1
|
Chen Y, Touboul R, Chen Y, Chang CL. Strategic delivery of omega-3 fatty acids for modulating inflammatory neurodegenerative diseases. Front Aging Neurosci 2025; 17:1535094. [PMID: 40166615 PMCID: PMC11955621 DOI: 10.3389/fnagi.2025.1535094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Objectives Early-life inflammatory events like infections and injuries may predispose the brain to Alzheimer's disease (AD) by disrupting neurodevelopment and raising vulnerability. The association between early neuroinflammation and subsequent neurodegeneration leading to dementia remains unclear. We hypothesize that omega-3 (n-3) fatty acids (FA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), positively regulate neuro-immune cells, preserving their cell membrane structure and metabolic homeostasis. Our study examined whether strategic delivery of n-3 FA via injectable n-3 triglycerides (TG) can influence microglial lipid metabolism to prevent or delay AD progression. Methods and results We characterized n-3 treatment effects on modulating lipid and metabolic homeostasis in microglia during the critical window of brain development. Our preliminary studies on determining the effects of early n-3 treatment on brain cell homeostasis indicate that perinatal bolus n-3 TG injections suppressed activation of gliosis-associated markers in young mice predisposed to AD (5xFAD) and yielded sustained regulatory effects on the expression of inflammatory molecules, such as interleukin-6 (Il6) and tumor necrosis factor-alpha (Tnfα), in adult brains. A significant increase in high-frequency ultrasonic vocalizations (USV) was observed in P6 5xFAD mice that received perinatal n-3 compared to vehicle control, implicating enhanced active communication patterns. Improvement in behavior deficits was observed in n-3-treated adult AD mice. Perinatal n-3 TG treatment modified brain lipid composition in young offspring, increasing key membrane lipid species, such as phospholipids (PL) and lysophospholipids (lysoPL). Pro-inflammatory sphingolipids associated with neurodegeneration, including lactosylceramide, were significantly lower in mice treated with n-3 than those in saline-treated AD mice. Conclusion Our study establishes a proof of principle for targeting brain immune cell metabolism with injectable n-3 TG to mitigate neuroinflammation in AD pathogenesis, paving the way for future research into early treatments for related central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Yixin Chen
- Institute of Human Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Roni Touboul
- Institute of Human Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Yao Chen
- Institute of Human Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Chuchun L. Chang
- Institute of Human Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
2
|
Marongiu R, Platholi J, Park L, Yu F, Sommer G, Woods C, Milner TA, Glass MJ. Perimenopause promotes neuroinflammation in select hippocampal regions in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643317. [PMID: 40161644 PMCID: PMC11952527 DOI: 10.1101/2025.03.14.643317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by age-dependent amyloid beta (Aβ) aggregation and accumulation, neuroinflammation, and cognitive deficits. Significantly, there are prominent sex differences in the risk, onset, progression, and severity of AD, as well as response to therapies, with disease burden disproportionally affecting women. Although menopause onset (i.e., perimenopause) may be a critical transition stage for AD susceptibility in women, the role of early ovarian decline in initial disease pathology, particularly key neuroinflammatory processes, is not well understood. To study this, we developed a unique mouse model of perimenopausal AD by combining an accelerated ovarian failure (AOF) model of menopause induced by 4-vinylcyclohexene diepoxide (VCD) with the 5xFAD transgenic AD mouse model. To target early stages of disease progression, 5xFAD females were studied at a young age (∼4 months) and at the beginning stage of ovarian failure analogous to human perimenopause (termed "peri-AOF"), and compared to age-matched males. Assessment of neuropathology was performed by immunohistochemical labeling of Aβ as well as markers of astrocyte and microglia activity in the hippocampus, a brain region involved in learning and memory that is deleteriously impacted during AD. Our results show that genotype, AOF, and sex contributed to AD-like pathology. Aggregation of Aβ was heightened in female 5xFAD mice and further increased at peri-AOF, with hippocampal subregion specificity. Further, select increases in glial activation also paralleled Aβ pathology in distinct hippocampal subregions. However, cognitive function was not affected by peri-AOF. These findings align with the hypothesis that perimenopause constitutes a period of susceptibility for AD pathogenesis in women.
Collapse
|
3
|
Liu X, Hike D, Choi S, Man W, Ran C, Zhou XA, Jiang Y, Yu X. Identifying the bioimaging features of Alzheimer's disease based on pupillary light response-driven brain-wide fMRI in awake mice. Nat Commun 2024; 15:9657. [PMID: 39511186 PMCID: PMC11543808 DOI: 10.1038/s41467-024-53878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Pupil dynamics has emerged as a critical non-invasive indicator of brain state changes. In particular, pupillary-light-responses (PLR) in Alzheimer's disease (AD) patients show potential as biomarkers for brain degeneration. To investigate AD-specific PLR and its underlying neuromodulatory sources, we combine high-resolution awake mouse fMRI with real-time pupillometry to map brain-wide event-related correlation patterns based on illumination-driven pupil constriction (P c ) and post-illumination pupil dilation recovery (amplitude,P d , and time, T). TheP c -driven differential analysis reveals altered visual signal processing and reduced thalamocortical activation in AD mice in comparison with wild-type (WT) control mice. In contrast, the post-illumination pupil dilation recovery-based fMRI highlights multiple brain areas associated with AD brain degeneration, including the cingulate cortex, hippocampus, septal area of the basal forebrain, medial raphe nucleus, and pontine reticular nuclei (PRN). Additionally, the brain-wide functional connectivity analysis highlights the most significant changes in PRN of AD mice, which serves as the major subcortical relay nuclei underlying oculomotor function. This work integrates non-invasive pupil-fMRI measurements in preclinical models to identify pupillary biomarkers based on brain-wide functional changes, including neuromodulatory dysfunction coupled with AD brain degeneration.
Collapse
Affiliation(s)
- Xiaochen Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - David Hike
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Weitao Man
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
4
|
Fisher TM, Liddelow SA. Emerging roles of astrocytes as immune effectors in the central nervous system. Trends Immunol 2024; 45:824-836. [PMID: 39332912 DOI: 10.1016/j.it.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
The astrocyte, a major glial cell type in the central nervous system (CNS), is widely regarded as a functionally diverse mediator of homeostasis. During development and throughout adulthood, astrocytes have essential roles, such as providing neuron metabolic support, modulating synaptic function, and maintaining the blood-brain barrier (BBB). Recent evidence continues to underscore their functional heterogeneity and importance for CNS maintenance, as well as how these cells ensure optimal CNS and immune responses to disease, acute trauma, and infection. Advances in our understanding of neuroimmune interactions complement our knowledge of astrocyte functional heterogeneity, where astrocytes are now regarded as key effectors and propagators of immune signaling. This shift in perspective highlights the role of astrocytes not merely as support cells, but as active participants in CNS immune responses.
Collapse
Affiliation(s)
- Theodore M Fisher
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Han X, Liu G, Lee SS, Yang X, Wu MN, Lu H, Wei Z. Metabolic and vascular imaging markers for investigating Alzheimer's disease complicated by sleep fragmentation in mice. Front Physiol 2024; 15:1456690. [PMID: 39371598 PMCID: PMC11449888 DOI: 10.3389/fphys.2024.1456690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Background Sleep problem is a common complication of Alzheimer's disease (AD). Extensive preclinical studies have been performed to investigate the AD pathology. However, the pathophysiological consequence of AD complicated by sleep problem remains to be further determined. Purpose To investigate brain metabolism and perfusion in an AD mouse model complicated by sleep problem, and subsequently identify potential imaging markers to better understand the associated pathophysiology. Methods We examined the oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen (CMRO2), and cerebral blood flow (CBF) using state-of-the-art MRI techniques in a cohort of 5xFAD model mice. Additionally, neuroinflammation, indicated by activated microglia, was assessed using histology techniques. Sleep fragmentation (SF) was utilized as a representative for sleep problems. Results SF was associated with significant increases in OEF (P = 0.023) and CMRO2 (P = 0.029), indicating a state of hypermetabolism. CBF showed a significant genotype-by-sleep interaction effect (P = 0.026), particularly in the deep brain regions such as the hippocampus and thalamus. Neuroinflammation was primarily driven by genotype rather than SF, especially in regions with significant interaction effect in CBF measurements. Conclusion These results suggest that brain metabolism and perfusion measurements are promising markers for studying the co-pathogenesis of AD and SF.
