1
|
Chen J, Zou C, Guan H, Zhou X, Hou L, Cui Y, Xu J, Luan P, Zheng D. Caloric restriction leading to attenuation of experimental Alzheimer's disease results from alterations in gut microbiome. CNS Neurosci Ther 2024; 30:e14823. [PMID: 38992870 PMCID: PMC11239325 DOI: 10.1111/cns.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Caloric restriction (CR) might be effective for alleviating/preventing Alzheimer's disease (AD), but the biological mechanisms remain unclear. In the current study, we explored whether CR caused an alteration of gut microbiome and resulted in the attenuation of cognitive impairment of AD animal model. METHODS Thirty-week-old male APP/PS1 transgenic mice were used as AD models (AD mouse). CR was achieved by 30% reduction of daily free feeding (ad libitum, AL) amount. The mice were fed with CR protocol or AL protocol for six consecutive weeks. RESULTS We found that with CR treatment, AD mice showed improved ability of learning and spatial memory, and lower levels of Aβ40, Aβ42, IL-1β, TNF-α, and ROS in the brain. By sequencing 16S rDNA, we found that CR treatment resulted in significant diversity in composition and abundance of gut flora. At the phylum level, Deferribacteres (0.04%), Patescibacteria (0.14%), Tenericutes (0.03%), and Verrucomicrobia (0.5%) were significantly decreased in CR-treated AD mice; at the genus level, Dubosiella (10.04%), Faecalibaculum (0.04%), and Coriobacteriaceae UCG-002 (0.01%) were significantly increased in CR-treated AD mice by comparing with AL diet. CONCLUSIONS Our results demonstrate that the attenuation of AD following CR treatment in APP/PS1 mice may result from alterations in the gut microbiome. Thus, gut flora could be a new target for AD prevention and therapy.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Cong Zou
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Hongbing Guan
- Guangdong Yunzhao Medical Technology Co., Ltd.GuangzhouChina
| | - Xiaoming Zhou
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Le Hou
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Yayong Cui
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Junhua Xu
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Ping Luan
- School of Basic Medical SciencesShenzhen UniversityShenzhenChina
| | - Dong Zheng
- Department of Neurology, The Affiliated Brain HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
2
|
Yuan Z, Li X, Hao Z, Tang Z, Yao X, Wu T. Intelligent prediction of Alzheimer's disease via improved multifeature squeeze-and-excitation-dilated residual network. Sci Rep 2024; 14:11994. [PMID: 38796518 PMCID: PMC11127948 DOI: 10.1038/s41598-024-62712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
This study aimed to address the issue of larger prediction errors existing in intelligent predictive tasks related to Alzheimer's disease (AD). A cohort of 487 enrolled participants was categorized into three groups: normal control (138 individuals), mild cognitive impairment (238 patients), and AD (111 patients) in this study. An improved multifeature squeeze-and-excitation-dilated residual network (MFSE-DRN) was proposed for two important AD predictions: clinical scores and conversion probability. The model was characterized as three modules: squeeze-and-excitation-dilated residual block (SE-DRB), multifusion pooling (MF-Pool), and multimodal feature fusion. To assess its performance, the proposed model was compared with two other novel models: ranking convolutional neural network (RCNN) and 3D vision geometrical group network (3D-VGGNet). Our method showed the best performance in the two AD predicted tasks. For the clinical scores prediction, the root-mean-square errors (RMSEs) and mean absolute errors (MAEs) of mini-mental state examination (MMSE) and AD assessment scale-cognitive 11-item (ADAS-11) were 1.97, 1.46 and 4.20, 3.19 within 6 months; 2.48, 1.69 and 4.81, 3.44 within 12 months; 2.67, 1.86 and 5.81, 3.83 within 24 months; 3.02, 2.03 and 5.09, 3.43 within 36 months, respectively. At the AD conversion probability prediction, the prediction accuracies within 12, 24, and 36 months reached to 88.0, 85.5, and 88.4%, respectively. The AD predication would play a great role in clinical applications.
Collapse
Affiliation(s)
- Zengbei Yuan
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xinlin Li
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zezhou Hao
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhixian Tang
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xufeng Yao
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Tao Wu
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| |
Collapse
|
3
|
Zameer U, Tariq A, Asif F, Kamran A. Empowering Minds and Bodies: The Impact of Exercise on Multiple Sclerosis and Cognitive Health. Ann Neurosci 2024; 31:121-123. [PMID: 38694717 PMCID: PMC11060125 DOI: 10.1177/09727531241227674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/26/2023] [Indexed: 05/04/2024] Open
Abstract
Multiple sclerosis (MS) is a global health concern affecting around 2.6 million people. It is characterised by neural inflammation, myelin breakdown and cognitive decline. Cognitive impairment, especially reduced cognitive processing speed (CPS), which affects up to 67% of MS patients and frequently manifests before mobility concerns, is one of the disease's most serious side effects. Effective adaptation and the application of cognitive rehabilitation treatments depend on the early diagnosis of cognitive impairment. Although pharmaceutical therapies have some drawbacks, endurance training has become a promising alternative. Intensity-controlled endurance exercise has the ability to delay the onset of MS symptoms and enhance cognitive function. Exercise has also been shown to have neuroprotective effects in a number of neurological disorders, including MS, Parkinson's disease and stroke. This includes both aerobic and resistance training. A mix of aerobic exercise and weight training has shown promise, especially for people with mild cognitive impairment, but according to recent studies any amount of physical activity is beneficial to cognitive performance. In conclusion, this in-depth analysis highlights the crucial part endurance exercise plays in treating MS-related cognitive impairment. It improves not only neurological health in general but also cognitive performance. Exercise can help control MS in a way that dramatically improves quality of life and well-being.
Collapse
Affiliation(s)
- Ushna Zameer
- Karachi Medical and Dental Colleges, North Nazimabad, Karachi, Sindh, Pakistan
| | - Amna Tariq
- Jinnah Sindh Medical College, Karachi, Sindh, Pakistan
| | - Fatima Asif
- Jinnah Sindh Medical College, Karachi, Sindh, Pakistan
| | - Ateeba Kamran
- Karachi Medical and Dental Colleges, North Nazimabad, Karachi, Sindh, Pakistan
| |
Collapse
|
4
|
Mangrulkar SV, Wankhede NL, Kale MB, Upaganlawar AB, Taksande BG, Umekar MJ, Anwer MK, Dailah HG, Mohan S, Behl T. Mitochondrial Dysfunction as a Signaling Target for Therapeutic Intervention in Major Neurodegenerative Disease. Neurotox Res 2023; 41:708-729. [PMID: 37162686 DOI: 10.1007/s12640-023-00647-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
Neurodegenerative diseases (NDD) are incurable and the most prevalent cognitive and motor disorders of elderly. Mitochondria are essential for a wide range of cellular processes playing a pivotal role in a number of cellular functions like metabolism, intracellular signaling, apoptosis, and immunity. A plethora of evidence indicates the central role of mitochondrial functions in pathogenesis of many aging related NDD. Considering how mitochondria function in neurodegenerative diseases, oxidative stress, and mutations in mtDNA both contribute to aging. Many substantial reports suggested the involvement of numerous contributing factors including, mitochondrial dysfunction, oxidative stress, mitophagy, accumulation of somatic mtDNA mutations, compromised mitochondrial dynamics, and transport within axons in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis. Therapies therefore target fundamental mitochondrial processes such as energy metabolism, free-radical generation, mitochondrial biogenesis, mitochondrial redox state, mitochondrial dynamics, mitochondrial protein synthesis, mitochondrial quality control, and metabolism hold great promise to develop pharmacological based therapies in NDD. By emphasizing the most efficient pharmacological strategies to target dysfunction of mitochondria in the treatment of neurodegenerative diseases, this review serves the scientific community engaged in translational medical science by focusing on the establishment of novel, mitochondria-targeted treatment strategies.
Collapse
Affiliation(s)
| | - Nitu L Wankhede
- Smt. Shantabai Patil College of Diploma in Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nasik, Maharashta, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 16278, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| |
Collapse
|
5
|
Andrade-Guerrero J, Rodríguez-Arellano P, Barron-Leon N, Orta-Salazar E, Ledesma-Alonso C, Díaz-Cintra S, Soto-Rojas LO. Advancing Alzheimer's Therapeutics: Exploring the Impact of Physical Exercise in Animal Models and Patients. Cells 2023; 12:2531. [PMID: 37947609 PMCID: PMC10648553 DOI: 10.3390/cells12212531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Alzheimer's disease (AD) is the main neurodegenerative disorder characterized by several pathophysiological features, including the misfolding of the tau protein and the amyloid beta (Aβ) peptide, neuroinflammation, oxidative stress, synaptic dysfunction, metabolic alterations, and cognitive impairment. These mechanisms collectively contribute to neurodegeneration, necessitating the exploration of therapeutic approaches with multiple targets. Physical exercise has emerged as a promising non-pharmacological intervention for AD, with demonstrated effects on promoting neurogenesis, activating neurotrophic factors, reducing Aβ aggregates, minimizing the formation of neurofibrillary tangles (NFTs), dampening inflammatory processes, mitigating oxidative stress, and improving the functionality of the neurovascular unit (NVU). Overall, the neuroprotective effects of exercise are not singular, but are multi-targets. Numerous studies have investigated physical exercise's potential in both AD patients and animal models, employing various exercise protocols to elucidate the underlying neurobiological mechanisms and effects. The objective of this review is to analyze the neurological therapeutic effects of these exercise protocols in animal models and compare them with studies conducted in AD patients. By translating findings from different approaches, this review aims to identify opportune, specific, and personalized therapeutic windows, thus advancing research on the use of physical exercise with AD patients.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Paola Rodríguez-Arellano
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Nayeli Barron-Leon
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Erika Orta-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| |
Collapse
|
6
|
Salisbury DL, Li D, Todd M, Ng TKS, Yu F. Aerobic Exercise, Training Dose, and Cardiorespiratory Fitness: Effects and Relationships with Resting Plasma Neurotrophic Factors in Alzheimer's Dementia. JOURNAL OF VASCULAR DISEASES 2023; 2:351-366. [PMID: 39328309 PMCID: PMC11426414 DOI: 10.3390/jvd2030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Background Vascular health is increasingly recognized for its roles in the pathogenesis and progression of Alzheimer's disease (AD). The objective of this study was to investigate effects of exercise training, dose, and cardiorespiratory fitness (CRF) on neurotrophic factors in community-dwelling, older adults with mild-to-moderate AD dementia. Methods This was a pilot blood ancillary study of the FIT-AD trial. Participants in the parent study were randomized to 6-month aerobic exercise (AEx) or stretching control. For this ancillary study, resting plasma brain-derived neurotrophic factor (BDNF), irisin, fibroblast growth factor-21 (FGF-21), and insulin-like growth factor-1 (IGF-1) biomarkers were assessed at baseline, 3, and 6 months. Estimates of within- and between-group effect sizes were calculated (Cohen's d). Relationships of biomarker change with dose and CRF change were explored with multivariable linear regression and repeated measures correlations. Results The sample (n = 26, 18 AEx/8 stretching) averaged 77.6 ± 6.9 years old, with the majority being male (65.4%), and non-Hispanic White (92.3%); between-group effect sizes were generally small except for irisin (d = -0.44)), AEx group relative to stretching group. Associations of dose and changes in CRF with changes in neurotrophic biomarker were weak (r2 ≤ 0.025). Conclusions The effects of exercise on BDNF, irisin, IGF-1, and FGF-21 were heterogeneous in AD. Our findings need validation in future, adequately powered exercise studies in AD.
