IAV and IBV with simultaneous endogenous control amplification. Initially, we looked for well-established primers sets for SARS-CoV-2, IAV, IBV and RNAse P whose amplicons could be distinguished on agarose gel. The multiplex assay was then standardized by optimizing the reaction mix and cycle conditions. The limit of detection (LoD) was determined using titrated viruses (for SARS-CoV-2 and IAV) and by dilution from a pool of IBV-positive samples. The diagnostic performance of the multiplex was evaluated by testing samples with different RNAse P and viral loads, previously identified as positive or negative for the target viruses. The amplicons of IAV (146 bp), SARS-CoV-2 (113 bp), IBV (103 bp) and RNAse P (65 bp) were adequately distinguished in our multiplex. The LoD for SARS-CoV-2, IAV and IBV was 0.02 TCID50/ml, 0.07 TCID50/ml and 10-3 from a pool of positive samples, respectively. All samples positive for SARS-CoV-2 (n=70, Ct 17.2-36.9), IAV (n=53, Ct 14-34.9) and IBV (n=12, Ct 23.9-31.9) remained positive in our multiplex assay. RNAse P from negative samples (n=40, Ct 25.2-30.2) was also amplified in the multiplex. Overall, our assay is a timely and alternative tool for detecting SARS-CoV-2 and influenza viruses in laboratories with limited access to supplies/equipment.
Collapse
Affiliation(s)
- Thaísa Regina Rocha Lopes
- Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - José Valter Joaquim Silva Júnior
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
- Setor de Virologia, Instituto Keizo Asami, Universidade Federal de Pernambuco, Pernambuco, Brazil
- Laboratório NB3 de Neuroimunologia, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Priscila de Arruda Trindade
- Laboratório de Biologia Molecular e Bioinformática Aplicada à Microbiologia Clínica, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Tatiana Schäffer Gregianini
- Laboratório Central de Saúde, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do estado do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Rudi Weiblen
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Eduardo Furtado Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Jones DL, Bridgman M, Pellett C, Weightman AJ, Kille P, García Delgado Á, Cross G, Cobley S, Howard-Jones H, Chadwick DR, Farkas K. Use of wastewater from passenger ships to assess the movement of COVID-19 and other pathogenic viruses across maritime international boundaries. Front Public Health 2024; 12:1377996. [PMID: 39076415 PMCID: PMC11284076 DOI: 10.3389/fpubh.2024.1377996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Objective The worldwide spread of SARS-CoV-2 and the resulting COVID-19 pandemic has been driven by international travel. This has led to the desire to develop surveillance approaches which can estimate the rate of import of pathogenic organisms across international borders. The aim of this study was to investigate the use of wastewater-based approaches for the surveillance of viral pathogens on commercial short-haul (3.5 h transit time) roll-on/roll-off passenger/freight ferries operating between the UK and the Republic of Ireland. Methods Samples of toilet-derived wastewater (blackwater) were collected from two commercial ships over a 4-week period and analysed for SARS-CoV-2, influenza, enterovirus, norovirus, the faecal-marker virus crAssphage and a range of physical and chemical indicators of wastewater quality. Results A small proportion of the wastewater samples were positive for SARS-CoV-2 (8% of the total), consistent with theoretical predictions of detection frequency (4%-15% of the total) based on the national COVID-19 Infection Survey and defecation behaviour. In addition, norovirus was detected in wastewater at low frequency. No influenza A/B viruses, enterovirus or enterovirus D68 were detected throughout the study period. Conclusion We conclude that testing of wastewater from ships that cross international maritime boundaries may provide a cost-effective and relatively unbiased method to estimate the flow of infected individuals between countries. The approach is also readily applicable for the surveillance of other disease-causing agents.
Collapse
Affiliation(s)
- Davey L. Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Mathew Bridgman
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Cameron Pellett
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Andrew J. Weightman
- Microbiomes, Microbes and Informatics Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Peter Kille
- Microbiomes, Microbes and Informatics Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Álvaro García Delgado
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Gareth Cross
- Science Evidence Advice Division, Health and Social Services Group, Welsh Government, Cardiff, United Kingdom
| | - Steve Cobley
- Science Evidence Advice Division, Health and Social Services Group, Welsh Government, Cardiff, United Kingdom
| | - Helen Howard-Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - David R. Chadwick
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
11
|
Santos DJAD, Oliveira TRD, Araújo GMD, Pott-Junior H, Melendez ME, Sabino EC, Leite OD, Faria RC. An electrochemical genomagnetic assay for detection of SARS-CoV-2 and Influenza A viruses in saliva. Biosens Bioelectron 2024; 255:116210. [PMID: 38537427 DOI: 10.1016/j.bios.2024.116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 04/15/2024]
Abstract
Viral respiratory infections represent a major threat to the population's health globally. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 disease and in some cases the symptoms can be confused with Influenza disease caused by the Influenza A viruses. A simple, fast, and selective assay capable of identifying the etiological agent and differentiating the diseases is essential to provide the correct clinical management to the patient. Herein, we described the development of a genomagnetic assay for the selective capture of viral RNA from SARS-CoV-2 and Influenza A viruses in saliva samples and employing a simple disposable electrochemical device for gene detection and quantification. The proposed method showed excellent performance detecting RNA of SARS-CoV-2 and Influenza A viruses, with a limit of detection (LoD) and limit of quantification (LoQ) of 5.0 fmol L-1 and 8.6 fmol L-1 for SARS-CoV-2, and 1.0 fmol L-1 and 108.9 fmol L-1 for Influenza, respectively. The genomagnetic assay was employed to evaluate the presence of the viruses in 36 saliva samples and the results presented similar responses to those obtained by the real-time reverse transcription-polymerase chain reaction (RT-PCR), demonstrating the reliability and capability of a method as an alternative for the diagnosis of COVID-19 and Influenza with point-of-care capabilities.
Collapse
Affiliation(s)
| | | | | | - Henrique Pott-Junior
- Department of Medicine, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | - Ester Cerdeira Sabino
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Oldair Donizeti Leite
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil; Federal Technological University of Paraná, Campus Medianeira, Medianeira, PR, 85884-000, Brazil.
| | - Ronaldo Censi Faria
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
12
|
Korsun N, Trifonova I, Madzharova I, Christova I. Resurgence of influenza with increased genetic diversity of circulating viruses during the 2022-2023 season. J Med Microbiol 2024; 73. [PMID: 39073070 DOI: 10.1099/jmm.0.001864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Introduction. After two seasons of absence and low circulation, influenza activity increased significantly in the winter of 2022-2023. This study aims to characterize virological and epidemiological aspects of influenza infection in Bulgaria during the 2022-2023 season and perform a phylogenetic/molecular analysis of the hemagglutinin (HA) and neuraminidase (NA) sequences of representative influenza strains.Hypothesis/Gap Statement. Influenza A and B viruses generate new genetic groups/clades each season, replacing previously circulating variants. This results in increased antigenic distances from current vaccine strains. Strengthening existing influenza surveillance is essential to meet the challenges posed by the co-circulation of influenza and SARS-CoV-2.Methodology. We tested 2713 clinical samples from patients with acute respiratory illnesses using a multiplex real-time RT-PCR kit (FluSC2) to detect influenza A/B and Severe acute respiratory syndrome coronavirus-2(SARS-CoV-2) simultaneously. Representative Bulgarian influenza strains were sequenced at the WHO Collaborating Centres in London, UK, and Atlanta, USA.Results. Influenza virus was detected in 694 (25.6 %) patients. Of these, 364 (52.4 %), 213 (30.7 %) and 117 (16.9 %) were positive for influenza A(H1N1)pdm09, A(H3N2) and B/Victoria lineage virus, respectively. HA genes of the 47 influenza A(H1N1)pdm09 viruses fell into clades 5a.2. and 5a.2a.1 within the 6B.5A.1A.5a.2 group. Twenty-seven A(H3N2) viruses belonging to subclades 2b, 2a.1, 2a.1b and 2a.3a.1 within the 3C.2a1b.2a.2 group were analysed. All 23 sequenced B/Victoria lineage viruses were classified into the V1A.3a.2 group. We identified amino acid substitutions in HA and NA compared with the vaccine strains, including several substitutions in the HA antigenic sites.Conclusion. The study's findings showed genetic diversity among the influenza A viruses and, to a lesser extent, among B viruses, circulating in the first season after the lifting of anti-COVID-19 measures.
Collapse
MESH Headings
- Humans
- Influenza, Human/virology
- Influenza, Human/epidemiology
- Genetic Variation
- Phylogeny
- Influenza B virus/genetics
- Influenza B virus/classification
- Influenza B virus/isolation & purification
- SARS-CoV-2/genetics
- SARS-CoV-2/classification
- Neuraminidase/genetics
- Adult
- Male
- Middle Aged
- Female
- Bulgaria/epidemiology
- Young Adult
- Aged
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Child, Preschool
- Child
- Adolescent
- COVID-19/epidemiology
- COVID-19/virology
- Infant
- Seasons
- Influenza A virus/genetics
- Influenza A virus/classification
- Influenza A virus/isolation & purification
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/classification
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/classification
- Influenza A Virus, H3N2 Subtype/isolation & purification
Collapse
Affiliation(s)
- Neli Korsun
- National Laboratory "Influenza and ARI", Department of Virology, National Center of Infectious and Parasitic Diseases, 44A Stoletov Blvd, 1233 Sofia, Bulgaria
| | - Ivelina Trifonova
- National Laboratory "Influenza and ARI", Department of Virology, National Center of Infectious and Parasitic Diseases, 44A Stoletov Blvd, 1233 Sofia, Bulgaria
| | - Iveta Madzharova
- National Laboratory "Influenza and ARI", Department of Virology, National Center of Infectious and Parasitic Diseases, 44A Stoletov Blvd, 1233 Sofia, Bulgaria
| | - Iva Christova
- National Laboratory "Influenza and ARI", Department of Virology, National Center of Infectious and Parasitic Diseases, 44A Stoletov Blvd, 1233 Sofia, Bulgaria
| |
Collapse
|
13
|
Meschi S, Colavita F, Carletti F, Mazzotta V, Matusali G, Specchiarello E, Ascoli Bartoli T, Mondi A, Minosse C, Giancola ML, Pinnetti C, Valli MB, Lapa D, Mizzoni K, Sullivan DJ, Ou J, Focosi D, Girardi E, Nicastri E, Antinori A, Maggi F. MPXV DNA kinetics in bloodstream and other body fluids samples. Sci Rep 2024; 14:13487. [PMID: 38866796 PMCID: PMC11169222 DOI: 10.1038/s41598-024-63044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Since spring 2022, the global epidemiology of the monkeypox virus (MPXV) has changed. The unprecedented increase of human clade II MPXV cases worldwide heightened concerns about this emerging zoonotic disease. We analysed the positivity rates, viral loads, infectiousness, and persistence of MPXV DNA for up to 4 months in several biological samples from 89 MPXV-confirmed cases. Our data showed that viral loads and positivity rates were higher during the first two weeks of symptoms for all sample types. Amongst no-skin-samples, respiratory specimens showed higher MPXV DNA levels and median time until viral clearance, suggesting their usefulness in supporting MPXV diagnosis, investigating asymptomatic patients, and monitoring viral shedding. Infectious virus was cultured from respiratory samples, semen, and stools, with high viral loads and collected within the first 10 days. Notably, only one saliva and one semen were found positive for viral DNA after 71 and 31 days from symptoms, respectively. The focus on bloodstream samples showed the best testing sensitivity in plasma, reporting the overall highest MPXV DNA detection rate and viral loads during the 3-week follow-up as compared to serum and whole-blood. The data here presented can be useful for MPXV diagnostics and a better understanding of the potential alternative routes of its onward transmission.