Collapse
Affiliation(s)
- Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| | - Sang Soo Lee
- Department of Neurology, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiuli Yang
- Department of Neurology, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark N. Wu
- Department of Neurology, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| |
Collapse
|
6
|
Ianni M, Corraliza-Gomez M, Costa-Coelho T, Ferreira-Manso M, Inteiro-Oliveira S, Alemãn-Serrano N, Sebastião AM, Garcia G, Diógenes MJ, Brites D. Spatiotemporal Dysregulation of Neuron-Glia Related Genes and Pro-/Anti-Inflammatory miRNAs in the 5xFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:9475. [PMID: 39273422 PMCID: PMC11394861 DOI: 10.3390/ijms25179475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is a multifactorial disease influenced by aging, genetics, and environmental factors. miRNAs are crucial regulators of gene expression and play significant roles in AD onset and progression. This exploratory study analyzed the expression levels of 28 genes and 5 miRNAs (miR-124-3p, miR-125b-5p, miR-21-5p, miR-146a-5p, and miR-155-5p) related to AD pathology and neuroimmune responses using RT-qPCR. Analyses were conducted in the prefrontal cortex (PFC) and the hippocampus (HPC) of the 5xFAD mouse AD model at 6 and 9 months old. Data highlighted upregulated genes encoding for glial fibrillary acidic protein (Gfap), triggering receptor expressed on myeloid cells (Trem2) and cystatin F (Cst7), in the 5xFAD mice at both regions and ages highlighting their roles as critical disease players and potential biomarkers. Overexpression of genes encoding for CCAAT enhancer-binding protein alpha (Cebpa) and myelin proteolipid protein (Plp) in the PFC, as well as for BCL2 apoptosis regulator (Bcl2) and purinergic receptor P2Y12 (P2yr12) in the HPC, together with upregulated microRNA(miR)-146a-5p in the PFC, prevailed in 9-month-old animals. miR-155 positively correlated with miR-146a and miR-21 in the PFC, and miR-125b positively correlated with miR-155, miR-21, while miR-146a in the HPC. Correlations between genes and miRNAs were dynamic, varying by genotype, region, and age, suggesting an intricate, disease-modulated interaction between miRNAs and target pathways. These findings contribute to our understanding of miRNAs as therapeutic targets for AD, given their multifaceted effects on neurons and glial cells.
Collapse
Affiliation(s)
- Marta Ianni
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Miriam Corraliza-Gomez
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cadiz (INIBICA), 11003 Cadiz, Spain
| | - Tiago Costa-Coelho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Mafalda Ferreira-Manso
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Inteiro-Oliveira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nuno Alemãn-Serrano
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- ULS Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Gonçalo Garcia
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Dora Brites
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
7
|
Campbell KJ, Jiang P, Olker C, Lin X, Kim SY, Lee CJ, Song EJ, Turek FW, Vitaterna MH. The impacts of sex and the 5xFAD model of Alzheimer's disease on the sleep and spatial learning responses to feeding time. Front Neurol 2024; 15:1430989. [PMID: 39144714 PMCID: PMC11322461 DOI: 10.3389/fneur.2024.1430989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction The relationships between the feeding rhythm, sleep and cognition in Alzheimer's disease (AD) are incompletely understood, but meal time could provide an easy-to-implement method of curtailing disease-associated disruptions in sleep and cognition. Furthermore, known sex differences in AD incidence could relate to sex differences in circadian rhythm/sleep/cognition interactions. Methods The 5xFAD transgenic mouse model of AD and non-transgenic wild-type controls were studied. Both female and male mice were used. Food access was restricted each day to either the 12-h light phase (light-fed groups) or the 12-h dark phase (dark-fed groups). Sleep (electroencephalographic/electromyographic) recording and cognitive behavior measures were collected. Results The 5xFAD genotype reduces NREM and REM as well as the number of sleep spindles. In wild-type mice, light-fed groups had disrupted vigilance state amounts, characteristics, and rhythms relative to dark-fed groups. These feeding time differences were reduced in 5xFAD mice. Sex modulates these effects. 5xFAD mice display poorer spatial memory that, in female mice, is curtailed by dark phase feeding. Similarly, female 5xFAD mice have decreased anxiety-associated behavior. These emotional and cognitive measures are correlated with REM amount. Discussion Our study demonstrates that the timing of feeding can alter many aspects of wake, NREM and REM. Unexpectedly, 5xFAD mice are less sensitive to these feeding time effects. 5xFAD mice demonstrate deficits in cognition which are correlated with REM, suggesting that this circadian-timed aspect of sleep may link feeding time and cognition. Sex plays an important role in regulating the impact of feeding time on sleep and cognition in both wild-type and 5xFAD mice, with females showing a greater cognitive response to feeding time than males.
Collapse
Affiliation(s)
- Katrina J. Campbell
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Peng Jiang
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Christopher Olker
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Xuanyi Lin
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Sarah Y. Kim
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Christopher J. Lee
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Eun Joo Song
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
8
|
Badr A, Daily KP, Eltobgy M, Estfanous S, Tan MH, Chun-Tien Kuo J, Whitham O, Carafice C, Gupta G, Amer HM, Shamseldin MM, Yousif A, Deems NP, Fitzgerald J, Yan P, Webb A, Zhang X, Pietrzak M, Ghoneim HE, Dubey P, Barrientos RM, Lee RJ, Kokiko-Cochran ON, Amer AO. Microglia-targeted inhibition of miR-17 via mannose-coated lipid nanoparticles improves pathology and behavior in a mouse model of Alzheimer's disease. Brain Behav Immun 2024; 119:919-944. [PMID: 38718909 PMCID: PMC11781315 DOI: 10.1016/j.bbi.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024] Open
Abstract
Neuroinflammation and accumulation of Amyloid Beta (Aβ) accompanied by deterioration of special memory are hallmarks of Alzheimer's disease (AD). Effective preventative and treatment options for AD are still needed. Microglia in AD brains are characterized by elevated levels of microRNA-17 (miR-17), which is accompanied by defective autophagy, Aβ accumulation, and increased inflammatory cytokine production. However, the effect of targeting miR-17 on AD pathology and memory loss is not clear. To specifically inhibit miR-17 in microglia, we generated mannose-coated lipid nanoparticles (MLNPs) enclosing miR-17 antagomir (Anti-17 MLNPs), which are targeted to mannose receptors readily expressed on microglia. We used a 5XFAD mouse model (AD) that recapitulates many AD-related phenotypes observed in humans. Our results show that Anti-17 MLNPs, delivered to 5XFAD mice by intra-cisterna magna injection, specifically deliver Anti-17 to microglia. Anti-17 MLNPs downregulated miR-17 expression in microglia but not in neurons, astrocytes, and oligodendrocytes. Anti-17 MLNPs attenuated inflammation, improved autophagy, and reduced Aβ burdens in the brains. Additionally, Anti-17 MLNPs reduced the deterioration in spatial memory and decreased anxiety-like behavior in 5XFAD mice. Therefore, targeting miR-17 using MLNPs is a viable strategy to prevent several AD pathologies. This selective targeting strategy delivers specific agents to microglia without the adverse off-target effects on other cell types. Additionally, this approach can be used to deliver other molecules to microglia and other immune cells in other organs.
Collapse
Affiliation(s)
- Asmaa Badr
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Kylene P Daily
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Michelle H Tan
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, the United States of America
| | - Owen Whitham
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Gauruv Gupta
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Heba M Amer
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Mohamed M Shamseldin
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Amir Yousif
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, the United States of America
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| | - Pearlly Yan
- Genomics Shared Resource, Comprehensive Cancer Center, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, the United States of America
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, the United States of America
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, the United States of America
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, the United States of America
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, the United States of America
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, the United States of America
| | | | - Amal O Amer
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America.
| |
Collapse
|
9
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-specificity protein phosphatase 6 (DUSP6) overexpression reduces amyloid load and improves memory deficits in male 5xFAD mice. Front Aging Neurosci 2024; 16:1400447. [PMID: 39006222 PMCID: PMC11239576 DOI: 10.3389/fnagi.2024.1400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal VGF gene network that regulates late-onset Alzheimer's disease (AD). Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating (CDR) in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods To investigate the role of DUSP6 in AD, we stereotactically injected AAV5-DUSP6 or AAV5-GFP (control) into the dorsal hippocampus (dHc) of both female and male 5xFAD or wild type mice, to induce overexpression of DUSP6 or GFP. Results Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß1-40 and Aß1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation, which was increased in 5xFAD mice, was significantly reduced by dHc DUSP6 overexpression in both males and females, as was the number of "microglial clusters," which correlated with reduced amyloid plaque size. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulation of inflammatory and extracellular signal-regulated kinase pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. Gene ontology analysis of DEGs (p < 0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Discussion In summary, DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females, suggesting that DUSP6-induced reduction of microglial activation did not contribute to sex-dependent improvement in memory deficits. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Rodrigues MEDS, Bolen ML, Blackmer-Raynolds L, Schwartz N, Chang J, Tansey MG, Sampson TR. Diet-induced metabolic and immune impairments are sex-specifically modulated by soluble TNF signaling in the 5xFAD mouse model of Alzheimer's disease. Neurobiol Dis 2024; 196:106511. [PMID: 38670277 DOI: 10.1016/j.nbd.2024.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Emerging evidence indicates that high-fat, high carbohydrate diet (HFHC) impacts central pathological features of Alzheimer's disease (AD) across both human incidences and animal models. However, the mechanisms underlying this association are poorly understood. Here, we identify compartment-specific metabolic and inflammatory dysregulations that are induced by HFHC diet in the 5xFAD mouse model of AD pathology. We observe that both male and female 5xFAD mice display exacerbated adiposity, cholesterolemia, and dysregulated insulin signaling. Independent of biological sex, HFHC diet also resulted in altered inflammatory cytokine profiles across the gastrointestinal, circulating, and central nervous systems (CNS) compartments demonstrating region-specific impacts of metabolic inflammation. Interestingly, inhibiting the inflammatory cytokine, soluble tumor necrosis factor (TNF) with the brain-permeant soluble TNF inhibitor XPro1595 was able to restore aspects of HFHC-induced metabolic inflammation, but only in male mice. Targeted transcriptomics of CNS regions revealed that inhibition of soluble TNF was sufficient to alter expression of hippocampal and cortical genes associated with beneficial immune and metabolic responses. Collectively, these results suggest that HFHC diet impairs metabolic and inflammatory pathways in an AD-relevant genotype and that soluble TNF has sex-dependent roles in modulating these pathways across anatomical compartments. Modulation of energy homeostasis and inflammation may provide new therapeutic avenues for AD.