Collapse
Affiliation(s)
| | - Danni Li
- School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Todd
- Edison College of Nursing and Health Innovation, Arizona State University, Tempe, AZ 85281, USA
| | - Ted K. S. Ng
- Department of Internal Medicine & Rush Institute of Healthy Aging, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fang Yu
- Edison College of Nursing and Health Innovation, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
7
|
Fischetti F, Poli L, De Tommaso M, Paolicelli D, Greco G, Cataldi S. The role of exercise parameters on small extracellular vesicles and microRNAs cargo in preventing neurodegenerative diseases. Front Physiol 2023; 14:1241010. [PMID: 37654673 PMCID: PMC10466047 DOI: 10.3389/fphys.2023.1241010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Physical activity (PA), which includes exercise, can reduce the risk of developing various non-communicable diseases, including neurodegenerative diseases (NDs), and mitigate their adverse effects. However, the mechanisms underlying this ability are not yet fully understood. Among several possible mechanisms proposed, such as the stimulation of brain-derived neurotrophic factor (BDNF), endothelial nitric oxide synthase (eNOS), insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), and nerve growth factor (NGF), the possible involvement of particular vesicular structures enclosed in lipid membranes known as extracellular vesicles (EVs) has recently been investigated. These EVs would appear to exert a paracrine and systemic action through their ability to carry various molecules, particularly so-called microRNAs (miRNAs), performing a function as mediators of intercellular communication. Interestingly, EVs and miRNAs are differentially expressed following PA, but evidence on how different exercise parameters may differentially affect EVs and the miRNAs they carry is still scarce. In this review we summarized the current human findings on the effects of PA and different exercise parameters exerted on EVs and their cargo, focusing on miRNAs molecules, and discussing how this may represent one of the biological mechanisms through which exercise contributes to preventing and slowing NDs.
Collapse
Affiliation(s)
- Francesco Fischetti
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| | - Luca Poli
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| | - Marina De Tommaso
- Applied Neurophysiology and Pain Unit, Department of Translational Biomedicine and Neuroscience (DiBraiN), Policlinico General Hospital, University of Study of Bari, Bari, Italy
| | - Damiano Paolicelli
- Neurophysiology Operative Unit, Department of Translational Biomedicine and Neuroscience (DiBraiN), Policlinico General Hospital, University of Study of Bari, Bari, Italy
| | - Gianpiero Greco
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| | - Stefania Cataldi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, Bari, Italy
| |
Collapse
|
8
|
Reitlo LS, Mihailovic JM, Stensvold D, Wisløff U, Hyder F, Håberg AK. Hippocampal neurochemicals are associated with exercise group and intensity, psychological health, and general cognition in older adults. GeroScience 2023; 45:1667-1685. [PMID: 36626020 PMCID: PMC10400748 DOI: 10.1007/s11357-022-00719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Based on the premise that physical activity/exercise impacts hippocampal structure and function, we investigated if hippocampal metabolites for neuronal viability and cell membrane density (i.e., N-acetyl aspartate (NAA), choline (Cho), creatine (Cr)) were higher in older adults performing supervised exercise compared to following national physical activity guidelines. Sixty-three participants (75.3 ± 1.9 years after 3 years of intervention) recruited from the Generation 100 study (NCT01666340_date:08.16.2012) were randomized into a supervised exercise group (SEG) performing twice weekly moderate- to high-intensity training, and a control group (CG) following national physical activity guidelines of ≥ 30-min moderate physical activity ≥ 5 days/week. Hippocampal body and head volumes and NAA, Cho, and Cr levels were acquired at 3T with magnetic resonance imaging and spectroscopic imaging. Sociodemographic data, peak oxygen uptake (VO2peak), exercise characteristics, psychological health, and cognition were recorded. General linear models were used to assess group differences and associations corrected for age, sex, education, and hippocampal volume. Both groups adhered to their training, where SEG trained at higher intensity. SEG had significantly lower NAA/Cr in hippocampal body than CG (p = 0.04). Across participants, higher training intensity was associated with lower Cho/Cr in hippocampal body (p < 0.001). Change in VO2peak, increasing VO2peak from baseline to 3 years, or VO2peak at 3 years were not associated with hippocampal neurochemicals. Lower NAA/Cr in hippocampal body was associated with poorer psychological health and slightly higher cognitive scores. Thus, following the national physical activity guidelines and not training at the highest intensity level were associated with the best neurochemical profile in the hippocampus at 3 years.
Collapse
Affiliation(s)
- Line S Reitlo
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jelena M Mihailovic
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Dorthe Stensvold
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- School of Human Movement and Nutrition Science, University of Queensland, Brisbane, Australia
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Asta Kristine Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
9
|
Damiano RF, Rocca CCDA, Serafim ADP, Loftis JM, Talib LL, Pan PM, Cunha-Neto E, Kalil J, de Castro GS, Seelaender M, Guedes BF, Nagahashi Marie SK, de Souza HP, Nitrini R, Miguel EC, Busatto G, Forlenza OV. Cognitive impairment in long-COVID and its association with persistent dysregulation in inflammatory markers. Front Immunol 2023; 14:1174020. [PMID: 37287969 PMCID: PMC10242059 DOI: 10.3389/fimmu.2023.1174020] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Objective To analyze the potential impact of sociodemographic, clinical and biological factors on the long-term cognitive outcome of patients who survived moderate and severe forms of COVID-19. Methods We assessed 710 adult participants (Mean age = 55 ± 14; 48.3% were female) 6 to 11 months after hospital discharge with a complete cognitive battery, as well as a psychiatric, clinical and laboratory evaluation. A large set of inferential statistical methods was used to predict potential variables associated with any long-term cognitive impairment, with a focus on a panel of 28 cytokines and other blood inflammatory and disease severity markers. Results Concerning the subjective assessment of cognitive performance, 36.1% reported a slightly poorer overall cognitive performance, and 14.6% reported being severely impacted, compared to their pre-COVID-19 status. Multivariate analysis found sex, age, ethnicity, education, comorbidity, frailty and physical activity associated with general cognition. A bivariate analysis found that G-CSF, IFN-alfa2, IL13, IL15, IL1.RA, EL1.alfa, IL45, IL5, IL6, IL7, TNF-Beta, VEGF, Follow-up C-Reactive Protein, and Follow-up D-Dimer were significantly (p<.05) associated with general cognition. However, a LASSO regression that included all follow-up variables, inflammatory markers and cytokines did not support these findings. Conclusion Though we identified several sociodemographic characteristics that might protect against cognitive impairment following SARS-CoV-2 infection, our data do not support a prominent role for clinical status (both during acute and long-stage of COVID-19) or inflammatory background (also during acute and long-stage of COVID-19) to explain the cognitive deficits that can follow COVID-19 infection.
Collapse
Affiliation(s)
- Rodolfo Furlan Damiano
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Cristiana Castanho de Almeida Rocca
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | | | - Jennifer M. Loftis
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States
- Departments of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Leda Leme Talib
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Pedro Mário Pan
- Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Edecio Cunha-Neto
- Departamento de Cínica Médica, Universidade de São Paulo FMUSP, São Paulo, SP, Brazil
- Institute for Investigation in Immunology/National Institutes for Science and Technology (iii/INCT), São Paulo, Brazil
| | - Jorge Kalil
- Departamento de Cínica Médica, Universidade de São Paulo FMUSP, São Paulo, SP, Brazil
- Institute for Investigation in Immunology/National Institutes for Science and Technology (iii/INCT), São Paulo, Brazil
| | - Gabriela Salim de Castro
- Cancer Metabolism Research Group, Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, SP, Brazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Department of Surgery and LIM 26, Hospital das Clínicas, University of São Paulo, São Paulo, SP, Brazil
| | - Bruno F. Guedes
- Departamento de Neurologia, Universidade de São Paulo FMUSP, São Paulo, Brazil
| | | | | | - Ricardo Nitrini
- Departamento de Neurologia, Universidade de São Paulo FMUSP, São Paulo, Brazil
| | - Euripedes Constantino Miguel
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Geraldo Busatto
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Orestes V. Forlenza
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
10
|
Frederiksen KS, Jensen CS, Høgh P, Gergelyffy R, Waldemar G, Andersen BB, Gottrup H, Vestergaard K, Wermuth L, Søndergaard HB, Sellebjerg F, Hasselbalch SG, Simonsen AH. Aerobic exercise does not affect serum neurofilament light in patients with mild Alzheimer's disease. Front Neurosci 2023; 17:1108191. [PMID: 36761410 PMCID: PMC9902368 DOI: 10.3389/fnins.2023.1108191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Aerobic exercise has been shown to modify Alzheimer pathology in animal models, and in patients with multiple sclerosis to reduce neurofilament light (NfL), a biomarker of neurodegeneration. Objective To investigate whether a 16-week aerobic exercise program was able to reduce serum NfL in patients with mild Alzheimer's disease (AD). Methods This is a secondary analysis of data from the multi-center Preserving Cognition, Quality of Life, Physical Health, and Functional Ability in Alzheimer's disease: The Effect of Physical Exercise (ADEX) study. Participants were randomized to 16 weeks of moderate intensity aerobic exercise or usual care. Clinical assessment and measurement of serum NfL was done at baseline and after the intervention. Results A total of 136 participants were included in the analysis. Groups were comparable at baseline except for APOEε4 carriership which was higher in the usual care group (75.3 versus 60.2%; p = 0.04). There was no effect of the intervention on serum NfL [intervention: baseline NfL (pg/mL) 25.76, change from baseline 0.87; usual care: baseline 27.09, change from baseline -1.16, p = 0.09]. Conclusion The findings do not support an effect of the exercise intervention on a single measure of neurodegeneration in AD. Further studies are needed using other types and durations of exercise and other measures of neurodegeneration. Clinical trial registration clinicaltrials.gov, identifier NCT01681602.
Collapse
Affiliation(s)
- Kristian Steen Frederiksen
- Department of Neurology, Danish Dementia Research Center, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark,*Correspondence: Kristian Steen Frederiksen,
| | - Camilla Steen Jensen
- Department of Neurology, Danish Dementia Research Center, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Peter Høgh
- Department of Neurology, Regional Dementia Research Centre, Zealand University Hospital, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Regional Dementia Research Centre, Zealand University Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Gunhild Waldemar
- Department of Neurology, Danish Dementia Research Center, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Bo Andersen
- Department of Neurology, Danish Dementia Research Center, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Hanne Gottrup
- Dementia Clinic, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lene Wermuth
- Department of Neurology, Dementia Clinic, Slagelse Hospital, Slagelse, Denmark,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Helle Bach Søndergaard
- Danish Multiple Sclerosis Center, Copenhagen University Hospital–Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Copenhagen University Hospital–Rigshospitalet, Glostrup, Denmark
| | - Steen Gregers Hasselbalch
- Department of Neurology, Danish Dementia Research Center, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Hviid Simonsen
- Department of Neurology, Danish Dementia Research Center, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Perus L, Busto GU, Mangin JF, Le Bars E, Gabelle A. Effects of preventive interventions on neuroimaging biomarkers in subjects at-risk to develop Alzheimer's disease: A systematic review. Front Aging Neurosci 2022; 14:1014559. [PMID: 36506466 PMCID: PMC9730537 DOI: 10.3389/fnagi.2022.1014559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's Disease (AD) is a multifactorial and complex neurodegenerative disorder. Some modifiable risk factors have been associated with an increased risk of appearance of the disease and/or cognitive decline. Preventive clinical trials aiming at reducing one or combined risk factors have been implemented and their potential effects assessed on cognitive trajectories and on AD biomarkers. However, the effect of interventions on surrogate markers, in particular imaging biomarkers, remains poorly understood. We conducted a review of the literature and analyzed 43 interventional studies that included physical exercise, nutrition, cognitive training or multidomain interventions, and assessed various brain imaging biomarkers, to determine the effects of preventive interventions on imaging biomarkers for subjects at-risk to develop AD. Deciphering the global and regional brain effect of each and combined interventions will help to better understand the interplay relationship between multimodal interventions, cognition, surrogate brain markers, and to better design primary and secondary outcomes for future preventive clinical trials. Those studies were pondered using generally-admitted quality criteria to reveal that interventions may affect the brain of patients with cognitive impairment rather than those without cognitive impairment thus indicating that particular care should be taken when selecting individuals for interventions. Additionally, a majority of the studies concurred on the effect of the interventions and particularly onto the frontal brain areas.
