1
|
Maruthiyodan S, Mumbrekar KD, Guruprasad KP. Involvement of mitochondria in Alzheimer's disease pathogenesis and their potential as targets for phytotherapeutics. Mitochondrion 2024; 76:101868. [PMID: 38462158 DOI: 10.1016/j.mito.2024.101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia around the globe. The disease's genesis is multifaceted, and its pathophysiology is complicated. Malfunction of mitochondria has been regarded as one of the intracellular events that are substantially damaged in the onset of AD and are likely a common trait of other neurodegenerative illnesses. Several mitochondrial characteristics begin to diminish with age, eventually reaching a state of significant functional failure concurrent with the beginning of neurodegenerative diseases, however, the exact timing of these processes is unknown. Mitochondrial malfunction has a multitude of negative repercussions, including reduced calcium buffering and secondary excitotoxicity contributing to synaptic dysfunction, also free radical production, and activation of the mitochondrial permeability transition. Hence mitochondria are considered a therapeutic target in neurodegenerative disorders such as Alzheimer's. Traditional medicinal systems practiced in different countries employing various medicinal plants postulated to have potential role in the therapy and management of memory impairment including amnesia, dementia as well as AD. Although, the preclinical and clinical studies using these medicinal plants or plant products have demonstrated the therapeutic efficacy for AD, the precise mechanism of action is still obscure. Therefore, this review discusses the contribution of mitochondria towards AD pathogenesis and considering phytotherapeutics as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Swathi Maruthiyodan
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kanive Parashiva Guruprasad
- Centre for Ayurvedic Biology, Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
2
|
Zhang Q, Zhang X, Yang B, Li Y, Sun X, Li X, Sui P, Wang Y, Tian S, Wang C. Ligustilide-loaded liposome ameliorates mitochondrial impairments and improves cognitive function via the PKA/AKAP1 signaling pathway in a mouse model of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14460. [PMID: 37718506 PMCID: PMC10916432 DOI: 10.1111/cns.14460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Oxidative stress is an early event in the development of Alzheimer's disease (AD) and maybe a pivotal point of interaction governing AD pathogenesis; oxidative stress contributes to metabolism imbalance, protein misfolding, neuroinflammation and apoptosis. Excess reactive oxygen species (ROS) are a major contributor to oxidative stress. As vital sources of ROS, mitochondria are also the primary targets of ROS attack. Seeking effective avenues to reduce oxidative stress has attracted increasing attention for AD intervention. METHODS We developed liposome-packaged Ligustilide (LIG) and investigated its effects on mitochondrial function and AD-like pathology in the APPswe/PS1dE9 (APP/PS1) mouse model of AD, and analyzed possible mechanisms. RESULTS We observed that LIG-loaded liposome (LIG-LPs) treatment reduced oxidative stress and β-amyloid (Aβ) deposition and mitigated cognitive impairment in APP/PS1 mice. LIG management alleviated the destruction of the inner structure in the hippocampal mitochondria and ameliorated the imbalance between mitochondrial fission and fusion in the APP/PS1 mouse brain. We showed that the decline in cAMP-dependent protein kinase A (PKA) and A-kinase anchor protein 1 for PKA (AKAP1) was associated with oxidative stress and AD-like pathology. We confirmed that LIG-mediated antioxidant properties and neuroprotection were involved in upregulating the PKA/AKAP1 signaling in APPswe cells in vitro. CONCLUSION Liposome packaging for LIG is relatively biosafe and can overcome the instability of LIG. LIG alleviates mitochondrial dysfunctions and cognitive impairment via the PKA/AKAP1 signaling pathway. Our results provide experimental evidence that LIG-LPs may be a promising agent for AD therapy.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Xiangxiang Zhang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Bing Yang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Yan Li
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Xue‐Heng Sun
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Xiang Li
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Ping Sui
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Yi‐Bin Wang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Shu‐Yu Tian
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Chun‐Yan Wang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
- Translational Medicine Laboratory, Basic College of MedicineJilin Medical UniversityJilinChina
| |
Collapse
|
3
|
Pérez MJ, Ibarra-García-Padilla R, Tang M, Porter GA, Johnson GVW, Quintanilla RA. Caspase-3 cleaved tau impairs mitochondrial function through the opening of the mitochondrial permeability transition pore. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166898. [PMID: 37774936 PMCID: PMC11361306 DOI: 10.1016/j.bbadis.2023.166898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Mitochondrial dysfunction is a significant factor in the development of Alzheimer's disease (AD). Previous studies have demonstrated that the expression of tau cleaved at Asp421 by caspase-3 leads to mitochondrial abnormalities and bioenergetic impairment. However, the underlying mechanism behind these alterations and their impact on neuronal function remains unknown. To investigate the mechanism behind mitochondrial dysfunction caused by this tau form, we used transient transfection and pharmacological approaches in immortalized cortical neurons and mouse primary hippocampal neurons. We assessed mitochondrial morphology and bioenergetics function after expression of full-length tau and caspase-3-cleaved tau. We also evaluated the mitochondrial permeability transition pore (mPTP) opening and its conformation as a possible mechanism to explain mitochondrial impairment induced by caspase-3 cleaved tau. Our studies showed that pharmacological inhibition of mPTP by cyclosporine A (CsA) prevented all mitochondrial length and bioenergetics abnormalities in neuronal cells expressing caspase-3 cleaved tau. Neuronal cells expressing caspase-3-cleaved tau showed sustained mPTP opening which is mostly dependent on cyclophilin D (CypD) protein expression. Moreover, the impairment of mitochondrial length and bioenergetics induced by caspase-3-cleaved tau were prevented in hippocampal neurons obtained from CypD knock-out mice. Interestingly, previous studies using these mice showed a prevention of mPTP opening and a reduction of mitochondrial failure and neurodegeneration induced by AD. Therefore, our findings showed that caspase-3-cleaved tau negatively impacts mitochondrial bioenergetics through mPTP activation, highlighting the importance of this channel and its regulatory protein, CypD, in the neuronal damage induced by tau pathology in AD.