Collapse
Affiliation(s)
- Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Fabrizio Carletti
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Valentina Mazzotta
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy.
| | - Eliana Specchiarello
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Tommaso Ascoli Bartoli
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Annalisa Mondi
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Claudia Minosse
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Maria Letizia Giancola
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Carmela Pinnetti
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Maria Beatrice Valli
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Klizia Mizzoni
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Jiangda Ou
- Brain Injury Outcomes, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21202, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Emanuele Nicastri
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Andrea Antinori
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149, Rome, Italy
| |
Collapse
|
14
|
Mosadegh M, Jalili S, Pourmand MR, Erfani Y, Panji M. Evaluating the efficiency of ELISA, monoplex and multiplex probe-based real-time reverse-transcription PCR assays in the detection of SARS-CoV-2 (COVID-19) and influenza A and B viruses: A cross-sectional study. Health Sci Rep 2024; 7:e2140. [PMID: 38915351 PMCID: PMC11194474 DOI: 10.1002/hsr2.2140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
Background and Aims The current study aimed to evaluate the efficiency of Enzyme-linked immunosorbent assay (ELISA) assay and monoplex and multiplex real-time reverse-transcription PCR (rRT-PCR) in the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A and B viruses (Flu A and Flu B). Methods The SARS-CoV-2 -specific IgG and IgM antibodies, as well as, Flu A (H1N1 and H3N2 serotypes) and Flu B virus antibodies were determined by ELISA assay. The one-step qRT-PCR method was used to detect the SARS-CoV-2 in nasopharyngeal swab samples. Furthermore, the presence of Flu A and B viruses was evaluated using probe-based RT-PCR. Simultaneous detection of SARS-CoV-2, Flu A and B viruses was performed by multiplex rRT-PCR assay. Results SARS CoV-2 IgM and IgG antibodies were detected in 33.3% and 58.3% of patients, respectively. In contrast, the SARS CoV-2 genome was detected in 50% of patients using the one-step monoplex RT-PCR assay. Flu A serotypes H1N1 and H3N2 were found in 16.7% and 8.3% of patients. Probe-based RT-PCR revealed that 39.3% of patients were positive for the Flu A virus. Multiplex rRT-PCR detect the SARS-CoV-2, Flu A, and Flu B in 50%, 39.3%, and 19% of samples, respectively. The sensitivity and specificity of multiplex rRT-PCR assay in comparison to monoplex RT-PCR were 100% and 55%, respectively. Coinfection with SARS-CoV-2, Flu A, and Flu B viruses was found in 9.5% of patients. Conclusion Multiplex rRT-PCR can be used as a repaid, cost-effective and suitable tool for molecular surveillance of SARS-CoV-2 and Flu A/B viruses.
Collapse
Affiliation(s)
- Mehrdad Mosadegh
- Department of Pathobiology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Shirin Jalili
- Institute of Police Equipment and TechnologiesPolicing Sciences and Social Studies Research InstituteTehranIran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Yousef Erfani
- Department of Medical Laboratory Sciences, School of Allied Medical SciencesTehran University of Medical SciencesTehranIran
| | - Mohammad Panji
- Research Center for Life and Health Sciences and Biotechnology for the Police, Directorate of Health, Rescue and TreatmentPolice HeadquarterTehranIran
| |
Collapse
|
15
|
Sridhar S, Tonto PB, Lumkong L, Netto EM, Brites C, Wang WK, Herrera BB. Development of RT-RPA-based point-of-care tests for epidemic arthritogenic alphaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594209. [PMID: 38826256 PMCID: PMC11142058 DOI: 10.1101/2024.05.14.594209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chikungunya (CHIKV), o'nyong-nyong (ONNV), and Mayaro (MAYV) viruses are transmitted by mosquitoes and known to cause a debilitating arthritogenic syndrome. These alphaviruses have emerged and re-emerged, leading to outbreaks in tropical and subtropical regions of Asia, South America, and Africa. Despite their prevalence, there persists a critical gap in the availability of sensitive and virus-specific point-of-care (POC) diagnostics. Traditional immunoglobulin-based tests such as enzyme-linked immunosorbent assay (ELISAs) often yield cross-reactive results due to the close genetic relationship between these viruses. Molecular diagnostics such as quantitative polymerase chain reaction (qPCR) offer high sensitivity but are limited by the need for specialized laboratory equipment. Recombinase polymerase amplification (RPA), an isothermal amplification method, is a promising alternative to qPCR, providing rapid results with minimal equipment requirements. Here, we report the development and validation of three virus-specific RPA-based POC tests for CHIKV, ONNV, and MAYV. These tests demonstrated both speed and sensitivity, capable of detecting 10 viral copies within 20 minutes of amplification, without exhibiting cross-reactivity. Furthermore, we evaluated the clinical potential of these tests using serum and tissue samples from CHIKV, ONNV, and MAYV-infected mice, as well as CHIKV-infected human patients. We demonstrate that the RPA amplicons derived from the patient samples can be sequenced, enabling cost-effective molecular epidemiological studies. Our findings highlight the significance of these rapid and specific POC diagnostics in improving the early detection and management of these arboviral infections.
Collapse
|
16
|
Germano ER, Flores T, Freed GS, Kim K, Tulinsky GH, Yang A, Rose OJ, Ray CA, Autry A, Catallozzi M, Mailloux BJ, Miranda JJL. Building-level wastewater surveillance localizes interseasonal influenza variation. mSphere 2024; 9:e0060023. [PMID: 38168676 PMCID: PMC10826355 DOI: 10.1128/msphere.00600-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Influenza virus poses a recurring threat to public health and infects many populations in annual waves of generally unpredictable magnitude and timing. We aimed to detect the arrival and estimate the case magnitude of seasonal influenza A in urban New York City college dormitory buildings. Our wastewater-based surveillance (WBS) program measured viral RNA in the sewage outflow of three dormitories at Barnard College in 2021 and 2022. Wastewater test positivity strongly correlated with New York County clinical cases (Kendall's τ = 0.58). Positive wastewater samples are also associated with campus clinical cases. The 2022 data stand in stark contrast to the 2021 results by revealing the more frequent and earlier presence of influenza A. The increase in positive tests is significant (P < 0.01). It is further noteworthy that positive samples were not evenly distributed among buildings. Surveillance additionally identified the influenza A H3 subtype but did not detect any influenza B. We also systematically analyzed our viral purification protocol to identify in which fraction influenza can be found. While virus can be found in solid fractions, a substantial quantity remains in the final liquid fraction. Our work focuses on individual buildings rather than larger sewersheds because buildings may localize interseasonal influenza variation to specific subpopulations. Our results highlight the potential value of building-level WBS in measuring influenza incidence to help guide public health intervention.IMPORTANCESeasonal influenza remains a major public health burden. We monitored influenza A in dormitory wastewater of a New York City college in 2021 and 2022. Longitudinal samples acquired over consecutive years allowed measurement of individual buildings between seasons. We uncovered building-level changes in the magnitude and timing of test positivity concordant with clinical cases. Surveillance also localized the heterogeneity of influenza variation during the large 2022 seasonal surge. The ability to detect such changes could be leveraged as part of a public health response.
Collapse
Affiliation(s)
- Emma R. Germano
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Tiffany Flores
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Grace S. Freed
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Kang Kim
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Grace H. Tulinsky
- Environmental Science Department, Barnard College, Columbia University, New York, New York, USA
| | - Annie Yang
- Environmental Science Department, Barnard College, Columbia University, New York, New York, USA
| | - Oliver J. Rose
- Office of Facilities Services, Barnard College, Columbia University, New York, New York, USA
| | - Caroline A. Ray
- Office of Health and Wellness, Barnard College, Columbia University, New York, New York, USA
| | - April Autry
- Office of Health and Wellness, Barnard College, Columbia University, New York, New York, USA
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Marina Catallozzi
- Office of Health and Wellness, Barnard College, Columbia University, New York, New York, USA
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, New York, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Brian J. Mailloux
- Environmental Science Department, Barnard College, Columbia University, New York, New York, USA
| | - JJ L. Miranda
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| |
Collapse
|
17
|
Kandeel A, Fahim M, Deghedy O, BahaaEldin H, Roshdy WH, Khalifa MK, Kandeil A, El Shesheny R, Naguib A, AbdelFatah M, Afifi S, Abdel Ghaffar K. Comparative analysis of COVID-19 and influenza prevalence among Egyptian pilgrims returning from Hajj and Umrah in 2022: epidemiology, clinical characteristics, and genomic sequencing. Arch Public Health 2024; 82:6. [PMID: 38216978 PMCID: PMC10785524 DOI: 10.1186/s13690-023-01229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024] Open
Abstract
PURPOSE To describe the changes that occurred in the SARS-CoV-2 and influenza Prevalence, epidemiology, clinical picture, and prevalent genotypes among the Egyptian pilgrims returning from Hajj and Umrah 2022 seasons. METHODS Pilgrims were contacted at the airport and invited to participate in the survey. Pilgrims who consented were interviewed using a standardized line list that included participant demographics, respiratory symptoms if any, previous COVID-19 infection, influenza vaccination whereas COVID-19 vaccination information were collected from vaccination cards. Participants were asked to provide throat and nasopharyngeal swabs for SARS-CoV-2 and influenza testing using RT-PCR and a subset of isolates were sequenced. Descriptive data analysis was performed to describe the epidemiology and clinical symptoms of SARS-CoV-2 and influenza. Prevalence rates of SARS-CoV-2 and influenza during Hajj were calculated and compared to Umrah surveys using chi2 and t-test with a significance level < 0.05. RESULTS Overall, 3,862 Egyptian pilgrims enrolled, their mean age was 50.5 ± 47 years, half of them were > 50 years of age and 58.2% were males. Of them, 384 (9.9%) tested positive for SARS-CoV-2 and 51 (1.3%) for influenza viruses. Prevalence of SARS-CoV-2 infections (vaccine breakthrough) increased significantly between the Umrah and Hajj surveys (6.7% vs. 9.9%, p < 0.001), and variants of the virus varied considerably. Whereas no significant difference was found in influenza prevalence, vaccine coverage and vaccine breakthrough infection rates (11.7 vs. 9.2%, 26.9 vs. 26.8%, and 1.4 vs. 1.1% respectively). CONCLUSIONS SARS-CoV-2 prevalence among Egyptian pilgrims returning from Hajj in July increased with reduced vaccine effectiveness compared to Umrah in March 2022 suggesting a possible wave of SARS-CoV-2 in the upcoming winter.