Collapse
Affiliation(s)
- Lisa Perus
- INM, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Department of Neurology, Memory Resources and Research Center, Gui de Chauliac Hospital, Montpellier, France
- Institut d'Imagerie Fonctionnelle Humaine, I2FH, Department of Neuroradiology, Gui de Chauliac Hospital and University of Montpellier, Montpellier, France
- CATI, US52-UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP, Ile de France, France
| | - Germain U. Busto
- INM, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Department of Neurology, Memory Resources and Research Center, Gui de Chauliac Hospital, Montpellier, France
| | - Jean-François Mangin
- CATI, US52-UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP, Ile de France, France
- Université Paris-Saclay, CEA, CNRS, Neurospin, UMR9027 Baobab, Gif-sur-Yvette, France
| | - Emmanuelle Le Bars
- Institut d'Imagerie Fonctionnelle Humaine, I2FH, Department of Neuroradiology, Gui de Chauliac Hospital and University of Montpellier, Montpellier, France
| | - Audrey Gabelle
- INM, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Department of Neurology, Memory Resources and Research Center, Gui de Chauliac Hospital, Montpellier, France
| |
Collapse
|
12
|
A Systematic Study into the Effects of Long-Term Multicomponent Training on the Cognitive Abilities of Older Adults with Neurodegenerative Disorders. PSYCH 2022. [DOI: 10.3390/psych4040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cognition includes all processes through which a person becomes aware of their situation, needs, goals, and necessary actions. Regular specialized cognitive and neuromotor simulation exercises have improved various cognitive processes, including memory, speed of reasoning, and problem-solving skills. This review focuses on understanding the efficacy of long-term multicomponent exercise interventions to mitigate and delay the effects on cognitive abilities in older adults with neurodegenerative disorders. The main criteria for final studies were randomised controlled trials with a minimum of a 24-week intervention. The Cochrane Central Register of Controlled Trials, Web of Science, SCOPUS, B-On, Sport Discus, Scielo, APA PsycINFO, Psychology and Behavioural Sciences, Academic Search Complete, Medline (PubMed), ERIC, and Google Scholar databases were checked. The search occurred between April 2022 and July 2022. A total of 19 studies were used in this review. The initial search identified 6.835 studies. In the first screening, a total of 6474 studies were excluded. After this, 361 studies were analysed by co-authors and did not meet the specific final criteria and were excluded. In total, 19 studies were included in the final analysis, and 14 papers met all requirements previously defined.
Collapse
|
13
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Brown BM, de Frutos Lucas J, Porter T, Frost N, Vacher M, Peiffer JJ, Laws SM. Non-Modifiable Factors as Moderators of the Relationship Between Physical Activity and Brain Volume: A Cross-Sectional UK Biobank Study. J Alzheimers Dis 2022; 88:1091-1101. [PMID: 35754269 DOI: 10.3233/jad-220114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous research suggests physical activity attenuates grey and white matter loss; however, there appears to be individual variability in this effect. Understanding factors that can influence the relationship between physical activity and brain volume may enable prediction of individual response. OBJECTIVE The current study examined the relationship between objectively-measured physical activity and brain volume; and whether this relationship is moderated by age, sex, or a priori candidate genetic factors, brain-derived neurotrophic factor (BDNF) Val66Met, or apolipoprotein (APOE) ɛ4 allele carriage. METHODS Data from 10,083 men and women (50 years and over) of the UK Biobank were used to examine the study objectives. All participants underwent a magnetic resonance imaging scan to quantify grey and white matter volumes, physical activity monitoring via actigraphy, and genotyping. RESULTS Physical activity was associated with total grey matter volume, total white matter volume, and right hippocampal volume. Only males had an association between higher physical activity levels and greater cortical grey matter volume, total grey matter volume, and right hippocampal volume. Age moderated the relationship between physical activity and white matter volume. CONCLUSION Our results indicate that in males, but not females, an association exists between objectively-measured physical activity and grey matter volume. Age may also play a role in impacting the relationship between physical activity and brain volume. Future research should evaluate longitudinal brain volumetrics to better understand the nature of age and sex-effects on the physical activity and brain volume relationship.
Collapse
Affiliation(s)
- Belinda M Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia.,Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Jaisalmer de Frutos Lucas
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.,Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, UPM-UCM, Pozuelo de Alarcón, Spain
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Natalie Frost
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Michael Vacher
- Australian e-Health Research Centre, CSIRO, Floreat, Western Australia, Australia
| | - Jeremiah J Peiffer
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| |
Collapse
|
15
|
Liu Y, Chu JMT, Ran Y, Zhang Y, Chang RCC, Wong GTC. Prehabilitative resistance exercise reduces neuroinflammation and improves mitochondrial health in aged mice with perioperative neurocognitive disorders. J Neuroinflammation 2022; 19:150. [PMID: 35705955 PMCID: PMC9199135 DOI: 10.1186/s12974-022-02483-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background Postoperative neurocognitive dysfunction remains a significant problem in vulnerable groups such as the elderly. While experimental data regarding its possible pathogenic mechanisms accumulate, therapeutic options for this disorder are limited. In this study, we evaluated the neuroprotective effect of a period of preconditioning resistant training on aged mice undergoing abdominal surgery. Further, we examined the underlying mechanisms from the perspective of neuroinflammatory state and synaptic plasticity in the hippocampus. Methods 18-month-old C57BL/6N mice were trained for 5 weeks using a ladder-climbing protocol with progressively increasing weight loading. Preoperative baseline body parameters, cognitive performance and neuroinflammatory states were assessed and compared between sedentary and trained groups of 9-month-old and 18-month-old mice. To access the neuroprotective effect of resistance training on postoperative aged mice, both sedentary and trained mice were subjected to a laparotomy under 3% sevoflurane anesthesia. Cognitive performance on postoperative day 14, hippocampal neuroinflammation, mitochondrial dysfunction and synaptic plasticity were examined and compared during groups. Results 18-month-old mice have increased body weight, higher peripheral and central inflammatory status, reduction in muscle strength and cognitive performance compared with middle-aged 9-month-old mice, which were improved by resistance exercise. In the laparotomy group, prehabilitative resistant exercise improved cognitive performance and synaptic plasticity, reduced inflammatory factors and glial cells activation after surgery. Furthermore, resistance exercise activated hippocampal PGC-1α/BDNF/Akt/GSK-3β signaling and improved mitochondrial biogenesis, as well as ameliorated mitochondrial dynamics in postoperative-aged mice. Conclusions Resistance exercise reduced risk factors for perioperative neurocognitive disorders such as increased body weight, elevated inflammatory markers, and pre-existing cognitive impairment. Accordantly, preoperative resistance exercise improved surgery-induced adverse effects including cognitive impairment, synaptic deficit and neuroinflammation, possibly by facilitate mitochondrial health through the PGC1-a/BDNF pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02483-1.
Collapse
Affiliation(s)
- Yan Liu
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.,Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, SAR, China.,Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - John Man Tak Chu
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.,Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, SAR, China
| | - You Ran
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, SAR, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Yan Zhang
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.,Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, SAR, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China.
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China. .,Department of Anaesthesiology, The University of Hong Kong, K424, Queen Mary Hospital, Hong Kong, SAR, China.
| |
Collapse
|
16
|
Andrade A, Siqueira TC, D'Oliveira A, Dominski FH. Effects of Exercise in the Treatment of Alzheimer's Disease: An Umbrella Review of Systematic Reviews and Meta-Analyses. J Aging Phys Act 2022; 30:535-551. [PMID: 34489364 DOI: 10.1123/japa.2021-0033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/11/2021] [Accepted: 06/26/2021] [Indexed: 11/18/2022]
Abstract
The authors aimed to provide an overview of the evidence on the effects of exercise in people with Alzheimer's disease through a comprehensive review of the existing systematic reviews and meta-analyses. A literature search was performed in CINAHL, Cochrane Library, EMBASE, PubMed, SPORTDiscus, Scopus, and Web of Science databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The AMSTAR-2-Tool was used for the quality assessment. Twenty-three reviews fulfilled the criteria. Most of the reviews investigated the effects of aerobic exercise on Alzheimer's disease symptoms. The largest effects of exercise were seen in terms of improved cognition by multiple exercises. The majority of the reviews were rated as being of moderate quality and none were classified as having high quality. Exercise is an effective way to treat Alzheimer's disease symptoms and has a low incidence of related adverse events. As most reviews were evaluated as low-moderate quality, caution is needed in the interpretation of the results.
Collapse
|
17
|
Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, Sorrentino V, Millet GP. Boosting mitochondrial health to counteract neurodegeneration. Prog Neurobiol 2022; 215:102289. [DOI: 10.1016/j.pneurobio.2022.102289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022]
|
18
|
Sujkowski A, Hong L, Wessells RJ, Todi SV. The protective role of exercise against age-related neurodegeneration. Ageing Res Rev 2022; 74:101543. [PMID: 34923167 PMCID: PMC8761166 DOI: 10.1016/j.arr.2021.101543] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Endurance exercise is a widely accessible, low-cost intervention with a variety of benefits to multiple organ systems. Exercise improves multiple indices of physical performance and stimulates pronounced health benefits reducing a range of pathologies including metabolic, cardiovascular, and neurodegenerative disorders. Endurance exercise delays brain aging, preserves memory and cognition, and improves symptoms of neurodegenerative pathologies like Amyotrophic Lateral Sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and various ataxias. Potential mechanisms underlying the beneficial effects of exercise include neuronal survival and plasticity, neurogenesis, epigenetic modifications, angiogenesis, autophagy, and the synthesis and release of neurotrophins and cytokines. In this review, we discuss shared benefits and molecular pathways driving the protective effects of endurance exercise on various neurodegenerative diseases in animal models and in humans.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Physiology, Wayne State University School of Medicine, USA; Department of Pharmacology, Wayne State University School of Medicine, USA
| | - Luke Hong
- Department of Pharmacology, Wayne State University School of Medicine, USA; Department of Neurology, Wayne State University School of Medicine, USA
| | - R J Wessells
- Department of Physiology, Wayne State University School of Medicine, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, USA; Department of Neurology, Wayne State University School of Medicine, USA.
| |
Collapse
|
19
|
Qin Z, Han X, Ran J, Guo S, Lv L. Exercise-Mediated Alteration of miR-192-5p Is Associated with Cognitive Improvement in Alzheimer's Disease. Neuroimmunomodulation 2022; 29:36-43. [PMID: 34256371 DOI: 10.1159/000516928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Physical exercise is an important component of managing Alzheimer's disease (AD). miRNAs can be modulated by exercise intervention. OBJECTIVE The study explored the involvement and potential mechanism of miR-192-5p in the protective effect of physical exercise on AD. METHODS Ninety AD patients were enrolled, in which 45 cases accepted cycling training for continuous 3 months. The expression changes of miR-192-5p before and after exercise were analyzed by reverse transcription-quantitative PCR. 8-month-old APP/PS1 double Tg mice were used as the AD animal model. Mice in the voluntary exercise (VE) group received VE for 4 weeks. Morris water maze (MWM) test was used to evaluate the learning and memory function. Enzyme-linked immunosorbent assay was used to calculate the level of IL-1β, IL-6, and TNF-α. RESULTS AD patients showed elevated MMSE scores, decreased ADAS-cog and NPI-Q scores after 3 months of exercise. miR-192-5p was downregulated in the serum of AD patients and correlated with the levels of MMSE score, ADAS-cog, and NPI-Q score. A positive association was detected between serum miR-192-5p with TNF-α, IL-6, and IL-1β levels. MiR-192-5p is downregulated in the hippocampus tissues of mice after VE. Overexpression of miR-192-5p reversed the neuroprotective effect of exercise on AD in mice and promoted the inflammatory response of AD mice. CONCLUSION MiR-192-5p can be modulated by the exercise intervention and involved in the protective effect of exercise on AD.
