1
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
2
|
Sempik I, Dziadkowiak E, Moreira H, Zimny A, Pokryszko-Dragan A. Primary Progressive Multiple Sclerosis-A Key to Understanding and Managing Disease Progression. Int J Mol Sci 2024; 25:8751. [PMID: 39201438 PMCID: PMC11354232 DOI: 10.3390/ijms25168751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Primary progressive multiple sclerosis (PPMS), the least frequent type of multiple sclerosis (MS), is characterized by a specific course and clinical symptoms, and it is associated with a poor prognosis. It requires extensive differential diagnosis and often a long-term follow-up before its correct recognition. Despite recent progress in research into and treatment for progressive MS, the diagnosis and management of this type of disease still poses a challenge. Considering the modern concept of progression "smoldering" throughout all the stages of disease, a thorough exploration of PPMS may provide a better insight into mechanisms of progression in MS, with potential clinical implications. The goal of this study was to review the current evidence from investigations of PPMS, including its background, clinical characteristics, potential biomarkers and therapeutic opportunities. Processes underlying CNS damage in PPMS are discussed, including chronic immune-mediated inflammation, neurodegeneration, and remyelination failure. A review of potential clinical, biochemical and radiological biomarkers is presented, which is useful in monitoring and predicting the progression of PPMS. Therapeutic options for PPMS are summarized, with approved therapies, ongoing clinical trials and future directions of investigations. The clinical implications of findings from PPMS research would be associated with reliable assessments of disease outcomes, improvements in individualized therapeutic approaches and, hopefully, novel therapeutic targets, relevant for the management of progression.
Collapse
Affiliation(s)
- Izabela Sempik
- Department of Neurology, Regional Hospital in Legnica, Iwaszkiewicza 5, 59-220 Legnica, Poland;
| | - Edyta Dziadkowiak
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Helena Moreira
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Anna Pokryszko-Dragan
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
3
|
Xu LL, Yang S, Zhou LQ, Chu YH, Pang XW, You YF, Zhang H, Zhang LY, Zhu LF, Chen L, Shang K, Xiao J, Wang W, Tian DS, Qin C. Bruton's tyrosine kinase inhibition ameliorated neuroinflammation during chronic white matter ischemia. J Neuroinflammation 2024; 21:195. [PMID: 39097747 PMCID: PMC11297596 DOI: 10.1186/s12974-024-03187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024] Open
Abstract
Chronic cerebral hypoperfusion (CCH), a disease afflicting numerous individuals worldwide, is a primary cause of cognitive deficits, the pathogenesis of which remains poorly understood. Bruton's tyrosine kinase inhibition (BTKi) is considered a promising strategy to regulate inflammatory responses within the brain, a crucial process that is assumed to drive ischemic demyelination progression. However, the potential role of BTKi in CCH has not been investigated so far. In the present study, we elucidated potential therapeutic roles of BTK in both in vitro hypoxia and in vivo ischemic demyelination model. We found that cerebral hypoperfusion induced white matter injury, cognitive impairments, microglial BTK activation, along with a series of microglia responses associated with inflammation, oxidative stress, mitochondrial dysfunction, and ferroptosis. Tolebrutinib treatment suppressed both the activation of microglia and microglial BTK expression. Meanwhile, microglia-related inflammation and ferroptosis processes were attenuated evidently, contributing to lower levels of disease severity. Taken together, BTKi ameliorated white matter injury and cognitive impairments induced by CCH, possibly via skewing microglia polarization towards anti-inflammatory and homeostatic phenotypes, as well as decreasing microglial oxidative stress damage and ferroptosis, which exhibits promising therapeutic potential in chronic cerebral hypoperfusion-induced demyelination.
Collapse
Affiliation(s)
- Lu-Lu Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Fan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lu-Yang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Fang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Clardy SL, Smith TL. Therapeutic Approach to Autoimmune Neurologic Disorders. Continuum (Minneap Minn) 2024; 30:1226-1258. [PMID: 39088294 DOI: 10.1212/con.0000000000001463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
OBJECTIVE Autoimmune neurologic disorders encompass a broad category of diseases characterized by immune system attack of the central, peripheral, or autonomic nervous systems. This article provides information on both acute and maintenance immunotherapy used to treat autoimmune neurologic disorders as well as a review of symptomatic management and special considerations when caring for patients with these diseases. LATEST DEVELOPMENTS Over the past 20 years, more than 50 antibodies have been identified and associated with autoimmune neurologic disorders. Although advances in diagnostic testing have allowed for more rapid diagnosis, the therapeutic approach to these disorders has largely continued to rely on expert opinion, case series, and case reports. With US Food and Drug Administration (FDA) approval of biologic agents to treat neuromyelitis optica spectrum disorder (NMOSD) and myasthenia gravis as well as ongoing clinical trials for the treatment of autoimmune encephalitis, the landscape of immunotherapy options continues to expand. Consideration of the unique pathogenesis of individual autoimmune neurologic disorders as well as the mechanism of action of the diverse range of treatment options can help guide treatment decisions today while evidence from clinical trials informs new therapeutics in the future. ESSENTIAL POINTS Recognizing patients who have a clinical history and examination findings concerning for autoimmune neurologic disorders and conducting a thorough and directed imaging and laboratory evaluation aimed at ruling out mimics, identifying specific autoimmune syndromes, and screening for factors that may have an impact on immunotherapy choices early in the clinical course are essential to providing optimal care for these patients. Providers must consider immunotherapy, symptomatic treatment, and a multidisciplinary approach that addresses each patient's unique needs when treating patients with autoimmune neurologic disorders.
Collapse
|
5
|
Fernández Ó, Montalbán X, Agüera E, Aladro Y, Alonso A, Arroyo R, Brieva L, Calles C, Costa-Frossard L, Eichau S, García-Domínguez JM, Hernández MÁ, Landete L, Llaneza M, Llufriu S, Meca-Lallana JE, Meca-Lallana V, Moral E, Prieto JM, Ramió-Torrentà L, Téllez N, Romero-Pinel L, Vilaseca A, Rodríguez-Antigüedad A. [XVI Post-ECTRIMS Meeting: review of the new developments presented at the 2023 ECTRIMS Congress (II)]. Rev Neurol 2024; 79:51-66. [PMID: 38976584 PMCID: PMC11469095 DOI: 10.33588/rn.7902.2024174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 07/10/2024]
Abstract
The XVI Post-ECTRIMS meeting was held in Seville on 20 and 21 October 2023, where expert neurologists in multiple sclerosis (MS) summarised the main new developments presented at the ECTRIMS 2023 congress, which took place in Milan from 11 to 13 October. The aim of this article is to summarise the content presented at the Post-ECTRIMS Meeting, in an article in two parts. This second part covers the health of women and elderly MS patients, new trends in the treatment of cognitive impairment, focusing particularly on meditation, neuroeducation and cognitive rehabilitation, and introduces the concept of fatigability, which has been used to a limited extent in MS. The key role of digitalization and artificial intelligence in the theoretically near future is subject to debate, along with the potential these technologies can offer. The most recent research on the various treatment algorithms and their efficacy and safety in the management of the disease is reviewed. Finally, the most relevant data for cladribine and evobrutinib are presented, as well as future therapeutic strategies currently being investigated.
Collapse
Affiliation(s)
- Óscar Fernández
- Departamento de Farmacología. Facultad de Medicina. Universidad de Málaga, Málaga, EspañaUniversidad de MálagaUniversidad de MálagaMálagaEspaña
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, EspañaInstituto de Investigación Biomédica de Málaga (IBIMA)Instituto de Investigación Biomédica de Málaga (IBIMA)MálagaEspaña
- Hospital Universitario Regional de Málaga-Universidad de Málaga, Málaga, EspañaHospital Universitario Regional de Málaga-Universidad de MálagaHospital Universitario Regional de Málaga-Universidad de MálagaMálagaEspaña
| | - Xavier Montalbán
- CEMCAT. Hospital Universitari Vall d’Hebron-Universitat Autònoma de Barcelona. Barcelona, EspañaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaBarcelonaEspaña
| | - Eduardo Agüera
- Servicio de Neurología. Hospital Reina Sofía. Córdoba, EspañaHospital Reina SofíaHospital Reina SofíaCórdobaEspaña
| | - Yolanda Aladro
- Servicio de Neurología. Hospital Universitario de Getafe. Getafe, EspañaHospital Universitario de GetafeHospital Universitario de GetafeGetafeEspaña
| | - Ana Alonso
- Unidad de Esclerosis Múltiple. Servicio de Neurología, Málaga, EspañaServicio de NeurologíaServicio de NeurologíaMálagaEspaña
| | - Rafael Arroyo
- Servicio de Neurología. Hospital Universitario Quirónsalud. Madrid, EspañaHospital Universitario QuirónsaludHospital Universitario QuirónsaludMadridEspaña
| | - Luis Brieva
- Hospital Universitari Arnau de Vilanova-Universitat de Lleida. Lleida, EspañaHospital Universitari Arnau de Vilanova-Universitat de LleidaHospital Universitari Arnau de Vilanova-Universitat de LleidaLleidaEspaña
| | - Carmen Calles
- Servicio de Neurología. Hospital Universitario Son Espases. Palma de Mallorca, EspañaHospital Universitario Son EspasesHospital Universitario Son EspasesPalma de MallorcaEspaña
| | - Lucienne Costa-Frossard
- CSUR de Esclerosis Múltiple. Hospital Universitario Ramón y Cajal. Madrid, EspañaHospital Universitario Ramón y CajalHospital Universitario Ramón y CajalMadridEspaña
| | - Sara Eichau
- Servicio de Neurología. Hospital Universitario Virgen Macarena. Sevilla, EspañaHospital Universitario Virgen MacarenaHospital Universitario Virgen MacarenaSevillaEspaña
| | - José M. García-Domínguez
- Hospital Universitario Gregorio Marañón. Madrid, EspañaHospital Universitario Gregorio MarañónHospital Universitario Gregorio MarañónMadridEspaña
| | - Miguel Á. Hernández
- Servicio de Neurología. Hospital Nuestra Señora de Candelaria. Santa Cruz de Tenerife, EspañaHospital Nuestra Señora de CandelariaHospital Nuestra Señora de CandelariaSanta Cruz de TenerifeEspaña
| | - Lamberto Landete
- Servicio de Neurología. Hospital Universitario Doctor Peset. Valencia, EspañaHospital Universitario Doctor PesetHospital Universitario Doctor PesetValenciaEspaña
| | - Miguel Llaneza
- Servicio de Neurología. Hospital Universitario Central de Asturias. Oviedo, EspañaHospital Universitario Central de AsturiasHospital Universitario Central de AsturiasOviedoEspaña
| | - Sara Llufriu
- Unidad de Neuroinmunología y Esclerosis Múltiple. Hospital Clínic de Barcelona e IDIBAPS. Barcelona, EspañaHospital Clínic de Barcelona e IDIBAPSHospital Clínic de Barcelona e IDIBAPSBarcelonaEspaña
| | - José E. Meca-Lallana
- Unidad de Neuroinmunología Clínica y CSUR Esclerosis Múltiple. Servicio de Neurología. Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-Arrixaca). Murcia, EspañaHospital Clínico Universitario Virgen de la Arrixaca (IMIB-ArrixacaHospital Clínico Universitario Virgen de la Arrixaca (IMIB-ArrixacaMurciaEspaña
- Cátedra de Neuroinmunología Clínica y Esclerosis Múltiple. Universidad Católica San Antonio (UCAM). Murcia, EspañaUniversidad Católica San Antonio (UCAM)Universidad Católica San Antonio (UCAM)MurciaEspaña
| | - Virginia Meca-Lallana
- Servicio de Neurología. Hospital Universitario de La Princesa. Madrid, EspañaHospital Universitario de La PrincesaHospital Universitario de La PrincesaMadridEspaña
| | - Ester Moral
- Servicio de Neurología. Complejo Hospitalario Universitario Moisès Broggi. Sant Joan Despí, EspañaComplejo Hospitalario Universitario Moisès BroggiComplejo Hospitalario Universitario Moisès BroggiSant Joan DespíEspaña
| | - José M. Prieto
- Servicio de Neurología. Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS). Santiago de Compostela, EspañaInstituto de Investigación Sanitaria de Santiago de Compostela (IDIS)Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)Santiago de CompostelaEspaña
| | - Lluís Ramió-Torrentà
- Unitat de Neuroimmunologia i Esclerosi Múltiple Territorial de Girona (UNIEMTG). Hospital Universitari Dr. Josep Trueta. Girona, EspañaHospital Universitari Dr. Josep TruetaHospital Universitari Dr. Josep TruetaGironaEspaña
- Hospital Santa Caterina. IDIBGI. Girona, EspañaHospital Santa CaterinaHospital Santa CaterinaGironaEspaña
- Grup Neurodegeneració i Neuroinflamació. IDIBGI. Girona, EspañaIDIBGIIDIBGIGironaEspaña
- Departamento de Ciencias Médicas. Universitat de Girona. Girona, EspañaUniversitat de GironaUniversitat de GironaGironaEspaña
| | - Nieves Téllez