Collapse
Affiliation(s)
- Amr Kandeel
- Preventive Sector, Ministry of Health and Population, Governmental District, New Administrative Capital, Cairo, Egypt
| | - Manal Fahim
- Department of Epidemiology and Surveillance, Preventive Sector, Ministry of Health and Population, Governmental District, New Administrative Capital, Cairo, Egypt
| | - Ola Deghedy
- Department of Epidemiology and Surveillance, Preventive Sector, Ministry of Health and Population, Governmental District, New Administrative Capital, Cairo, Egypt
| | - Hala BahaaEldin
- Department of Epidemiology and Surveillance, Preventive Sector, Ministry of Health and Population, Governmental District, New Administrative Capital, Cairo, Egypt.
| | - Wael H Roshdy
- Central Public Health Laboratory, Ministry of Health and Population, Governmental District, New Administrative Capital, Cairo, Egypt
| | - Mohamed Kamal Khalifa
- Central Public Health Laboratory, Ministry of Health and Population, Governmental District, New Administrative Capital, Cairo, Egypt
| | - Ahmed Kandeil
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Rabeh El Shesheny
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Amel Naguib
- Central Public Health Laboratory, Ministry of Health and Population, Governmental District, New Administrative Capital, Cairo, Egypt
| | - Mohamad AbdelFatah
- Preventive Sector, Ministry of Health and Population, Governmental District, New Administrative Capital, Cairo, Egypt
| | - Salma Afifi
- Ministry of Health and Population Consultant, Governmental District, New Administrative Capital, Cairo, Egypt
| | - Khaled Abdel Ghaffar
- Ministry of Health and Population, Governmental District, New Administrative Capital, Cairo, Egypt
| |
Collapse
|
18
|
Keller MW, Keong LM, Rambo-Martin BL, Hassell N, Lacek KA, Wilson MM, Kirby MK, Liddell J, Owuor DC, Sheth M, Madden J, Lee JS, Kondor RJ, Wentworth DE, Barnes JR. Targeted amplification and genetic sequencing of the severe acute respiratory syndrome coronavirus 2 surface glycoprotein. Microbiol Spectr 2024; 12:e0298223. [PMID: 38084972 PMCID: PMC10783008 DOI: 10.1128/spectrum.02982-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/09/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The COVID-19 pandemic was accompanied by an unprecedented surveillance effort. The resulting data were and will continue to be critical for surveillance and control of SARS-CoV-2. However, some genomic surveillance methods experienced challenges as the virus evolved, resulting in incomplete and poor quality data. Complete and quality coverage, especially of the S-gene, is important for supporting the selection of vaccine candidates. As such, we developed a robust method to target the S-gene for amplification and sequencing. By focusing on the S-gene and imposing strict coverage and quality metrics, we hope to increase the quality of surveillance data for this continually evolving gene. Our technique is currently being deployed globally to partner laboratories, and public health representatives from 79 countries have received hands-on training and support. Expanding access to quality surveillance methods will undoubtedly lead to earlier detection of novel variants and better inform vaccine strain selection.
Collapse
Affiliation(s)
- Matthew W. Keller
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Lisa M. Keong
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Benjamin L. Rambo-Martin
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Norman Hassell
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Kristine A. Lacek
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Malania M. Wilson
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Marie K. Kirby
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Jimma Liddell
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - D. Collins Owuor
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Mili Sheth
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joseph Madden
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Justin S. Lee
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Rebecca J. Kondor
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - David E. Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - John R. Barnes
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| |
Collapse
|
19
|
Barbosa G, Alberto-Lei F, Chaves APC, Carvalho JMA, Conte DD, Moreira LVL, de Souza Luna LK, Perosa AH, Bellei N. Respiratory virus detection among healthcare professionals in Brazil: work-related contact and episode recurrence during the COVID-19 pandemic. Public Health 2024; 226:159-164. [PMID: 38071948 DOI: 10.1016/j.puhe.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVES Since the beginning of the COVID-19 pandemic, changes in the circulation of respiratory viruses have been observed after measures to control the spread of SARS-CoV-2 were implemented. In this sense, we aimed to understand the circulation of the respiratory virus and its impact in a controlled healthy population of healthcare professional (HCP) volunteers in phase III of the clinical trial of the ChadOx nCoV1 conducted in São Paulo, Brazil. STUDY DESIGN This was a nested observational cohort study within a clinical trial. METHODS We performed RT-qPCR to detect SARS-CoV-2, influenza virus A and B (IVA and IVB), respiratory syncytial virus (RSV), human rhinovirus (HRV), human metapneumovirus (hMPV), human coronaviruses (hCoVs: HKU-1, NL63, OC43, and 229-E), parainfluenza virus (PiV) I-IV, and q-PCR for adenovirus in nasopharyngeal and oropharyngeal samples obtained from HCP enrolled in the clinical trial to assess respiratory viruses infection among vaccinated and non-vaccinated. RESULTS From July 2020 to January 2022, 876 samples were included from 737 volunteers (median age: 33 years, 62.9% female). New episodes were registered for 119 individuals. We observed an overall positivity of 37.7% for SARS-CoV-2 and 16.4% for other respiratory viruses; HRV was the second most detected virus (8%), followed by RSV (2.4%). Fully vaccinated individuals accounted for 53.3% of collected samples, and 52.9% presented at least one respiratory virus infection, with SARS-CoV-2 being the most predominant etiologic agent (62.3%). Influenza and hMPV were not detected among the tested samples. Among the subjects that presented more than one episode, SARS-CoV-2 and HRV infections were related to direct contact with patients (P < 0.002). CONCLUSIONS Data show high infection rates among HCPs even under mask policies and contact precautions, highlighting the need for improvement in infection control measures in this population regardless of the vaccination program.
Collapse
Affiliation(s)
- G Barbosa
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Laboratório de Virologia Clínica, São Paulo, SP, Brazil.
| | - F Alberto-Lei
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Laboratório de Virologia Clínica, São Paulo, SP, Brazil
| | - A P C Chaves
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Laboratório de Virologia Clínica, São Paulo, SP, Brazil
| | - J M A Carvalho
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Laboratório de Virologia Clínica, São Paulo, SP, Brazil
| | - D D Conte
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Laboratório de Virologia Clínica, São Paulo, SP, Brazil
| | - L V L Moreira
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Laboratório de Virologia Clínica, São Paulo, SP, Brazil
| | - L K de Souza Luna
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Laboratório de Virologia Clínica, São Paulo, SP, Brazil
| | - A H Perosa
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Laboratório de Virologia Clínica, São Paulo, SP, Brazil
| | - N Bellei
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Laboratório de Virologia Clínica, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Gao P, Fan Y, Kong X, Zhang R, Chen L, Jiang Y, Liu Y, Zhao M, Deng G, Cao Y, Ma L. A novel assay based on DNA melting temperature for multiplexed identification of SARS-CoV-2 and influenza A/B viruses. Front Microbiol 2023; 14:1249085. [PMID: 38173675 PMCID: PMC10762780 DOI: 10.3389/fmicb.2023.1249085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and influenza viruses can cause respiratory illnesses with similar clinical symptoms, making their differential diagnoses challenging. Additionally, in critically ill SARS-CoV-2-infected patients, co-infections with other respiratory pathogens can lead to severe cytokine storm and serious complications. Therefore, a method for simultaneous detection of SARS-CoV-2 and influenza A and B viruses will be clinically beneficial. Methods We designed an assay to detect five gene targets simultaneously via asymmetric PCR-mediated melting curve analysis in a single tube. We used specific probes that hybridize to corresponding single-stranded amplicons at low temperature and dissociate at high temperature, creating different detection peaks representing the targets. The entire reaction was conducted in a closed tube, which minimizes the risk of contamination. The limit of detection, specificity, precision, and accuracy were determined. Results The assay exhibited a limit of detection of <20 copies/μL for SARS-CoV-2 and influenza A and <30 copies/μL for influenza B, with high reliability as demonstrated by a coefficient of variation for melting temperature of <1.16% across three virus concentrations. The performance of our developed assay and the pre-determined assay showed excellent agreement for clinical samples, with kappa coefficients ranging from 0.98 (for influenza A) to 1.00 (for SARS-CoV-2 and influenza B). No false-positive, and no cross-reactivity was observed with six common non-influenza respiratory viruses. Conclusion The newly developed assay offers a straightforward, cost-effective and nucleic acid contamination-free approach for simultaneous detection of the SARS-CoV-2, influenza A, and influenza B viruses. The method offers high analytical sensitivity, reliability, specificity, and accuracy. Its use will streamline testing for co-infections, increase testing throughput, and improve laboratory efficacy.
Collapse
Affiliation(s)
- Peng Gao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yanyan Fan
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaomu Kong
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Lida Chen
- Department of Blood Transfusion, China-Japan Friendship Hospital, Beijing, China
| | - Yongwei Jiang
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yi Liu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Meimei Zhao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Guoxiong Deng
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Liang Ma
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
21
|
Ghai RR, Straily A, Wineland N, Calogero J, Stobierski MG, Signs K, Blievernicht M, Torres-Mendoza Y, Waltenburg MA, Condrey JA, Blankenship HM, Riner D, Barr N, Schalow M, Goodrich J, Collins C, Ahmad A, Metz JM, Herzegh O, Straka K, Arsnoe DM, Duffiney AG, Shriner SA, Kainulainen MH, Carpenter A, Whitehill F, Wendling NM, Stoddard RA, Retchless AC, Uehara A, Tao Y, Li Y, Zhang J, Tong S, Barton Behravesh C. Epidemiologic and Genomic Evidence for Zoonotic Transmission of SARS-CoV-2 among People and Animals on a Michigan Mink Farm, United States, 2020. Viruses 2023; 15:2436. [PMID: 38140677 PMCID: PMC10747742 DOI: 10.3390/v15122436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Farmed mink are one of few animals in which infection with SARS-CoV-2 has resulted in sustained transmission among a population and spillback from mink to people. In September 2020, mink on a Michigan farm exhibited increased morbidity and mortality rates due to confirmed SARS-CoV-2 infection. We conducted an epidemiologic investigation to identify the source of initial mink exposure, assess the degree of spread within the facility's overall mink population, and evaluate the risk of further viral spread on the farm and in surrounding wildlife habitats. Three farm employees reported symptoms consistent with COVID-19 the same day that increased mortality rates were observed among the mink herd. One of these individuals, and another asymptomatic employee, tested positive for SARS-CoV-2 by real-time reverse transcription PCR (RT-qPCR) 9 days later. All but one mink sampled on the farm were positive for SARS-CoV-2 based on nucleic acid detection from at least one oral, nasal, or rectal swab tested by RT-qPCR (99%). Sequence analysis showed high degrees of similarity between sequences from mink and the two positive farm employees. Epidemiologic and genomic data, including the presence of F486L and N501T mutations believed to arise through mink adaptation, support the hypothesis that the two employees with SARS-CoV-2 nucleic acid detection contracted COVID-19 from mink. However, the specific source of virus introduction onto the farm was not identified. Three companion animals living with mink farm employees and 31 wild animals of six species sampled in the surrounding area were negative for SARS-CoV-2 by RT-qPCR. Results from this investigation support the necessity of a One Health approach to manage the zoonotic spread of SARS-CoV-2 and underscores the critical need for multifaceted public health approaches to prevent the introduction and spread of respiratory viruses on mink farms.