Collapse
Affiliation(s)
- Zhaomei Qin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xingjun Han
- Department of Preventive Treatment Disease Center, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Ran
- Department of Pediatrics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shanshan Guo
- Department of Psychosomatic Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lina Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
Mercerón-Martínez D, Ibaceta-González C, Salazar C, Almaguer-Melian W, Bergado-Rosado JA, Palacios AG. Alzheimer’s Disease, Neural Plasticity, and Functional Recovery. J Alzheimers Dis 2021; 82:S37-S50. [DOI: 10.3233/jad-201178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease (AD) is the most common and devastating neurodegenerative condition worldwide, characterized by the aggregation of amyloid-β and phosphorylated tau protein, and is accompanied by a progressive loss of learning and memory. A healthy nervous system is endowed with synaptic plasticity, among others neural plasticity mechanisms, allowing structural and physiological adaptations to changes in the environment. This neural plasticity modification sustains learning and memory, and behavioral changes and is severely affected by pathological and aging conditions, leading to cognitive deterioration. This article reviews critical aspects of AD neurodegeneration as well as therapeutic approaches that restore neural plasticity to provide functional recoveries, including environmental enrichment, physical exercise, transcranial stimulation, neurotrophin involvement, and direct electrical stimulation of the amygdala. In addition, we report recent behavioral results in Octodon degus, a promising natural model for the study of AD that naturally reproduces the neuropathological alterations observed in AD patients during normal aging, including neuronal toxicity, deterioration of neural plasticity, and the decline of learning and memory.
Collapse
Affiliation(s)
- Daymara Mercerón-Martínez
- Experimental Electrophysiology Lab, International Center for Neurological Restoration (CIREN), Havana City, Cuba
| | | | - Claudia Salazar
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - William Almaguer-Melian
- Experimental Electrophysiology Lab, International Center for Neurological Restoration (CIREN), Havana City, Cuba
| | | | - Adrian G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
21
|
Lee B, Shin M, Park Y, Won SY, Cho KS. Physical Exercise-Induced Myokines in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22115795. [PMID: 34071457 PMCID: PMC8198301 DOI: 10.3390/ijms22115795] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are disorders characterized by progressive degeneration of the nervous system. Currently, there is no disease-modifying treatments for most NDs. Meanwhile, numerous studies conducted on human and animal models over the past decades have showed that exercises had beneficial effects on NDs. Inter-tissue communication by myokine, a peptide produced and secreted by skeletal muscles during exercise, is thought to be an important underlying mechanism for the advantages. Here, we reviewed studies about the effects of myokines regulated by exercise on NDs and their mechanisms. Myokines could exert beneficial effects on NDs through a variety of regulatory mechanisms, including cell survival, neurogenesis, neuroinflammation, proteostasis, oxidative stress, and protein modification. Studies on exercise-induced myokines are expected to provide a novel strategy for treating NDs, for which there are no adequate treatments nowadays. To date, only a few myokines have been investigated for their effects on NDs and studies on mechanisms involved in them are in their infancy. Therefore, future studies are needed to discover more myokines and test their effects on NDs.
Collapse
Affiliation(s)
- Banseok Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
| | - Myeongcheol Shin
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
| | - Youngjae Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
| | - So-Yoon Won
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
- Korea Hemp Institute, Konkuk University, Seoul 05029, Korea
- Correspondence: (S.-Y.W.); (K.S.C.); Tel.: +82-10-3688-5474 (S.-Y.W.); Tel.: +82-2-450-3424 (K.S.C.)
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (B.L.); (M.S.); (Y.P.)
- Korea Hemp Institute, Konkuk University, Seoul 05029, Korea
- Correspondence: (S.-Y.W.); (K.S.C.); Tel.: +82-10-3688-5474 (S.-Y.W.); Tel.: +82-2-450-3424 (K.S.C.)
| |
Collapse
|
22
|
Molecular Mechanisms Underlying the Beneficial Effects of Exercise on Brain Function and Neurological Disorders. Int J Mol Sci 2021; 22:ijms22084052. [PMID: 33919972 PMCID: PMC8070923 DOI: 10.3390/ijms22084052] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
As life expectancy has increased, particularly in developed countries, due to medical advances and increased prosperity, age-related neurological diseases and mental health disorders have become more prevalent health issues, reducing the well-being and quality of life of sufferers and their families. In recent decades, due to reduced work-related levels of physical activity, and key research insights, prescribing adequate exercise has become an innovative strategy to prevent or delay the onset of these pathologies and has been demonstrated to have therapeutic benefits when used as a sole or combination treatment. Recent evidence suggests that the beneficial effects of exercise on the brain are related to several underlying mechanisms related to muscle–brain, liver–brain and gut–brain crosstalk. Therefore, this review aims to summarize the most relevant current knowledge of the impact of exercise on mood disorders and neurodegenerative diseases, and to highlight the established and potential underlying mechanisms involved in exercise–brain communication and their benefits for physiology and brain function.
Collapse
|
23
|
Wierczeiko A, Gammel L, Radyushkin K, Nguyen VTT, Todorov H, Gerber S, Endres K. Voluntary Wheel Running Did Not Alter Gene Expression in 5xfad Mice, but in Wild-Type Animals Exclusively after One-Day of Physical Activity. Cells 2021; 10:693. [PMID: 33804749 PMCID: PMC8004053 DOI: 10.3390/cells10030693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
Physical activity is considered a promising preventive intervention to reduce the risk of developing Alzheimer's disease (AD). However, the positive effect of therapeutic administration of physical activity has not been proven conclusively yet, likely due to confounding factors such as varying activity regimens and life or disease stages. To examine the impact of different routines of physical activity in the early disease stages, we subjected young 5xFAD and wild-type mice to 1-day (acute) and 30-day (chronic) voluntary wheel running and compared them with age-matched sedentary controls. We observed a significant increase in brain lactate levels in acutely trained 5xFAD mice relative to all other experimental groups. Subsequent brain RNA-seq analysis did not reveal major differences in transcriptomic regulation between training durations in 5xFAD mice. In contrast, acute training yielded substantial gene expression changes in wild-type animals relative to their chronically trained and sedentary counterparts. The comparison of 5xFAD and wild-type mice showed the highest transcriptional differences in the chronic and sedentary groups, whereas acute training was associated with much fewer differentially expressed genes. In conclusion, our results suggest that different training durations did not affect the global transcriptome of 3-month-old 5xFAD mice, whereas acute running seemed to induce a similar transcriptional stress state in wild-type animals as already known for 5xFAD mice.
Collapse
Affiliation(s)
- Anna Wierczeiko
- Working Group Computational Systems Genetics (CSG), Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (A.W.); (H.T.)
- Working Group Mouse Behavioral Unit (MBU), Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
| | - Lena Gammel
- Working Group Healthy Aging and Neurodegeneration, Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (L.G.); (V.T.T.N.)
| | - Konstantin Radyushkin
- Working Group Mouse Behavioral Unit (MBU), Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
| | - Vu Thu Thuy Nguyen
- Working Group Healthy Aging and Neurodegeneration, Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (L.G.); (V.T.T.N.)
| | - Hristo Todorov
- Working Group Computational Systems Genetics (CSG), Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (A.W.); (H.T.)
| | - Susanne Gerber
- Working Group Computational Systems Genetics (CSG), Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (A.W.); (H.T.)
| | - Kristina Endres
- Working Group Healthy Aging and Neurodegeneration, Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (L.G.); (V.T.T.N.)
| |
Collapse
|
24
|
López-Ortiz S, Pinto-Fraga J, Valenzuela PL, Martín-Hernández J, Seisdedos MM, García-López O, Toschi N, Di Giuliano F, Garaci F, Mercuri NB, Nisticò R, Emanuele E, Lista S, Lucia A, Santos-Lozano A. Physical Exercise and Alzheimer's Disease: Effects on Pathophysiological Molecular Pathways of the Disease. Int J Mol Sci 2021; 22:ijms22062897. [PMID: 33809300 PMCID: PMC7999827 DOI: 10.3390/ijms22062897] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD), the most common form of neurodegenerative dementia in adults worldwide, is a multifactorial and heterogeneous disorder characterized by the interaction of genetic and epigenetic factors and the dysregulation of numerous intracellular signaling and cellular/molecular pathways. The introduction of the systems biology framework is revolutionizing the study of complex diseases by allowing the identification and integration of cellular/molecular pathways and networks of interaction. Here, we reviewed the relationship between physical activity and the next pathophysiological processes involved in the risk of developing AD, based on some crucial molecular pathways and biological process dysregulated in AD: (1) Immune system and inflammation; (2) Endothelial function and cerebrovascular insufficiency; (3) Apoptosis and cell death; (4) Intercellular communication; (5) Metabolism, oxidative stress and neurotoxicity; (6) DNA damage and repair; (7) Cytoskeleton and membrane proteins; (8) Synaptic plasticity. Moreover, we highlighted the increasingly relevant role played by advanced neuroimaging technologies, including structural/functional magnetic resonance imaging, diffusion tensor imaging, and arterial spin labelling, in exploring the link between AD and physical exercise. Regular physical exercise seems to have a protective effect against AD by inhibiting different pathophysiological molecular pathways implicated in AD.
Collapse
Affiliation(s)
- Susana López-Ortiz
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
| | - Jose Pinto-Fraga
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
| | - Pedro L. Valenzuela
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (P.L.V.); (O.G.-L.); (S.L.)
| | - Juan Martín-Hernández
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
| | - María M. Seisdedos
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
| | - Oscar García-López
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (P.L.V.); (O.G.-L.); (S.L.)
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (N.T.); (F.G.)
- Department of Radiology, “Athinoula A. Martinos” Center for Biomedical Imaging, Boston, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Francesca Di Giuliano
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (N.T.); (F.G.)
- Casa di Cura “San Raffaele Cassino”, 03043 Cassino, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy;
- School of Pharmacy, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Simone Lista
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (P.L.V.); (O.G.-L.); (S.L.)
- School of Pharmacy, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (P.L.V.); (O.G.-L.); (S.L.)
- Research Institute of the Hospital 12 de Octubre (“imas12”), 28041 Madrid, Spain
- Centro de Investigación Biomeédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
- Correspondence:
| | - Alejandro Santos-Lozano
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
- Research Institute of the Hospital 12 de Octubre (“imas12”), 28041 Madrid, Spain
| |
Collapse
|
25
|
Treyer V, Meyer RS, Buchmann A, Crameri GAG, Studer S, Saake A, Gruber E, Unschuld PG, Nitsch RM, Hock C, Gietl AF. Physical activity is associated with lower cerebral beta-amyloid and cognitive function benefits from lifetime experience-a study in exceptional aging. PLoS One 2021; 16:e0247225. [PMID: 33606797 PMCID: PMC7895362 DOI: 10.1371/journal.pone.0247225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/03/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Exceptional agers (85+ years) are characterized by preserved cognition presumably due to high cognitive reserve. In the current study, we examined whether personality, risk and protective factors for dementia as well as quality of life are associated with core features of Alzheimer's disease (amyloid-deposition and hippocampal volume) as well as cognition in exceptional aging. METHODS We studied 49 exceptional agers (average 87.8 years, range 84-94 years), with preserved activities of daily living and absence of dementia. All participants received a detailed clinical and neuropsychological examination. We used established questionnaires to measure lifetime experience, personality, recent physical and cognitive activity as well as quality of life. Cerebral amyloid-deposition was estimated by 18-[F]-Flutemetamol-PET and manual hippocampal volumetry was performed on 3D T1 MRI images. RESULTS In this sample of exceptional agers with preserved activities of daily living, we found intact cognitive performance in the subjects with the highest amyloid-load in the brain, but a lower quality of life with respect to autonomy as well as higher neuroticism. Higher self-reported physical activity in the last twelve months went with a lower amyloid load. Higher self-reported leisure-time/ not work-related activity went with better executive functioning at older age. CONCLUSION Even in exceptional aging, high amyloid load may subtly influence personality and quality of life. Our findings support a close relationship between high physical activity and low amyloid-deposition and underscore the importance of extracurricular activities for executive functions. As executive functions are known to be a central resource for everyday functioning in fostering extracurricular activities may be effective in delaying the onset of dementia.