- Hospital Clínico Universitario de Valladolid. Valladolid, EspañaHospital Clínico Universitario de ValladolidHospital Clínico Universitario de ValladolidValladolidEspaña
| | - Lucía Romero-Pinel
- Hospital Universitari de Bellvitge-IDIBELL. L’Hospitalet de Llobregat. Barakaldo, EspañaHospital Universitari de Bellvitge-IDIBELLHospital Universitari de Bellvitge-IDIBELLBarakaldoEspaña
| | - Andreu Vilaseca
- CEMCAT. Hospital Universitari Vall d’Hebron-Universitat Autònoma de Barcelona. Barcelona, EspañaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaBarcelonaEspaña
| | - Alfredo Rodríguez-Antigüedad
- Servicio de Neurología. Hospital Universitario Cruces. Barakaldo, EspañaHospital Universitario CrucesHospital Universitario CrucesBarakaldoEspaña
| |
Collapse
|
6
|
Prapas P, Anagnostouli M. Macrophages and HLA-Class II Alleles in Multiple Sclerosis: Insights in Therapeutic Dynamics. Int J Mol Sci 2024; 25:7354. [PMID: 39000461 PMCID: PMC11242320 DOI: 10.3390/ijms25137354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Antigen presentation is a crucial mechanism that drives the T cell-mediated immune response and the development of Multiple Sclerosis (MS). Genetic alterations within the highly variable Major Histocompatibility Complex Class II (MHC II) have been proven to result in significant changes in the molecular basis of antigen presentation and the clinical course of patients with both Adult-Onset MS (AOMS) and Pediatric-Onset MS (POMS). Among the numerous polymorphisms of the Human Leucocyte Antigens (HLA), within MHC II complex, HLA-DRB1*15:01 has been labeled, in Caucasian ethnic groups, as a high-risk allele for MS due to the ability of its structure to increase affinity to Myelin Basic Protein (MBP) epitopes. This characteristic, among others, in the context of the trimolecular complex or immunological synapsis, provides the foundation for autoimmunity triggered by environmental or endogenous factors. As with all professional antigen presenting cells, macrophages are characterized by the expression of MHC II and are often implicated in the formation of MS lesions. Increased presence of M1 macrophages in MS patients has been associated both with progression and onset of the disease, each involving separate but similar mechanisms. In this critical narrative review, we focus on macrophages, discussing how HLA genetic alterations can promote dysregulation of this population's homeostasis in the periphery and the Central Nervous System (CNS). We also explore the potential interconnection in observed pathological macrophage mechanisms and the function of the diverse structure of HLA alleles in neurodegenerative CNS, seen in MS, by comparing available clinical with molecular data through the prism of HLA-immunogenetics. Finally, we discuss available and experimental pharmacological approaches for MS targeting the trimolecular complex that are based on cell phenotype modulation and HLA genotype involvement and try to reveal fertile ground for the potential development of novel drugs.
Collapse
Affiliation(s)
- Petros Prapas
- Research Immunogenetics Laboratory, First Department of Neurology, Aeginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sofias 72-74, 11528 Athens, Greece
| | - Maria Anagnostouli
- Research Immunogenetics Laboratory, First Department of Neurology, Aeginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sofias 72-74, 11528 Athens, Greece
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens NKUA, Aeginition University Hospital, Vas. Sofias 72-74, 11528 Athens, Greece
| |
Collapse
|
7
|
De Bondt M, Renders J, Struyf S, Hellings N. Inhibitors of Bruton's tyrosine kinase as emerging therapeutic strategy in autoimmune diseases. Autoimmun Rev 2024; 23:103532. [PMID: 38521213 DOI: 10.1016/j.autrev.2024.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Bruton's tyrosine kinase (BTK) is a cytoplasmic, non-receptor signal transducer, initially identified as an essential signaling molecule for B cells, with genetic mutations resulting in a disorder characterized by disturbed B cell and antibody development. Subsequent research revealed the critical role of BTK in the functionality of monocytes, macrophages and neutrophils. Various immune cells, among which B cells and neutrophils, rely on BTK activity for diverse signaling pathways downstream of multiple receptors, which makes this kinase an ideal target to treat hematological malignancies and autoimmune diseases. First-generation BTK inhibitors are already on the market to treat hematological disorders. It has been demonstrated that B cells and myeloid cells play a significant role in the pathogenesis of different autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren's syndrome. Consequently, second-generation BTK inhibitors are currently being developed to treat these disorders. Despite the acknowledged involvement of BTK in various cell types, the focus on B cells often overshadows its impact on innate immune cells. Among these cell types, neutrophils are often underestimated in the pathogenesis of autoimmune diseases. In this narrative review, the function of BTK in different immune cell subsets is discussed, after which an overview is provided of different upcoming BTK inhibitors tested for treatment of autoimmune diseases. Special attention is paid to BTK inhibition and its effect on neutrophil biology.
Collapse
Affiliation(s)
- Mirre De Bondt
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium, Herestraat 49, box 1042, 3000 Leuven; Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Agoralaan building C, 3095 Diepenbeek, Belgium
| | - Janne Renders
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium, Herestraat 49, box 1042, 3000 Leuven
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium, Herestraat 49, box 1042, 3000 Leuven
| | - Niels Hellings
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Agoralaan building C, 3095 Diepenbeek, Belgium.
| |
Collapse
|
8
|
Geladaris A, Torke S, Saberi D, Alankus YB, Streit F, Zechel S, Stadelmann-Nessler C, Fischer A, Boschert U, Häusler D, Weber MS. BTK inhibition limits microglia-perpetuated CNS inflammation and promotes myelin repair. Acta Neuropathol 2024; 147:75. [PMID: 38656399 PMCID: PMC11043151 DOI: 10.1007/s00401-024-02730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024]
Abstract
In multiple sclerosis (MS), persisting disability can occur independent of relapse activity or development of new central nervous system (CNS) inflammatory lesions, termed chronic progression. This process occurs early and it is mostly driven by cells within the CNS. One promising strategy to control progression of MS is the inhibition of the enzyme Bruton's tyrosine kinase (BTK), which is centrally involved in the activation of both B cells and myeloid cells, such as macrophages and microglia. The benefit of BTK inhibition by evobrutinib was shown as we observed reduced pro-inflammatory activation of microglia when treating chronic experimental autoimmune encephalomyelitis (EAE) or following the adoptive transfer of activated T cells. Additionally, in a model of toxic demyelination, evobrutinib-mediated BTK inhibition promoted the clearance of myelin debris by microglia, leading to an accelerated remyelination. These findings highlight that BTK inhibition has the potential to counteract underlying chronic progression of MS.
Collapse
Affiliation(s)
- Anastasia Geladaris
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Göttingen, Germany
| | - Sebastian Torke
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Darius Saberi
- Fraunhofer Institute for Translational Medicine and Pharmacology, Göttingen, Germany
- Department of Neurology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | | | - Frank Streit
- Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Sabrina Zechel
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Christine Stadelmann-Nessler
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Andreas Fischer
- Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Ursula Boschert
- Ares Trading SA, Eysins, Switzerland
- Merck KGaA, Darmstadt, Germany
| | - Darius Häusler
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Göttingen, Germany
| | - Martin S Weber
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology, Göttingen, Germany.
- Department of Neurology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
9
|
Airas L, Bermel RA, Chitnis T, Hartung HP, Nakahara J, Stuve O, Williams MJ, Kieseier BC, Wiendl H. A review of Bruton's tyrosine kinase inhibitors in multiple sclerosis. Ther Adv Neurol Disord 2024; 17:17562864241233041. [PMID: 38638671 PMCID: PMC11025433 DOI: 10.1177/17562864241233041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/29/2024] [Indexed: 04/20/2024] Open
Abstract
Bruton's tyrosine kinase (BTK) inhibitors are an emerging class of therapeutics in multiple sclerosis (MS). BTK is expressed in B-cells and myeloid cells, key progenitors of which include dendritic cells, microglia and macrophages, integral effectors of MS pathogenesis, along with mast cells, establishing the relevance of BTK inhibitors to diverse autoimmune conditions. First-generation BTK inhibitors are currently utilized in the treatment of B-cell malignancies and show efficacy in B-cell modulation. B-cell depleting therapies have shown success as disease-modifying treatments (DMTs) in MS, highlighting the potential of BTK inhibitors for this indication; however, first-generation BTK inhibitors exhibit a challenging safety profile that is unsuitable for chronic use, as required for MS DMTs. A second generation of highly selective BTK inhibitors has shown efficacy in modulating MS-relevant mechanisms of pathogenesis in preclinical as well as clinical studies. Six of these BTK inhibitors are undergoing clinical development for MS, three of which are also under investigation for chronic spontaneous urticaria (CSU), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Phase II trials of selected BTK inhibitors for MS showed reductions in new gadolinium-enhancing lesions on magnetic resonance imaging scans; however, the safety profile is yet to be ascertained in chronic use. Understanding of the safety profile is developing by combining safety insights from the ongoing phase II and III trials of second-generation BTK inhibitors for MS, CSU, RA and SLE. This narrative review investigates the potential of BTK inhibitors as an MS DMT, the improved selectivity of second-generation inhibitors, comparative safety insights established thus far through clinical development programmes and proposed implications in female reproductive health and in long-term administration.
Collapse
Affiliation(s)
- Laura Airas
- Division of Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Robert A. Bermel
- Mellen Center for MS, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tanuja Chitnis
- Brigham Multiple Sclerosis Center, Harvard Medical School, Boston, MA, USA
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Neurology Section, VA North Texas Health Care System, Dallas, TX, USA
- Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Bernd C. Kieseier
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Novartis Pharma AG, Basel, Switzerland
| | - Heinz Wiendl
- Department of Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A 1, Muenster 48149, Germany
| |
Collapse
|
10
|
Montalban X, Piasecka-Stryczynska K, Kuhle J, Benkert P, Arnold DL, Weber MS, Seitzinger A, Guehring H, Shaw J, Tomic D, Hyvert Y, Harlow DE, Dyroff M, Wolinsky JS. Efficacy and safety results after >3.5 years of treatment with the Bruton's tyrosine kinase inhibitor evobrutinib in relapsing multiple sclerosis: Long-term follow-up of a Phase II randomised clinical trial with a cerebrospinal fluid sub-study. Mult Scler 2024; 30:558-570. [PMID: 38436271 PMCID: PMC11080380 DOI: 10.1177/13524585241234783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Evobrutinib - an oral, central nervous system (CNS)-penetrant, and highly selective Bruton's tyrosine kinase inhibitor - has shown efficacy in a 48-week, double-blind, Phase II trial in patients with relapsing MS. OBJECTIVE Report results of the Phase II open-label extension (OLE; up to week 192 from randomisation) and a cerebrospinal fluid (CSF) sub-study. METHODS In the 48-week double-blind period (DBP), patients received evobrutinib 25 mg once-daily, 75 mg once-daily, 75 mg twice-daily or placebo (switched to evobrutinib 25 mg once-daily after week 24). Patients could then enter the OLE, receiving evobrutinib 75 mg once-daily (mean (± standard deviation (SD)) duration = 50.6 weeks (±6.0)) before switching to 75 mg twice-daily. RESULTS Of 164 evobrutinib-treated patients who entered the OLE, 128 (78.0%) completed ⩾192 weeks of treatment. Patients receiving DBP evobrutinib 75 mg twice-daily: annualised relapse rate at week 48 (0.11 (95% confidence interval (CI) = 0.04-0.25)) was maintained with the OLE twice-daily dose up to week 192 (0.11 (0.05-0.22)); Expanded Disability Status Scale score remained stable; serum neurofilament light chain fell to levels like a non-MS population (Z-scores); T1 gadolinium-enhancing lesion numbers remained low. No new safety signals were identified. In the OLE, evobrutinib was detected in the CSF of all sub-study patients. CONCLUSION Long-term evobrutinib treatment was well tolerated and associated with a sustained low level of disease activity. Evobrutinib was present in CSF at concentrations similar to plasma.