Collapse
Affiliation(s)
- Ria R. Ghai
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Anne Straily
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Nora Wineland
- Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | - Jennifer Calogero
- Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | | | - Kimberly Signs
- Michigan Department of Health and Human Services, Lansing, MI 48909, USA
| | - Melissa Blievernicht
- Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | | | | | - Jillian A. Condrey
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | | | - Diana Riner
- Michigan Department of Health and Human Services, Lansing, MI 48909, USA
| | - Nancy Barr
- Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | - Michele Schalow
- Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | - Jarold Goodrich
- Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | - Cheryl Collins
- Michigan Department of Agriculture and Rural Development, Lansing, MI 48933, USA
| | - Ausaf Ahmad
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - John Michael Metz
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Owen Herzegh
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Kelly Straka
- Michigan Department of Natural Resources, Lansing, MI 48909, USA
| | - Dustin M. Arsnoe
- U.S. Department of Agriculture Animal and Plant Health Inspection Service, Washington, DC 20250, USA
| | - Anthony G. Duffiney
- U.S. Department of Agriculture Animal and Plant Health Inspection Service, Washington, DC 20250, USA
| | - Susan A. Shriner
- U.S. Department of Agriculture Animal and Plant Health Inspection Service, Washington, DC 20250, USA
| | | | - Ann Carpenter
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Florence Whitehill
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Natalie M. Wendling
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Robyn A. Stoddard
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Adam C. Retchless
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Anna Uehara
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Ying Tao
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Yan Li
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Jing Zhang
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | - Suxiang Tong
- U.S. Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.R.G.)
| | | |
Collapse
|
22
|
Kayiwa JT, Nassuna C, Mulei S, Kiggundu G, Nakaseegu J, Nabbuto M, Amwine E, Nakamoga B, Nankinga S, Atuhaire P, Nabiryo P, Alunzi P, Mbaziira T, Isabirye P, Ayuro N, Owor N, Kiconco J, Bakamutumaho B, Middlebrook EA, Kaleebu P, Lutwama JJ, Bartlow AW. Integration of SARS-CoV-2 testing and genomic sequencing into influenza sentinel surveillance in Uganda, January to December 2022. Microbiol Spectr 2023; 11:e0132823. [PMID: 37811997 PMCID: PMC10715035 DOI: 10.1128/spectrum.01328-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/19/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Respiratory pathogens cause high rates of morbidity and mortality globally and have high pandemic potential. During the SARS-CoV-2 pandemic, influenza surveillance was significantly interrupted because of resources being diverted to SARS-CoV-2 testing and sequencing. Based on recommendations from the World Health Organization, the Uganda Virus Research Institute, National Influenza Center laboratory integrated SARS-CoV-2 testing and genomic sequencing into the influenza surveillance program. We describe the results of influenza and SARS-CoV-2 testing of samples collected from 16 sentinel surveillance sites located throughout Uganda as well as SARS-CoV-2 testing and sequencing in other health centers. The surveillance system showed that both SARS-CoV-2 and influenza can be monitored in communities at the national level. The integration of SARS-CoV-2 detection and genomic surveillance into the influenza surveillance program will help facilitate the timely release of SARS-CoV-2 information for COVID-19 pandemic mitigation and provide important information regarding the persistent threat of influenza.
Collapse
Affiliation(s)
- John T. Kayiwa
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Charity Nassuna
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Sophia Mulei
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Gladys Kiggundu
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Joweria Nakaseegu
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Maria Nabbuto
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Esther Amwine
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Bridget Nakamoga
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Sarah Nankinga
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Phiona Atuhaire
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Pheobe Nabiryo
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Pixy Alunzi
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Tony Mbaziira
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Paul Isabirye
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Noel Ayuro
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Nicholas Owor
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Jocelyn Kiconco
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Barnabas Bakamutumaho
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene & Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Julius J. Lutwama
- Department of Arbovirology, Emerging and Re-emerging Viral Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | | |
Collapse
|
23
|
Abbasi H, Nikoo HR, Fotouhi F, Khosravi A. Development of a robust TaqMan probe-based one-step multiplex RT-qPCR for simultaneous detection of SARS-CoV-2 and Influenza A/B viruses. BMC Microbiol 2023; 23:335. [PMID: 37951883 PMCID: PMC10640757 DOI: 10.1186/s12866-023-03048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND During the coronavirus disease 2019 (COVID-19) pandemic, the simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A, and Influenza B viruses is essential for rapid differential diagnosis in patients with similar symptoms, especially during "flu season" in the post-pandemic era. So far, several multiplex methods have been approved for the simultaneous detection of SARS-CoV-2, Influenza A, and Influenza B. However, due to the rapid mutation rate of the SARS-CoV-2 genome and the emergence of new variants, existing methods must be improved and updated. METHODS To identify a highly conserved region in the SARS-CoV-2 N-gene, a genomic survey was performed to increase the sensitivity and specificity of primer and probe sets targeting the SARS-CoV-2 genome. The 95% LLOD (95% lower limits of detection) were calculated by probit analysis. A total of 70 predetermined clinical samples using singleplex RT-qPCR assays, were included. The clinical performance of the multiplex RT-qPCR assay was determined and compared with a commercial multiplex kit. The Cohen's kappa coefficient, P-value (McNemar's test), Passing-Bablok regression, and Bland Altman agreement analysis were determined to monitor the agreement of the assays. RESULTS The novel SARS-CoV-2 primer and probe set designed in this assay was able to detect all variants of concern (VOCs) and variants of interest (VOIs) with high analytical and clinical performance. The 95% LLOD for the multiplex RT-qPCR was 20 copies per reaction for the N gene of SARS-CoV-2, 2 copies per reaction for M1 gene of Influenza A and NS1 gene of Influenza B. The diagnostic sensitivity of the multiplex RT-qPCR was 94.4%, 93.7%, and 100% for the detection of SARS-CoV-2, Influenza A, and Influenza B genomes, respectively. Moreover, the specificity was identical (100%) in both assays. According to the agreement analysis results, there was no statistical difference between our multiplex assay and the commercial kit. CONCLUSIONS In this study, we developed a novel in-house made multiplex RT-qPCR assay, with high sensitivity, specificity, and reliability for the diagnosis of SARS-CoV-2 infection in clinical samples. This is valuable during Influenza seasons when influenza co-circulates with SARS-CoV-2, as it saves costs, time, and thus specific and timely treatment of patients.
Collapse
Affiliation(s)
- Hamidreza Abbasi
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hadi Razavi Nikoo
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Fatemeh Fotouhi
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
24
|
Wang Y, Wu L, Yu X, Wang G, Pan T, Huang Z, Cui T, Huang T, Huang Z, Nie L, Qian C. Development of a rapid, sensitive detection method for SARS-CoV-2 and influenza virus based on recombinase polymerase amplification combined with CRISPR-Cas12a assay. J Med Virol 2023; 95:e29215. [PMID: 37933907 DOI: 10.1002/jmv.29215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
Respiratory tract infections are associated with the most common diseases transmitted among people and remain a huge threat to global public health. Rapid and sensitive diagnosis of causative agents is critical for timely treatment and disease control. Here, we developed a novel method based on recombinase polymerase amplification (RPA) combined with CRISPR-Cas12a to detect three viral pathogens, including SARS-CoV-2, influenza A, and influenza B, which cause similar symptom complexes of flu cold in the respiratory tract. The detection method can be completed within 1 h, which is faster than other standard detection methods, and the limit of detection is approximately 102 copies/μL. Additionally, this detection system is highly specific and there is no cross-reactivity with other common respiratory tract pathogens. Based on this assay, we further developed a more simplified RPA/CRISPR-Cas12a system combined with lateral flow assay on a manual microfluidic chip, which can simultaneously detect these three viruses. This low-cost detection system is rapid and sensitive, which could be applied in the field and resource-limited areas without bulky and expensive instruments, providing powerful tools for the point-of-care diagnostic.
Collapse
Affiliation(s)
- Yuning Wang
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Liqiang Wu
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Xiaomei Yu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, China
| | - Gang Wang
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Ting Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, China
| | - Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, China
| | - Ting Cui
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, China
| | - Tianxun Huang
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Zhentao Huang
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, China
| | - Chungen Qian
- Department of Biomedical Engineering, The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Tran TT, Phung TTB, Tran DM, Bui HT, Nguyen PTT, Vu TT, Ngo NTP, Nguyen MT, Nguyen AH, Nguyen ATV. Efficient symptomatic treatment and viral load reduction for children with influenza virus infection by nasal-spraying Bacillus spore probiotics. Sci Rep 2023; 13:14789. [PMID: 37684332 PMCID: PMC10491672 DOI: 10.1038/s41598-023-41763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Influenza virus is a main cause of acute respiratory tract infections (ARTIs) in children. This is the first double-blind, randomized, and controlled clinical trial examining the efficacy of nasal-spraying probiotic LiveSpo Navax, which contains 5 billion of Bacillus subtilis and B. clausii spores in 5 mL, in supporting treatment of influenza viral infection in pediatric patients. We found that the nasal-spraying Bacillus spores significantly shortened the recovery period and overall treatment by 2 days and increased treatment effectiveness by 58% in resolving all ARTIs' symptoms. At day 2, the concentrations of influenza virus and co-infected bacteria were reduced by 417 and 1152 folds. Additionally, the levels of pro-inflammatory cytokines IL-8, TNF-α, and IL-6 in nasopharyngeal samples were reduced by 1.1, 3.7, and 53.9 folds, respectively. Compared to the standard control group, treatment regimen with LiveSpo Navax demonstrated significantly greater effectiveness, resulting in 26-fold reduction in viral load, 65-fold reduction in bacterial concentration, and 1.1-9.5-fold decrease in cytokine levels. Overall, nasal-spraying Bacillus spores can support the symptomatic treatment of influenza virus-induced ARTIs quickly, efficiently and could be used as a cost-effective supportive treatment for respiratory viral infection in general.Clinical trial registration no: NCT05378022 on 17/05/2022.
Collapse
Affiliation(s)
- Tu Thanh Tran
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Thuy Thi Bich Phung
- Department of Molecular Biology for Infectious Diseases, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Dien Minh Tran
- Department of Surgical Intensive Care Unit, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Huyen Thi Bui
- Key Laboratory of Enzyme and Protein Technology, VNU University of Sciences, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
- Spobiotic Research Center, ANABIO R&D Ltd. Company, No. 22, Lot 7, 8 Van Khe Urban, La Khe, Ha Dong, Hanoi, Vietnam
| | - Phuc Thanh Thi Nguyen
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Tam Thi Vu
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Nga Thi Phuong Ngo
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Mai Thi Nguyen
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Anh Hoa Nguyen
- Spobiotic Research Center, ANABIO R&D Ltd. Company, No. 22, Lot 7, 8 Van Khe Urban, La Khe, Ha Dong, Hanoi, Vietnam.