Collapse
Affiliation(s)
| | - MacKenzie L Bolen
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, The University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Noah Schwartz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Malú Gámez Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, The University of Florida College of Medicine, Gainesville, FL, USA; Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA.
| | | |
Collapse
|
11
|
Bettinetti-Luque M, Trujillo-Estrada L, Garcia-Fuentes E, Andreo-Lopez J, Sanchez-Varo R, Garrido-Sánchez L, Gómez-Mediavilla Á, López MG, Garcia-Caballero M, Gutierrez A, Baglietto-Vargas D. Adipose tissue as a therapeutic target for vascular damage in Alzheimer's disease. Br J Pharmacol 2024; 181:840-878. [PMID: 37706346 DOI: 10.1111/bph.16243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
Adipose tissue has recently been recognized as an important endocrine organ that plays a crucial role in energy metabolism and in the immune response in many metabolic tissues. With this regard, emerging evidence indicates that an important crosstalk exists between the adipose tissue and the brain. However, the contribution of adipose tissue to the development of age-related diseases, including Alzheimer's disease, remains poorly defined. New studies suggest that the adipose tissue modulates brain function through a range of endogenous biologically active factors known as adipokines, which can cross the blood-brain barrier to reach the target areas in the brain or to regulate the function of the blood-brain barrier. In this review, we discuss the effects of several adipokines on the physiology of the blood-brain barrier, their contribution to the development of Alzheimer's disease and their therapeutic potential. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Miriam Bettinetti-Luque
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Laura Trujillo-Estrada
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Garcia-Fuentes
- Unidad de Gestión Clínica Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana Andreo-Lopez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Raquel Sanchez-Varo
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Lourdes Garrido-Sánchez
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
| | - Ángela Gómez-Mediavilla
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología, Facultad de Medicina. Instituto Teófilo Hernando para la I+D de Fármacos, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Melissa Garcia-Caballero
- Departamento de Biología Molecular y Bioquímica, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonia Gutierrez
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Baglietto-Vargas
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
De Sousa Rodrigues ME, Bolen ML, Blackmer-Raynolds L, Schwartz N, Chang J, Tansey MG, Sampson TR. Diet-induced metabolic and immune impairments are sex-specifically modulated by soluble TNF signaling in the 5xFAD mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582516. [PMID: 38464096 PMCID: PMC10925304 DOI: 10.1101/2024.02.28.582516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Emerging evidence indicates that high-fat, high carbohydrate diet (HFHC) impacts central pathological features of Alzheimer's disease (AD) across both human incidences and animal models. However, the mechanisms underlying this association are poorly understood. Here, we identify compartment-specific metabolic and inflammatory dysregulations that are induced by HFHC diet in the 5xFAD mouse model of AD pathology. We observe that both male and female 5xFAD mice display exacerbated adiposity, cholesterolemia, and dysregulated insulin signaling. Independent of biological sex, HFHC diet also resulted in altered inflammatory cytokine profiles across the gastrointestinal, circulating, and central nervous systems (CNS) compartments demonstrating region-specific impacts of metabolic inflammation. In male mice, we note that HFHC triggered increases in amyloid beta, an observation not seen in female mice. Interestingly, inhibiting the inflammatory cytokine, soluble tumor necrosis factor (TNF) with the brain-permeant soluble TNF inhibitor XPro1595 was able to restore aspects of HFHC-induced metabolic inflammation, but only in male mice. Targeted transcriptomics of CNS regions revealed that inhibition of soluble TNF was sufficient to alter expression of hippocampal and cortical genes associated with beneficial immune and metabolic responses. Collectively, these results suggest that HFHC diet impairs metabolic and inflammatory pathways in an AD-relevant genotype and that soluble TNF has sex-dependent roles in modulating these pathways across anatomical compartments. Modulation of energy homeostasis and inflammation may provide new therapeutic avenues for AD.
Collapse
Affiliation(s)
| | - MacKenzie L. Bolen
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, The University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Noah Schwartz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Malú Gámez Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, The University of Florida College of Medicine, Gainesville, Florida, USA
| | | |
Collapse
|
13
|
Lynch MA. A case for seeking sex-specific treatments in Alzheimer's disease. Front Aging Neurosci 2024; 16:1346621. [PMID: 38414633 PMCID: PMC10897030 DOI: 10.3389/fnagi.2024.1346621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
There is no satisfactory explanation for the sex-related differences in the incidence of many diseases and this is also true of Alzheimer's disease (AD), where females have a higher lifetime risk of developing the disease and make up about two thirds of the AD patient population. The importance of understanding the cause(s) that account for this disproportionate distribution cannot be overestimated, and is likely to be a significant factor in the search for therapeutic strategies that will combat the disease and, furthermore, potentially point to a sex-targeted approach to treatment. This review considers the literature in the context of what is known about the impact of sex on processes targeted by drugs that are in clinical trial for AD, and existing knowledge on differing responses of males and females to these drugs. Current knowledge strongly supports the view that trials should make assessing sex-related difference in responses a priority with a focus on exploring the sex-stratified treatments.
Collapse
|
14
|
Son Y, Park HJ, Jeong YJ, Choi HD, Kim N, Lee HJ. Long-term radiofrequency electromagnetic fields exposure attenuates cognitive dysfunction in 5×FAD mice by regulating microglial function. Neural Regen Res 2023; 18:2497-2503. [PMID: 37282482 DOI: 10.4103/1673-5374.371379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
We have previously found that long-term effects of exposure to radiofrequency electromagnetic fields in 5×FAD mice with severe late-stage Alzheimer's disease reduced both amyloid-β deposition and glial activation, including microglia. To examine whether this therapeutic effect is due to the regulation of activated microglia, we analyzed microglial gene expression profiles and the existence of microglia in the brain in this study. 5×FAD mice at the age of 1.5 months were assigned to sham- and radiofrequency electromagnetic fields-exposed groups and then animals were exposed to 1950 MHz radiofrequency electromagnetic fields at a specific absorption rate of 5 W/kg for 2 hours/day and 5 days/week for 6 months. We conducted behavioral tests including the object recognition and Y-maze tests and molecular and histopathological analysis of amyloid precursor protein/amyloid-beta metabolism in brain tissue. We confirmed that radiofrequency electromagnetic field exposure for 6 months ameliorated cognitive impairment and amyloid-β deposition. The expression levels of Iba1 (pan-microglial marker) and colony-stimulating factor 1 receptor (CSF1R; regulates microglial proliferation) in the hippocampus in 5×FAD mice treated with radiofrequency electromagnetic fields were significantly reduced compared with those of the sham-exposed group. Subsequently, we analyzed the expression levels of genes related to microgliosis and microglial function in the radiofrequency electromagnetic fields-exposed group compared to those of a CSF1R inhibitor (PLX3397)-treated group. Both radiofrequency electromagnetic fields and PLX3397 suppressed the levels of genes related to microgliosis (Csf1r, CD68, and Ccl6) and pro-inflammatory cytokine interleukin-1β. Notably, the expression levels of genes related to microglial function, including Trem2, Fcgr1a, Ctss, and Spi1, were decreased after long-term radiofrequency electromagnetic field exposure, which was also observed in response to microglial suppression by PLX3397. These results showed that radiofrequency electromagnetic fields ameliorated amyloid-β pathology and cognitive impairment by suppressing amyloid-β deposition-induced microgliosis and their key regulator, CSF1R.
Collapse
Affiliation(s)
- Yeonghoon Son
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hye-Jin Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Ye Ji Jeong
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hyung-Do Choi
- Department of EMF Research Team, Radio and Broadcasting Technology Laboratory, Electronics and Telecommunications Research Institute, Daejon, Korea
| | - Nam Kim
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
15
|
Terstege DJ, Epp JR. Parvalbumin as a sex-specific target in Alzheimer's disease research - A mini-review. Neurosci Biobehav Rev 2023; 153:105370. [PMID: 37619647 DOI: 10.1016/j.neubiorev.2023.105370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, and both the incidence of this disease and its associated cognitive decline disproportionally effect women. While the etiology of AD is unknown, recent work has demonstrated that the balance of excitatory and inhibitory activity across the brain may serve as a strong predictor of cognitive impairments in AD. Across the cortex, the most prominent source of inhibitory signalling is from a class of parvalbumin-expressing interneurons (PV+). In this mini-review, the impacts of sex- and age-related factors on the function of PV+ neurons are examined within the context of vulnerability to AD pathology. These primary factors of influence include changes in brain metabolism, circulating sex hormone levels, and inflammatory response. In addition to positing the increased vulnerability of PV+ neurons to dysfunction in AD, this mini-review highlights the critical importance of presenting sex stratified data in the study of AD.