Collapse
Affiliation(s)
- Xavier Montalban
- Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitario Vall d’Hebron, Barcelona, Spain
| | | | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital Basel, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Douglas L Arnold
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada; NeuroRx, Montreal, QC, Canada
| | - Martin S Weber
- Institute of Neuropathology, Department of Neurology, University Medical Center, University of Göttingen, Göttingen, Germany; Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | | | | | - Jamie Shaw
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, an affiliate of Merck KGaA
| | - Davorka Tomic
- Ares Trading SA, Eysins, Switzerland, an affiliate of Merck KGaA
| | | | - Danielle E Harlow
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, an affiliate of Merck KGaA
| | - Martin Dyroff
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, an affiliate of Merck KGaA
| | - Jerry S Wolinsky
- McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| |
Collapse
|
11
|
Greenberg BM. Bruton's Tyrosine Kinase Inhibitors for Multiple Sclerosis Treatment: A New Frontier. Neurol Clin 2024; 42:155-163. [PMID: 37980113 DOI: 10.1016/j.ncl.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Multiple sclerosis (MS) can cause significant disability to patients via relapse-associated worsening and progression independent of relapses. The causes of neuronal and myelin damage can include lymphocyte-mediated inflammation and microglial activation. Bruton's tyrosine kinase (BTK) is an enzyme that mediates B cell activation and the proinflammatory phenotype of microglia. Inhibiting BTK provides a novel therapeutic target for MS but also has a complicated pharmacology based on binding specificity, CNS penetration, half-life, and enzyme inhibition characteristics. Multiple agents are being studied in phase 3 trials, and each agent will have unique efficacy and safety profiles that must be considered individually.
Collapse
Affiliation(s)
- Benjamin M Greenberg
- Department of Neurology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Liu Y, Huang Z, Zhang TX, Han B, Yang G, Jia D, Yang L, Liu Q, Lau AYL, Paul F, Verkhratsky A, Shi FD, Zhang C. Bruton's tyrosine kinase-bearing B cells and microglia in neuromyelitis optica spectrum disorder. J Neuroinflammation 2023; 20:309. [PMID: 38129902 PMCID: PMC10740299 DOI: 10.1186/s12974-023-02997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory autoimmune disease of the central nervous system that involves B-cell receptor signaling as well as astrocyte-microglia interaction, which both contribute to evolution of NMOSD lesions. MAIN BODY Through transcriptomic and flow cytometry analyses, we found that Bruton's tyrosine kinase (BTK), a crucial protein of B-cell receptor was upregulated both in the blood and cerebrospinal fluid of NMOSD patients. Blockade of BTK with zanubrutinib, a highly specific BTK inhibitor, mitigated the activation and maturation of B cells and reduced production of causal aquaporin-4 (AQP4) autoantibodies. In a mouse model of NMO, we found that both BTK and pBTK expression were significantly increased in microglia. Transmission electron microscope scan demonstrated that BTK inhibitor ameliorated demyelination, edema, and axonal injury in NMO mice. In the same mice colocalization of GFAP and Iba-1 immunofluorescence indicated a noticeable increase of astrocytes-microglia interaction, which was alleviated by zanubrutinib. The smart-seq analysis demonstrated that treatment with BTK inhibitor instigated microglial transcriptome changes including downregulation of chemokine-related genes and genes involved in the top 5 biological processes related to cell adhesion and migration, which are likely responsible for the reduced crosstalk of microglia and astrocytes. CONCLUSIONS Our results show that BTK activity is enhanced both in B cells and microglia and BTK inhibition contributes to the amelioration of NMOSD pathology. These data collectively reveal the mechanism of action of BTK inhibition and corroborate BTK as a viable therapeutic target.
Collapse
Affiliation(s)
- Ye Liu
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhenning Huang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Tian-Xiang Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Bin Han
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Guili Yang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Dongmei Jia
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Center of Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Yang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Qiang Liu
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Alexander Y L Lau
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitaetsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Alexei Verkhratsky
- Faculty of Biology, Health and Medicine, University of Manchester, Manchester, M13 9PL, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania
| | - Fu-Dong Shi
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Center of Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurology and Institute of Neuroimmunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Center of Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
dos Passos GR, Adoni T, Mendes MF, Sato DK. Reshaping neuroimmunology: diagnosis and treatment in the era of precision medicine. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:1125-1133. [PMID: 38157878 PMCID: PMC10756840 DOI: 10.1055/s-0043-1777752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
Precision medicine has revolutionized the field of neuroimmunology, with innovative approaches that characterize diseases based on their biology, deeper understanding of the factors leading to heterogeneity within the same disease, development of targeted therapies, and strategies to tailor therapies to each patient. This review explores the impact of precision medicine on various neuroimmunological conditions, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), optic neuritis, autoimmune encephalitis, and immune-mediated neuropathies. We discuss advances in disease subtyping, recognition of novel entities, promising biomarkers, and the development of more selective monoclonal antibodies and cutting-edge synthetic cell-based immunotherapies in neuroimmunological disorders. In addition, we analyze the challenges related to affordability and equity in the implementation of these emerging technologies, especially in situations with limited resources.
Collapse
Affiliation(s)
- Giordani Rodrigues dos Passos
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina e Instituto do Cérebro do Rio Grande do Sul, Porto Alegre RS, Brazil.
| | - Tarso Adoni
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo SP, Brazil.
| | | | - Douglas Kazutoshi Sato
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina e Instituto do Cérebro do Rio Grande do Sul, Porto Alegre RS, Brazil.
| |
Collapse
|
14
|
Hartung HP, Cree BA, Barnett M, Meuth SG, Bar-Or A, Steinman L. Bioavailable central nervous system disease-modifying therapies for multiple sclerosis. Front Immunol 2023; 14:1290666. [PMID: 38162670 PMCID: PMC10755740 DOI: 10.3389/fimmu.2023.1290666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024] Open
Abstract
Disease-modifying therapies for relapsing multiple sclerosis reduce relapse rates by suppressing peripheral immune cells but have limited efficacy in progressive forms of the disease where cells in the central nervous system play a critical role. To our knowledge, alemtuzumab, fumarates (dimethyl, diroximel, and monomethyl), glatiramer acetates, interferons, mitoxantrone, natalizumab, ocrelizumab, ofatumumab, and teriflunomide are either limited to the periphery or insufficiently studied to confirm direct central nervous system effects in participants with multiple sclerosis. In contrast, cladribine and sphingosine 1-phosphate receptor modulators (fingolimod, ozanimod, ponesimod, and siponimod) are central nervous system-penetrant and could have beneficial direct central nervous system properties.
Collapse
Affiliation(s)
- Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Palacký University Olomouc, Olomouc, Czechia
| | - Bruce A.C. Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Michael Barnett
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University Medical Center, Stanford, CA, United States
| |
Collapse
|
15
|
Elkjaer ML, Waede MR, Kingo C, Damsbo K, Illes Z. Expression of Bruton´s tyrosine kinase in different type of brain lesions of multiple sclerosis patients and during experimental demyelination. Front Immunol 2023; 14:1264128. [PMID: 38022591 PMCID: PMC10679451 DOI: 10.3389/fimmu.2023.1264128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Inhibition of Bruton's tyrosine kinase (BTK) is an emerging multiple sclerosis (MS) therapy. BTK inhibitors (BTKi) cross the blood-brain barrier and modulate B cells and microglia, major cellular players in active and chronic active lesions. Objective To assess potential lesional and cellular targets of BTKi, we examined BTK expression in different type of MS white matter (WM) lesions, in unmanipulated CNS resident cells, and in a degenerative MS model associated with microglia activation in vivo. Methods We examined BTK expression by next-generation RNA-sequencing in postmortem 25 control WM, 19 NAWM, 6 remyelinating, 18 active, 13 inactive and 17 chronic active lesions. Presence of B cells and microglia were examined by immunohistochemistry. CNS resident cells were isolated from the mouse brain by magnetic sorting. BTK expression was examined by quantitative PCR in isolated cells and dissected corpus callosum from mice treated with cuprizone (CPZ). Results BTK expression was significantly increased in active and chronic active lesions with upregulated complement receptors and Fcγ receptors. Active lesions contained high number of perivascular B cells, microglia, and macrophages. Chronic active lesions were characterized by microglia/macrophages in the rim. Microglia expressed BTK at high level (120-fold) in contrast to other CNS cell types (2-4-fold). BTK expression was increasing during CPZ treatment reaching significance after stopping CPZ. Conclusion Considering BTK expression in MS lesions and resident cells, BTKi may exert effect on B cells, microglia/macrophages in active lesions, and limit microglia activation in chronic active lesions, where tissue damage propagates.