- LiveSpo Pharma Ltd. Company, N03T5, Ngoai Giao Doan Urban, Bac Tu Liem, Hanoi, Vietnam.
| | - Anh Thi Van Nguyen
- Spobiotic Research Center, ANABIO R&D Ltd. Company, No. 22, Lot 7, 8 Van Khe Urban, La Khe, Ha Dong, Hanoi, Vietnam.
| |
Collapse
|
26
|
Mytzka N, Arbaciauskaite S, Sandetskaya N, Mattern K, Kuhlmeier D. A fully integrated duplex RT-LAMP device for the detection of viral infections. Biomed Microdevices 2023; 25:36. [PMID: 37682413 PMCID: PMC10491696 DOI: 10.1007/s10544-023-00676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Respiratory viruses can cause epidemics or pandemics, which are worldwide outbreaks of disease. The severity of these events varies depending on the virus, its characteristics, along with environmental factors. The frequency of epidemics and pandemics caused by respiratory viruses is difficult to predict, but the potential severity of such events underlines the importance of continued monitoring, research, and preparation for emerging infectious diseases. To help improve pandemic preparedness, we created a fully integrated duplex reverse transcription loop-mediated isothermal amplification (RT-LAMP) device targeting two respiratory viruses, influenza A/X-31 virus and bovine coronavirus, as a replacement for SARS-CoV-2. This device can be adapted to any other respiratory virus. In this study, we showed and evaluated a prototype of a microfluidic system, and showed that duplex RT-LAMP can detect and distinguish between the two viruses, with LoDs of 2,000 copies/ml for bovine coronavirus and 200 copies/ml for influenza A/X-31 virus.
Collapse
Affiliation(s)
- Nicolas Mytzka
- MicroDiagnostics Unit, Fraunhofer Institute for Cell Therapy and Immunology, 04103, Leipzig, Germany
| | - Skaiste Arbaciauskaite
- MicroDiagnostics Unit, Fraunhofer Institute for Cell Therapy and Immunology, 04103, Leipzig, Germany.
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Natalia Sandetskaya
- MicroDiagnostics Unit, Fraunhofer Institute for Cell Therapy and Immunology, 04103, Leipzig, Germany
| | - Kai Mattern
- MicroDiagnostics Unit, Fraunhofer Institute for Cell Therapy and Immunology, 04103, Leipzig, Germany
| | - Dirk Kuhlmeier
- MicroDiagnostics Unit, Fraunhofer Institute for Cell Therapy and Immunology, 04103, Leipzig, Germany
| |
Collapse
|
27
|
Leguia M, Garcia-Glaessner A, Muñoz-Saavedra B, Juarez D, Barrera P, Calvo-Mac C, Jara J, Silva W, Ploog K, Amaro L, Colchao-Claux P, Johnson CK, Uhart MM, Nelson MI, Lescano J. Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. Nat Commun 2023; 14:5489. [PMID: 37679333 PMCID: PMC10484921 DOI: 10.1038/s41467-023-41182-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) A/H5N1 viruses (lineage 2.3.4.4b) are rapidly invading the Americas, threatening wildlife, poultry, and potentially evolving into the next global pandemic. In November 2022 HPAI arrived in Peru, triggering massive pelican and sea lion die-offs. We report genomic characterization of HPAI/H5N1 in five species of marine mammals and seabirds (dolphins, sea lions, sanderlings, pelicans and cormorants). Peruvian viruses belong to lineage 2.3.4.4b, but they are 4:4 reassortants where 4 genomic segments (PA, HA, NA and MP) position within the Eurasian lineage that initially entered North America from Eurasia, while the other 4 genomic segments (PB2, PB1, NP and NS) position within the American lineage (clade C) that circulated in North America. These viruses are rapidly accruing mutations, including mutations of concern, that warrant further examination and highlight an urgent need for active local surveillance to manage outbreaks and limit spillover into other species, including humans.
Collapse
Affiliation(s)
- Mariana Leguia
- Laboratorio de Genómica, Pontificia Universidad Católica del Perú (PUCP), Lima, Peru.
- EpiCenter for Emerging Infectious Disease Intelligence, Centers for Research in Emerging Infectious Diseases, Lima, Peru.
| | - Alejandra Garcia-Glaessner
- Laboratorio de Genómica, Pontificia Universidad Católica del Perú (PUCP), Lima, Peru
- EpiCenter for Emerging Infectious Disease Intelligence, Centers for Research in Emerging Infectious Diseases, Lima, Peru
| | - Breno Muñoz-Saavedra
- Laboratorio de Genómica, Pontificia Universidad Católica del Perú (PUCP), Lima, Peru
- EpiCenter for Emerging Infectious Disease Intelligence, Centers for Research in Emerging Infectious Diseases, Lima, Peru
| | - Diana Juarez
- Laboratorio de Genómica, Pontificia Universidad Católica del Perú (PUCP), Lima, Peru
- EpiCenter for Emerging Infectious Disease Intelligence, Centers for Research in Emerging Infectious Diseases, Lima, Peru
| | - Patricia Barrera
- Laboratorio de Genómica, Pontificia Universidad Católica del Perú (PUCP), Lima, Peru
- EpiCenter for Emerging Infectious Disease Intelligence, Centers for Research in Emerging Infectious Diseases, Lima, Peru
| | - Carlos Calvo-Mac
- EpiCenter for Emerging Infectious Disease Intelligence, Centers for Research in Emerging Infectious Diseases, Lima, Peru
| | - Javier Jara
- Servicio Nacional Forestal y de Fauna Silvestre (SERFOR), Ministerio de Desarrollo Agrario y Riego (MIDAGRI) del Perú, Lima, Peru
| | - Walter Silva
- Servicio Nacional Forestal y de Fauna Silvestre (SERFOR), Ministerio de Desarrollo Agrario y Riego (MIDAGRI) del Perú, Lima, Peru
| | - Karl Ploog
- Servicio Nacional Forestal y de Fauna Silvestre (SERFOR), Ministerio de Desarrollo Agrario y Riego (MIDAGRI) del Perú, Lima, Peru
| | - Lady Amaro
- Servicio Nacional Forestal y de Fauna Silvestre (SERFOR), Ministerio de Desarrollo Agrario y Riego (MIDAGRI) del Perú, Lima, Peru
| | | | - Christine K Johnson
- EpiCenter for Emerging Infectious Disease Intelligence, Centers for Research in Emerging Infectious Diseases, Lima, Peru
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Marcela M Uhart
- EpiCenter for Emerging Infectious Disease Intelligence, Centers for Research in Emerging Infectious Diseases, Lima, Peru
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Martha I Nelson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jesus Lescano
- Servicio Nacional Forestal y de Fauna Silvestre (SERFOR), Ministerio de Desarrollo Agrario y Riego (MIDAGRI) del Perú, Lima, Peru
| |
Collapse
|
28
|
King KL, Ham R, Smothers A, Lee I, Bowie T, Teetsel E, Peng C, Dean D. Repurposing a SARS-CoV-2 surveillance program for infectious respiratory diseases in a university setting. Front Public Health 2023; 11:1168551. [PMID: 37727605 PMCID: PMC10505707 DOI: 10.3389/fpubh.2023.1168551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Standard multiplex RT-qPCR diagnostic tests use nasopharyngeal swabs to simultaneously detect a variety of infections, but commercially available kits can be expensive and have limited throughput. Previously, we clinically validated a saliva-based RT-qPCR diagnostic test for SARS-CoV-2 to provide low-cost testing with high throughput and low turnaround time on a university campus. Here, we developed a respiratory diagnostic panel to detect SARS-CoV-2, influenza A and B within a single saliva sample. When compared to clinical results, our assay demonstrated 93.5% accuracy for influenza A samples (43/46 concordant results) with no effect on SARS-CoV-2 accuracy or limit of detection. In addition, our assay can detect simulated coinfections at varying virus concentrations generated from synthetic RNA controls. We also confirmed the stability of influenza A in saliva at room temperature for up to 5 days. The cost of the assay is lower than standard nasopharyngeal swab respiratory panel tests as saliva collection does not require specialized swabs or trained clinical personnel. By repurposing the lab infrastructure developed for the COVID-19 pandemic, our multiplex assay can be used to provide expanded access to respiratory disease diagnostics, especially for community, school, or university testing applications where saliva testing was effectively utilized during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Kylie L. King
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Rachel Ham
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
| | - Austin Smothers
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Isaac Lee
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
| | - Tyler Bowie
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
| | - Erika Teetsel
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
| | - Congyue Peng
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Delphine Dean
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| |
Collapse
|
29
|
Asante IA, Hsu SN, Boatemaa L, Kwasah L, Adusei-Poku M, Odoom JK, Awuku-Larbi Y, Foulkes BH, Oliver-Commey J, Asiedu EK, Parker MD, Mitja O, Eggo RM, de Oliveira-Martins L, Asiedu-Bekoe F, Laryea DO, Kuma-Aboagye P, Marks M, de Silva TI, Ampofo WK. Repurposing an integrated national influenza platform for genomic surveillance of SARS-CoV-2 in Ghana: a molecular epidemiological analysis. Lancet Glob Health 2023; 11:e1075-e1085. [PMID: 37349034 PMCID: PMC10290548 DOI: 10.1016/s2214-109x(23)00189-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Genomic surveillance of SARS-CoV-2 is crucial for monitoring the spread of COVID-19 and guiding public health decisions, but the capacity for SARS-CoV-2 testing and sequencing in Africa is low. We integrated SARS-CoV-2 surveillance into an existing influenza surveillance network with the aim of providing insights into SARS-CoV-2 transmission and genomics in Ghana. METHODS In this molecular epidemiological analysis, which is part of a wider multifaceted prospective observational study, we collected national SARS-CoV-2 test data from 35 sites across 16 regions in Ghana from Sept 1, 2020, to Nov 30, 2021, via the Ghanaian integrated influenza and SARS-CoV-2 surveillance network. SARS-CoV-2-positive samples collected through this integrated national influenza surveillance network and from international travellers arriving in Accra were sequenced with Oxford Nanopore Technology sequencing and the ARTIC tiled amplicon method. The sequence lineages were typed with pangolin and the phylogenetic analysis was conducted with IQ-Tree2 and TreeTime. FINDINGS During the study period, 5495 samples were submitted for diagnostic testing through the national influenza surveillance network (2121 [46·1%] of 4021 samples with complete demographic data were from female individuals and 2479 [53·9%] of 4021 samples were from male individuals). We also obtained 2289 samples from travellers who arrived in Accra and had a positive lateral flow test, of whom 1626 (71·0%, 95% CI 69·1-72·9) were confirmed to be SARS-CoV-2 positive. Co-circulation of influenza and SARS-CoV-2 in Ghana was detected, with increased cases of influenza in November, 2020, November, 2021, and January and June, 2021. In 4124 samples from individuals with influenza-like illness, SARS-CoV-2 was identified in 583 (14·1%, 95% CI 13·1-15·2) samples and influenza in 356 (8·6%, 7·8-9·5). Conversely, in 476 samples from individuals with of severe acute respiratory illness, SARS-CoV-2 was detected in 58 (12·2%, 9·5-15·5) samples and influenza in 95 (19·9%, 16·5-23·9). We detected four waves of SARS-CoV-2 infections in Ghana; each wave was driven by a different variant: B.1 and B.1.1 were the most prevalent lineages in wave 1, alpha (B.1.1.7) was responsible for wave 2, delta (B.1.617.2) and its sublineages (closely related to delta genomes from India) were responsible for wave 3, and omicron variants were responsible for wave 4. We detected omicron variants among 47 (32%) of 145 samples from travellers during the start of the omicron spread in Ghana (wave 4). INTERPRETATION This study shows the value of repurposing existing influenza surveillance platforms to monitor SARS-CoV-2. Influenza continued to circulate in Ghana in 2020 and 2021, and remained a major cause of severe acute respiratory illness. We detected importations of SARS-CoV-2 variants into Ghana, including those that did or did not lead to onward community transmission. Investment in strengthening national influenza surveillance platforms in low-income and middle-income countries has potential for ongoing monitoring of SARS-CoV-2 and future pandemics. FUNDING The EDCTP2 programme supported by the EU.