Collapse
Affiliation(s)
- María José Pérez
- Laboratory of Neurodegenerative Diseases, Centro de Investigaciones Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo Ibarra-García-Padilla
- Laboratory of Neurodegenerative Diseases, Centro de Investigaciones Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Maoping Tang
- Department of Anesthesiology, University of Rochester Medical Center, New York, USA
| | - George A Porter
- Department of Pediatrics, University of Rochester Medical Center, New York, USA
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester Medical Center, New York, USA
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Centro de Investigaciones Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
4
|
de Veij Mestdagh CF, Smit AB, Henning RH, van Kesteren RE. Mitochondrial Targeting against Alzheimer's Disease: Lessons from Hibernation. Cells 2023; 13:12. [PMID: 38201215 PMCID: PMC10778235 DOI: 10.3390/cells13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide and yet remains without effective therapy. Amongst the many proposed causes of AD, the mitochondrial cascade hypothesis is gaining attention. Accumulating evidence shows that mitochondrial dysfunction is a driving force behind synaptic dysfunction and cognitive decline in AD patients. However, therapies targeting the mitochondria in AD have proven unsuccessful so far, and out-of-the-box options, such as hibernation-derived mitochondrial mechanisms, may provide valuable new insights. Hibernators uniquely and rapidly alternate between suppression and re-activation of the mitochondria while maintaining a sufficient energy supply and without acquiring ROS damage. Here, we briefly give an overview of mitochondrial dysfunction in AD, how it affects synaptic function, and why mitochondrial targeting in AD has remained unsuccessful so far. We then discuss mitochondria in hibernation and daily torpor in mice, covering current advancements in hibernation-derived mitochondrial targeting strategies. We conclude with new ideas on how hibernation-derived dual mitochondrial targeting of both the ATP and ROS pathways may boost mitochondrial health and induce local synaptic protein translation to increase synaptic function and plasticity. Further exploration of these mechanisms may provide more effective treatment options for AD in the future.