Collapse
Affiliation(s)
- Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mie R. Waede
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christina Kingo
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Karina Damsbo
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE – Brain Research Interdisciplinary Guided Ecxellence, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Bobotis BC, Braniff O, Gargus M, Akinluyi ET, Awogbindin IO, Tremblay MÈ. Sex differences of microglia in the healthy brain from embryonic development to adulthood and across lifestyle influences. Brain Res Bull 2023; 202:110752. [PMID: 37652267 DOI: 10.1016/j.brainresbull.2023.110752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Microglia, the central nervous system innate immune cells, play a critical role in maintaining a homeostatic environment in the brain throughout life. These cells exhibit an impressive range of functions and characteristics that help to ensure proper functioning of the brain. Notably, microglia can present differences in their genetic and physical traits, which can be influenced by a range of factors, including age, environmental exposures, disease, and sex. Remarkably, microglia have been found to express receptors for sex hormones, suggesting that these hormones may play a role in modulating microglial behavior and potentially contribute to sex differences. Additionally, sex-chromosomal factors were shown to impact microglial genetics and functioning. In this review, we will examine how microglial responses in homeostasis are impacted by their interaction with sex hormones and sex chromosomes. Specifically, our investigation will focus on examining this interaction from embryonic development to adulthood, and the influence of lifestyle elements on various microglial features, including density and distribution, morphology, transcriptome, and proteome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Makenna Gargus
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Ifeoluwa Oluleke Awogbindin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada; Department of Molecular Medicine, Université Laval, Québec, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
| |
Collapse
|
17
|
Trando A, Dunn-Pirio A, Koura D, Goodman AM. First use of ibrutinib for the treatment of post-transplant central nervous system graft-versus-host disease. Br J Haematol 2023; 202:1061-1064. [PMID: 37357559 DOI: 10.1111/bjh.18959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Affiliation(s)
- Aaron Trando
- University of California San Diego School of Medicine, San Diego, California, USA
| | - Anastasie Dunn-Pirio
- Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Divya Koura
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, San Diego, California, USA
| | - Aaron M Goodman
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, San Diego, California, USA
| |
Collapse
|
18
|
Nicolas O, Moliner P, Soubayrol P, Vitse O, Roy S, Cabanis MJ, Turner T, Klieber S, Muccio S, Arabeyre C, Brun P. Absorption, Metabolism, and Excretion of [ 14C]-Tolebrutinib After Oral Administration in Humans, Contribution of the Metabolites to Pharmacological Activity. Clin Drug Investig 2023; 43:653-665. [PMID: 37642857 PMCID: PMC10480245 DOI: 10.1007/s40261-023-01296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND OBJECTIVE Tolebrutinib is a covalent inhibitor of Bruton's tyrosine kinase, an enzyme expressed in B lymphocytes and myeloid cells including microglia, which are thought to be major drivers of inflammation in multiple sclerosis. This excretion balance and metabolism study evaluated the metabolite profile of tolebrutinib in healthy male volunteers. METHODS Six healthy volunteers received a 60-mg oral dose of [14C]-tolebrutinib, and metabolite profiling of 14C-labeled metabolites was performed using a combination of liquid chromatography, mass spectrometry, and radioactivity assay methods. RESULTS Tolebrutinib was rapidly and completely absorbed from the gastrointestinal tract, followed by rapid and extensive metabolism. Excretion via feces was the major elimination pathway of the administered radioactivity (78%). Tolebrutinib was highly metabolized, with 19 metabolites identified in human plasma. Phase 1 biotransformations were primarily responsible for the circulating metabolites in plasma. Seven metabolites that achieved exposure in plasma similar to or higher than the parent compound were characterized biochemically for inhibition of Bruton's tyrosine kinase activity. Metabolite M8 exceeded the exposure threshold of 10% (18%) of the total radioactivity but had little if any pharmacological activity. Metabolite M2 (4% of circulating radioactivity) retained the ability to irreversibly and potently inhibit Bruton's tyrosine kinase in vitro, similar to the parent compound. Tolebrutinib and metabolite M2 had short (3.5-h) half-lives but durable pharmacodynamic effects as expected for an irreversible antagonist. CONCLUSIONS Tolebrutinib was extensively metabolized to multiple metabolites. The hydroxylated metabolite M2 demonstrated similar inhibitory potency toward Bruton's tyrosine kinase as the parent compound. Both tolebrutinib and metabolite M2 likely contributed to pharmacological activity in vivo.
Collapse
Affiliation(s)
- Olivier Nicolas
- Department of Translational Medicine and Early Development, Sanofi, 371 Rue Professeur Blayac, 34184, Montpellier, France.
| | - Patricia Moliner
- Department of Translational Medicine and Early Development, Sanofi, 371 Rue Professeur Blayac, 34184, Montpellier, France
| | - Patrick Soubayrol
- Department of Translational Medicine and Early Development, Sanofi, 371 Rue Professeur Blayac, 34184, Montpellier, France
| | - Olivier Vitse
- Department of Translational Medicine and Early Development, Sanofi, 371 Rue Professeur Blayac, 34184, Montpellier, France
| | - Sebastien Roy
- Department of Integrated Drug Discovery/Isotope Chemistry, Sanofi, Paris, France
| | - Marie-José Cabanis
- Department of Translational Medicine and Early Development, Sanofi, 371 Rue Professeur Blayac, 34184, Montpellier, France
| | - Tim Turner
- MS Neurology Development, Sanofi, Cambridge, MA, USA
| | - Sylvie Klieber
- Department of Translational Medicine and Early Development, Sanofi, 371 Rue Professeur Blayac, 34184, Montpellier, France
| | - Stephane Muccio
- Department of Translational Medicine and Early Development, Sanofi, 371 Rue Professeur Blayac, 34184, Montpellier, France
| | - Catherine Arabeyre
- Department of Translational Medicine and Early Development, Sanofi, 371 Rue Professeur Blayac, 34184, Montpellier, France
| | - Priscilla Brun
- Department of Translational Medicine and Early Development, Sanofi, 371 Rue Professeur Blayac, 34184, Montpellier, France
| |
Collapse
|
19
|
Ellen O, Ye S, Nheu D, Dass M, Pagnin M, Ozturk E, Theotokis P, Grigoriadis N, Petratos S. The Heterogeneous Multiple Sclerosis Lesion: How Can We Assess and Modify a Degenerating Lesion? Int J Mol Sci 2023; 24:11112. [PMID: 37446290 DOI: 10.3390/ijms241311112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease of the central nervous system that is governed by neural tissue loss and dystrophy during its progressive phase, with complex reactive pathological cellular changes. The immune-mediated mechanisms that promulgate the demyelinating lesions during relapses of acute episodes are not characteristic of chronic lesions during progressive MS. This has limited our capacity to target the disease effectively as it evolves within the central nervous system white and gray matter, thereby leaving neurologists without effective options to manage individuals as they transition to a secondary progressive phase. The current review highlights the molecular and cellular sequelae that have been identified as cooperating with and/or contributing to neurodegeneration that characterizes individuals with progressive forms of MS. We emphasize the need for appropriate monitoring via known and novel molecular and imaging biomarkers that can accurately detect and predict progression for the purposes of newly designed clinical trials that can demonstrate the efficacy of neuroprotection and potentially neurorepair. To achieve neurorepair, we focus on the modifications required in the reactive cellular and extracellular milieu in order to enable endogenous cell growth as well as transplanted cells that can integrate and/or renew the degenerative MS plaque.
Collapse
Affiliation(s)
- Olivia Ellen
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Danica Nheu
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Stilponos Kiriakides Str. 1, 54636 Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melborune, VIC 3004, Australia
| |
Collapse
|
20
|
Fernández Ó, Montalban X, Agüera E, Aladro Y, Alonso A, Arroyo R, Brieva L, Calles C, Costa-Frossard L, Eichau S, García-Domínguez JM, Hernández MÁ, Landete L, Llaneza M, Llufriu S, Meca-Lallana JE, Meca-Lallana V, Mongay-Ochoa N, Moral E, Oreja-Guevara C, Ramió-Torrentà L, Téllez N, Romero-Pinel L, Rodríguez-Antigüedad A. [15th Post-ECTRIMS Meeting: a review of the latest developments presented at the 2022 ECTRIMS Congress (Part I)]. Rev Neurol 2023; 77:19-30. [PMID: 37365721 PMCID: PMC10663806 DOI: 10.33588/rn.7701.2023167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION On 4 and 5 November 2022, Madrid hosted the 15th edition of the Post-ECTRIMS Meeting, where neurologists specialised in multiple sclerosis (MS) outlined the most relevant novelties presented at the 2022 ECTRIMS Congress, held in Amsterdam from 26 to 28 October. AIM To synthesise the content presented at the 15th edition of the Post-ECTRIMS Meeting, in an article broken down into two parts. DEVELOPMENT In this first part, the initial events involved in the onset of MS, the role played by lymphocytes and the migration of immune system cells into the central nervous system are presented. It describes emerging biomarkers in body fluids and imaging findings that are predictive of disease progression and useful in the differential diagnosis of MS. It also discusses advances in imaging techniques which, together with a better understanding of the agents involved in demyelination and remyelination processes, provide a basis for dealing with remyelination in the clinical setting. Finally, the mechanisms triggering the inflammatory reaction and neurodegeneration involved in MS pathology are reviewed.
Collapse
Affiliation(s)
- Óscar Fernández
- Hospital Regional Universitario de Málaga. MálagaHospital Regional Universitario de MálagaHospital Regional Universitario de MálagaMálagaSpain
| | - Xavier Montalban
- Hospital Universitari Vall d’Hebron-CEMCATHospital Universitari Vall d’Hebron-CEMCATHospital Universitari Vall d’Hebron-CEMCATBarcelonaSpain
| | - Eduardo Agüera
- Hospital Universitario Reina SofíaHospital Universitario Reina SofíaHospital Universitario Reina SofíaBarcelonaSpain
| | - Yolanda Aladro
- Hospital Universitario de Getafe. Getafe, MadridHospital Universitario de GetafeHospital Universitario de GetafeMadridSpain
| | - Ana Alonso
- Hospital Regional Universitario de Málaga. MálagaHospital Regional Universitario de MálagaHospital Regional Universitario de MálagaMálagaSpain
| | - Rafael Arroyo
- Hospital Universitario QuirónsaludHospital Universitario QuirónsaludHospital Universitario QuirónsaludBarcelonaSpain
| | - Luis Brieva
- Hospital Universitari Arnau de Vilanova- Universitat de Lleida. LleidaHospital Universitari Arnau de Vilanova- Universitat de LleidaHospital Universitari Arnau de Vilanova- Universitat de LleidaLleidaSpain
| | - Carmen Calles
- Hospital Universitario Son Espases. Palma de MallorcaHospital Universitario Son EspasesHospital Universitario Son EspasesPalma de MallorcaSpain
| | - Lucienne Costa-Frossard
- Hospital Universitario Ramón y CajalHospital Universitario Ramón y CajalHospital Universitario Ramón y CajalBarcelonaSpain
| | - Sara Eichau
- Hospital Universitario Virgen Macarena. SevillaHospital Universitario Virgen MacarenaHospital Universitario Virgen MacarenaSevillaSpain
| | - José M. García-Domínguez
- Hospital Universitario Gregorio MarañónHospital Universitario Gregorio MarañónHospital Universitario Gregorio MarañónBarcelonaSpain
| | - Miguel Á. Hernández
- Hospital Nuestra Señora de Candelaria. Santa Cruz de TenerifeHospital Nuestra Señora de CandelariaHospital Nuestra Señora de CandelariaSanta Cruz de TenerifeSpain
| | - Lamberto Landete
- Hospital Universitario Doctor Peset. ValenciaHospital Universitario Doctor PesetHospital Universitario Doctor PesetValenciaSpain
| | - Miguel Llaneza
- Complejo Hospitalario Universitario de Ferrol. El Ferrol, La CoruñaComplejo Hospitalario Universitario de FerrolComplejo Hospitalario Universitario de FerrolEl FerrolSpain
| | - Sara Llufriu
- Hospital Clínic de Barcelona e IDIBAPS. BarcelonaHospital Clínic de Barcelona e IDIBAPSHospital Clínic de Barcelona e IDIBAPSBarcelonaSpain
| | - José E. Meca-Lallana
- Hospital Regional Universitario de Málaga. MálagaHospital Regional Universitario de MálagaHospital Regional Universitario de MálagaMálagaSpain
| | - Virginia Meca-Lallana
- Hospital Clínico Universitario Virgen de la Arrixaca. MurciaHospital Clínico Universitario Virgen de la ArrixacaHospital Clínico Universitario Virgen de la ArrixacaMurciaSpain
| | - Neus Mongay-Ochoa
- Hospital Universitari Vall d’Hebron-CEMCATHospital Universitari Vall d’Hebron-CEMCATHospital Universitari Vall d’Hebron-CEMCATBarcelonaSpain
| | - Ester Moral
- Hospital Sant Joan Despí Moisès Broggi. Sant Joan Despí, BarcelonaHospital Sant Joan Despí Moisès BroggiHospital Sant Joan Despí Moisès BroggiBarcelonaSpain
| | - Celia Oreja-Guevara
- Hospital Clínico San Carlos-IdISSC-UCM. MadridHospital Clínico San Carlos-IdISSC-UCMHospital Clínico San Carlos-IdISSC-UCMMadridSpain
| | - Lluís Ramió-Torrentà
- Departamento de Cièncias Médicas. Universitat de Girona. GironaUniversitat de GironaUniversitat de GironaGironaSpain
| | - Nieves Téllez
- Hospital Clínico Universitario de Valladolid. ValladolidHospital Clínico Universitario de ValladolidHospital Clínico Universitario de ValladolidValladolidSpain
| | - Lucía Romero-Pinel
- Hospital Universitari de Bellvitge- IDIBELL. L’Hospitalet de Llobregat, BarcelonaHospital Universitari de Bellvitge- IDIBELLHospital Universitari de Bellvitge- IDIBELLBarcelonaSpain
| | | |
Collapse
|
21
|
Krämer J, Bar-Or A, Turner TJ, Wiendl H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat Rev Neurol 2023; 19:289-304. [PMID: 37055617 PMCID: PMC10100639 DOI: 10.1038/s41582-023-00800-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
Current therapies for multiple sclerosis (MS) reduce both relapses and relapse-associated worsening of disability, which is assumed to be mainly associated with transient infiltration of peripheral immune cells into the central nervous system (CNS). However, approved therapies are less effective at slowing disability accumulation in patients with MS, in part owing to their lack of relevant effects on CNS-compartmentalized inflammation, which has been proposed to drive disability. Bruton tyrosine kinase (BTK) is an intracellular signalling molecule involved in the regulation of maturation, survival, migration and activation of B cells and microglia. As CNS-compartmentalized B cells and microglia are considered central to the immunopathogenesis of progressive MS, treatment with CNS-penetrant BTK inhibitors might curtail disease progression by targeting immune cells on both sides of the blood-brain barrier. Five BTK inhibitors that differ in selectivity, strength of inhibition, binding mechanisms and ability to modulate immune cells within the CNS are currently under investigation in clinical trials as a treatment for MS. This Review describes the role of BTK in various immune cells implicated in MS, provides an overview of preclinical data on BTK inhibitors and discusses the (largely preliminary) data from clinical trials.