Collapse
Affiliation(s)
- Valerie Treyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Rafael S. Meyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Andreas Buchmann
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | | | - Sandro Studer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Antje Saake
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Esmeralda Gruber
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Paul G. Unschuld
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Hospital for Psychogeriatric Medicine, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Neurimmune, Schlieren-Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Neurimmune, Schlieren-Zurich, Switzerland
| | - Anton F. Gietl
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Gogniat MA, Robinson TL, Miller LS. Exercise interventions do not impact brain volume change in older adults: a systematic review and meta-analysis. Neurobiol Aging 2021; 101:230-246. [PMID: 33640675 DOI: 10.1016/j.neurobiolaging.2021.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 01/20/2023]
Abstract
Exercise interventions have been shown to positively impact cognitive function in older adults, but the mechanisms underlying the neuroprotective effects of exercise on the brain are not well understood. Here, we aimed to synthesize and quantitatively analyze the current literature on exercise interventions and brain volume change in older adults and to examine the impact of key demographic and intervention features as well as study quality. This study was pre-registered with PROSPERO (CRD42018091866). EBSCOhost, Cochrane Library, Embase, and reference lists were searched to identify randomized-controlled trials (RCTs) of exercise interventions for healthy older adults and older adults (60+) with mild cognitive impairment (MCI). A total of 69 effects from 14 studies were pooled and expressed as Hedge's g using a random-effects model. Results indicated that there was no significant difference in brain volume outcomes for older adults that completed an exercise intervention compared to older adults in control groups (g = 0.012, p = 0.728, 95% CI = -0.055, .078). These results were confirmed using multilevel analysis to account for nesting of effects within studies (g = 0.009, p = 0.826, 95% CI = -0.072, 0.090) and using conservative post-hoc models to address possible non-independence of multiple outcome domains and sample nonindependence. No significant heterogeneity was detected, limiting moderator analyses. The implications for future research are discussed.
Collapse
Affiliation(s)
| | - Talia L Robinson
- University of Georgia, Department of Psychology, Athens, Georgia
| | - L Stephen Miller
- University of Georgia, Department of Psychology, Athens, Georgia
| |
Collapse
|
27
|
Strength training or green tea prevent memory deficits in a β-amyloid peptide-mediated Alzheimer's disease model. Exp Gerontol 2020; 143:111186. [PMID: 33279659 DOI: 10.1016/j.exger.2020.111186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023]
Abstract
Antioxidant supplementation and physical exercise have been discussed as strategies to minimize neurodegeneration in Alzheimer's disease (AD). We investigated the neuroprotective effects of strength exercise (StrEx) and green tea (GT) supplementation, combined or not, on memory impairments induced by β-amyloid characterizing an AD-like condition in rats. Wistar rats were submitted to 8 weeks of StrEx, GT supplementation, or StrEx and GT combined. AD-like condition was induced by injection of Aβ (25-35) in the hippocampus. We evaluate object recognition (OR) and social recognition (SR) memory, and removed the rats' hippocampus for biochemical analysis. StrEx improved OR and SR. StrEx combined with GT improved OR and did not improve SR. GT reduced antioxidant capacity and improved acetylcholinesterase activity. Both strength exercise and green tea are neuroprotective against impairments resultant of β-amyloid, but benefits do not add up when the two interventions are associated.
Collapse
|
28
|
McGurran H, Glenn JM, Madero EN, Bott NT. Prevention and Treatment of Alzheimer's Disease: Biological Mechanisms of Exercise. J Alzheimers Dis 2020; 69:311-338. [PMID: 31104021 DOI: 10.3233/jad-180958] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. With an aging population and no disease modifying treatments available, AD is quickly becoming a global pandemic. A substantial body of research indicates that lifestyle behaviors contribute to the development of AD, and that it may be worthwhile to approach AD like other chronic diseases such as cardiovascular disease, in which prevention is paramount. Exercise is an important lifestyle behavior that may influence the course and pathology of AD, but the biological mechanisms underpinning these effects remain unclear. This review focuses on how exercise can modify four possible mechanisms which are involved with the pathology of AD: oxidative stress, inflammation, peripheral organ and metabolic health, and direct interaction with AD pathology. Exercise is just one of many lifestyle behaviors that may assist in preventing AD, but understanding the systemic and neurobiological mechanisms by which exercise affects AD could help guide the development of novel pharmaceutical agents and non-pharmacological personalized lifestyle interventions for at-risk populations.
Collapse
Affiliation(s)
- Hugo McGurran
- Research Master's Programme Brain and Cognitive Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Nicholas T Bott
- Neurotrack Technologies Inc., Redwood City, CA, USA.,Clinical Excellence Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Psychology, PGSP-Stanford Consortium, Palo Alto University, Palo Alto, CA, USA
| |
Collapse
|
29
|
Valenzuela PL, Castillo-García A, Morales JS, de la Villa P, Hampel H, Emanuele E, Lista S, Lucia A. Exercise benefits on Alzheimer's disease: State-of-the-science. Ageing Res Rev 2020; 62:101108. [PMID: 32561386 DOI: 10.1016/j.arr.2020.101108] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/29/2020] [Accepted: 06/06/2020] [Indexed: 01/15/2023]
Abstract
Although there is no unanimity, growing evidence supports the value of regular physical exercise to prevent Alzheimer's disease as well as cognitive decline in affected patients. Together with an introductory summary on epidemiological evidence, the aim of this review is to summarize the current knowledge on the potential biological mechanisms underlying exercise benefits in this condition. Regular physical exercise has proven to be beneficial for traditional cardiovascular risk factors (e.g., reduced vascular flow, diabetes) involved in the pathogenesis of Alzheimer's disease. Exercise also promotes neurogenesis via increases in exercise-induced metabolic factors (e.g., ketone bodies, lactate) and muscle-derived myokines (cathepsin-B, irisin), which in turn stimulate the production of neurotrophins such as brain-derived neurotrophic factor. Finally, regular exercise exerts anti-inflammatory effects and improves the brain redox status, thereby ameliorating the pathophysiological hallmarks of Alzheimer's disease (e.g., amyloid-β deposition). In summary, physical exercise might provide numerous benefits through different pathways that might, in turn, help prevent risk and progression of Alzheimer's disease. More evidence is needed, however, based on human studies.
Collapse
|
30
|
Lima S, Sevilha S, Pereira MG. Quality of life in early-stage Alzheimer's disease: the moderator role of family variables and coping strategies from the patients' perspective. Psychogeriatrics 2020; 20:557-567. [PMID: 32212217 DOI: 10.1111/psyg.12544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/16/2019] [Accepted: 02/22/2020] [Indexed: 11/30/2022]
Abstract
AIM This study assessed the effects of sociodemographic and psychological variables on quality of life (QOL), as well as the moderator role of family variables and coping strategies in the relationship between psychological morbidity and QOL, based on patients' perspective. METHODS This study used a cross-sectional design. A total of 158 patients with early Alzheimer's disease completed the Mini-Mental State Examination, the Montreal Cognitive Assessment, the Hospital Anxiety and Depression Scale, the Ways of Coping Questionnaire, the Spiritual and Religious Attitudes in Dealing with Illness, the Family Adaptability and Cohesion Evaluation Scales, the Family Satisfaction Scale, the Family Communication Scale, the Barthel Index, and the Quality of Life in Alzheimer's Disease Scale. RESULTS Being a man, having a higher education, and engaging in more exercise activity were associated with better QOL. Lower levels of cognitive impairment, psychological morbidity, and spirituality predicted better QOL. Also, lower levels of functionality, family communication, family satisfaction, and family functioning contributed to worse QOL. Gender, psychological morbidity, and functionality contributed significantly to QOL. Family satisfaction, family communication, and coping strategies moderated the relationship between psychological morbidity and QOL. CONCLUSION Intervention in early-stage Alzheimer's disease should focus on patients' coping strategies and family context, particularly family satisfaction and communication, to foster QOL.
Collapse
Affiliation(s)
- Sara Lima
- School of Psychology, University of Minho, Braga, Portugal
| | | | | |
Collapse
|
31
|
Mahalakshmi B, Maurya N, Lee SD, Bharath Kumar V. Possible Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21165895. [PMID: 32824367 PMCID: PMC7460620 DOI: 10.3390/ijms21165895] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/22/2022] Open
Abstract
Physical exercise (PE) improves physical performance, mental status, general health, and well-being. It does so by affecting many mechanisms at the cellular and molecular level. PE is beneficial for people suffering from neuro-degenerative diseases because it improves the production of neurotrophic factors, neurotransmitters, and hormones. PE promotes neuronal survival and neuroplasticity and also optimizes neuroendocrine and physiological responses to psychosocial and physical stress. PE sensitizes the parasympathetic nervous system (PNS), Autonomic Nervous System (ANS) and central nervous system (CNS) by promoting many processes such as synaptic plasticity, neurogenesis, angiogenesis, and autophagy. Overall, it carries out many protective and preventive activities such as improvements in memory, cognition, sleep and mood; growth of new blood vessels in nervous system; and the reduction of stress, anxiety, neuro-inflammation, and insulin resistance. In the present work, the protective effects of PE were overviewed. Suitable examples from the current research work in this context are also given in the article.
Collapse
Affiliation(s)
- B. Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
| | - Nancy Maurya
- Department of Botany, Government Science College, Pandhurna, Chhindwara, Madhya Pradesh 480334, India;
| | - Shin-Da Lee
- Department of Physical Therapy, Asia University, Taichung 41354, Taiwan
- Department of Physical Therapy Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan
- Correspondence: (S.-D.L.); (V.B.K.); Tel.: +886-4-22053366 (ext. 7300) (S.-D.L.); +886-4-2332-3456 (ext. 6352 or 6353) (V.B.K.); Fax: 886-4-22065051 (S.-D.L.); +886-4-23305834 (V.B.K.)
| | - V. Bharath Kumar
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
- Correspondence: (S.-D.L.); (V.B.K.); Tel.: +886-4-22053366 (ext. 7300) (S.-D.L.); +886-4-2332-3456 (ext. 6352 or 6353) (V.B.K.); Fax: 886-4-22065051 (S.-D.L.); +886-4-23305834 (V.B.K.)
| |
Collapse
|
32
|
Newman M, Nik HM, Sutherland GT, Hin N, Kim WS, Halliday GM, Jayadev S, Smith C, Laird AS, Lucas CW, Kittipassorn T, Peet DJ, Lardelli M. Accelerated loss of hypoxia response in zebrafish with familial Alzheimer's disease-like mutation of presenilin 1. Hum Mol Genet 2020; 29:2379-2394. [PMID: 32588886 PMCID: PMC8604272 DOI: 10.1093/hmg/ddaa119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Ageing is the major risk factor for Alzheimer's disease (AD), a condition involving brain hypoxia. The majority of early-onset familial AD (EOfAD) cases involve dominant mutations in the gene PSEN1. PSEN1 null mutations do not cause EOfAD. We exploited putative hypomorphic and EOfAD-like mutations in the zebrafish psen1 gene to explore the effects of age and genotype on brain responses to acute hypoxia. Both mutations accelerate age-dependent changes in hypoxia-sensitive gene expression supporting that ageing is necessary, but insufficient, for AD occurrence. Curiously, the responses to acute hypoxia become inverted in extremely aged fish. This is associated with an apparent inability to upregulate glycolysis. Wild-type PSEN1 allele expression is reduced in post-mortem brains of human EOfAD mutation carriers (and extremely aged fish), possibly contributing to EOfAD pathogenesis. We also observed that age-dependent loss of HIF1 stabilization under hypoxia is a phenomenon conserved across vertebrate classes.