Collapse
Affiliation(s)
- Christina F. de Veij Mestdagh
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
- Alzheimer Center Amsterdam, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ronald E. van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
| |
Collapse
|
5
|
Jett S, Boneu C, Zarate C, Carlton C, Kodancha V, Nerattini M, Battista M, Pahlajani S, Williams S, Dyke JP, Mosconi L. Systematic review of 31P-magnetic resonance spectroscopy studies of brain high energy phosphates and membrane phospholipids in aging and Alzheimer's disease. Front Aging Neurosci 2023; 15:1183228. [PMID: 37273652 PMCID: PMC10232902 DOI: 10.3389/fnagi.2023.1183228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Many lines of evidence suggest that mitochondria have a central role in aging-related neurodegenerative diseases, such as Alzheimer's disease (AD). Mitochondrial dysfunction, cerebral energy dysmetabolism and oxidative damage increase with age, and are early event in AD pathophysiology and may precede amyloid beta (Aβ) plaques. In vivo probes of mitochondrial function and energy metabolism are therefore crucial to characterize the bioenergetic abnormalities underlying AD risk, and their relationship to pathophysiology and cognition. A majority of the research conducted in humans have used 18F-fluoro-deoxygluose (FDG) PET to image cerebral glucose metabolism (CMRglc), but key information regarding oxidative phosphorylation (OXPHOS), the process which generates 90% of the energy for the brain, cannot be assessed with this method. Thus, there is a crucial need for imaging tools to measure mitochondrial processes and OXPHOS in vivo in the human brain. 31Phosphorus-magnetic resonance spectroscopy (31P-MRS) is a non-invasive method which allows for the measurement of OXPHOS-related high-energy phosphates (HEP), including phosphocreatine (PCr), adenosine triphosphate (ATP), and inorganic phosphate (Pi), in addition to potential of hydrogen (pH), as well as components of phospholipid metabolism, such as phosphomonoesters (PMEs) and phosphodiesters (PDEs). Herein, we provide a systematic review of the existing literature utilizing the 31P-MRS methodology during the normal aging process and in patients with mild cognitive impairment (MCI) and AD, with an additional focus on individuals at risk for AD. We discuss the strengths and limitations of the technique, in addition to considering future directions toward validating the use of 31P-MRS measures as biomarkers for the early detection of AD.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Vibha Kodancha
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Matilde Nerattini
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Michael Battista
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
6
|
Jett S, Dyke JP, Boneu Yepez C, Zarate C, Carlton C, Schelbaum E, Jang G, Pahlajani S, Williams S, Diaz Brinton R, Mosconi L. Effects of sex and APOE ε4 genotype on brain mitochondrial high-energy phosphates in midlife individuals at risk for Alzheimer's disease: A 31Phosphorus MR spectroscopy study. PLoS One 2023; 18:e0281302. [PMID: 36787293 PMCID: PMC9928085 DOI: 10.1371/journal.pone.0281302] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
Age, female sex, and APOE epsilon 4 (APOE4) genotype are the three greatest risk factors for late-onset Alzheimer's disease (AD). The convergence of these risks creates a hypometabolic AD-risk profile unique to women, which may help explain their higher lifetime risk of AD. Less is known about APOE4 effects in men, although APOE4 positive men also experience an increased AD risk. This study uses 31Phosphorus Magnetic Resonance Spectroscopy (31P-MRS) to examine effects of sex and APOE4 status on brain high-energy phosphates [adenosine triphosphate (ATP), phosphocreatine (PCr), inorganic phosphate (Pi)] and membrane phospholipids [phosphomonoesters (PME), phosphodiesters (PDE)] in 209 cognitively normal individuals at risk for AD, ages 40-65, 80% female, 46% APOE4 carriers (APOE4+). Women exhibited lower PCr/ATP and PCr/Pi levels than men in AD-vulnerable regions, including frontal, posterior cingulate, lateral and medial temporal cortex (multi-variable adjusted p≤0.037). The APOE4+ group exhibited lower PCr/ATP and PCr/Pi in frontal regions as compared to non-carriers (APOE4-) (multi-variable adjusted p≤0.005). Sex by APOE4 status interactions were observed in frontal regions (multi-variable adjusted p≤0.046), where both female groups and APOE4+ men exhibited lower PCr/ATP and PCr/Pi than APOE4- men. Among men, APOE4 homozygotes exhibited lower frontal PCr/ATP than heterozygotes and non-carriers. There were no significant effects of sex or APOE4 status on Pi/ATP and PME/PDE measures. Among midlife individuals at risk for AD, women exhibit lower PCr/ATP (e.g. higher ATP utilization) and lower PCr/Pi (e.g. higher energy demand) than age-controlled men, independent of APOE4 status. However, a double dose of APOE4 allele shifted men's brains to a similar metabolic range as women's brains. Examination of brain metabolic heterogeneity can support identification of AD-specific pathways within at-risk subgroups, further advancing both preventive and precision medicine for AD.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medicine, New York, New York, United States of America
| | - Camila Boneu Yepez
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Eva Schelbaum
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Grace Jang
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
- Department of Radiology, Weill Cornell Medicine, New York, New York, United States of America
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Roberta Diaz Brinton
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
- Department of Radiology, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
7
|