Collapse
Affiliation(s)
- Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
22
|
Konen FF, Möhn N, Witte T, Schefzyk M, Wiestler M, Lovric S, Hufendiek K, Schwenkenbecher P, Sühs KW, Friese MA, Klotz L, Pul R, Pawlitzki M, Hagin D, Kleinschnitz C, Meuth SG, Skripuletz T. Treatment of autoimmunity: The impact of disease-modifying therapies in multiple sclerosis and comorbid autoimmune disorders. Autoimmun Rev 2023; 22:103312. [PMID: 36924922 DOI: 10.1016/j.autrev.2023.103312] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
More than 10 disease-modifying therapies (DMT) are approved by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for the treatment of multiple sclerosis (MS) and new therapeutic options are on the horizon. Due to different underlying therapeutic mechanisms, a more individualized selection of DMTs in MS is possible, taking into account the patient's current situation. Therefore, concomitant treatment of various comorbid conditions, including autoimmune mediated disorders such as rheumatoid arthritis, should be considered in MS patients. Because the pathomechanisms of autoimmunity partially overlap, DMT could also treat concomitant inflammatory diseases and simplify the patient's treatment. In contrast, the exacerbation and even new occurrence of several autoimmune diseases have been reported as a result of immunomodulatory treatment of MS. To simplify treatment and avoid disease exacerbation, knowledge of the beneficial and adverse effects of DMT in other autoimmune disorders is critical. Therefore, we conducted a literature search and described the beneficial and adverse effects of approved and currently studied DMT in a large number of comorbid autoimmune diseases, including rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel diseases, cutaneous disorders including psoriasis, Sjögren´s syndrome, systemic lupus erythematosus, systemic vasculitis, autoimmune hepatitis, and ocular autoimmune disorders. Our review aims to facilitate the selection of an appropriate DMT in patients with MS and comorbid autoimmune diseases.
Collapse
Affiliation(s)
- Franz Felix Konen
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany..
| | - Nora Möhn
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany..
| | - Torsten Witte
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, 30625 Hannover, Germany..
| | - Matthias Schefzyk
- Department of Dermatology, Allergology and Venerology, Hannover Medical School, 30625 Hannover, Germany..
| | - Miriam Wiestler
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany.
| | - Svjetlana Lovric
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany.
| | - Karsten Hufendiek
- University Eye Hospital, Hannover Medical School, 30625 Hannover, Germany.
| | | | - Kurt-Wolfram Sühs
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany..
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany.
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany.
| | - Refik Pul
- Department of Neurology, University Medicine Essen, Essen, Germany; Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen 45147, Germany.
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany.
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel-Aviv Sourasky Medical Center and Sackler Faculty of Medicine, University of Tel Aviv, 6 Weizmann St., Tel-Aviv 6423906, Israel.
| | - Christoph Kleinschnitz
- Department of Neurology, University Medicine Essen, Essen, Germany; Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen 45147, Germany.
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany.
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany..
| |
Collapse
|
23
|
Furman MJ, Meuth SG, Albrecht P, Dietrich M, Blum H, Mares J, Milo R, Hartung HP. B cell targeted therapies in inflammatory autoimmune disease of the central nervous system. Front Immunol 2023; 14:1129906. [PMID: 36969208 PMCID: PMC10034856 DOI: 10.3389/fimmu.2023.1129906] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Cumulative evidence along several lines indicates that B cells play an important role in the pathological course of multiple sclerosis (MS), neuromyelitisoptica spectrum disorders (NMOSD) and related CNS diseases. This has prompted extensive research in exploring the utility of targeting B cells to contain disease activity in these disorders. In this review, we first recapitulate the development of B cells from their origin in the bone marrow to their migration to the periphery, including the expression of therapy-relevant surface immunoglobulin isotypes. Not only the ability of B cells to produce cytokines and immunoglobulins seems to be essential in driving neuroinflammation, but also their regulatory functions strongly impact pathobiology. We then critically assess studies of B cell depleting therapies, including CD20 and CD19 targeting monoclonal antibodies, as well as the new class of B cell modulating substances, Bruton´s tyrosinekinase (BTK) inhibitors, in MS, NMOSD and MOGAD.
Collapse
Affiliation(s)
- Moritz J. Furman
- Department of Neurology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Sven G. Meuth
- Department of Neurology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Philipp Albrecht
- Department of Neurology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- Department of Neurology, Maria Hilf Clinic, Moenchengladbach, Germany
| | - Michael Dietrich
- Department of Neurology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Heike Blum
- Department of Neurology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Jan Mares
- Department of Neurology, Palacky University in Olomouc, Olomouc, Czechia
| | - Ron Milo
- Department of Neurology, Barzilai Medical Center, Ashkelon, Israel
| | - Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- Department of Neurology, Palacky University in Olomouc, Olomouc, Czechia
- Brain and Mind Center, Medical Faculty, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Charabati M, Wheeler MA, Weiner HL, Quintana FJ. Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting. Cell 2023; 186:1309-1327. [PMID: 37001498 PMCID: PMC10119687 DOI: 10.1016/j.cell.2023.03.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system afflicting nearly three million individuals worldwide. Neuroimmune interactions between glial, neural, and immune cells play important roles in MS pathology and offer potential targets for therapeutic intervention. Here, we review underlying risk factors, mechanisms of MS pathogenesis, available disease modifying therapies, and examine the value of emerging technologies, which may address unmet clinical needs and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Marc Charabati
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
25
|
Dybowski S, Torke S, Weber MS. Targeting B Cells and Microglia in Multiple Sclerosis With Bruton Tyrosine Kinase Inhibitors: A Review. JAMA Neurol 2023; 80:404-414. [PMID: 36780171 DOI: 10.1001/jamaneurol.2022.5332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Importance Currently, disease-modifying therapies for multiple sclerosis (MS) use 4 mechanisms of action: immune modulation, suppressing immune cell proliferation, inhibiting immune cell migration, or cellular depletion. Over the last decades, the repertoire substantially increased because of the conceptual progress that not only T cells but also B cells play an important pathogenic role in MS, fostered by the empirical success of B cell-depleting antibodies against the surface molecule CD20. Notwithstanding this advance, a continuous absence of B cells may harbor safety risks, such as a decline in the endogenous production of immunoglobulins. Accordingly, novel B cell-directed MS therapies are in development, such as inhibitors targeting Bruton tyrosine kinase (BTK). Observations BTK is centrally involved in the B cell receptor-mediated activation of B cells, one key requirement in the development of autoreactive B cells, but also in the activation of myeloid cells, such as macrophages and microglia. Various compounds in development differ in their binding mode, selectivity and specificity, relative inhibitory concentration, and potential to enter the central nervous system. The latter may be important in assessing whether BTK inhibition is a promising strategy to control inflammatory circuits within the brain, the key process that is assumed to drive MS progression. Accordingly, clinical trials using BTK inhibitors are currently conducted in patients with relapsing-remitting MS as well as progressive MS, so far generating encouraging data regarding efficacy and safety. Conclusions and Relevance While the novel approach of targeting BTK is highly promising, several questions remain unanswered, such as the long-term effects of using BTK inhibitors in the treatment of inflammatory CNS disease. Potential changes in circulating antibody levels should be evaluated and compared with B cell depletion. Also important is the potential of BTK inhibitors to enter the CNS, which depends on the given compound. Remaining questions involve where BTK inhibitors fit in the landscape of MS therapeutics. A comparative analysis of their distinct properties is necessary to identify which inhibitors may be used in relapsing vs progressive forms of MS as well as to clarify which agent may be most suitable for sequential use after anti-CD20 treatment.
Collapse
Affiliation(s)
- Sarah Dybowski
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Sebastian Torke
- Institute of Neuropathology, University Medical Center, Göttingen, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Martin S Weber
- Institute of Neuropathology, University Medical Center, Göttingen, Germany.,Department of Neurology, University Medical Center, Göttingen, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology, Göttingen, Germany
| |
Collapse
|
26
|
Papiri G, D’Andreamatteo G, Cacchiò G, Alia S, Silvestrini M, Paci C, Luzzi S, Vignini A. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr Issues Mol Biol 2023; 45:1443-1470. [PMID: 36826039 PMCID: PMC9954863 DOI: 10.3390/cimb45020094] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Multiple sclerosis (MS) represents the most common acquired demyelinating disorder of the central nervous system (CNS). Its pathogenesis, in parallel with the well-established role of mechanisms pertaining to autoimmunity, involves several key functions of immune, glial and nerve cells. The disease's natural history is complex, heterogeneous and may evolve over a relapsing-remitting (RRMS) or progressive (PPMS/SPMS) course. Acute inflammation, driven by infiltration of peripheral cells in the CNS, is thought to be the most relevant process during the earliest phases and in RRMS, while disruption in glial and neural cells of pathways pertaining to energy metabolism, survival cascades, synaptic and ionic homeostasis are thought to be mostly relevant in long-standing disease, such as in progressive forms. In this complex scenario, many mechanisms originally thought to be distinctive of neurodegenerative disorders are being increasingly recognized as crucial from the beginning of the disease. The present review aims at highlighting mechanisms in common between MS, autoimmune diseases and biology of neurodegenerative disorders. In fact, there is an unmet need to explore new targets that might be involved as master regulators of autoimmunity, inflammation and survival of nerve cells.
Collapse
Affiliation(s)
- Giulio Papiri
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Giordano D’Andreamatteo
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Gabriella Cacchiò
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Sonila Alia
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Mauro Silvestrini
- Neurology Unit, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Cristina Paci
- Neurology Unit, Ospedale Provinciale “Madonna del Soccorso”, 63074 San Benedetto del Tronto, Italy
| | - Simona Luzzi
- Neurology Unit, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Arianna Vignini
- Section of Biochemistry, Biology and Physics, Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
- Correspondence:
| |
Collapse
|
27
|
Mado H, Adamczyk-Sowa M, Sowa P. Role of Microglial Cells in the Pathophysiology of MS: Synergistic or Antagonistic? Int J Mol Sci 2023; 24:ijms24031861. [PMID: 36768183 PMCID: PMC9916250 DOI: 10.3390/ijms24031861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Many studies indicate an important role of microglia and their cytokines in the pathophysiology of multiple sclerosis (MS). Microglia are the macrophages of the central nervous system (CNS). They have many functions, such as being "controllers" of the CNS homeostasis in pathological and healthy conditions, playing a key role in the active immune defense of the CNS. Macroglia exhibit a dual role, depending on the phenotype they adopt. First, they can exhibit neurotoxic effects, which are harmful in the case of MS. However, they also show neuroprotective and regenerative effects in this disease. Many of the effects of microglia are mediated through the cytokines they secrete, which have either positive or negative properties. Neurotoxic and pro-inflammatory effects can be mediated by microglia via lipopolysaccharide and gamma interferon. On the other hand, the mediators of anti-inflammatory and protective effects secreted by microglia can be, for example, interleukin-4 and -13. Further investigation into the role of microglia in MS pathophysiology may perhaps lead to the discovery of new therapies for MS, as recent research in this area has been very promising.