Collapse
Affiliation(s)
- Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
16
|
Abghari M, Vu JTCM, Eckberg N, Aldana BI, Kohlmeier KA. Decanoic Acid Rescues Differences in AMPA-Mediated Calcium Rises in Hippocampal CA1 Astrocytes and Neurons in the 5xFAD Mouse Model of Alzheimer's Disease. Biomolecules 2023; 13:1461. [PMID: 37892143 PMCID: PMC10604953 DOI: 10.3390/biom13101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD), a devastating neurodegenerative disease characterized by cognitive dysfunctions, is associated with high levels of amyloid beta 42 (Aβ42), which is believed to play a role in cellular damage and signaling changes in AD. Decanoic acid has been shown to be therapeutic in AD. Glutamatergic signaling within neurons and astrocytes of the CA1 region of the hippocampus is critical in cognitive processes, and previous work has indicated deficiencies in this signaling in a mouse model of AD. In this study, we investigated glutamate-mediated signaling by evaluating AMPA-mediated calcium rises in female and male CA1 neurons and astrocytes in a mouse model of AD and examined the potential of decanoic acid to normalize this signaling. In brain slices from 5xFAD mice in which there are five mutations leading to increasing levels of Aβ42, AMPA-mediated calcium transients in CA1 neurons and astrocytes were significantly lower than that seen in wildtype controls in both females and males. Interestingly, incubation of 5xFAD slices in decanoic acid restored AMPA-mediated calcium levels in neurons and astrocytes in both females and males to levels indistinguishable from those seen in wildtype, whereas similar exposure to decanoic acid did not result in changes in AMPA-mediated transients in neurons or astrocytes in either sex in the wildtype. Our data indicate that one mechanism by which decanoic acid could improve cognitive functioning is through normalizing AMPA-mediated signaling in CA1 hippocampal cells.
Collapse
|
17
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-specificity protein phosphatase 6 (DUSP6) overexpression reduces amyloid load and improves memory deficits in male 5xFAD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554335. [PMID: 37662269 PMCID: PMC10473733 DOI: 10.1101/2023.08.24.554335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal network that regulates late-onset Alzheimer's disease. Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods AAV5-DUSP6 or AAV5-GFP (control) were stereotactically injected into the dorsal hippocampus (dHc) of female and male 5xFAD or wild type mice to overexpress DUSP6 or GFP. Spatial learning memory of these mice was assessed in the Barnes maze, after which hippocampal tissues were isolated for downstream analysis. Results Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß 1-40 and Aß 1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation and microgliosis, which are increased in 5xFAD mice, were significantly reduced by dHc DUSP6 overexpression in both males and females. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulated expression of genes involved in inflammatory and extracellular signal-regulated kinase (ERK) pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. A limited number of differentially expressed genes (DEGs) (FDR<0.05) were identified in male mice; gene ontology analysis of DEGs (p<0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Notably, the msh homeobox 3 gene, Msx3 , previously shown to regulate microglial M1/M2 polarization and reduce neuroinflammation, was one of the most robustly upregulated genes in female and male wild type and 5xFAD mice overexpressing DUSP6. Conclusions In summary, our data indicate that DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.
Collapse
|
18
|
Poon CH, Wong STN, Roy J, Wang Y, Chan HWH, Steinbusch H, Blokland A, Temel Y, Aquili L, Lim LW. Sex Differences between Neuronal Loss and the Early Onset of Amyloid Deposits and Behavioral Consequences in 5xFAD Transgenic Mouse as a Model for Alzheimer's Disease. Cells 2023; 12:cells12050780. [PMID: 36899916 PMCID: PMC10000751 DOI: 10.3390/cells12050780] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
A promising direction in the research on Alzheimer's Disease (AD) is the identification of biomarkers that better inform the disease progression of AD. However, the performance of amyloid-based biomarkers in predicting cognitive performance has been shown to be suboptimal. We hypothesise that neuronal loss could better inform cognitive impairment. We have utilised the 5xFAD transgenic mouse model that displays AD pathology at an early phase, already fully manifested after 6 months. We have evaluated the relationships between cognitive impairment, amyloid deposition, and neuronal loss in the hippocampus in both male and female mice. We observed the onset of disease characterized by the emergence of cognitive impairment in 6-month-old 5xFAD mice coinciding with the emergence of neuronal loss in the subiculum, but not amyloid pathology. We also showed that female mice exhibited significantly increased amyloid deposition in the hippocampus and entorhinal cortex, highlighting sex-related differences in the amyloid pathology of this model. Therefore, parameters based on neuronal loss might more accurately reflect disease onset and progression compared to amyloid-based biomarkers in AD patients. Moreover, sex-related differences should be considered in studies involving 5xFAD mouse models.
Collapse
Affiliation(s)
- Chi Him Poon
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - San Tung Nicholas Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yingyi Wang
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hui Wang Hujo Chan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Harry Steinbusch
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Luca Aquili
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- College of Health and Education, Discipline of Psychology, Murdoch University, Perth 6150, Australia
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Correspondence:
| |
Collapse
|
19
|
Lansdell TA, Xu H, Galligan JJ, Dorrance AM. Effects of Striatal Amyloidosis on the Dopaminergic System and Behavior: A Comparative Study in Male and Female 5XFAD Mice. J Alzheimers Dis 2023; 94:1361-1375. [PMID: 37424461 DOI: 10.3233/jad-220905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND Nearly two-thirds of patients diagnosed with Alzheimer's disease (AD) are female. In addition, female patients with AD have more significant cognitive impairment than males at the same disease stage. This disparity suggests there are sex differences in AD progression. While females appear to be more affected by AD, most published behavioral studies utilize male mice. In humans, there is an association between antecedent attention-deficit/hyperactivity disorder and increased risk of dementia. Functional connectivity studies indicate that dysfunctional cortico-striatal networks contribute to hyperactivity in attention deficit hyperactivity disorder. Higher plaque density in the striatum accurately predicts the presence of clinical AD pathology. In addition, there is a link between AD-related memory dysfunction and dysfunctional dopamine signaling. OBJECTIVE With the need to consider sex as a biological variable, we investigated the influence of sex on striatal plaque burden, dopaminergic signaling, and behavior in prodromal 5XFAD mice. METHODS Six-month-old male and female 5XFAD and C57BL/6J mice were evaluated for striatal amyloid plaque burden, locomotive behavior, and changes in dopaminergic machinery in the striatum. RESULTS 5XFAD female mice had a higher striatal amyloid plaque burden than male 5XFAD mice. 5XFAD females, but not males, were hyperactive. Hyperactivity in female 5XFAD mice was associated with increased striatal plaque burden and changes in dopamine signaling in the dorsal striatum. CONCLUSION Our results indicate that the progression of amyloidosis involves the striatum in females to a greater extent than in males. These studies have significant implications for using male-only cohorts in the study of AD progression.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Hui Xu
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
20
|
Longitudinal Analysis of the Microbiome and Metabolome in the 5xfAD Mouse Model of Alzheimer's Disease. mBio 2022; 13:e0179422. [PMID: 36468884 PMCID: PMC9765021 DOI: 10.1128/mbio.01794-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent reports implicate gut microbiome dysbiosis in the onset and progression of Alzheimer's disease (AD), yet studies involving model animals overwhelmingly omit the microbial perspective. Here, we evaluate longitudinal microbiomes and metabolomes from a popular transgenic mouse model for familial AD (5xfAD). Cecal and fecal samples from 5xfAD and wild-type B6J (WT) mice from 4 to 18 months of age were subjected to shotgun Illumina sequencing. Metabolomics was performed on plasma and feces from a subset of the same animals. Significant genotype, sex, age, and cage-specific differences were observed in the microbiome, with the variance explained by genotype at 4 and 18 months of age rising from 0.9 to 9% and 0.3 to 8% for the cecal and fecal samples, respectively. Bacteria at significantly higher abundances in AD mice include multiple Alistipes spp., two Ligilactobacillus spp., and Lactobacillus sp. P38, while multiple species of Turicibacter, Lactobacillus johnsonii, and Romboutsia ilealis were less abundant. Turicibacter is similarly depleted in people with AD, and members of this genus both consume and induce the production of gut-derived serotonin. Contradicting previous findings in humans, serotonin is significantly more concentrated in the blood of older 5xfAD animals compared to their WT littermates. 5xfAD animals exhibited significantly lower plasma concentrations of carnosine and the lysophospholipid lysoPC a C18:1. Correlations between the microbiome and metabolome were also explored. Taken together, these findings strengthen the link between Turicibacter abundance and AD, provide a basis for further microbiome studies of murine models for AD, and suggest that greater control over animal model microbiomes is needed in AD research. IMPORTANCE Microorganisms residing within the gastrointestinal tract are implicated in the onset and progression of Alzheimer's disease (AD) through the mediation of inflammation, exchange of small-molecules across the blood-brain barrier, and stimulation of the vagus nerve. Unfortunately, most animal models for AD are housed under conditions that do not reflect real-world human microbial exposure and do not sufficiently account for (or meaningfully consider) variations in the microbiome. An improved understanding of AD model animal microbiomes will increase model efficacy and the translatability of research findings into humans. Here, we present the characterization of the microbiome and metabolome of the 5xfAD mouse model, which is one of the most common animal models for familial AD. The manuscript highlights the importance of considering the microbiome in study design and aims to lay the groundwork for future studies involving mouse models for AD.