Collapse
Affiliation(s)
- Morgan Newman
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Hani Moussavi Nik
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Greg T Sutherland
- Discipline of Pathology, School of Medical Sciences and Charles
Perkins Centre, Faculty of Medicine and Health, The University of
Sydney, Camperdown, New South Wales 2006, Australia
| | - Nhi Hin
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
- Bioinformatics Hub, University of
Adelaide, Adelaide, South Australia, Australia
| | - Woojin S Kim
- Brain and Mind Centre, Central Clinical School, Faculty of
Medicine and Health, The University of Sydney, Camperdown, New
South Wales 2052, Australia
- School of Medical Sciences, University of New South
Wales and Neuroscience Research Australia, Randwick, New South Wales,
Australia
| | - Glenda M Halliday
- Brain and Mind Centre, Central Clinical School, Faculty of
Medicine and Health, The University of Sydney, Camperdown, New
South Wales 2052, Australia
- School of Medical Sciences, University of New South
Wales and Neuroscience Research Australia, Randwick, New South Wales,
Australia
| | - Suman Jayadev
- Department of Neurology, University of
Washington, Seattle, Washington 98195, USA
| | - Carole Smith
- Department of Neurology, University of
Washington, Seattle, Washington 98195, USA
| | - Angela S Laird
- Centre for MND Research, Department of Biomedical Sciences,
Faculty of Medicine and Health Sciences, Macquarie University,
New South Wales 2109, Australia
| | - Caitlin W Lucas
- Centre for MND Research, Department of Biomedical Sciences,
Faculty of Medicine and Health Sciences, Macquarie University,
New South Wales 2109, Australia
| | - Thaksaon Kittipassorn
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
- Department of Physiology, Faculty of Medicine Siriraj Hospital,
Mahidol University, Bangkok 10700, Thailand
| | - Dan J Peet
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Michael Lardelli
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
33
|
Frederiksen KS, Gjerum L, Waldemar G, Hasselbalch SG. Physical Activity as a Moderator of Alzheimer Pathology: A Systematic Review of Observational Studies. Curr Alzheimer Res 2020; 16:362-378. [PMID: 30873924 DOI: 10.2174/1567205016666190315095151] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Observational studies have found that physical activity is associated with a reduced risk of cognitive decline and dementia. Whether physical activity may also reduce the level of AD pathology, remains undetermined. OBJECTIVE To examine the relationship between physical activity and AD biomarkers (beta-amyloid1- 42, total tau and phosphorylated tau in CSF, amyloid PET, hippocampal atrophy on MRI and parietotemporal hypometabolism on brain 18F-FDG-PET). METHODS We carried out a systematic review of the observational studies of physical activity and AD biomarkers in healthy subjects, subjective cognitive complaints, mild cognitive impairment (MCI) and AD dementia. RESULTS We identified a total of 40 papers, which were eligible for inclusion. Thirty-four studies were conducted on healthy subjects, 3 on MCI and healthy subjects, 1 on MCI, and 2 on AD and healthy controls. Six studies reported on CSF biomarkers, 9 on amyloid PET, 29 on MRI and 4 on brain 18FFDG- PET. The majority of studies did not find a significant association between physical activity and AD biomarkers. CONCLUSION The quality of included studies with only a few longitudinal studies, limits the conclusions which may be drawn from the present findings especially regarding the biomarkers other than hippocampal volume. However, the majority of the identified studies did not find a significant association.
Collapse
Affiliation(s)
- Kristian Steen Frederiksen
- Danish Dementia Research Centre, Section 6911, Department of Neurology, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Le Gjerum
- Danish Dementia Research Centre, Section 6911, Department of Neurology, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Gunhild Waldemar
- Danish Dementia Research Centre, Section 6911, Department of Neurology, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Section 6911, Department of Neurology, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark
| |
Collapse
|
34
|
Um YH, Wang SM, Kim NY, Kang DW, Na HR, Lee CU, Lim HK. Effects of Moderate Intensity Exercise on the Cortical Thickness and Subcortical Volumes of Preclinical Alzheimer's Disease Patients: A Pilot Study. Psychiatry Investig 2020; 17:613-619. [PMID: 32570297 PMCID: PMC7324741 DOI: 10.30773/pi.2020.0214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE We aimed to explore the impact of moderate intensity exercise on the cortical thickness and subcortical volumes of preclinical Alzheimer's disease (AD) patients. METHODS Sixty-three preclinical AD patients with magnetic resonance imaging (MRI) and 18-florbetaben positron emission tomography (PET) data were enrolled in the study. Information on demographic characteristics, cognitive battery scores, self-reported exercise habits were attained. Structural magnetic resonance images were analyzed and processed using Freesurfer v6.0. RESULTS Compared to Exercise group, Non-Exercise group demonstrated reduced cortical thickness in left parstriangularis, rostral middle frontal, entorhinal, superior frontal, lingual, superior parietal, lateral occipital, inferior parietal gyrus, temporal pole, precuneus, insula, fusiform gyrus, right precuneus, superiorparietal, lateral orbitofrontal, rostral middle frontal, medial orbitofrontal, superior frontal, lingual, middle temporal gyrus, insula, supramarginal, parahippocampal, paracentral gyrus. Volumes of right thalamus, caudate, putamen, pallidum, hippocampus, amygdala were also reduced in Non-Exercise group. CONCLUSION Moderate intensity exercise affects cortical and subcortical structures in preclinical AD patients. Thus, physical exercise has a potential to be an effective intervention to prevent future cognitive decline in those at high risk of AD.
Collapse
Affiliation(s)
- Yoo Hyun Um
- Department of Psychiatry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nak-Young Kim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae-Ran Na
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
35
|
Gramkow MH, Hasselbalch SG, Waldemar G, Frederiksen KS. Resting State EEG in Exercise Intervention Studies: A Systematic Review of Effects and Methods. Front Hum Neurosci 2020; 14:155. [PMID: 32477081 PMCID: PMC7232557 DOI: 10.3389/fnhum.2020.00155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Exercise has been shown to alter brain plasticity and is explored as a therapeutic intervention in a wide variety of neurological diseases. Electroencephalography (EEG) offers an inexpensive method of studying brain electrocortical activity shortly after exercise and thus offers a way of exploring the influence of exercise on the brain. We conducted a systematic review to summarize the current body of evidence regarding methods of EEG analysis and the reported effects of exercise interventions on EEG. Methods: PubMed, Web of Science and EMBASE were searched for studies investigating resting state EEG in exercise intervention studies carried out in participants >17 years of age and with no history of epilepsy. Further, studies solely investigating event-related potentials as an outcome measure were excluded. Relevant data were extracted, and a risk-of-bias assessment was carried out using the Cochrane risk-of-bias tool. A qualitative synthesis of results was carried out. A protocol for the systematic review was uploaded to https://www.crd.york.ac.uk/PROSPERO/ (ID: CRD42019134570) and the Preferred Reporting Items for Systematic Reviews (PRISMA) statement was followed. Results: Out of 1,993 records screened, 54 studies were included in a final qualitative synthesis with a total of 1,445 participants. Our synthesis showed that studies were mainly carried out using frequency analysis as an analytical method. Generally, findings across studies were inconsistent and few were adjusted for multiple comparisons. Studies were mainly of low quality and usually carried out in small populations, lowering the significance of results reported. Conclusions: Changes in the EEG as a result of an exercise intervention are elusive and difficult to replicate. Future studies should provide biologically sound hypotheses underlying assumptions, include larger populations and use standardized EEG methods to increase replicability. EEG remains an interesting methodology to examine the effects of exercise on the brain.
Collapse
Affiliation(s)
- Mathias Holsey Gramkow
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Gunhild Waldemar
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Steen Frederiksen
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Type 3 Diabetes and Its Role Implications in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21093165. [PMID: 32365816 PMCID: PMC7246646 DOI: 10.3390/ijms21093165] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
The exact connection between Alzheimer’s disease (AD) and type 2 diabetes is still in debate. However, poorly controlled blood sugar may increase the risk of developing Alzheimer’s. This relationship is so strong that some have called Alzheimer’s “diabetes of the brain” or “type 3 diabetes (T3D)”. Given more recent studies continue to indicate evidence linking T3D with AD, this review aims to demonstrate the relationship between T3D and AD based on the fact that both the processing of amyloid-β (Aβ) precursor protein toxicity and the clearance of Aβ are attributed to impaired insulin signaling, and that insulin resistance mediates the dysregulation of bioenergetics and progress to AD. Furthermore, insulin-related therapeutic strategies are suggested to succeed in the development of therapies for AD by slowing down their progressive nature or even halting their future complications.
Collapse
|
37
|
Nguyen TT, Ta QTH, Nguyen TTD, Le TT, Vo VG. Role of Insulin Resistance in the Alzheimer's Disease Progression. Neurochem Res 2020; 45:1481-1491. [PMID: 32314178 DOI: 10.1007/s11064-020-03031-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023]
|
38
|
Sanchis-Soler G, Tortosa-Martínez J, Manchado-Lopez C, Cortell-Tormo JM. The effects of stress on cardiovascular disease and Alzheimer's disease: Physical exercise as a counteract measure. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 152:157-193. [PMID: 32450995 DOI: 10.1016/bs.irn.2020.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AD is a complicated multi-systemic neurological disorder that involves different biological pathways. Several risk factors have been identified, including chronic stress. Chronic stress produces an alteration in the activity of the hypothalamic pituitary adrenal (HPA) system, and the autonomic nervous system (ANS), which over time increase the risk of AD and also the incidence of cardiovascular disease (CVD) and risk factors, such as hypertension, obesity and type 2 diabetes, associated with cognitive impairment and AD. Considering the multi-factorial etiology of AD, understanding the complex interrelationships between different risk factors is of potential interest for designing adequate strategies for preventing, delaying the onset or slowing down the progression of this devastating disease. Thus, in this review we will explore the general mechanisms and evidence linking stress, cardiovascular disease and AD, and discuss the potential benefits of physical activity for AD by counteracting the negative effects of chronic stress, CVD and risk factors.
Collapse
|
39
|
Liu Y, Chu JMT, Yan T, Zhang Y, Chen Y, Chang RCC, Wong GTC. Short-term resistance exercise inhibits neuroinflammation and attenuates neuropathological changes in 3xTg Alzheimer's disease mice. J Neuroinflammation 2020; 17:4. [PMID: 31900170 PMCID: PMC6942350 DOI: 10.1186/s12974-019-1653-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Both human and animal studies have shown beneficial effects of physical exercise on brain health but most tend to be based on aerobic rather than resistance type regimes. Resistance exercise has the advantage of improving both muscular and cardiovascular function, both of which can benefit the frail and the elderly. However, the neuroprotective effects of resistance training in cognitive impairment are not well characterized. METHODS We evaluated whether short-term resistant training could improve cognitive function and pathological changes in mice with pre-existing cognitive impairment. Nine-month-old 3xTg mouse underwent a resistance training protocol of climbing up a 1-m ladder with a progressively heavier weight loading. RESULTS Compared with sedentary counterparts, resistance training improved cognitive performance and reduced neuropathological and neuroinflammatory changes in the frontal cortex and hippocampus of mice. In line with these results, inhibition of pro-inflammatory intracellular pathways was also demonstrated. CONCLUSIONS Short-term resistance training improved cognitive function in 3xTg mice, and conferred beneficial effects on neuroinflammation, amyloid and tau pathology, as well as synaptic plasticity. Resistance training may represent an alternative exercise strategy for delaying disease progression in Alzheimer's disease.