Collapse
Affiliation(s)
- Hubert Mado
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Correspondence: ; Tel.: +48-695948463; Fax: +48-323704597
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Paweł Sowa
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
28
|
Gozzo L, Romano GL, Brancati S, Longo L, Vitale DC, Drago F. The therapeutic value of treatment for multiple sclerosis: analysis of health technology assessments of three European countries. Front Pharmacol 2023; 14:1169400. [PMID: 37188269 PMCID: PMC10175632 DOI: 10.3389/fphar.2023.1169400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
In accordance with European regulation, medicines containing a new active substance to treat neurodegenerative diseases as well as autoimmune and other immune dysfunctions must be approved by the European Medicines Agency (EMA) through the centralized procedure before they can be marketed. However, after EMA approval, each country is responsible for national market access, following the assessment performed by health technology assessment (HTA) bodies with regard to the therapeutic value. This study aims to provide a comparative analysis of HTA recommendations issued by three EU countries (France, Germany, and Italy) for new drugs for multiple sclerosis (MS) following EMA approval. In the reference period, we identified 11 medicines authorized in Europe for MS, including relapsing forms of MS (RMS; n = 4), relapsing-remitting MS (RRMS; n = 6), secondary progressive MS (SPMS; n = 1), and the primary progressive form (PPMS; n = 1). We found no agreement on the therapeutic value (in particular, the "added value" compared to the standard of care) of the selected drugs. Most evaluations resulted in the lowest score ("additional benefit not proven/no clinical improvement"), underlining the need for new molecules with better efficacy and safety profiles for MS, especially for some forms and clinical settings.
Collapse
Affiliation(s)
- Lucia Gozzo
- Clinical Pharmacology Unit, Regional Pharmacovigilance Centre, University Hospital of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- *Correspondence: Lucia Gozzo,
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Serena Brancati
- Clinical Pharmacology Unit, Regional Pharmacovigilance Centre, University Hospital of Catania, Catania, Italy
| | - Laura Longo
- Clinical Pharmacology Unit, Regional Pharmacovigilance Centre, University Hospital of Catania, Catania, Italy
| | - Daniela Cristina Vitale
- Clinical Pharmacology Unit, Regional Pharmacovigilance Centre, University Hospital of Catania, Catania, Italy
| | - Filippo Drago
- Clinical Pharmacology Unit, Regional Pharmacovigilance Centre, University Hospital of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Centre for Research and Consultancy in HTA and Drug Regulatory Affairs (CERD), University of Catania, Catania, Italy
| |
Collapse
|
29
|
Liyanage G, Brilot F. Targeting B cell dysregulation with emerging therapies in autoimmune demyelinating disorders. Curr Opin Neurobiol 2022; 77:102643. [PMID: 36244128 DOI: 10.1016/j.conb.2022.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023]
Abstract
The depletion of B cells has proven to be beneficial in the treatment of autoimmune demyelinating disorders. The high efficacy of these therapies has highlighted the importance of B cells in autoimmunity and prompted investigations into specific B cell subsets that may be aberrant. Recently, a rise in the trialling of alternative B cell-targeting therapies that inhibit targets such as Bruton's tyrosine kinase, interleukin-6 receptor and fragment crystallisable neonatal receptor has also been observed. These agents interfere with specific dysregulated functions of B cells in contrast to the broad removal of many B cell subsets with depletion agents. The therapeutic benefit of these emerging agents will help delineate the contributions of B cells in demyelinating disorders and holds great potential for future treatment.
Collapse
Affiliation(s)
- Ganesha Liyanage
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia. https://twitter.com/@Ganesha_Li
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Cao T, Wang Z, Zhu X. The Immunomodulatory Functions of BTK Inhibition in the Central Nervous System. J Inflamm Res 2022; 15:6427-6438. [DOI: 10.2147/jir.s389958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
|
31
|
Garg N, Padron EJ, Rammohan KW, Goodman CF. Bruton's Tyrosine Kinase Inhibitors: The Next Frontier of B-Cell-Targeted Therapies for Cancer, Autoimmune Disorders, and Multiple Sclerosis. J Clin Med 2022; 11:6139. [PMID: 36294458 PMCID: PMC9604914 DOI: 10.3390/jcm11206139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) is an important protein belonging to the tyrosine kinase family that plays a key role in the intracellular signaling and proliferation, migration, and survival of normal and malignant B-lymphocytes and myeloid cells. Understanding the role of BTK in the B-cell signaling pathway has led to the development of BTK inhibitors (BTKi) as effective therapies for malignancies of myeloid origin and exploration as a promising therapeutic option for other cancers. Given its central function in B-cell receptor signaling, inhibition of BTK is an attractive approach for the treatment of a wide variety of autoimmune diseases that involve aberrant B-cell function including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). Here, we review the role of BTK in different cell signaling pathways, the development of BTKi in B-cell malignancies, and their emerging role in the treatment of MS and other autoimmune disorders.
Collapse
Affiliation(s)
- Neeta Garg
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
32
|
Geladaris A, Torke S, Weber MS. Bruton's Tyrosine Kinase Inhibitors in Multiple Sclerosis: Pioneering the Path Towards Treatment of Progression? CNS Drugs 2022; 36:1019-1030. [PMID: 36178589 PMCID: PMC9550714 DOI: 10.1007/s40263-022-00951-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/03/2022]
Abstract
In multiple sclerosis (MS) persisting disability can derive from acute relapses or, alternatively, from slow and steady deterioration, termed chronic progression. Emerging data suggest that the latter process occurs largely independent from relapse activity or development of new central nervous system (CNS) inflammatory lesions. Pathophysiologically, acute relapses develop as a consequence of de novo CNS infiltration of immune cells, while MS progression appears to be driven by a CNS-trapped inflammatory circuit between CNS-established hematopoietic cells as well as CNS-resident cells, such as microglia, astrocytes, and oligodendrocytes. Within the last decades, powerful therapies have been developed to control relapse activity in MS. All of these agents were primarily designed to systemically target the peripheral immune system and/or to prevent CNS infiltration of immune cells. Based on the above described dichotomy of MS pathophysiology, it is understandable that these agents only exert minor effects on progression and that novel targets within the CNS have to be utilized to control MS progression independent of relapse activity. In this regard, one promising strategy may be the inhibition of the enzyme Bruton's tyrosine kinase (BTK), which is centrally involved in the activation of B cells as well as myeloid cells, such as macrophages and microglia. In this review, we discuss where and to what extent BTK is involved in the immunological and molecular cascades driving MS progression. We furthermore summarize all mechanistic, preclinical, and clinical data on the various BTK inhibitors (evobrutinib, tolebrutinib, fenebrutinib, remibrutinib, orelabrutinib, BIIB091) that are currently in development for treatment of MS, with a particular focus on the potential ability of either drug to control MS progression.
Collapse
Affiliation(s)
- Anastasia Geladaris
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 37075, Göttingen, Germany
| | - Sebastian Torke
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Experimental and Clinical Research Center of the Charité, University Medical Center and the Max-Dellbrück-Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Martin S Weber
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology, 37075, Göttingen, Germany.
- Department of Neurology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
33
|
Arsenault S, Benoit RY, Clift F, Moore CS. Does the use of the Bruton Tyrosine Kinase inhibitors and the c-kit inhibitor masitinib result in clinically significant outcomes among patients with various forms of multiple sclerosis? Mult Scler Relat Disord 2022; 67:104164. [PMID: 36126539 DOI: 10.1016/j.msard.2022.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system accompanied by chronic inflammation, axonal loss, and neurodegeneration. Traditionally, MS has been thought of as a T-cell mediated disease, but research over the past decade has demonstrated the importance of B cells in both acute demyelination and disease progression. The highly selective irreversible Bruton Tyrosine Kinase (BTK) inhibitors evobrutinib, tolebrutinib, and orelabrutinib, and the reversible BTK inhibitor fenebrutinib, all target B-cell activation and aspects of innate immunity, including macrophage and microglia biology. The c-KIT inhibitor masitinib mitigates neuroinflammation by controlling the survival, migration, and degranulation of mast cells, leading to the inhibition of proinflammatory and vasoactive molecular cascades that result from mast cell activation. This article will review and critically appraise the ongoing clinical trials of two classes of receptor tyrosine kinase inhibitors that are emerging as potential medical treatments for the varying subtypes of MS: BTK inhibitors and c-KIT inhibitors. Specifically, this review will attempt to answer whether BTK inhibitors have measurable positive clinical effects on patients with RRMS, SPMS with relapses, relapse-free SPMS, and PPMS through their effect on MRI T1 lesions; annualized relapse rate; EDSS scale; MSFC score; and time to onset of composite 12-week confirmed disability progression. Additionally, this review will examine the literature to determine if masitinib has positive clinical effects on patients with PPMS or relapse-free SPMS through its effect on EDSS or MSFC scores.
Collapse
Affiliation(s)
- Shane Arsenault
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | - Rochelle Y Benoit
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Fraser Clift
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Craig S Moore
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada; Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| |
Collapse
|
34
|
Faissner S, Gold R. Efficacy and Safety of Multiple Sclerosis Drugs Approved Since 2018 and Future Developments. CNS Drugs 2022; 36:803-817. [PMID: 35869335 PMCID: PMC9307218 DOI: 10.1007/s40263-022-00939-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
Multiple sclerosis treatment made substantial headway during the last two decades with the implementation of therapeutics with new modes of action and routes of application. We are now in the situation that second-generation molecules, approved since 2018, are on the market, characterized by reduced side effects using a more tailored therapeutic approach. Diroximel fumarate is a second-generation fumarate with reduced gastrointestinal side effects. Moreover, several novel, selective, sphingosine-1-phosphate receptor modulators with reduced off-target effects have been developed; namely siponimod, ozanimod, and ponesimod; all oral formulations. B-cell-targeted therapies such as ocrelizumab, given intravenously, and since 2021 ofatumumab, applied subcutaneously, complement the spectrum of novel therapies. The glycoengineered antibody ublituximab is the next anti-CD20 therapy about to be approved. Within the next years, oral inhibitors of Bruton's tyrosine kinase, currently under investigation in several phase III trials, may be licensed for multiple sclerosis. Those developments currently offer an individualized multiple sclerosis therapy, targeting patient needs with substantial effects on relapses, disability progression, and implications for daily life. In this up-to-date review, we provide a holistic overview about novel developments of the therapeutic landscape and upcoming approaches for multiple sclerosis treatment.
Collapse
Affiliation(s)
- Simon Faissner
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany.
| | - Ralf Gold
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| |
Collapse
|
35
|
Nakahara J. [History and prospects of multiple sclerosis treatment]. Rinsho Shinkeigaku 2022; 62:517-523. [PMID: 35753791 DOI: 10.5692/clinicalneurol.cn-001751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system of unknown etiology. Based on a hypothesis that MS is caused by certain viral infections, the efficacy of interferon β was examined in patients and it became the first disease-modifying drug (DMD) approximately 30 years ago. Through the series of research utilizing experimental autoimmune encephalomyelitis, many other DMDs were later developed. With emerging insights on limitation of the animal model, newer treatment strategies are being developed based on pathological findings from MS patients. In the current article, the history of MS treatment and its future prospects will be reviewed and discussed.