Collapse
|
21
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-Specificity Protein Phosphatase 4 (DUSP4) Overexpression Improves Learning Behavior Selectively in Female 5xFAD Mice, and Reduces β-Amyloid Load in Males and Females. Cells 2022; 11:3880. [PMID: 36497141 PMCID: PMC9737364 DOI: 10.3390/cells11233880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Recent multiscale network analyses of banked brains from subjects who died of late-onset sporadic Alzheimer's disease converged on VGF (non-acronymic) as a key hub or driver. Within this computational VGF network, we identified the dual-specificity protein phosphatase 4 (DUSP4) [also known as mitogen-activated protein kinase (MAPK) phosphatase 2] as an important node. Importantly, DUSP4 gene expression, like that of VGF, is downregulated in postmortem Alzheimer's disease (AD) brains. We investigated the roles that this VGF/DUSP4 network plays in the development of learning behavior impairment and neuropathology in the 5xFAD amyloidopathy mouse model. We found reductions in DUSP4 expression in the hippocampi of male AD subjects, correlating with increased CDR scores, and in 4-month-old female and 12-18-month-old male 5xFAD hippocampi. Adeno-associated virus (AAV5)-mediated overexpression of DUSP4 in 5xFAD mouse dorsal hippocampi (dHc) rescued impaired Barnes maze performance in females but not in males, while amyloid loads were reduced in both females and males. Bulk RNA sequencing of the dHc from 5-month-old mice overexpressing DUSP4, and Ingenuity Pathway and Enrichr analyses of differentially expressed genes (DEGs), revealed that DUSP4 reduced gene expression in female 5xFAD mice in neuroinflammatory, interferon-gamma (IFNγ), programmed cell death protein-ligand 1/programmed cell death protein 1 (PD-L1/PD-1), and extracellular signal-regulated kinase (ERK)/MAPK pathways, via which DUSP4 may modulate AD phenotype with gender-specificity.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
22
|
Temporal Pattern of Neuroinflammation Associated with a Low Glycemic Index Diet in the 5xFAD Mouse Model of Alzheimer's Disease. Mol Neurobiol 2022; 59:7303-7322. [PMID: 36175825 PMCID: PMC9616770 DOI: 10.1007/s12035-022-03047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
Alzheimer's disease (AD) is associated with brain amyloid-β (Aβ) peptide accumulation and neuroinflammation. Currants, a low glycemic index dried fruit, and their components display pleiotropic neuroprotective effects in AD. We examined how diet containing 5% Corinthian currant paste (CurD) administered in 1-month-old 5xFAD mice for 1, 3, and 6 months affects Aβ levels and neuroinflammation in comparison to control diet (ConD) or sugar-matched diet containing 3.5% glucose/fructose (GFD). No change in serum glucose or insulin levels was observed among the three groups. CurD administered for 3 months reduced brain Aβ42 levels in male mice as compared to ConD and GFD, but after 6 months, Aβ42 levels were increased in mice both on CurD and GFD compared to ConD. CurD for 3 months also reduced TNFα and IL-1β levels in male and female mouse cortex homogenates compared to ConD and GFD. However, after 6 months, TNFα levels were increased in cortex homogenates of mice both on CurD and GFD as compared to ConD. A similar pattern was observed for TNFα-expressing cells, mostly co-expressing the microglial marker CD11b, in mouse hippocampus. IL-1β levels were similarly increased in the brain of all groups after 6 months. Furthermore, a time dependent decrease of secreted TNFα levels was found in BV2 microglial cells treated with currant phenolic extract as compared to glucose/fructose solution. Overall, our findings suggest that a short-term currant consumption reduces neuroinflammation in 5xFAD mice as compared to sugar-matched or control diet, but longer-term intake of currant or sugar-matched diet enhances neuroinflammation.
Collapse
|
23
|
Gallwitz L, Schmidt L, Marques AR, Tholey A, Cassidy L, Ulku I, Multhaup G, Di Spiezio A, Saftig P. Cathepsin D: Analysis of its potential role as an amyloid beta degrading protease. Neurobiol Dis 2022; 175:105919. [DOI: 10.1016/j.nbd.2022.105919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
|
24
|
Colombo G, Cubero RJA, Kanari L, Venturino A, Schulz R, Scolamiero M, Agerberg J, Mathys H, Tsai LH, Chachólski W, Hess K, Siegert S. A tool for mapping microglial morphology, morphOMICs, reveals brain-region and sex-dependent phenotypes. Nat Neurosci 2022; 25:1379-1393. [PMID: 36180790 PMCID: PMC9534764 DOI: 10.1038/s41593-022-01167-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022]
Abstract
Environmental cues influence the highly dynamic morphology of microglia. Strategies to characterize these changes usually involve user-selected morphometric features, which preclude the identification of a spectrum of context-dependent morphological phenotypes. Here we develop MorphOMICs, a topological data analysis approach, which enables semiautomatic mapping of microglial morphology into an atlas of cue-dependent phenotypes and overcomes feature-selection biases and biological variability. We extract spatially heterogeneous and sexually dimorphic morphological phenotypes for seven adult mouse brain regions. This sex-specific phenotype declines with maturation but increases over the disease trajectories in two neurodegeneration mouse models, with females showing a faster morphological shift in affected brain regions. Remarkably, microglia morphologies reflect an adaptation upon repeated exposure to ketamine anesthesia and do not recover to control morphologies. Finally, we demonstrate that both long primary processes and short terminal processes provide distinct insights to morphological phenotypes. MorphOMICs opens a new perspective to characterize microglial morphology.
Collapse
Affiliation(s)
- Gloria Colombo
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Ryan John A Cubero
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Lida Kanari
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | - Rouven Schulz
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Martina Scolamiero
- Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jens Agerberg
- Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Wojciech Chachólski
- Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kathryn Hess
- Laboratory for Topology and Neuroscience, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sandra Siegert
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
25
|
Boitet M, Eun H, Lee T, Kim J, Grailhe R. Non-invasive In Vivo Brain Astrogenesis and Astrogliosis Quantification Using a Far-red E2-Crimson Transgenic Reporter Mouse. Mol Neurobiol 2022; 59:6740-6753. [PMID: 36001234 DOI: 10.1007/s12035-022-02997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
Despite the adaptation of major clinical imaging modalities for small animals, optical bioluminescence imaging technology is the main approach readily reporting gene activity. Yet, in vivo bioluminescence monitoring requires the administration and diffusion of a substrate to the tissues of interest, resulting in experimental variability, high reagent cost, long acquisition time, and stress to the animal. In our study, we avoid such issues upon generating a new transgenic mouse (GFAP-E2crimson) expressing the far-red fluorescent protein E2-crimson under the control of the glial fibrillary acidic protein (GFAP) promoter. Using microscopy, we validated the selective expression of the reporter in the astrocyte cell population and by non-invasive in vivo fluorescence imaging its detection through the scalps and skulls of live animals. In addition, we performed a longitudinal study validating by in vivo imaging that the E2-crimson fluorescence signal is up-regulated, in pups during astrogenesis and in adult mice during astrogliosis upon kainic acid administration. Furthermore, upon crossing GFAP-E2crimson transgenic with 5XFAD Alzheimer's disease mice model, we were able to quantify the chronic inflammation triggered by amyloid deposit and aging over 18 months. As many diseases and conditions can trigger neuroinflammation, we believe that the GFAP-E2crimson reporter mice model delivers tremendous value for the non-invasive quantification of astrogliosis responses in living animals.
Collapse
Affiliation(s)
- Maylis Boitet
- Technology Development Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea
- Department of Biological Chemistry, IPK Campus, Korea University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyeju Eun
- Technology Development Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea
| | - Taekwan Lee
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jiho Kim
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea.