Collapse
Affiliation(s)
- Ivy Asantewaa Asante
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Sharon Nienyun Hsu
- The Florey Institute for Host-Pathogen Interactions, Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK; School of Medicine, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Linda Boatemaa
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Lorreta Kwasah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Mildred Adusei-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - John Kofi Odoom
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Yaw Awuku-Larbi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Benjamin H Foulkes
- The Florey Institute for Host-Pathogen Interactions, Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | | | | | - Matthew D Parker
- The Florey Institute for Host-Pathogen Interactions, Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Oriol Mitja
- Fight AIDS and Infectious Diseases Foundation, Badalona, Spain
| | | | | | | | | | | | - Michael Marks
- London School of Hygiene & Tropical Medicine, London, UK; Hospital for Tropical Diseases, University College London Hospital, London, UK; Division of Infection and Immunity, University College London, London, UK
| | - Thushan I de Silva
- The Florey Institute for Host-Pathogen Interactions, Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK; London School of Hygiene & Tropical Medicine, London, UK; Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Bakau, The Gambia
| | | |
Collapse
|
30
|
Kandeel A, Fahim M, Deghedy O, Roshdy WH, Khalifa MK, Shesheny RE, Kandeil A, Naguib A, Afifi S, Mohsen A, Abdelghaffar K. Resurgence of influenza and respiratory syncytial virus in Egypt following two years of decline during the COVID-19 pandemic: outpatient clinic survey of infants and children, October 2022. BMC Public Health 2023; 23:1067. [PMID: 37277781 DOI: 10.1186/s12889-023-15880-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023] Open
Abstract
INTRODUCTION Two years after unprecedented low rates of circulation of most common respiratory viruses (SARS-CoV-2), the Egyptian ARI surveillance system detected an increase in acute respiratory infections (ARIs) with a reduced circulation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially among school children. A national survey was conducted to estimate the burden and identify the viral causes of ARIs among children < 16 years of age. METHODS A one-day survey was carried out in 98 governmental outpatient clinics distributed all over Egypt 26 governorates. The four largest referral hospitals in each governorate where most influenza-like illness (ILI) patients seek care were selected. Using the WHO case definition, the first five patients < 16 years of age with ILI symptoms visiting the selected outpatient clinics on the survey day were enrolled. Basic demographic and clinical data of patients were collected using a linelist. Patients were swabbed and tested for SARS-CoV-2, influenza, and Respiratory Syncytial virus (RSV) by RT-PCR at the Central Laboratory in Cairo. RESULTS Overall, 530 patients enrolled, their mean age was 5.8 ± 4.2, 57.1% were males, and 70.2% reside in rural or semi-rural areas. Of all patients, 134 (25.3%) had influenza, 111 (20.9%) RSV, and 14 (2.8%) coinfections. Influenza-positive children were older compared to RSV, (7.2 ± 4.1, 4.3 ± 4.1, p < 0.001), with more than half of them (53.0%) being school students. Dyspnea was reported in RSV more than in influenza (62.2% vs. 49.3%, p < 0.05). Among RSV patients, children < 2 years had a higher rate of dyspnea than others (86.7% vs. 53.1%, < 0.001). CONCLUSIONS A resurgence of influenza and RSV was detected in Egypt in the 2022-2023 winter season. Influenza caused a higher rate of infection than RSV, while RSV caused more severe symptoms than influenza. Monitoring a broader range of respiratory pathogens is recommended to estimate the ARI burden and risky groups for severe disease in Egypt.
Collapse
Affiliation(s)
- Amr Kandeel
- Ministry of Health and Population, Cairo, Egypt
| | - Manal Fahim
- Ministry of Health and Population, Cairo, Egypt
| | - Ola Deghedy
- Ministry of Health and Population, Cairo, Egypt
| | - Wael H Roshdy
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Mohamed K Khalifa
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Rabeh El Shesheny
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Ahmed Kandeil
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Amel Naguib
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Salma Afifi
- Consultant Ministry of Health and Population, Cairo, Egypt
| | | | | |
Collapse
|
31
|
Kasprzyk-Hordern B, Sims N, Farkas K, Jagadeesan K, Proctor K, Wade MJ, Jones DL. Wastewater-based epidemiology for comprehensive community health diagnostics in a national surveillance study: Mining biochemical markers in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:130989. [PMID: 36848844 DOI: 10.1016/j.jhazmat.2023.130989] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This manuscript showcases results from a large scale and comprehensive wastewater-based epidemiology (WBE) study focussed on multi-biomarker suite analysis of both chemical and biological determinants in 10 cities and towns across England equating to a population of ∼7 million people. Multi-biomarker suite analysis, describing city metabolism, can provide a holistic understanding to encompass all of human, and human-derived, activities of a city in a single model: from lifestyle choices (e.g. caffeine intake, nicotine) through to health status (e.g. prevalence of pathogenic organisms, usage of pharmaceuticals as proxy for non-communicable disease, NCD, conditions or infectious disease status), and exposure to harmful chemicals due to environmental and industrial sources (e.g. pesticide intake via contaminated food and industrial exposure). Population normalised daily loads (PNDLs) of many chemical markers were found, to a large extent, driven by the size of population contributing to wastewater (especially NCDs). However, there are several exceptions providing insights into chemical intake that can inform either disease status in various communities or unintentional exposure to hazardous chemicals: e.g. very high PNDLs of ibuprofen in Hull resulting from its direct disposal (confirmed by ibuprofen/2-hydroxyibuprofen ratios) and bisphenol A (BPA) in Hull, Lancaster and Portsmouth likely related to industrial discharge. An importance for tracking endogenous health markers such as 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA, an oxidative stress marker) as a generic marker of health status in communities was observed due to increased levels of HNE-MA seen at Barnoldswick wastewater treatment plant that coincided with higher-than-average paracetamol usage and SARS-CoV-2 prevalence in this community. PNDLs of virus markers were found to be highly variable. Being very prevalent in communities nationwide during sampling, SARS-CoV-2 presence in wastewater was to a large extent community driven. The same applies to the fecal marker virus, crAssphage, which is very prevalent in urban communities. In contrast, norovirus and enterovirus showed much higher variability in prevalence across all sites investigated, with clear cases of localized outbreaks in some cities while maintaining low prevalence in other locations. In conclusion, this study clearly demonstrates the potential for WBE to provide an integrated assessment of community health which can help target and validate policy interventions aimed at improving public health and wellbeing.
Collapse
Affiliation(s)
| | - Natalie Sims
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kishore Jagadeesan
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kathryn Proctor
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew J Wade
- Analytics & Data Science Directorate, UK Health Security Agency, London SW1P 3JR, UK
| | - Davey L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, Murdoch WA 6105, Australia
| |
Collapse
|
32
|
Maltezou HC, Papanikolopoulou A, Vassiliu S, Theodoridou K, Nikolopoulou G, Sipsas NV. COVID-19 and Respiratory Virus Co-Infections: A Systematic Review of the Literature. Viruses 2023; 15:865. [PMID: 37112844 PMCID: PMC10142898 DOI: 10.3390/v15040865] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Τhe COVID-19 pandemic highly impacted the circulation, seasonality, and morbidity burden of several respiratory viruses. We reviewed published cases of SARS-CoV-2 and respiratory virus co-infections as of 12 April 2022. SARS-CoV-2 and influenza co-infections were reported almost exclusively during the first pandemic wave. It is possible that the overall incidence of SARS-CoV-2 co-infections is higher because of the paucity of co-testing for respiratory viruses during the first pandemic waves when mild cases might have been missed. Animal models indicate severe lung pathology and high fatality; nevertheless, the available literature is largely inconclusive regarding the clinical course and prognosis of co-infected patients. Animal models also indicate the importance of considering the sequence timing of each respiratory virus infection; however, there is no such information in reported human cases. Given the differences between 2020 and 2023 in terms of epidemiology and availability of vaccines and specific treatment against COVID-19, it is rational not to extrapolate these early findings to present times. It is expected that the characteristics of SARS-CoV-2 and respiratory virus co-infections will evolve in the upcoming seasons. Multiplex real-time PCR-based assays have been developed in the past two years and should be used to increase diagnostic and infection control capacity, and also for surveillance purposes. Given that COVID-19 and influenza share the same high-risk groups, it is essential that the latter get vaccinated against both viruses. Further studies are needed to elucidate how SARS-CoV-2 and respiratory virus co-infections will be shaped in the upcoming years, in terms of impact and prognosis.
Collapse
Affiliation(s)
- Helena C. Maltezou
- Directorate of Research, Studies and Documentation, National Public Health Organization, 15123 Athens, Greece
| | - Amalia Papanikolopoulou
- Third Department of Internal Medicine, Sotiria General Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, School of Medicine, Sotiria General Hospital, 11527 Athens, Greece
| | | | - Kalliopi Theodoridou
- Department of Microbiology, Andreas Sygros Hospital, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Georgia Nikolopoulou
- Department of Hepatitides, National Public Health Organization, 15123 Athens, Greece
| | - Nikolaos V. Sipsas
- Pathophysiology Department, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
33
|
Marcenac P, McCarron M, Davis W, Igboh LS, Mott JA, Lafond KE, Zhou W, Sorrells M, Charles MD, Gould P, Arriola CS, Veguilla V, Guthrie E, Dugan VG, Kondor R, Gogstad E, Uyeki TM, Olsen SJ, Emukule GO, Saha S, Greene C, Bresee JS, Barnes J, Wentworth DE, Fry AM, Jernigan DB, Azziz-Baumgartner E. Leveraging International Influenza Surveillance Systems and Programs during the COVID-19 Pandemic. Emerg Infect Dis 2022; 28:S26-S33. [PMID: 36502434 DOI: 10.3201/eid2813.212248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A network of global respiratory disease surveillance systems and partnerships has been built over decades as a direct response to the persistent threat of seasonal, zoonotic, and pandemic influenza. These efforts have been spearheaded by the World Health Organization, country ministries of health, the US Centers for Disease Control and Prevention, nongovernmental organizations, academic groups, and others. During the COVID-19 pandemic, the US Centers for Disease Control and Prevention worked closely with ministries of health in partner countries and the World Health Organization to leverage influenza surveillance systems and programs to respond to SARS-CoV-2 transmission. Countries used existing surveillance systems for severe acute respiratory infection and influenza-like illness, respiratory virus laboratory resources, pandemic influenza preparedness plans, and ongoing population-based influenza studies to track, study, and respond to SARS-CoV-2 infections. The incorporation of COVID-19 surveillance into existing influenza sentinel surveillance systems can support continued global surveillance for respiratory viruses with pandemic potential.