Collapse
Affiliation(s)
- Jin Nakahara
- Department of Neurology, Keio University School of Medicine
| |
Collapse
|
36
|
Collongues N, Becker G, Jolivel V, Ayme-Dietrich E, de Seze J, Binamé F, Patte-Mensah C, Monassier L, Mensah-Nyagan AG. A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis. Neurol Ther 2022; 11:981-1042. [PMID: 35610531 PMCID: PMC9338208 DOI: 10.1007/s40120-022-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect. In this review, we explore current knowledge on the assessment of neurodegeneration in MS and look at putative targets that might prove useful in protecting the axon from degeneration. Among them, Bruton's tyrosine kinase inhibitors, anti-apoptotic and antioxidant agents, sex hormones, statins, channel blockers, growth factors, and molecules preventing glutamate excitotoxicity have already been studied. Some of them have reached phase III clinical trials and carry a great message of hope for our patients with MS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France. .,Center for Clinical Investigation, INSERM U1434, Strasbourg, France. .,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France. .,University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.
| | - Guillaume Becker
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Jolivel
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Estelle Ayme-Dietrich
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Jérôme de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,Center for Clinical Investigation, INSERM U1434, Strasbourg, France.,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Fabien Binamé
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Laurent Monassier
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Ayikoé Guy Mensah-Nyagan
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| |
Collapse
|
37
|
Dietrich M, Hecker C, Martin E, Langui D, Gliem M, Stankoff B, Lubetzki C, Gruchot J, Göttle P, Issberner A, Nasiri M, Ramseier P, Beerli C, Tisserand S, Beckmann N, Shimshek D, Petzsch P, Akbar D, Levkau B, Stark H, Köhrer K, Hartung HP, Küry P, Meuth SG, Bigaud M, Zalc B, Albrecht P. Increased Remyelination and Proregenerative Microglia Under Siponimod Therapy in Mechanistic Models. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/3/e1161. [PMID: 35354603 PMCID: PMC8969301 DOI: 10.1212/nxi.0000000000001161] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Background and Objectives Siponimod is an oral, selective sphingosine-1-phosphate receptor-1/5 modulator approved for treatment of multiple sclerosis. Methods Mouse MRI was used to investigate remyelination in the cuprizone model. We then used a conditional demyelination Xenopus laevis model to assess the dose-response of siponimod on remyelination. In experimental autoimmune encephalomyelitis–optic neuritis (EAEON) in C57Bl/6J mice, we monitored the retinal thickness and the visual acuity using optical coherence tomography and optomotor response. Optic nerve inflammatory infiltrates, demyelination, and microglial and oligodendroglial differentiation were assessed by immunohistochemistry, quantitative real-time PCR, and bulk RNA sequencing. Results An increased remyelination was observed in the cuprizone model. Siponimod treatment of demyelinated tadpoles improved remyelination in comparison to control in a bell-shaped dose-response curve. Siponimod in the EAEON model attenuated the clinical score, reduced the retinal degeneration, and improved the visual function after prophylactic and therapeutic treatment, also in a bell-shaped manner. Inflammatory infiltrates and demyelination of the optic nerve were reduced, the latter even after therapeutic treatment, which also shifted microglial differentiation to a promyelinating phenotype. Discussion These results confirm the immunomodulatory effects of siponimod and suggest additional regenerative and promyelinating effects, which follow the dynamics of a bell-shaped curve with high being less efficient than low concentrations.
Collapse
Affiliation(s)
- Michael Dietrich
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Christina Hecker
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Elodie Martin
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Dominique Langui
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Michael Gliem
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Bruno Stankoff
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Catherine Lubetzki
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Joel Gruchot
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Peter Göttle
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Andrea Issberner
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Milad Nasiri
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Pamela Ramseier
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Christian Beerli
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Sarah Tisserand
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Nicolau Beckmann
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Derya Shimshek
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Patrick Petzsch
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - David Akbar
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Bodo Levkau
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Holger Stark
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Karl Köhrer
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Hans-Peter Hartung
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Patrick Küry
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Sven Günther Meuth
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Marc Bigaud
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Bernard Zalc
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Philipp Albrecht
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| |
Collapse
|
38
|
Bebo BF, Allegretta M, Landsman D, Zackowski KM, Brabazon F, Kostich WA, Coetzee T, Ng AV, Marrie RA, Monk KR, Bar-Or A, Whitacre CC. Pathways to cures for multiple sclerosis: A research roadmap. Mult Scler 2022; 28:331-345. [PMID: 35236198 PMCID: PMC8948371 DOI: 10.1177/13524585221075990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Multiple Sclerosis (MS) is a growing global health challenge affecting nearly 3 million people. Progress has been made in the understanding and treatment of MS over the last several decades, but cures remain elusive. The National MS Society is focused on achieving cures for MS. Objectives: Cures for MS will be hastened by having a roadmap that describes knowledge gaps, milestones, and research priorities. In this report, we share the Pathways to Cures Research Roadmap and recommendations for strategies to accelerate the development of MS cures. Methods: The Roadmap was developed through engagement of scientific thought leaders and people affected by MS from North America and the United Kingdom. It also included the perspectives of over 300 people living with MS and was endorsed by many leading MS organizations. Results: The Roadmap consist of three distinct but overlapping cure pathways: (1) stopping the MS disease process, (2) restoring lost function by reversing damage and symptoms, and (3) ending MS through prevention. Better alignment and focus of global resources on high priority research questions are also recommended. Conclusions: We hope the Roadmap will inspire greater collaboration and alignment of global resources that accelerate scientific breakthroughs leading to cures for MS.
Collapse
Affiliation(s)
- Bruce F Bebo
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Mark Allegretta
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Douglas Landsman
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Kathy M Zackowski
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Fiona Brabazon
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Walter A Kostich
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | - Timothy Coetzee
- National Multiple Sclerosis Society 733 3rd Ave New York, NY 10017 USA
| | | | - Ruth Ann Marrie
- Department of Internal Medicine (Neurology), University of Manitoba, Winnipeg, MB, Canada
| | - Kelly R Monk
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics, Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
39
|
Bing-Neel syndrome hidden by multiple sclerosis, a challenging overlay of diseases. Acta Neurol Belg 2022; 122:227-229. [PMID: 34424495 DOI: 10.1007/s13760-021-01777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
|
40
|
Giovannoni G, Popescu V, Wuerfel J, Hellwig K, Iacobaeus E, Jensen MB, García-Domínguez JM, Sousa L, De Rossi N, Hupperts R, Fenu G, Bodini B, Kuusisto HM, Stankoff B, Lycke J, Airas L, Granziera C, Scalfari A. Smouldering multiple sclerosis: the 'real MS'. Ther Adv Neurol Disord 2022; 15:17562864211066751. [PMID: 35096143 PMCID: PMC8793117 DOI: 10.1177/17562864211066751] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/28/2021] [Indexed: 12/25/2022] Open
Abstract
Using a philosophical approach or deductive reasoning, we challenge the dominant clinico-radiological worldview that defines multiple sclerosis (MS) as a focal inflammatory disease of the central nervous system (CNS). We provide a range of evidence to argue that the 'real MS' is in fact driven primarily by a smouldering pathological disease process. In natural history studies and clinical trials, relapses and focal activity revealed by magnetic resonance imaging (MRI) in MS patients on placebo or on disease-modifying therapies (DMTs) were found to be poor predictors of long-term disease evolution and were dissociated from disability outcomes. In addition, the progressive accumulation of disability in MS can occur independently of relapse activity from early in the disease course. This scenario is underpinned by a more diffuse smouldering pathological process that may affect the entire CNS. Many putative pathological drivers of smouldering MS can be potentially modified by specific therapeutic strategies, an approach that may have major implications for the management of MS patients. We hypothesise that therapeutically targeting a state of 'no evident inflammatory disease activity' (NEIDA) cannot sufficiently prevent disability accumulation in MS, meaning that treatment should also focus on other brain and spinal cord pathological processes contributing to the slow loss of neurological function. This should also be complemented with a holistic approach to the management of other systemic disease processes that have been shown to worsen MS outcomes.
Collapse
Affiliation(s)
- Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St., Whitechapel, London E1 2AT, UK
| | - Veronica Popescu
- Universitair MS Centrum, Hasselt, Belgium; Noorderhart Hospital, Pelt, Belgium; Hasselt University, Hasselt, Belgium
| | - Jens Wuerfel
- MIAC AG, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Charité - University Medicine Berlin, Berlin, Germany
| | - Kerstin Hellwig
- Katholisches Klinikum Bochum, Klinikum der Ruhr-Universität, Bochum, Germany
| | | | - Michael B Jensen
- Department of Neurology, Nordsjællands Hospital, Hillerød, Denmark
| | | | - Livia Sousa
- Centro Hospitalar e Universitário de Coimbra, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | | | - Raymond Hupperts
- Zuyderland Medisch Centrum, Sittard-Geleen, The Netherlands; Maastricht University Medical Center, Maastricht, The Netherlands
| | - Giuseppe Fenu
- Department of Neurology, Brotzu Hospital, Cagliari, Italy
| | - Benedetta Bodini
- Paris Brain Institute, Sorbonne University, Paris, France; Department of Neurology, APHP, Saint-Antoine Hospital, Paris, France
| | - Hanna-Maija Kuusisto
- Department of Neurology, Tampere University Hospital, Tampere, Finland; Department of Customer and Patient Safety, University of Eastern Finland, Kuopio, Finland
| | - Bruno Stankoff
- Paris Brain Institute, Sorbonne University, ICM, CNRS, Inserm, Paris, France; APHP, Saint-Antoine Hospital, Paris, France
| | - Jan Lycke
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Antonio Scalfari
- Centre for Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College London, London, UK
| |
Collapse
|
41
|
Schneider R, Oh J. Bruton's Tyrosine Kinase Inhibition in Multiple Sclerosis. Curr Neurol Neurosci Rep 2022; 22:721-734. [PMID: 36301434 PMCID: PMC9607648 DOI: 10.1007/s11910-022-01229-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) with a chronic and often progressive disease course. The current disease-modifying treatments (DMTs) limit disease progression primarily by dampening immune cell activity in the peripheral blood or hindering their migration from the periphery into the CNS. New therapies are needed to target CNS immunopathology, which is a key driver of disability progression in MS. This article reviews Bruton's Tyrosine Kinase Inhibitors (BTKIs), a new class of experimental therapy that is being intensely evaluated in MS. We focus on the potential peripheral and central mechanisms of action of BTKIs and their use in recent clinical trials in MS. RECENT FINDINGS There is evidence that some BTKIs cross the blood-brain barrier and may be superior to currently available DMTs at dampening the chronic neuroinflammatory processes compartmentalized within the CNS that contribute to progressive worsening in people withMS (pwMS). Recently, evobrutinib and tolebrutinib have shown efficacy in phase II clinical trials, and there are numerous ongoing phase III clinical trials of various BTKIs in relapsing and progressive forms of MS. Results from these clinical trials will be essential to understand the efficacy and safety of BTKIs across the spectrum of MS and keydifferences between specific BTKIs when treating pwMS. Inhibition of BTK has emerged as an attractive strategy to target cells of the adaptive and innate immune system outside and within the CNS. BTKIs carry great therapeutic potential across the MS spectrum, where key pathobiology aspects seem confined to the CNS compartment.