- Department of Biological Chemistry, IPK Campus, Korea University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
26
|
Role of Chemokines in the Development and Progression of Alzheimer's Disease. J Mol Neurosci 2022; 72:1929-1951. [PMID: 35821178 PMCID: PMC9392685 DOI: 10.1007/s12031-022-02047-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurogenerative disorder manifested by gradual memory loss and cognitive decline due to profound damage of cholinergic neurons. The neuropathological hallmarks of AD are intracellular deposits of neurofibrillary tangles (NFTs) and extracellular aggregates of amyloid β (Aβ). Mounting evidence indicates that intensified neuroinflammatory processes play a pivotal role in the pathogenesis of AD. Chemokines serve as signaling molecules in immune cells but also in nerve cells. Under normal conditions, neuroinflammation plays a neuroprotective role against various harmful factors. However, overexpression of chemokines initiates disruption of the integrity of the blood–brain barrier, facilitating immune cells infiltration into the brain. Then activated adjacent glial cells–astrocytes and microglia, release massive amounts of chemokines. Prolonged inflammation loses its protective role and drives an increase in Aβ production and aggregation, impairment of its clearance, or enhancement of tau hyperphosphorylation, contributing to neuronal loss and exacerbation of AD. Moreover, chemokines can be further released in response to growing deposits of toxic forms of Aβ. On the other hand, chemokines seem to exert multidimensional effects on brain functioning, including regulation of neurogenesis and synaptic plasticity in regions responsible for memory and cognitive abilities. Therefore, underexpression or complete genetic ablation of some chemokines can worsen the course of AD. This review covers the current state of knowledge on the role of particular chemokines and their receptors in the development and progression of AD. Special emphasis is given to their impact on forming Aβ and NFTs in humans and in transgenic murine models of AD.
Collapse
|
27
|
Roddick KM, Fertan E, Schellinck HM, Brown RE. A Signal Detection Analysis of Olfactory Learning in 12-Month-Old 5xFAD Mice. J Alzheimers Dis 2022; 88:37-44. [DOI: 10.3233/jad-220049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although Alzheimer’s disease is most often studied in terms of memory impairments, olfactory dysfunction begins in the early stages. We tested olfactory learning, sensitivity, and response bias using signal detection methods in 12-month-old male and female 5xFAD mice and their wildtype controls in the operant olfactometer. Odor detection was not reduced in the 5xFAD mice, but learning was, which was worse in female 5xFAD mice than in males. Female mice were more conservative in their response strategy. Signal detection analysis allows us to discriminate between cognitive and sensory deficits of male and female mouse models of AD.
Collapse
|
28
|
Ilina A, Khavinson V, Linkova N, Petukhov M. Neuroepigenetic Mechanisms of Action of Ultrashort Peptides in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23084259. [PMID: 35457077 PMCID: PMC9032300 DOI: 10.3390/ijms23084259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/23/2022] Open
Abstract
Epigenetic regulation of gene expression is necessary for maintaining higher-order cognitive functions (learning and memory). The current understanding of the role of epigenetics in the mechanism of Alzheimer’s disease (AD) is focused on DNA methylation, chromatin remodeling, histone modifications, and regulation of non-coding RNAs. The pathogenetic links of this disease are the misfolding and aggregation of tau protein and amyloid peptides, mitochondrial dysfunction, oxidative stress, impaired energy metabolism, destruction of the blood–brain barrier, and neuroinflammation, all of which lead to impaired synaptic plasticity and memory loss. Ultrashort peptides are promising neuroprotective compounds with a broad spectrum of activity and without reported side effects. The main aim of this review is to analyze the possible epigenetic mechanisms of the neuroprotective action of ultrashort peptides in AD. The review highlights the role of short peptides in the AD pathophysiology. We formulate the hypothesis that peptide regulation of gene expression can be mediated by the interaction of short peptides with histone proteins, cis- and transregulatory DNA elements and effector molecules (DNA/RNA-binding proteins and non-coding RNA). The development of therapeutic agents based on ultrashort peptides may offer a promising addition to the multifunctional treatment of AD.
Collapse
Affiliation(s)
- Anastasiia Ilina
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 19711 Saint Petersburg, Russia; (V.K.); (N.L.)
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7-(953)145-89-58
| | - Vladimir Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 19711 Saint Petersburg, Russia; (V.K.); (N.L.)
- Group of Peptide Regulation of Aging, Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Natalia Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 19711 Saint Petersburg, Russia; (V.K.); (N.L.)
| | - Mikhael Petukhov
- Department of Molecular Radiation Biophysics, Petersburg Nuclear Physics Institute Named after B.P. Konstantinov, NRC “Kurchatov Institute”, 188300 Gatchina, Russia;
- Group of Biophysics, Higher Engineering and Technical School, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| |
Collapse
|
29
|
Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer's disease. Nat Commun 2022; 13:998. [PMID: 35194025 PMCID: PMC8863829 DOI: 10.1038/s41467-022-28493-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Short-term memory deficits have been associated with prefrontal cortex (PFC) dysfunction in Alzheimer’s disease (AD) and AD mouse models. Extratelencephalic projection (ET) neurons in the PFC play a key role in short-term working memory, but the mechanism between ET neuronal dysfunction in the PFC and short-term memory impairment in AD is not well understood. Here, using fiber photometry and optogenetics, we found reduced neural activity in the ET neurons in the medial prefrontal cortex (mPFC) of the 5×FAD mouse model led to object recognition memory (ORM) deficits. Activation of ET neurons in the mPFC of 5×FAD mice rescued ORM impairment, and inhibition of ET neurons in the mPFC of wild type mice impaired ORM expression. ET neurons in the mPFC that project to supramammillary nucleus were necessary for ORM expression. Viral tracing and in vivo recording revealed that mPFC ET neurons received fewer cholinergic inputs from the basal forebrain in 5×FAD mice. Furthermore, activation of cholinergic fibers in the mPFC rescued ORM deficits in 5×FAD mice, while acetylcholine deficiency reduced the response of ET neurons in the mPFC to familiar objects. Taken together, our results revealed a neural mechanism behind ORM impairment in 5×FAD mice. Short-term memory deficits are associated with prefrontal cortex dysfunction in Alzheimer’s disease. Here, the authors assessed extratelencephalic projection (ET) neurons and found reduced ET neural activity in the medial prefrontal cortex (mPFC) and showed ET neurons received fewer cholinergic inputs from the basal forebrain in 5×FAD mice which led to object recognition memory deficits.
Collapse
|
30
|
Guo L, Zhong MB, Zhang L, Zhang B, Cai D. Sex Differences in Alzheimer's Disease: Insights From the Multiomics Landscape. Biol Psychiatry 2022; 91:61-71. [PMID: 33896621 PMCID: PMC8996342 DOI: 10.1016/j.biopsych.2021.02.968] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) has complex etiologies, and the impact of sex on AD varies over the course of disease development. The literature provides some evidence of sex-specific contributions to AD. However, molecular mechanisms of sex-biased differences in AD remain elusive. Multiomics data in tandem with systems biology approaches offer a new avenue to dissect sex-stratified molecular mechanisms of AD and to develop sex-specific diagnostic and therapeutic strategies for AD. Single-cell transcriptomic datasets and cell deconvolution of bulk tissue transcriptomic data provide additional insights into brain cell type-specific impact on sex-biased differences in AD. In this review, we summarize the impact of sex chromosomes and sex hormones on AD, the impact of sex-biased differences during AD development, and the interplay between sex and a major AD genetic risk factor, the APOE ε4 genotype, through the multiomics landscape. Several sex-biased molecular pathways such as neuroinflammation and bioenergetic metabolism have been identified. The importance of sex chromosome and sex hormones, as well as the associated pathways in AD pathogenesis, is further strengthened by findings from omics studies. Future research efforts should integrate the multiomics data from different brain regions and different cell types using systems biology approaches, and leverage the knowledge into a holistic examination of sex differences in AD. Advances in systems biology technologies and increasingly available large-scale multiomics datasets will facilitate future studies dissecting such complex signaling mechanisms to better understand AD pathogenesis in both sexes, with the ultimate goals of developing efficacious sex- and APOE-stratified preventive and therapeutic interventions for AD.
Collapse
Affiliation(s)
- Lei Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Margaret B Zhong
- Department of Neuroscience, Barnard College of Columbia University, New York, New York
| | - Larry Zhang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Research and Development Service, James J. Peters VA Medical Center, Bronx, New York
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, New York; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York; Research and Development Service, James J. Peters VA Medical Center, Bronx, New York.