Collapse
|
34
|
Akarapipad P, Bertelson E, Pessell A, Wang TH, Hsieh K. Emerging Multiplex Nucleic Acid Diagnostic Tests for Combating COVID-19. BIOSENSORS 2022; 12:bios12110978. [PMID: 36354487 PMCID: PMC9688249 DOI: 10.3390/bios12110978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 05/29/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has drawn attention to the need for fast and accurate diagnostic testing. Concerns from emerging SARS-CoV-2 variants and other circulating respiratory viral pathogens further underscore the importance of expanding diagnostic testing to multiplex detection, as single-plex diagnostic testing may fail to detect emerging variants and other viruses, while sequencing can be too slow and too expensive as a diagnostic tool. As a result, there have been significant advances in multiplex nucleic-acid-based virus diagnostic testing, creating a need for a timely review. This review first introduces frequent nucleic acid targets for multiplex virus diagnostic tests, then proceeds to a comprehensive and up-to-date overview of multiplex assays that incorporate various detection reactions and readout modalities. The performances, advantages, and disadvantages of these assays are discussed, followed by highlights of platforms that are amenable for point-of-care use. Finally, this review points out the remaining technical challenges and shares perspectives on future research and development. By examining the state of the art and synthesizing existing development in multiplex nucleic acid diagnostic tests, this review can provide a useful resource for facilitating future research and ultimately combating COVID-19.
Collapse
Affiliation(s)
- Patarajarin Akarapipad
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elizabeth Bertelson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexander Pessell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
35
|
Shragai T, Pratt C, Castro Georgi J, Donnelly MAP, Schwartz NG, Soto R, Chuey M, Chu VT, Marcenac P, Park GW, Ahmad A, Albanese B, Totten SE, Austin B, Bunkley P, Cherney B, Dietrich EA, Figueroa E, Folster JM, Godino C, Herzegh O, Lindell K, Relja B, Sheldon SW, Tong S, Vinjé J, Thornburg NJ, Matanock AM, Hughes LJ, Stringer G, Hudziec M, Beatty ME, Tate JE, Kirking HL, Hsu CH. Household characteristics associated with surface contamination of SARS-CoV-2 and frequency of RT-PCR and viral culture positivity-California and Colorado, 2021. PLoS One 2022; 17:e0274946. [PMID: 36215247 PMCID: PMC9550039 DOI: 10.1371/journal.pone.0274946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
While risk of fomite transmission of SARS-CoV-2 is considered low, there is limited environmental data within households. This January-April 2021 investigation describes frequency and types of surfaces positive for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction (RT-PCR) among residences with ≥1 SARS-CoV-2 infection, and associations of household characteristics with surface RT-PCR and viable virus positivity. Of 1232 samples from 124 households, 27.8% (n = 342) were RT-PCR positive with nightstands (44.1%) and pillows (40.9%) most frequently positive. SARS-CoV-2 lineage, documented household transmission, greater number of infected persons, shorter interval between illness onset and sampling, total household symptoms, proportion of infected persons ≤12 years old, and persons exhibiting upper respiratory symptoms or diarrhea were associated with more positive surfaces. Viable virus was isolated from 0.2% (n = 3 samples from one household) of all samples. This investigation suggests that while SARS-CoV-2 on surfaces is common, fomite transmission risk in households is low.
Collapse
Affiliation(s)
- Talya Shragai
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Caroline Pratt
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | - Marisa A. P. Donnelly
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Noah G. Schwartz
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Raymond Soto
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Meagan Chuey
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Victoria T. Chu
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Perrine Marcenac
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Geun Woo Park
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ausaf Ahmad
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bernadette Albanese
- Tri-County Health Department, Adams, Arapahoe, and Douglas Counties, Colorado, United States of America
| | - Sarah Elizabeth Totten
- Colorado Department of Public Health and Environment, Glendale, Colorado, United States of America
| | - Brett Austin
- Health and Human Services, San Diego County, California, United States of America
| | - Paige Bunkley
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Blake Cherney
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Elizabeth A. Dietrich
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Erica Figueroa
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jennifer M. Folster
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Claire Godino
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Owen Herzegh
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kristine Lindell
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Boris Relja
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sarah W. Sheldon
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suxiang Tong
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jan Vinjé
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Natalie J. Thornburg
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Almea M. Matanock
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Laura J. Hughes
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ginger Stringer
- Colorado Department of Public Health and Environment, Glendale, Colorado, United States of America
| | - Meghan Hudziec
- Colorado Department of Public Health and Environment, Glendale, Colorado, United States of America
| | - Mark E. Beatty
- Health and Human Services, San Diego County, California, United States of America
| | - Jacqueline E. Tate
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Hannah L. Kirking
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christopher H. Hsu
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | |
Collapse
|
36
|
Kevill JL, Lambert-Slosarska K, Pellett C, Woodhall N, Richardson-O'Neill I, Pântea I, Alex-Sanders N, Farkas K, Jones DL. Assessment of two types of passive sampler for the efficient recovery of SARS-CoV-2 and other viruses from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156580. [PMID: 35690190 PMCID: PMC9181630 DOI: 10.1016/j.scitotenv.2022.156580] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 06/05/2022] [Indexed: 05/26/2023]
Abstract
Wastewater-based epidemiology (WBE) has proven to be a useful surveillance tool during the ongoing SARS-CoV-2 pandemic, and has driven research into evaluating the most reliable and cost-effective techniques for obtaining a representative sample of wastewater. When liquid samples cannot be taken efficiently, passive sampling approaches have been used, however, insufficient data exists on their usefulness for multi-virus capture and recovery. In this study, we compared the virus-binding capacity of two passive samplers (cotton-based tampons and ion exchange filter papers) in two different water types (deionised water and wastewater). Here we focused on the capture of wastewater-associated viruses including Influenza A and B (Flu-A & B), SARS-CoV-2, human adenovirus (AdV), norovirus GII (NoVGII), measles virus (MeV), pepper mild mottle virus (PMMoV), the faecal marker crAssphage and the process control virus Pseudomonas virus phi6. After deployment, we evaluated four different methods to recover viruses from the passive samplers namely, (i) phosphate buffered saline (PBS) elution followed by polyethylene glycol (PEG) precipitation, (ii) beef extract (BE) elution followed by PEG precipitation, (iii) no-elution into PEG precipitation, and (iv) direct extraction. We found that the tampon-based passive samplers had higher viral recoveries in comparison to the filter paper. Overall, the preferred viral recovery method from the tampon passive samplers was the no-elution/PEG precipitation method. Furthermore, we evidenced that non-enveloped viruses had higher percent recoveries from the passive samplers than enveloped viruses. This is the first study of its kind to assess passive sampler and viral recovery methods amongst a plethora of viruses commonly found in wastewater or used as a viral surrogate in wastewater studies.
Collapse
Affiliation(s)
- Jessica L Kevill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Kathryn Lambert-Slosarska
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Cameron Pellett
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Nick Woodhall
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - India Richardson-O'Neill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Igor Pântea
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Natasha Alex-Sanders
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Davey L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6105, Australia
| |
Collapse
|
37
|
Farkas K, Pellett C, Alex-Sanders N, Bridgman MTP, Corbishley A, Grimsley JMS, Kasprzyk-Hordern B, Kevill JL, Pântea I, Richardson-O’Neill IS, Lambert-Slosarska K, Woodhall N, Jones DL. Comparative Assessment of Filtration- and Precipitation-Based Methods for the Concentration of SARS-CoV-2 and Other Viruses from Wastewater. Microbiol Spectr 2022; 10:e0110222. [PMID: 35950856 PMCID: PMC9430619 DOI: 10.1128/spectrum.01102-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
Wastewater-based epidemiology (WBE) has been widely used to track levels of SARS-CoV-2 infection in the community during the COVID-19 pandemic. Due to the rapid expansion of WBE, many methods have been used and developed for virus concentration and detection in wastewater. However, very little information is available on the relative performance of these approaches. In this study, we compared the performance of five commonly used wastewater concentration methods for the detection and quantification of pathogenic viruses (SARS-CoV-2, norovirus, rotavirus, influenza, and measles viruses), fecal indicator viruses (crAssphage, adenovirus, pepper mild mottle virus), and process control viruses (murine norovirus and bacteriophage Phi6) in laboratory spiking experiments. The methods evaluated included those based on either ultrafiltration (Amicon centrifugation units and InnovaPrep device) or precipitation (using polyethylene glycol [PEG], beef extract-enhanced PEG, and ammonium sulfate). The two best methods were further tested on 115 unspiked wastewater samples. We found that the volume and composition of the wastewater and the characteristics of the target viruses greatly affected virus recovery, regardless of the method used for concentration. All tested methods are suitable for routine virus concentration; however, the Amicon ultrafiltration method and the beef extract-enhanced PEG precipitation methods yielded the best recoveries. We recommend the use of ultrafiltration-based concentration for low sample volumes with high virus titers and ammonium levels and the use of precipitation-based concentration for rare pathogen detection in high-volume samples. IMPORTANCE As wastewater-based epidemiology is utilized for the surveillance of COVID-19 at the community level in many countries, it is crucial to develop and validate reliable methods for virus detection in sewage. The most important step in viral detection is the efficient concentration of the virus particles and/or their genome for subsequent analysis. In this study, we compared five different methods for the detection and quantification of different viruses in wastewater. We found that dead-end ultrafiltration and beef extract-enhanced polyethylene glycol precipitation were the most reliable approaches. We also discovered that sample volume and physico-chemical properties have a great effect on virus recovery. Hence, wastewater process methods and start volumes should be carefully selected in ongoing and future wastewater-based national surveillance programs for COVID-19 and beyond.
Collapse
Affiliation(s)
- Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- School of Ocean Sciences, Bangor University, Anglesey, United Kingdom
| | - Cameron Pellett
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Natasha Alex-Sanders
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Matthew T. P. Bridgman
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Alexander Corbishley
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Roslin, United Kingdom
| | - Jasmine M. S. Grimsley
- UK Health Security Agency, Environmental Monitoring for Health Protection, London, United Kingdom
| | | | - Jessica L. Kevill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Igor Pântea
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - India S. Richardson-O’Neill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Kathryn Lambert-Slosarska
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Nick Woodhall
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Davey L. Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
38
|
Havasi A, Visan S, Cainap C, Cainap SS, Mihaila AA, Pop LA. Influenza A, Influenza B, and SARS-CoV-2 Similarities and Differences – A Focus on Diagnosis. Front Microbiol 2022; 13:908525. [PMID: 35794916 PMCID: PMC9251468 DOI: 10.3389/fmicb.2022.908525] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/23/2022] [Indexed: 12/23/2022] Open
Abstract
In late December 2019, the first cases of viral pneumonia caused by an unidentified pathogen were reported in China. Two years later, SARS-CoV-2 was responsible for almost 450 million cases, claiming more than 6 million lives. The COVID-19 pandemic strained the limits of healthcare systems all across the world. Identifying viral RNA through real-time reverse transcription-polymerase chain reaction remains the gold standard in diagnosing SARS-CoV-2 infection. However, equipment cost, availability, and the need for trained personnel limited testing capacity. Through an unprecedented research effort, new diagnostic techniques such as rapid diagnostic testing, isothermal amplification techniques, and next-generation sequencing were developed, enabling accurate and accessible diagnosis. Influenza viruses are responsible for seasonal outbreaks infecting up to a quarter of the human population worldwide. Influenza and SARS-CoV-2 present with flu-like symptoms, making the differential diagnosis challenging solely on clinical presentation. Healthcare systems are likely to be faced with overlapping SARS-CoV-2 and Influenza outbreaks. This review aims to present the similarities and differences of both infections while focusing on the diagnosis. We discuss the clinical presentation of Influenza and SARS-CoV-2 and techniques available for diagnosis. Furthermore, we summarize available data regarding the multiplex diagnostic assay of both viral infections.