Collapse
Affiliation(s)
- Raphael Schneider
- Division of Neurology, Department of Medicine, St Michael’s Hospital, Unity Health, University of Toronto, 30 Bond St, PGT 17-742, Toronto, ON M5B 1W8 Canada ,Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael’s Hospital, Unity Health, University of Toronto, 30 Bond St, PGT 17-742, Toronto, ON M5B 1W8 Canada ,Institute of Medical Science, University of Toronto, Toronto, ON Canada
| |
Collapse
|
42
|
BTK inhibition limits B-cell-T-cell interaction through modulation of B-cell metabolism: implications for multiple sclerosis therapy. Acta Neuropathol 2022; 143:505-521. [PMID: 35303161 PMCID: PMC8960592 DOI: 10.1007/s00401-022-02411-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Inhibition of Bruton's Tyrosine Kinase (BTKi) is now viewed as a promising next-generation B-cell-targeting therapy for autoimmune diseases including multiple sclerosis (MS). Surprisingly little is known; however, about how BTKi influences MS disease-implicated functions of B cells. Here, we demonstrate that in addition to its expected impact on B-cell activation, BTKi attenuates B-cell:T-cell interactions via a novel mechanism involving modulation of B-cell metabolic pathways which, in turn, mediates an anti-inflammatory modulation of the B cells. In vitro, BTKi, as well as direct inhibition of B-cell mitochondrial respiration (but not glycolysis), limit the B-cell capacity to serve as APC to T cells. The role of metabolism in the regulation of human B-cell responses is confirmed when examining B cells of rare patients with mitochondrial respiratory chain mutations. We further demonstrate that both BTKi and metabolic modulation ex vivo can abrogate the aberrant activation and costimulatory molecule expression of B cells of untreated MS patients. Finally, as proof-of-principle in a Phase 1 study of healthy volunteers, we confirm that in vivo BTKi treatment reduces circulating B-cell mitochondrial respiration, diminishes their activation-induced expression of costimulatory molecules, and mediates an anti-inflammatory shift in the B-cell responses which is associated with an attenuation of T-cell pro-inflammatory responses. These data collectively elucidate a novel non-depleting mechanism by which BTKi mediates its effects on disease-implicated B-cell responses and reveals that modulating B-cell metabolism may be a viable therapeutic approach to target pro-inflammatory B cells.
Collapse
|
43
|
Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat Rev Neurol 2021; 18:40-55. [PMID: 34732831 DOI: 10.1038/s41582-021-00581-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
In contrast to the multiple disease-modifying therapies that are available for relapsing-remitting multiple sclerosis (MS), the therapeutic options for progressive MS (PMS) are limited. Recent advances in our understanding of the neuroimmunology of PMS, including the mechanisms that drive slowly expanding lesions, have fuelled optimism for improved treatment of this condition. In this Review, we highlight the commonly observed neuropathology of PMS and discuss the associated mechanisms of CNS injury. We then apply this knowledge to formulate criteria for therapeutic efficacy in PMS, beginning with the need for early treatment owing to the substantial neuropathology that is already present at the initial clinical presentation. Other requirements include: antagonism of neuroaxonal injury mediators such as pro-inflammatory microglia and lymphocytes; remediation of oxidative stress resulting from iron deposition and mitochondrial dysfunction; and promotion of neuroprotection through remyelination. We consider whether current disease-modifying therapies for relapsing-remitting MS meet the criteria for successful therapeutics in PMS and suggest that the evidence favours the early introduction of sphingosine 1-phosphate receptor modulators. Finally, we weigh up emerging medications, including repurposed generic medications and Bruton's tyrosine kinase inhibitors, against these fundamental criteria. In this new therapeutic era in PMS, success depends collectively on understanding disease mechanisms, drug characteristics (including brain penetration) and rational use.
Collapse
|
44
|
García-Merino A. Bruton's Tyrosine Kinase Inhibitors: A New Generation of Promising Agents for Multiple Sclerosis Therapy. Cells 2021; 10:2560. [PMID: 34685540 PMCID: PMC8534278 DOI: 10.3390/cells10102560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
B cells play a central role in the pathogenesis of multiple sclerosis (MS), as demonstrated through the success of various B cell-depleting monoclonal antibodies. Bruton's tyrosine kinase (BTK) is a critical molecule in intracellular signaling from the receptor of B cells and receptors expressed in the cells of the innate immune system. BTK inhibitors may be a non-cell-depleting alternative to B cell modulation. In this review, the structure, signaling, and roles of BTK are reviewed among the different inhibitors assayed in animal models of MS and clinical trials.
Collapse
Affiliation(s)
- Antonio García-Merino
- Neuroimmunology Unit, Foundation for Biomedical Research, Puerta de Hierro University Hospital, Universidad Autónoma de Madrid, Majadahonda, 28222 Madrid, Spain
| |
Collapse
|
45
|
Neys SFH, Rip J, Hendriks RW, Corneth OBJ. Bruton's Tyrosine Kinase Inhibition as an Emerging Therapy in Systemic Autoimmune Disease. Drugs 2021; 81:1605-1626. [PMID: 34609725 PMCID: PMC8491186 DOI: 10.1007/s40265-021-01592-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune disorders are complex heterogeneous chronic diseases involving many different immune cells. A significant proportion of patients respond poorly to therapy. In addition, the high burden of adverse effects caused by "classical" anti-rheumatic or immune modulatory drugs provides a need to develop more specific therapies that are better tolerated. Bruton's tyrosine kinase (BTK) is a crucial signaling protein that directly links B-cell receptor (BCR) signals to B-cell activation, proliferation, and survival. BTK is not only expressed in B cells but also in myeloid cells, and is involved in many different signaling pathways that drive autoimmunity. This makes BTK an interesting therapeutic target in the treatment of autoimmune diseases. The past decade has seen the emergence of first-line BTK small-molecule inhibitors with great efficacy in the treatment of B-cell malignancies, but with unfavorable safety profiles for use in autoimmunity due to off-target effects. The development of second-generation BTK inhibitors with superior BTK specificity has facilitated the investigation of their efficacy in clinical trials with autoimmune patients. In this review, we discuss the role of BTK in key signaling pathways involved in autoimmunity and provide an overview of the different inhibitors that are currently being investigated in clinical trials of systemic autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus, as well as available results from completed trials.
Collapse
Affiliation(s)
- Stefan F H Neys
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jasper Rip
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
46
|
Steinmaurer A, Wimmer I, Berger T, Rommer PS, Sellner J. Bruton's tyrosine kinase inhibition in the treatment of preclinical models and multiple sclerosis. Curr Pharm Des 2021; 28:437-444. [PMID: 34218776 DOI: 10.2174/1381612827666210701152934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
Significant progress has been made in understanding the immunopathogenesis of multiple sclerosis (MS) over recent years. Successful clinical trials with CD20-depleting monoclonal antibodies have corroborated the fundamental role of B cells in the pathogenesis of MS and reinforced the notion that cells of the B cell lineage are an attractive treatment target. Therapeutic inhibition of Bruton's tyrosine kinase (BTK), an enzyme involved in B cell and myeloid cell activation and function, is regarded as a next-generation approach that aims to attenuate both errant innate and adaptive immune functions. Moreover, brain-penetrant BTK inhibitors may impact compartmentalized inflammation and neurodegeneration within the central nervous system by targeting brain-resident B cells and microglia, respectively. Preclinical studies in animal models of MS corroborated an impact of BTK inhibition on meningeal inflammation and cortical demyelination. Notably, BTK inhibition attenuated the antigen-presenting capacity of B cells and the generation of encephalitogenic T cells. Evobrutinib, a selective oral BTK inhibitor, has been tested recently in a phase 2 study of patients with relapsing-remitting MS. The study met the primary endpoint of a significantly reduced cumulative number of Gadolinium-enhancing lesions under treatment with evobrutinib compared to placebo treatment. Thus, the results of ongoing phase 2 and 3 studies with evobrutinib, fenobrutinib, and tolebrutinib in relapsing-remitting and progressive MS are eagerly awaited. This review article introduces the physiological role of BTK, summarizes the pre-clinical and trial evidence, and addresses the potential beneficial effects of BTK inhibition in MS.
Collapse
Affiliation(s)
- Anja Steinmaurer
- Department of Neurology, Medical University of Vienna, Vienna. Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna. Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna. Austria
| | | | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach. Austria
| |
Collapse
|
47
|
Bar-Or A, Li R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol 2021; 20:470-483. [PMID: 33930317 DOI: 10.1016/s1474-4422(21)00063-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 01/04/2023]
Abstract
Novel insights from basic and translational studies are reshaping concepts of the immunopathogenesis of multiple sclerosis and understanding of the different inflammatory responses throughout the disease course. Previously, the cellular immunology of relapsing multiple sclerosis was considered to be principally T-cell driven; however, this process is now understood to involve multiple cell types and their functionally distinct subsets. Particularly, relapsing multiple sclerosis appears to involve imbalanced interactions between T cells, myeloid cells, B cells, and their effector and regulatory subpopulations. The major contributors to such imbalances differ across patients. Several emerging techniques enable comprehensive immune cell profiling at the single-cell level, revealing substantial functional heterogeneity and plasticity that could influence disease state and response to treatment. Findings from clinical trials with agents that successfully limit new multiple sclerosis disease activity and trials of agents that inadvertently exacerbate CNS inflammation have helped to elucidate disease mechanisms, better define the relevant modes of action of current immune therapies, and pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Multiple Sclerosis Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rui Li
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Multiple Sclerosis Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Microglia: The Missing Link to Decipher and Therapeutically Control MS Progression? Int J Mol Sci 2021; 22:ijms22073461. [PMID: 33801644 PMCID: PMC8038003 DOI: 10.3390/ijms22073461] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Therapeutically controlling chronic progression in multiple sclerosis (MS) remains a major challenge. MS progression is defined as a steady loss of parenchymal and functional integrity of the central nervous system (CNS), occurring independent of relapses or focal, magnetic resonance imaging (MRI)-detectable inflammatory lesions. While it clinically surfaces in primary or secondary progressive MS, it is assumed to be an integral component of MS from the very beginning. The exact mechanisms causing progression are still unknown, although evolving evidence suggests that they may substantially differ from those driving relapse biology. To date, progression is assumed to be caused by an interplay of CNS-resident cells and CNS-trapped hematopoietic cells. On the CNS-resident cell side, microglia that are phenotypically and functionally related to cells of the monocyte/macrophage lineage may play a key role. Microglia function is highly transformable. Depending on their molecular signature, microglia can trigger neurotoxic pathways leading to neurodegeneration, or alternatively exert important roles in promoting neuroprotection, downregulation of inflammation, and stimulation of repair. Accordingly, to understand and to possibly alter the role of microglial activation during MS disease progression may provide a unique opportunity for the development of suitable, more effective therapeutics. This review focuses on the current understanding of the role of microglia during disease progression of MS and discusses possible targets for therapeutic intervention.
Collapse
|
49
|
Pantazou V, Roux T, Oliveira Moreira V, Lubetzki C, Desmazières A. Interaction between Neurons and the Oligodendroglial Lineage in Multiple Sclerosis and Its Preclinical Models. Life (Basel) 2021; 11:231. [PMID: 33799653 PMCID: PMC7999210 DOI: 10.3390/life11030231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is a complex central nervous system inflammatory disease leading to demyelination and associated functional deficits. Though endogenous remyelination exists, it is only partial and, with time, patients can enter a progressive phase of the disease, with neurodegeneration as a hallmark. Though major therapeutic advances have been made, with immunotherapies reducing relapse rate during the inflammatory phase of MS, there is presently no therapy available which significantly impacts disease progression. Remyelination has been shown to favor neuroprotection, and it is thus of major importance to better understand remyelination mechanisms in order to promote them and hence preserve neurons. A crucial point is how this process is regulated through the neuronal crosstalk with the oligodendroglial lineage. In this review, we present the current knowledge on neuron interaction with the oligodendroglial lineage, in physiological context as well as in MS and its experimental models. We further discuss the therapeutic possibilities resulting from this research field, which might allow to support remyelination and neuroprotection and thus limit MS progression.
Collapse
Affiliation(s)
- Vasiliki Pantazou
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
- Service de Neurologie, Centre Hospitalier Universitaire Vaudois, 46 Rue du Bugnon, 1011 Lausanne, Switzerland
| | - Thomas Roux
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
- Assistance Publique-Hôpitaux de Paris, Neurology Department, Pitié Salpêtrière University Hospital, 75013 Paris, France
| | - Vanessa Oliveira Moreira
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
| | - Catherine Lubetzki
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
- Assistance Publique-Hôpitaux de Paris, Neurology Department, Pitié Salpêtrière University Hospital, 75013 Paris, France
| | - Anne Desmazières
- Paris Brain Institute (ICM), Sorbonne Université, CNRS, Inserm, GH Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75013 Paris, France; (V.P.); (T.R.); (V.O.M.); (C.L.)
| |
Collapse
|