| |
Collapse
|
31
|
Navakkode S, Gaunt JR, Pavon MV, Bansal VA, Abraham RP, Chong YS, Ch'ng TH, Sajikumar S. Sex-specific accelerated decay in time/activity-dependent plasticity and associative memory in an animal model of Alzheimer's disease. Aging Cell 2021; 20:e13502. [PMID: 34796608 PMCID: PMC8672784 DOI: 10.1111/acel.13502] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/02/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical studies have shown that female brains are more predisposed to neurodegenerative diseases such as Alzheimer's disease (AD), but the cellular and molecular mechanisms behind this disparity remain unknown. In several mouse models of AD, synaptic plasticity dysfunction is an early event and appears before significant accumulation of amyloid plaques and neuronal degeneration. However, it is unclear whether sexual dimorphism at the synaptic level contributes to the higher risk and prevalence of AD in females. Our studies on APP/PS1 (APPSwe/PS1dE9) mouse model show that AD impacts hippocampal long‐term plasticity in a sex‐specific manner. Long‐term potentiation (LTP) induced by strong tetanic stimulation (STET), theta burst stimulation (TBS) and population spike timing‐dependent plasticity (pSTDP) show a faster decay in AD females compared with age‐matched AD males. In addition, behavioural tagging (BT), a model of associative memory, is specifically impaired in AD females with a faster decay in memory compared with males. Together with the plasticity and behavioural data, we also observed an upregulation of neuroinflammatory markers, along with downregulation of transcripts that regulate cellular processes associated with synaptic plasticity and memory in females. Immunohistochemistry of AD brains confirms that female APP/PS1 mice carry a higher amyloid plaque burden and have enhanced microglial activation compared with male APP/PS1 mice. Their presence in the diseased mice also suggests a link between the impairment of LTP and the upregulation of the inflammatory response. Overall, our data show that synaptic plasticity and associative memory impairments are more prominent in females and this might account for the faster progression of AD in females.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
- Department of Physiology National University of Singapore Singapore Singapore
| | - Jessica Ruth Gaunt
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | - Maria Vazquez Pavon
- Department of Physiology National University of Singapore Singapore Singapore
| | | | - Riya Prasad Abraham
- Department of Physiology National University of Singapore Singapore Singapore
| | - Yee Song Chong
- Department of Physiology National University of Singapore Singapore Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
- School of Biological Science Nanyang Technological University Singapore Singapore
| | - Sreedharan Sajikumar
- Department of Physiology National University of Singapore Singapore Singapore
- Healthy Longevity Translational Research Programme Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Life Sciences Institute Neurobiology Programme National University of Singapore Singapore Singapore
| |
Collapse
|
32
|
Banik A, Amaradhi R, Lee D, Sau M, Wang W, Dingledine R, Ganesh T. Prostaglandin EP2 receptor antagonist ameliorates neuroinflammation in a two-hit mouse model of Alzheimer's disease. J Neuroinflammation 2021; 18:273. [PMID: 34801055 PMCID: PMC8605573 DOI: 10.1186/s12974-021-02297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) causes substantial medical and societal burden with no therapies ameliorating cognitive deficits. Centralized pathologies involving amyloids, neurofibrillary tangles, and neuroinflammatory pathways are being investigated to identify disease-modifying targets for AD. Cyclooxygenase-2 (COX-2) is one of the potential neuroinflammatory agents involved in AD progression. However, chronic use of COX-2 inhibitors in patients produced adverse cardiovascular effects. We asked whether inhibition of EP2 receptors, downstream of the COX-2 signaling pathway, can ameliorate neuroinflammation in AD brains in presence or absence of a secondary inflammatory stimuli. METHODS We treated 5xFAD mice and their non-transgenic (nTg) littermates in presence or absence of lipopolysaccharide (LPS) with an EP2 antagonist (TG11-77.HCl). In cohort 1, nTg (no-hit) or 5xFAD (single-hit-genetic) mice were treated with vehicle or TG11-77.HCl for 12 weeks. In cohort 2, nTg (single-hit-environmental) and 5xFAD mice (two-hit) were administered LPS (0.5 mg/kg/week) and treated with vehicle or TG11-77.HCl for 8 weeks. RESULTS Complete blood count analysis showed that LPS induced anemia of inflammation in both groups in cohort 2. There was no adverse effect of LPS or EP2 antagonist on body weight throughout the treatment. In the neocortex isolated from the two-hit cohort of females, but not males, the elevated mRNA levels of proinflammatory mediators (IL-1β, TNF, IL-6, CCL2, EP2), glial markers (IBA1, GFAP, CD11b, S110B), and glial proteins were significantly reduced by EP2 antagonist treatment. Intriguingly, the EP2 antagonist had no effect on either of the single-hit cohorts. There was a modest increase in amyloid-plaque deposition upon EP2 antagonist treatment in the two-hit female brains, but not in the single-hit genetic female cohort. CONCLUSION These results reveal a potential neuroinflammatory role for EP2 in the two-hit 5xFAD mouse model. A selective EP2 antagonist reduces inflammation only in female AD mice subjected to a second inflammatory insult.
Collapse
Affiliation(s)
- Avijit Banik
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Radhika Amaradhi
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Daniel Lee
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Michael Sau
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Wenyi Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
33
|
Giesers NK, Wirths O. Loss of Hippocampal Calretinin and Parvalbumin Interneurons in the 5XFAD Mouse Model of Alzheimer's Disease. ASN Neuro 2021; 12:1759091420925356. [PMID: 32423230 PMCID: PMC7238451 DOI: 10.1177/1759091420925356] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The deposition of amyloid-β peptides in the form of extracellular plaques
and neuronal degeneration belong to the hallmark features of
Alzheimer’s disease (AD). In addition, impaired calcium homeostasis
and altered levels in calcium-binding proteins seem to be associated
with the disease process. In this study, calretinin- (CR) and
parvalbumin- (PV) positive gamma-aminobutyric acid-producing
(GABAergic) interneurons were quantified in different hippocampal
subfields of 12-month-old wild-type mice, as well as in the transgenic
AD mouse models 5XFAD and Tg4-42. While, in comparison with wild-type
mice, CR-positive interneurons were mainly reduced in the CA1 and
CA2/3 regions in plaque-bearing 5XFAD mice, PV-positive interneurons
were reduced in all analyzed subfields including the dentate gyrus. No
reduction in CR- and PV-positive interneuron numbers was detected in
the non-plaque-forming Tg4-42 mouse, although this model has been
previously demonstrated to harbor a massive loss of CA1 pyramidal
neurons. These results provide information about hippocampal
interneuron numbers in two relevant AD mouse models, suggesting that
interneuron loss in this brain region may be related to extracellular
amyloid burden.
Collapse
Affiliation(s)
- Naomi K Giesers
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
34
|
Belaya I, Kucháriková N, Górová V, Kysenius K, Hare DJ, Crouch PJ, Malm T, Atalay M, White AR, Liddell JR, Kanninen KM. Regular Physical Exercise Modulates Iron Homeostasis in the 5xFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22168715. [PMID: 34445419 PMCID: PMC8395833 DOI: 10.3390/ijms22168715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of brain iron metabolism is one of the pathological features of aging and Alzheimer's disease (AD), a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. While physical inactivity is one of the risk factors for AD and regular exercise improves cognitive function and reduces pathology associated with AD, the underlying mechanisms remain unclear. The purpose of the study is to explore the effect of regular physical exercise on modulation of iron homeostasis in the brain and periphery of the 5xFAD mouse model of AD. By using inductively coupled plasma mass spectrometry and a variety of biochemical techniques, we measured total iron content and level of proteins essential in iron homeostasis in the brain and skeletal muscles of sedentary and exercised mice. Long-term voluntary running induced redistribution of iron resulted in altered iron metabolism and trafficking in the brain and increased iron content in skeletal muscle. Exercise reduced levels of cortical hepcidin, a key regulator of iron homeostasis, coupled with interleukin-6 (IL-6) decrease in cortex and plasma. We propose that regular exercise induces a reduction of hepcidin in the brain, possibly via the IL-6/STAT3/JAK1 pathway. These findings indicate that regular exercise modulates iron homeostasis in both wild-type and AD mice.
Collapse
Affiliation(s)
- Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Nina Kucháriková
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Veronika Górová
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Kai Kysenius
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Dominic J. Hare
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Peter J. Crouch
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
| | - Mustafa Atalay
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Anthony R. White
- Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Jeffrey R. Liddell
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (P.J.C.); (J.R.L.)
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (I.B.); (N.K.); (V.G.); (T.M.)
- Correspondence:
| |
Collapse
|
35
|
van Olst L, Roks SJ, Kamermans A, Verhaar BJH, van der Geest AM, Muller M, van der Flier WM, de Vries HE. Contribution of Gut Microbiota to Immunological Changes in Alzheimer's Disease. Front Immunol 2021; 12:683068. [PMID: 34135909 PMCID: PMC8200826 DOI: 10.3389/fimmu.2021.683068] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that both central and peripheral immunological processes play an important role in the pathogenesis of Alzheimer's disease (AD), but regulatory mechanisms remain unknown. The gut microbiota and its key metabolites are known to affect neuroinflammation by modulating the activity of peripheral and brain-resident immune cells, yet an overview on how the gut microbiota contribute to immunological alterations in AD is lacking. In this review, we discuss current literature on microbiota composition in AD patients and relevant animal models. Next, we highlight how microbiota and their metabolites may contribute to peripheral and central immunological changes in AD. Finally, we offer a future perspective on the translation of these findings into clinical practice by targeting gut microbiota to modulate inflammation in AD. Since we find that gut microbiota alterations in AD can induce peripheral and central immunological changes via the release of microbial metabolites, we propose that modulating their composition may alter ongoing inflammation and could therefore be a promising future strategy to fight progression of AD.