Collapse
Affiliation(s)
- Yan Liu
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, SAR, China.,Laboratory of Neurodegenerative Diseases, LKS Faculty of MedicineSchool of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - John Man Tak Chu
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, SAR, China.,Laboratory of Neurodegenerative Diseases, LKS Faculty of MedicineSchool of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Tim Yan
- Laboratory of Neurodegenerative Diseases, LKS Faculty of MedicineSchool of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Yan Zhang
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, SAR, China.,Laboratory of Neurodegenerative Diseases, LKS Faculty of MedicineSchool of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Ying Chen
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, SAR, China.,Laboratory of Neurodegenerative Diseases, LKS Faculty of MedicineSchool of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, LKS Faculty of MedicineSchool of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, L4-49, Laboratory Block, Pokfulam, Hong Kong, SAR, China.
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, SAR, China.
| |
Collapse
|
40
|
Guo S, Huang Y, Zhang Y, Huang H, Hong S, Liu T. Impacts of exercise interventions on different diseases and organ functions in mice. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:53-73. [PMID: 31921481 PMCID: PMC6943779 DOI: 10.1016/j.jshs.2019.07.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/09/2019] [Accepted: 04/29/2019] [Indexed: 05/20/2023]
Abstract
Background In recent years, much evidence has emerged to indicate that exercise can benefit people when performed properly. This review summarizes the exercise interventions used in studies involving mice as they are related to special diseases or physiological status. To further understand the effects of exercise interventions in treating or preventing diseases, it is important to establish a template for exercise interventions that can be used in future exercise-related studies. Methods PubMed was used as the data resource for articles. To identify studies related to the effectiveness of exercise interventions for treating various diseases and organ functions in mice, we used the following search language: (exercise [Title] OR training [Title] OR physical activity [Title]) AND (mice [title/abstract] OR mouse [title/abstract] OR mus [title/abstract]). To limit the range of search results, we included 2 filters: one that limited publication dates to "in 10 years" and one that sorted the results as "best match". Then we grouped the commonly used exercise methods according to their similarities and differences. We then evaluated the effectiveness of the exercise interventions for their impact on diseases and organ functions in 8 different systems. Results A total of 331 articles were included in the analysis procedure. The articles were then segmented into 8 systems for which the exercise interventions were used in targeting and treating disorders: motor system (60 studies), metabolic system (45 studies), cardio-cerebral vascular system (58 studies), nervous system (74 studies), immune system (32 studies), respiratory system (7 studies), digestive system (1 study), and the system related to the development of cancer (54 studies). The methods of exercise interventions mainly involved the use of treadmills, voluntary wheel-running, forced wheel-running, swimming, and resistance training. It was found that regardless of the specific exercise method used, most of them demonstrated positive effects on various systemic diseases and organ functions. Most diseases were remitted with exercise regardless of the exercise method used, although some diseases showed the best remission effects when a specific method was used. Conclusion Our review strongly suggests that exercise intervention is a cornerstone in disease prevention and treatment in mice. Because exercise interventions in humans typically focus on chronic diseases, national fitness, and body weight loss, and typically have low intervention compliance rates, it is important to use mice models to investigate the molecular mechanisms underlying the health benefits from exercise interventions in humans.
Collapse
Affiliation(s)
- Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yiru Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - He Huang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
41
|
Abstract
Chronic heart failure, diabetes, depression, and other chronic diseases are associated with high mortality rate and low cure rate. Exercise induces muscle contraction and secretes multiple myokines, which affects the signaling pathways in skeletal muscle tissues and regulate remote organ functions. Exercise is known to be effective in treating a variety of chronic diseases. Here we summarize how exercise influences skeletal muscle, heart, brain, gut, and liver, and prevents heart failure, cognitive dysfunction, obesity, fatty liver, and other diseases. Exercise training may achieve additional benefits as compared to the present medication for these chronic diseases through cross talk among skeletal muscle and other organs.
Collapse
Affiliation(s)
- Zhiqing Fan
- Department of Cardiology, Daqing Qilfield General Hospital, Daqing, China
| | - Minjun Xu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
42
|
Erickson KI, Hillman C, Stillman CM, Ballard RM, Bloodgood B, Conroy DE, Macko R, Marquez DX, Petruzzello SJ, Powell KE. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Med Sci Sports Exerc 2019; 51:1242-1251. [PMID: 31095081 DOI: 10.1249/mss.0000000000001936] [Citation(s) in RCA: 586] [Impact Index Per Article: 97.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Physical activity (PA) is known to improve cognitive and brain function, but debate continues regarding the consistency and magnitude of its effects, populations and cognitive domains most affected, and parameters necessary to achieve the greatest improvements (e.g., dose). METHODS In this umbrella review conducted in part for the 2018 Health and Human Services Physical Activity Guidelines for Americans Advisory Committee, we examined whether PA interventions enhance cognitive and brain outcomes across the life span, as well as in populations experiencing cognitive dysfunction (e.g., schizophrenia). Systematic reviews, meta-analyses, and pooled analyses were used. We further examined whether engaging in greater amounts of PA is associated with a reduced risk of developing cognitive impairment and dementia in late adulthood. RESULTS Moderate evidence from randomized controlled trials indicates an association between moderate- to vigorous-intensity PA and improvements in cognition, including performance on academic achievement and neuropsychological tests, such as those measuring processing speed, memory, and executive function. Strong evidence demonstrates that acute bouts of moderate- to vigorous-intensity PA have transient benefits for cognition during the postrecovery period after exercise. Strong evidence demonstrates that greater amounts of PA are associated with a reduced risk of developing cognitive impairment, including Alzheimer's disease. The strength of the findings varies across the life span and in individuals with medical conditions influencing cognition. CONCLUSIONS There is moderate-to-strong support that PA benefits cognitive functioning during early and late periods of the life span and in certain populations characterized by cognitive deficits.
Collapse
Affiliation(s)
- Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Charles Hillman
- Department of Psychology and Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA
| | | | - Rachel M Ballard
- Office of Disease Prevention, Office of the Director, National Institutes of Health, Bethesda, MD
| | | | - David E Conroy
- Department of Kinesiology, The Pennsylvania State University, University Park, PA
| | - Richard Macko
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - David X Marquez
- Department of Kinesiology and Nutrition, Center for Research on Health and Aging, University of Illinois at Chicago, Chicago, IL
| | - Steven J Petruzzello
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | | |
Collapse
|
43
|
Li B, Liu C, Wan Q, Yu F. An integrative review of exercise interventions among community-dwelling adults with Alzheimer's disease. Int J Older People Nurs 2019; 15:e12287. [PMID: 31750628 DOI: 10.1111/opn.12287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/20/2019] [Accepted: 10/24/2019] [Indexed: 12/01/2022]
Abstract
AIMS To synthesise the current research on exercise interventions and health-related outcomes among community-dwelling adults with Alzheimer's disease (AD). METHODS Integrative review of the literature reporting exercise interventions among people with AD living in the communities. RESULTS Seventeen studies presented in 24 quantitative papers with 1,068 participants diagnosed with Alzheimer's disease were reviewed. The interventions varied in intervention programme characteristics (e.g. baseline assessments, type of exercise, exercise dose, outcome measurements). Among them, (a) 13 studies appeared beneficial to physical fitness in different areas; (b) 9 studies reported the effects on cognitive ability and two studies showed the positive effects; (c) 12 studies reported the participants' adherence, but only 2 studies reported the participants' adherence using attendance and training intensity. CONCLUSION Exercise is proven to be effective in physical fitness among community-dwelling patients with AD. Future studies should verify the effects on cognitive function and possible mechanisms of different exercise types using more sensitive and objective outcome measurements. Additionally, treatment fidelity, cost-effectiveness and long-term effects should be explored. IMPLICATION FOR PRACTICE Exercise may be effective and feasible for community-dwelling people with AD, but its effects on cognition need to be verified in the future. This review provided recommendations for assisting nurses and other clinicians in developing, implementing, and/or evaluating exercise interventions for patients with AD.
Collapse
Affiliation(s)
- Bei Li
- School of Nursing, Peking University, Beijing, China
| | - Congying Liu
- School of Nursing, Peking University, Beijing, China
| | - Qiaoqin Wan
- School of Nursing, Peking University, Beijing, China
| | - Fang Yu
- School of Nursing, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
44
|
Liu Y, Yan T, Chu JMT, Chen Y, Dunnett S, Ho YS, Wong GTC, Chang RCC. The beneficial effects of physical exercise in the brain and related pathophysiological mechanisms in neurodegenerative diseases. J Transl Med 2019; 99:943-957. [PMID: 30808929 DOI: 10.1038/s41374-019-0232-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Growing evidence has shown the beneficial influence of exercise on humans. Apart from classic cardioprotection, numerous studies have demonstrated that different exercise regimes provide a substantial improvement in various brain functions. Although the underlying mechanism is yet to be determined, emerging evidence for neuroprotection has been established in both humans and experimental animals, with most of the valuable findings in the field of mental health, neurodegenerative diseases, and acquired brain injuries. This review will discuss the recent findings of how exercise could ameliorate brain function in neuropathological states, demonstrated by either clinical or laboratory animal studies. Simultaneously, state-of-the-art molecular mechanisms underlying the exercise-induced neuroprotective effects and comparison between different types of exercise will be discussed in detail. A majority of reports show that physical exercise is associated with enhanced cognition throughout different populations and remains as a fascinating area in scientific research because of its universal protective effects in different brain domain functions. This article is to review what we know about how physical exercise modulates the pathophysiological mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Yan Liu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.,Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Tim Yan
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - John Man-Tak Chu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.,Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Ying Chen
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.,Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Sophie Dunnett
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Yuen-Shan Ho
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Gordon Tin-Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR.
| |
Collapse
|
45
|
Frederiksen KS, Madsen K, Andersen BB, Beyer N, Garde E, Høgh P, Waldemar G, Hasselbalch SG, Law I. Moderate- to high-intensity exercise does not modify cortical β-amyloid in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2019; 5:208-215. [PMID: 31198839 PMCID: PMC6556817 DOI: 10.1016/j.trci.2019.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Animal models of Alzheimer's disease show that exercise may modify β-amyloid (Aβ) deposition. We examined the effect of a 16-week exercise intervention on cortical Aβ in patients with mild-to-moderate Alzheimer's disease. METHODS Thirty-six patients with Alzheimer's disease were randomized to either one hour of aerobic exercise three times weekly for 16 weeks or usual care. Pre and post intervention, 11Carbon-Pittsburgh compound B positron emission tomography was carried out to assess cortical Aβ, and quantified using standardized uptake value rations (SUVRs). RESULTS The intervention showed no effect on follow-up SUVRs in a covariance analysis with group allocation, baseline intervention SUVR, age, sex, and baseline Mini-Mental State Examination as predictors. Change in SUVRs did not correlate with changes in measures of physical or aerobic fitness. DISCUSSION The present findings do not support an effect of exercise on Aβ. However, the relatively short intervention period may account for a lack of efficacy. Further studies should test earlier and longer interventions.