Collapse
Affiliation(s)
- Andrei Havasi
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Simona Visan
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Calin Cainap
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Simona Sorana Cainap
- Pediatric Clinic No. 2, Department of Pediatric Cardiology, Emergency County Hospital for Children, Cluj-Napoca, Romania
- Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- *Correspondence: Simona Sorana Cainap, ;
| | - Alin Adrian Mihaila
- Faculty of Economics and Business Administration, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
39
|
Bhosle SM, Tran JP, Yu S, Geiger J, Jackson JD, Crozier I, Crane A, Wada J, Warren TK, Kuhn JH, Worwa G. Duplex One-Step RT-qPCR Assays for Simultaneous Detection of Genomic and Subgenomic RNAs of SARS-CoV-2 Variants. Viruses 2022; 14:1066. [PMID: 35632807 PMCID: PMC9143037 DOI: 10.3390/v14051066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
A hallmark of severe acute respiratory syndrome virus (SARS-CoV-2) replication is the discontinuous transcription of open reading frames (ORFs) encoding structural virus proteins. Real-time reverse transcription PCR (RT-qPCR) assays in previous publications used either single or multiplex assays for SARS-CoV-2 genomic RNA detection and a singleplex approach for subgenomic RNA detection. Although multiplex approaches often target multiple genomic RNA segments, an assay that concurrently detects genomic and subgenomic targets has been lacking. To bridge this gap, we developed two duplex one-step RT-qPCR assays that detect SARS-CoV-2 genomic ORF1a and either subgenomic spike or subgenomic ORF3a RNAs. All primers and probes for our assays were designed to bind to variants of SARS-CoV-2. In this study, our assays successfully detected SARS-CoV-2 Washington strain and delta variant isolates at various time points during the course of live virus infection in vitro. The ability to quantify subgenomic SARS-CoV-2 RNA is important, as it may indicate the presence of active replication, particularly in samples collected longitudinally. Furthermore, specific detection of genomic and subgenomic RNAs simultaneously in a single reaction increases assay efficiency, potentially leading to expedited lucidity about viral replication and pathogenesis of any variant of SARS-CoV-2.
Collapse
Affiliation(s)
- Sushma M. Bhosle
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Julie P. Tran
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Shuiqing Yu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Jillian Geiger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Jennifer D. Jackson
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA;
| | - Anya Crane
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Travis K. Warren
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA; (S.M.B.); (J.P.T.); (S.Y.); (J.G.); (J.D.J.); (A.C.); (J.W.); (T.K.W.)
| |
Collapse
|
40
|
Wendling NM, Carpenter A, Liew A, Ghai RR, Gallardo-Romero N, Stoddard RA, Tao Y, Zhang J, Retchless AC, Ahmad A, Bunkley P, Godino C, Mauldin MR, Varela K, Ritter JM, Hennebelle J, Feldpausch A, Gabel J, Kainulainen MH, Herzegh O, Tong S, Spengler JR, Barton Behravesh C. Transmission of SARS-CoV-2 Delta variant (B.1.617.2) from a fully vaccinated human to a canine in Georgia, July 2021. Zoonoses Public Health 2022; 69:587-592. [PMID: 35426241 PMCID: PMC9115446 DOI: 10.1111/zph.12944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/16/2022] [Accepted: 03/20/2022] [Indexed: 01/09/2023]
Abstract
SARS‐CoV‐2 infection has been described in a wide range of species, including domestic animals such as dogs and cats. Illness in dogs is usually self‐limiting, and further diagnostics may not be pursued if clinical signs resolve or they respond to empirical treatment. As new variants emerge, the clinical presentation and role in transmission may vary in animals. This report highlights different clinical presentations and immunological responses in two SARS‐CoV‐2 Delta‐variant‐positive dogs with similar exposure to the same fully vaccinated human with a SARS‐CoV‐2 infection and emphasizes the need for active surveillance and additional One Health research on SARS‐CoV‐2 variant infections in companion animals and other species.
Collapse
Affiliation(s)
| | - Ann Carpenter
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amanda Liew
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ria R Ghai
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Robyn A Stoddard
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ying Tao
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jing Zhang
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adam C Retchless
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ausaf Ahmad
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paige Bunkley
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Claire Godino
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Kate Varela
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jana M Ritter
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Julie Gabel
- Georgia Department of Public Health, Atlanta, Georgia, USA
| | | | - Owen Herzegh
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Suxiang Tong
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | |
Collapse
|
41
|
Foster CS, Madden M, Chan R, Agapiou D, Bull RA, Rawlinson WD, Van Hal SJ. SARS-CoV-2 N-gene mutation leading to Xpert Xpress SARS-CoV-2 assay instability. Pathology 2022; 54:499-501. [PMID: 35440368 PMCID: PMC9012949 DOI: 10.1016/j.pathol.2022.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/21/2022]
|
42
|
Sahajpal NS, Mondal AK, Ananth S, Njau A, Jones K, Ahluwalia P, Oza E, Ross TM, Kota V, Kothandaraman A, Fulzele S, Hegde M, Chaubey A, Rojiani AM, Kolhe R. Clinical validation of a multiplex PCR-based detection assay using saliva or nasopharyngeal samples for SARS-Cov-2, influenza A and B. Sci Rep 2022; 12:3480. [PMID: 35241679 PMCID: PMC8894395 DOI: 10.1038/s41598-022-07152-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/19/2022] [Indexed: 01/05/2023] Open
Abstract
The COVID-19 pandemic has resulted in significant diversion of human and material resources to COVID-19 diagnostics, to the extent that influenza viruses and co-infection in COVID-19 patients remains undocumented and pose serious public-health consequences. We optimized and validated a highly sensitive RT-PCR based multiplex-assay for the detection of SARS-CoV-2, influenza A and B viruses in a single-test. This study evaluated clinical specimens (n = 1411), 1019 saliva and 392 nasopharyngeal swab (NPS), tested using two-assays: FDA-EUA approved SARS-CoV-2 assay that targets N and ORF1ab gene, and the PKamp-RT-PCR based assay that targets SARS-CoV-2, influenza viruses A and B. Of the 1019 saliva samples, 17.0% (174/1019) tested positive for SARS-CoV-2 using either assay. The detection rate for SARS-CoV-2 was higher with the multiplex assay compared to SARS-specific assay [91.9% (160/174) vs. 87.9% (153/174)], respectively. Of the 392 NPS samples, 10.4% (41/392) tested positive for SARS-CoV-2 using either assay. The detection rate for SARS-CoV-2 was higher with the multiplex assay compared to SARS-specific assay [97.5% (40/41) vs. 92.1% (39/41)], respectively. This study presents clinical validation of a multiplex-PCR assay for testing SARS-CoV-2, influenza A and B viruses, using NPS and saliva samples, and demonstrates the feasibility of implementing the assay without disrupting the existing laboratory workflow.
Collapse
Affiliation(s)
- Nikhil S Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA, 30912, USA
| | - Ashis K Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA, 30912, USA
| | - Sudha Ananth
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA, 30912, USA
| | - Allan Njau
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Kimya Jones
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA, 30912, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA, 30912, USA
| | - Eesha Oza
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA, 30912, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Sadanand Fulzele
- Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Madhuri Hegde
- Global Laboratory Services, Perkin Elmer, Waltham, USA
| | - Alka Chaubey
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA, 30912, USA.,Bionano Genomics Inc., San Diego, CA, USA
| | - Amyn M Rojiani
- Department of Pathology, Penn State College of Medicine, Hershey, PA, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, BAE 2576, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
43
|
Colagrossi L, Mattana G, Piccioni L, Cento V, Perno CF. Viral Respiratory Infections: New Tools for a Rapid Diagnosis. Semin Respir Crit Care Med 2021; 42:747-758. [PMID: 34918318 DOI: 10.1055/s-0041-1739306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Respiratory tract infection is one of the most common diseases in human worldwide. Many viruses are implicated in these infections, including emerging viruses, such as the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Identification of the causative viral pathogens of respiratory tract infections is important to select a correct management of patients, choose an appropriate treatment, and avoid unnecessary antibiotics use. Different diagnostic approaches present variable performance in terms of accuracy, sensitivity, specificity, and time-to-result, that have to be acknowledged to be able to choose the right diagnostic test at the right time, in the right patient. This review describes currently available rapid diagnostic strategies and syndromic approaches for the detection of viruses commonly responsible for respiratory diseases.
Collapse
Affiliation(s)
- Luna Colagrossi
- Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giordana Mattana
- Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Livia Piccioni
- Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Valeria Cento
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | |
Collapse
|
44
|
Yoo HJ, Li YG, Cui WY, Chung W, Shin YB, Kim YS, Baek C, Min J. Discrimination and isolation of the virus from free RNA fragments for the highly sensitive measurement of SARS-CoV-2 abundance on surfaces using a graphene oxide nano surface. NANO CONVERGENCE 2021; 8:31. [PMID: 34661769 PMCID: PMC8521082 DOI: 10.1186/s40580-021-00281-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/30/2021] [Indexed: 05/17/2023]
Abstract
It is highly important to sensitively measure the abundance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on various surfaces. Here, we present a nucleic acid-based detection method consisting of a new sample preparation protocol that isolates only viruses, not the free RNA fragments already present on the surfaces of indoor human-inhabited environments, using a graphene oxide-coated microbead filter. Wet wipes (100 cm2), not cotton swabs, were used to collect viruses from environmental surfaces with large areas, and viruses were concentrated and separated with a graphene oxide-coated microbead filter. Viral RNA from virus was recovered 88.10 ± 8.03% from the surface and free RNA fragment was removed by 99.75 ± 0.19% from the final eluted solution. When we tested the developed method under laboratory conditions, a 10-fold higher viral detection sensitivity (Detection limit: 1 pfu/100 cm2) than the current commercial protocol was observed. Using our new sample preparation protocol, we also confirmed that the virus was effectively removed from surfaces after chemical disinfection; we were unable to measure the disinfection efficiency using the current commercial protocol because it cannot distinguish between viral RNA and free RNA fragments. Finally, we investigated the presence of SARS-CoV-2 and bacteria in 12 individual negative pressure wards in which patients with SARS-CoV-2 infection had been hospitalized. Bacteria (based on 16 S DNA) were found in all samples collected from patient rooms; however, SARS-CoV-2 was mainly detected in rooms shared by two patients.
Collapse
Affiliation(s)
- Hyun Jin Yoo
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Yun Guang Li
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Wen Ying Cui
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Wonseok Chung
- BioNano Health Guard Research Center, Daejeon, 34141, South Korea
| | - Yong-Beom Shin
- BioNano Health Guard Research Center, Daejeon, 34141, South Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Munhwa-ro 282, Jung-gu, Daejeon, 35015, South Korea
| | - Changyoon Baek
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea.
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea.
| |
Collapse
|