Collapse
Affiliation(s)
- Lynn van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Sigrid J.M. Roks
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Barbara J. H. Verhaar
- Department of Internal Medicine, Section Geriatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | | | - Majon Muller
- Department of Internal Medicine, Section Geriatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Michael J, Zirknitzer J, Unger MS, Poupardin R, Rieß T, Paiement N, Zerbe H, Hutter-Paier B, Reitsamer H, Aigner L. The Leukotriene Receptor Antagonist Montelukast Attenuates Neuroinflammation and Affects Cognition in Transgenic 5xFAD Mice. Int J Mol Sci 2021; 22:2782. [PMID: 33803482 PMCID: PMC7967180 DOI: 10.3390/ijms22052782] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. In particular, neuroinflammation, mediated by microglia cells but also through CD8+ T-cells, actively contributes to disease pathology. Leukotrienes are involved in neuroinflammation and in the pathological hallmarks of AD. In consequence, leukotriene signaling-more specifically, the leukotriene receptors-has been recognized as a potential drug target to ameliorate AD pathology. Here, we analyzed the effects of the leukotriene receptor antagonist montelukast (MTK) on hippocampal gene expression in 5xFAD mice, a commonly used transgenic AD mouse model. We identified glial activation and neuroinflammation as the main pathways modulated by MTK. The treatment increased the number of Tmem119+ microglia and downregulated genes related to AD-associated microglia and to lipid droplet-accumulating microglia, suggesting that the MTK treatment targets and modulates microglia phenotypes in the disease model compared to the vehicle. MTK treatment further reduced infiltration of CD8+T-cells into the brain parenchyma. Finally, MTK treatment resulted in improved cognitive functions. In summary, we provide a proof of concept for MTK to be a potential drug candidate for AD and provide novel modes of action via modulation of microglia and CD8+ T-cells. Of note, 5xFAD females showed a more severe pathology, and in consequence, MTK treatment had a more pronounced effect in the females compared to the males. The effects on neuroinflammation, i.e., microglia and CD8+ T-cells, as well as the effects on cognitive outcome, were dose-dependent, therefore arguing for the use of higher doses of MTK in AD clinical trials compared to the approved asthma dose.
Collapse
Affiliation(s)
- Johanna Michael
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Julia Zirknitzer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Michael Stefan Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Tanja Rieß
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Nadine Paiement
- IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; (N.P.); (H.Z.)
| | - Horst Zerbe
- IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; (N.P.); (H.Z.)
| | | | - Herbert Reitsamer
- Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (J.Z.); (M.S.U.); (T.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria;
- Austrian Cluster of Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
37
|
dos Santos Guilherme M, Zevallos VF, Pesi A, Stoye NM, Nguyen VTT, Radyushkin K, Schwiertz A, Schmitt U, Schuppan D, Endres K. Dietary Wheat Amylase Trypsin Inhibitors Impact Alzheimer's Disease Pathology in 5xFAD Model Mice. Int J Mol Sci 2020; 21:ijms21176288. [PMID: 32878020 PMCID: PMC7503408 DOI: 10.3390/ijms21176288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Wheat amylase trypsin inhibitors (ATIs) represent a common dietary protein component of gluten-containing cereals (wheat, rye, and barley). They act as toll-like receptor 4 ligands, and are largely resistant to intestinal proteases, eliciting a mild inflammatory response within the intestine after oral ingestion. Importantly, nutritional ATIs exacerbated inflammatory bowel disease and features of fatty liver disease and the metabolic syndrome in mice. For Alzheimer’s disease (AD), both inflammation and altered insulin resistance are major contributing factors, impacting onset as well as progression of this devastating brain disorder in patients. In this study, we evaluated the impact of dietary ATIs on a well-known rodent model of AD (5xFAD). We assessed metabolic, behavioral, inflammatory, and microbial changes in mice consuming different dietary regimes with and without ATIs, consumed ad libitum for eight weeks. We demonstrate that ATIs, with or without a gluten matrix, had an impact on the metabolism and gut microbiota of 5xFAD mice, aggravating pathological hallmarks of AD. If these findings can be translated to patients, an ATI-depleted diet might offer an alternative therapeutic option for AD and warrants clinical intervention studies.
Collapse
Affiliation(s)
- Malena dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University, 55131 Mainz, Germany; (M.d.S.G.); (N.M.S.); (V.T.T.N.)
| | - Victor F. Zevallos
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, 55131 Mainz, Germany; (V.F.Z.); (A.P.)
- Nutrition and Food Research Group, Department of Applied and Health Sciences, University of Northumbria, Newcastle Upon Tyne NE1 8ST, UK
| | - Aline Pesi
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, 55131 Mainz, Germany; (V.F.Z.); (A.P.)
| | - Nicolai M. Stoye
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University, 55131 Mainz, Germany; (M.d.S.G.); (N.M.S.); (V.T.T.N.)
| | - Vu Thu Thuy Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University, 55131 Mainz, Germany; (M.d.S.G.); (N.M.S.); (V.T.T.N.)
| | | | | | - Ulrich Schmitt
- Leibniz Institute for Resilience Research, 55122 Mainz, Germany; (K.R.); (U.S.)
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, 55131 Mainz, Germany; (V.F.Z.); (A.P.)
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (D.S.); (K.E.); Tel.: +49-6131-177356 (D.S.); +49-6131-172133 (K.E.)
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University, 55131 Mainz, Germany; (M.d.S.G.); (N.M.S.); (V.T.T.N.)
- Correspondence: (D.S.); (K.E.); Tel.: +49-6131-177356 (D.S.); +49-6131-172133 (K.E.)
| |
Collapse
|
38
|
Inhibition of Colony-Stimulating Factor 1 Receptor by PLX3397 Prevents Amyloid Beta Pathology and Rescues Dopaminergic Signaling in Aging 5xFAD Mice. Int J Mol Sci 2020; 21:ijms21155553. [PMID: 32756440 PMCID: PMC7432084 DOI: 10.3390/ijms21155553] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 01/28/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease. In this study, to investigate the effect of microglial elimination on AD progression, we administered PLX3397, a selective colony-stimulating factor 1 receptor inhibitor, to the mouse model of AD (5xFAD mice). Amyloid-beta (Aβ) deposition and amyloid precursor protein (APP), carboxyl-terminal fragment β, ionized calcium-binding adaptor molecule 1, synaptophysin, and postsynaptic density (PSD)-95 levels were evaluated in the cortex and hippocampus. In addition, the receptor density changes in dopamine D2 receptor (D2R) and metabotropic glutamate receptor 5 were evaluated using positron emission tomography (PET). D2R, tyrosine hydroxylase (TH), and dopamine transporter (DAT) levels were analyzed in the brains of Tg (5xFAD) mice using immunohistochemistry. PLX3397 administration significantly decreased Aβ deposition following microglial depletion in the cortex and hippocampus of Tg mice. In the neuro-PET studies, the binding values for D2R in the Tg mice were lower than those in the wild type mice; however, after PLX3397 treatment, the binding dramatically increased. PLX3397 administration also reversed the changes in synaptophysin and PSD-95 expression in the brain. Furthermore, the D2R and TH expression in the brains of Tg mice was significantly lower than that in the wild type; however, after PLX3397 administration, the D2R and TH levels were significantly higher than those in untreated Tg mice. Thus, our findings show that administering PLX3397 to aged 5xFAD mice could prevent amyloid pathology, concomitant with the rescue of dopaminergic signaling, suggesting that targeting microglia may serve as a useful therapeutic option for neurodegenerative diseases, including AD.
Collapse
|
39
|
Matthews DG, Caruso M, Murchison CF, Zhu JY, Wright KM, Harris CJ, Gray NE, Quinn JF, Soumyanath A. Centella Asiatica Improves Memory and Promotes Antioxidative Signaling in 5XFAD Mice. Antioxidants (Basel) 2019; 8:antiox8120630. [PMID: 31817977 PMCID: PMC6943631 DOI: 10.3390/antiox8120630] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Centella asiatica (CA) herb is a traditional medicine, long reputed to provide cognitive benefits. We have reported that CA water extract (CAW) treatment improves cognitive function of aged Alzheimer’s disease (AD) model Tg2576 and wild-type (WT) mice, and induces an NRF2-regulated antioxidant response in aged WT mice. Here, CAW was administered to AD model 5XFAD female and male mice and WT littermates (age: 7.6 +/− 0.6 months), and object recall and contextual fear memory were tested after three weeks treatment. CAW’s impact on amyloid-β plaque burden, and markers of neuronal oxidative stress and synaptic density, was assessed after five weeks treatment. CAW antioxidant activity was evaluated via nuclear transcription factor (erythroid-derived 2)-like 2 (NRF2) and NRF2-regulated antioxidant response element gene expression. Memory improvement in both genders and genotypes was associated with dose-dependent CAW treatment without affecting plaque burden, and marginally increased synaptic density markers in the hippocampus and prefrontal cortex. CAW treatment increased Nrf2 in hippocampus and other NRF2 targets (heme oxygenase-1, NAD(P)H quinone dehydrogenase 1, glutamate-cysteine ligase catalytic subunit). Reduced plaque-associated SOD1, an indicator of oxidative stress, was observed in the hippocampi and cortices of CAW-treated 5XFAD mice. We postulate that CAW treatment leads to reduced oxidative stress, contributing to improved neuronal health and cognition.
Collapse
Affiliation(s)
- Donald G Matthews
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Maya Caruso
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Charles F Murchison
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer Y Zhu
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Kirsten M Wright
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Christopher J Harris
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR 97239, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA; (D.G.M.); (M.C.); (C.F.M.); (J.Y.Z.); (K.M.W.); (C.J.H.); (N.E.G.); (J.F.Q.)
- Correspondence: ; Tel.: +1-503-494-6878
| |
Collapse
|