Collapse
Affiliation(s)
- Kristian S. Frederiksen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Karine Madsen
- Neurobiology Research Unit, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte B. Andersen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nina Beyer
- Musculoskeletal Rehabilitation Research Unit and Institute of Sports Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ellen Garde
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Public Health and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Peter Høgh
- Zealand University Hospital, Department of Neurology, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gunhild Waldemar
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steen G. Hasselbalch
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Sherzai D, Sherzai A. Preventing Alzheimer's: Our Most Urgent Health Care Priority. Am J Lifestyle Med 2019; 13:451-461. [PMID: 31523210 DOI: 10.1177/1559827619843465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dementia is the fastest growing epidemic in the developed nations, and if not curtailed, it will single handedly collapse our health care system. The prevalence of dementia is 1 in 10 individuals older than 65 years and increases to 50% of all individuals older than 85 years. The prevalence of Alzheimer's dementia (AD), the most common form of dementia, has been increasing rapidly and is projected to reach 16 million individuals by the year 2050. Several prevailing myths about the science of dementia are discussed, such as that AD is inevitable and that it is exclusively a genetic disease. The fact is that AD is dependent on a multitude of genetic, epigenetic, and environmental factors that interact with one another. In fact, 4 core drivers represent 90% of what determines disease progression in AD. These are (1) glucose or energy dysregulation, (2) lipid dysregulation, (3) inflammation, and (4) oxidation. Lifestyle change can significantly alter the course of AD. The authors have created an acronym-NEURO-to help lifestyle practitioners and the public remember the most important lifestyle elements in the treatment and prevention of AD based on the evidence. "N" is for Nutrition, "E" for Exercise, "U" for Unwind (stress management), "R" for Restorative Sleep, and "O" for Optimizing mental and social activity. The evidence base for each of the components is reviewed.
Collapse
Affiliation(s)
- Dean Sherzai
- Department of Neurology, Alzheimer's Prevention Program, Loma Linda University Health, California
| | - Ayesha Sherzai
- Department of Neurology, Alzheimer's Prevention Program, Loma Linda University Health, California
| |
Collapse
|
47
|
Jensen CS, Bahl JM, Østergaard LB, Høgh P, Wermuth L, Heslegrave A, Zetterberg H, Heegaard NHH, Hasselbalch SG, Simonsen AH. Exercise as a potential modulator of inflammation in patients with Alzheimer's disease measured in cerebrospinal fluid and plasma. Exp Gerontol 2019; 121:91-98. [PMID: 30980923 DOI: 10.1016/j.exger.2019.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neuroinflammation is recognized as part of the pathological progression of Alzheimer's disease (AD), but the molecular mechanisms are still not entirely clear. Systemically, physical exercise has shown to have a positive modulating effect on markers of inflammation. It is not known if this general effect also takes place in the central nervous system in AD. The aim of this study was to investigate the effect of 16 weeks of moderate to high-intensity physical exercise on selected biomarkers of inflammation both systemically and in the CNS, in patients with AD. METHODS Plasma and cerebrospinal fluid (CSF) from 198 patients with Alzheimer's disease participating in the Preserving Cognition, Quality of Life, Physical Health and Functional Ability in Alzheimer's Disease: The Effect of Physical Exercise (ADEX) study were analyzed for concentrations of 8‑isoprostane, soluble trigger receptor expressed on myeloid cells 2 (sTREM2), and the MSD v-plex proinflammation panel 1 human containing interferon gamma (IFNγ), Interleukin-10 (IL10), IL12p70, IL13, IL1β, IL2, IL4, IL6, IL8, and tumor necrosis factor alpha (TNFα), before and after a 16-week intervention with physical exercise, and we studied whether changes were modulated by the patients' APOE genotype. RESULTS Most inflammatory markers remained unchanged after exercise. We found an increasing effect of 16 weeks of physical exercise on sTREM2 measured in CSF. Further, IL6 in plasma increased in the exercise group after physical exercise (mean relative change 41.03, SD 76.7), compared to controls (-0.97, SD 49.4). In a sub-analysis according to APOE genotype, we found that in ε4 carriers, exercise had a stabilizing effect on IFNγ concentration with a mean relative change of 7.84 (SD 42.6), as compared to controls (114.7 (SD 188.3), p = 0.038. CONCLUSION Our findings indicate an effect of physical exercise on markers of neuroinflammation in CSF measured by an increase in sTREM2 in patients with AD. Further, there may be a small inflammatory systemic effect related to physical exercise in patients with AD.
Collapse
Affiliation(s)
- Camilla Steen Jensen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark.
| | | | - Lærke Borg Østergaard
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | - Peter Høgh
- Department of Clinical Medicine, University of Copenhagen, Denmark; Regional Dementia Research Centre, Department of Neurology, Zealand University Hospital, DK-4000 Roskilde, Denmark.
| | - Lene Wermuth
- Dementia Clinic, Department of Neurology, Odense University Hospital, DK-5000 Odense, Denmark.
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N London, UK; UK Dementia Research Institute at UCL, London WC1E 6BT, UK.
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N London, UK; UK Dementia Research Institute at UCL, London WC1E 6BT, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden.
| | - Niels H H Heegaard
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark; Department of Clinical Biochemistry, University of Southern Denmark, Odense, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark.
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
48
|
Buchman AS, Yu L, Wilson RS, Lim A, Dawe RJ, Gaiteri C, Leurgans SE, Schneider JA, Bennett DA. Physical activity, common brain pathologies, and cognition in community-dwelling older adults. Neurology 2019; 92:e811-e822. [PMID: 30651386 DOI: 10.1212/wnl.0000000000006954] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To examine the associations of physical activity, Alzheimer disease (AD), and other brain pathologies and cognition in older adults. METHODS We studied 454 brain autopsies from decedents in a clinical-pathologic cohort study. Nineteen cognitive tests were summarized in a global cognitive score. Total daily physical activity summarized continuous multiday recordings of activity during everyday living in the community setting. A global motor ability score summarized 10 supervised motor performance tests. A series of regression analyses were used to examine associations of physical activity, AD, and other brain pathologies with global cognition proximate to death controlling for age, sex, education, and motor abilities. RESULTS Higher levels of total daily activity (estimate 0.148, 95% confidence interval 0.053-0.244, SE 0.049, p = 0.003) and better motor abilities (estimate 0.283, 95% confidence interval, 0.175-0.390, SE 0.055, p < 0.001) were independently associated with better cognition. These independent associations remained significant when terms for AD and other pathologies were added as well as in sensitivity analyses excluding cases with poor cognition or dementia. Adding interaction terms, the associations of total daily activity and motor abilities with cognition did not vary in individuals with and without dementia. The associations of AD and other pathologies with cognition did not vary with the levels of total daily activity or motor abilities. CONCLUSIONS Physical activity in older adults may provide cognitive reserve to maintain function independent of the accumulation of diverse brain pathologies. Further studies are needed to identify the molecular mechanisms underlying this potential reserve and to ensure the causal effects of physical activity.
Collapse
Affiliation(s)
- Aron S Buchman
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada.
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| | - Robert S Wilson
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| | - Andrew Lim
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| | - Robert J Dawe
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| | - Chris Gaiteri
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| | - Sue E Leurgans
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| | - Julie A Schneider
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., R.S.W., R.J.D., C.G., S.E.L., J.A.S., D.A.B.), and Departments of Neurological Sciences (A.S.B., L.Y., R.S.W., C.G., S.E.L., J.A.S., D.A.B.), Radiology (R.J.D.), Psychology (R.S.W.), and Pathology (Neuropathology) (J.A.S.), Rush University Medical Center, Chicago, IL; and Department of Neurology (A.L.), University of Toronto, Canada
| |
Collapse
|
49
|
Zucchella C, Sinforiani E, Tamburin S, Federico A, Mantovani E, Bernini S, Casale R, Bartolo M. The Multidisciplinary Approach to Alzheimer's Disease and Dementia. A Narrative Review of Non-Pharmacological Treatment. Front Neurol 2018; 9:1058. [PMID: 30619031 PMCID: PMC6300511 DOI: 10.3389/fneur.2018.01058] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Alzheimer's disease (AD) and dementia are chronic diseases with progressive deterioration of cognition, function, and behavior leading to severe disability and death. The prevalence of AD and dementia is constantly increasing because of the progressive aging of the population. These conditions represent a considerable challenge to patients, their family and caregivers, and the health system, because of the considerable need for resources allocation. There is no disease modifying intervention for AD and dementia, and the symptomatic pharmacological treatments has limited efficacy and considerable side effects. Non-pharmacological treatment (NPT), which includes a wide range of approaches and techniques, may play a role in the treatment of AD and dementia. Aim: To review, with a narrative approach, current evidence on main NPTs for AD and dementia. Methods: PubMed and the Cochrane database of systematic reviews were searched for studies written in English and published from 2000 to 2018. The bibliography of the main articles was checked to detect other relevant papers. Results: The role of NPT has been largely explored in AD and dementia. The main NPT types, which were reviewed here, include exercise and motor rehabilitation, cognitive rehabilitation, NPT for behavioral and psychological symptoms of dementia, occupational therapy, psychological therapy, complementary and alternative medicine, and new technologies, including information and communication technologies, assistive technology and domotics, virtual reality, gaming, and telemedicine. We also summarized the role of NPT to address caregivers' burden. Conclusions: Although NPT is often applied in the multidisciplinary approach to AD and dementia, supporting evidence for their use is still preliminary. Some studies showed statistically significant effect of NPT on some outcomes, but their clinical significance is uncertain. Well-designed randomized controlled trials with innovative designs are needed to explore the efficacy of NPT in AD and dementia. Further studies are required to offer robust neurobiological grounds for the effect of NPT, and to examine its cost-efficacy profile in patients with dementia.
Collapse
Affiliation(s)
| | - Elena Sinforiani
- Alzheimer's Disease Assessment Unit, Laboratory of Neuropsychology, IRCCS Mondino Foundation, Pavia, Italy
| | - Stefano Tamburin
- Neurology Unit, University Hospital of Verona, Verona, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Angela Federico
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sara Bernini
- Alzheimer's Disease Assessment Unit, Laboratory of Neuropsychology, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Casale
- Neurorehabilitation Unit, Department of Rehabilitation, HABILITA, Bergamo, Italy
| | - Michelangelo Bartolo
- Neurorehabilitation Unit, Department of Rehabilitation, HABILITA, Bergamo, Italy
| |
Collapse
|
50
|
Long-term moderate exercise enhances specific proteins that constitute neurotrophin signaling pathway: A TMT-based quantitative proteomic analysis of rat plasma. J Proteomics 2018; 185:39-50. [PMID: 29953961 DOI: 10.1016/j.jprot.2018.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 12/15/2022]
Abstract
Physical exercise has been reported to increase neurotrophin in brain tissues as hippocampus as well as increased neurotrophic level peripherally in blood plasma and might have an effect on/or affect molecular processes of energy metabolism (and homeostasis). In this study, using quantitative proteomic analysis, we obtained a plasma protein profile from the rat with long-term moderate exercise. A total of 752 proteins were identified in the plasma. Among them, 54 proteins were significant up-regulated and 47 proteins were down-regulated in the plasma of exercise group compared with the control group. Bioinformatic analyses showed that these altered proteins are widely involved in multiple biological processes, molecular functions and cellular components, which connect with 11 signaling pathways. Interestingly, 5 up-regulated proteins Rap1b, PTPN11, ARHGDIA, Cdc42 and YWHAE, confirmed by Western blots, are involved in the neurotrophin signaling pathway which shows the lowest P value among the identified pathways. Further analyses showed that the 5 neurotrophin-signaling-pathway-related proteins participate in two important protein-protein interaction networks associated to cell survival and apoptosis, axonal development, synapse formation and plasticity. This study provides an exercise-induced plasma protein profile, suggesting that long-term exercise enhances the proteins involved in neurotrophin signaling pathway which may contribute to health benefit. SIGNIFICANCE Physical activity contributes to myriad benefits on body health across the lifespan. The changes in plasma proteins after chronic moderate exercise may be used as biomarkers for health and may also play important roles in increase of cardiovascular fitness, enhancement of immune competence, prevention of obesity, decrease of risk for neurological disorders, cancer, stroke, diabetes and other metabolic disorders. Using a TMT-based proteomic method, this study identified 101 altered proteins in the plasma of rats after long-term moderate treadmill running, which may provide novel biomarkers for further investigation of the underlying mechanism of physical exercise. We confirmed that exercise enhances 5 proteins of the neurotrophin signaling pathway that may contribute to health benefits.
Collapse
|