Rehman MU, Sehar N, Dar NJ, Khan A, Arafah A, Rashid S, Rashid SM, Ganaie MA. Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. Neurosci Biobehav Rev 2023; 144:104961. [PMID: 36395982 DOI: 10.1016/j.neubiorev.2022.104961] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer disease (AD), Parkinson disease (PD), and Huntington disease (HD) represent a major socio-economic challenge in view of their high prevalence yet poor treatment outcomes affecting quality of life. The major challenge in drug development for these NDs is insufficient clarity about the mechanisms involved in pathogenesis and pathophysiology. Mitochondrial dysfunction, oxidative stress and inflammation are common pathways that are linked to neuronal abnormalities and initiation of these diseases. Thus, elucidating the shared initial molecular and cellular mechanisms is crucial for recognizing novel remedial targets, and developing therapeutics to impede or stop disease progression. In this context, use of multifunctional compounds at early stages of disease development unclogs new avenues as it acts on act on multiple targets in comparison to single target concept. In this review, we summarize overview of the major findings and advancements in recent years focusing on shared mechanisms for better understanding might become beneficial in searching more potent pharmacological interventions thereby reducing the onset or severity of various NDs.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78992 USA
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
8
|
Chhimpa N, Singh N, Puri N, Kayath HP. The Novel Role of Mitochondrial Citrate Synthase and Citrate in the Pathophysiology of Alzheimer's Disease. J Alzheimers Dis 2023; 94:S453-S472. [PMID: 37393492 PMCID: PMC10473122 DOI: 10.3233/jad-220514] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Citrate synthase is a key mitochondrial enzyme that utilizes acetyl-CoA and oxaloacetate to form citrate in the mitochondrial membrane, which participates in energy production in the TCA cycle and linked to the electron transport chain. Citrate transports through a citrate malate pump and synthesizes acetyl-CoA and acetylcholine (ACh) in neuronal cytoplasm. In a mature brain, acetyl-CoA is mainly utilized for ACh synthesis and is responsible for memory and cognition. Studies have shown low citrate synthase in different regions of brain in Alzheimer's disease (AD) patients, which reduces mitochondrial citrate, cellular bioenergetics, neurocytoplasmic citrate, acetyl-CoA, and ACh synthesis. Reduced citrate mediated low energy favors amyloid-β (Aβ) aggregation. Citrate inhibits Aβ25-35 and Aβ1-40 aggregation in vitro. Hence, citrate can be a better therapeutic option for AD by improving cellular energy and ACh synthesis, and inhibiting Aβ aggregation, which prevents tau hyperphosphorylation and glycogen synthase kinase-3 beta. Therefore, we need clinical studies if citrate reverses Aβ deposition by balancing mitochondrial energy pathway and neurocytoplasmic ACh production. Furthermore, in AD's silent phase pathophysiology, when neuronal cells are highly active, they shift ATP utilization from oxidative phosphorylation to glycolysis and prevent excessive generation of hydrogen peroxide and reactive oxygen species (oxidative stress) as neuroprotective action, which upregulates glucose transporter-3 (GLUT3) and pyruvate dehydrogenase kinase-3 (PDK3). PDK3 inhibits pyruvate dehydrogenase, which decreases mitochondrial-acetyl-CoA, citrate, and cellular bioenergetics, and decreases neurocytoplasmic citrate, acetyl-CoA, and ACh formation, thus initiating AD pathophysiology. Therefore, GLUT3 and PDK3 can be biomarkers for silent phase of AD.
Collapse
Affiliation(s)
- Neeraj Chhimpa
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Department of Pharmacology, Meharishi Markandeshwar College of Medical Science & Research, Ambala, India
| | - Neha Singh
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Nikkita Puri
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
9
|
Tuo J, Peng Y, Linghu Y, Tao M, Huang S, Xu Z. Natural products regulate mitochondrial function in cognitive dysfunction-A scoping review. Front Pharmacol 2023; 14:1091879. [PMID: 36959855 PMCID: PMC10027783 DOI: 10.3389/fphar.2023.1091879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Medicines from natural products can not only treat neurodegenerative diseases but also improve the cognitive dysfunction caused by treatments with western medicines. This study reviews the literature related to the regulation of mitochondrial participation in cognitive function by natural products. In this study, we focused on English articles in PubMed, Web of Science, and Google Scholar, from 15 October 2017, to 15 October 2022. Fourteen studies that followed the inclusion criteria were integrated, analyzed, and summarized. Several studies have shown that natural products can improve or reduce cognitive dysfunction by ameliorating mitochondrial dysfunction. These results suggest that natural products may serve as new therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yan Peng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yushuang Linghu
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ming Tao
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shiming Huang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Shiming Huang, ; Zucai Xu,
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
- *Correspondence: Shiming Huang, ; Zucai Xu,
| |
Collapse
|
10
|
Jett S, Dyke JP, Andy C, Schelbaum E, Jang G, Boneu Yepez C, Pahlajani S, Diaz I, Diaz Brinton R, Mosconi L. Sex and menopause impact 31P-Magnetic Resonance Spectroscopy brain mitochondrial function in association with 11C-PiB PET amyloid-beta load. Sci Rep 2022; 12:22087. [PMID: 36543814 PMCID: PMC9772209 DOI: 10.1038/s41598-022-26573-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence implicates sex and endocrine aging effects on brain bioenergetic aging in the greater lifetime risk of Alzheimer's disease (AD) in women. We conducted 31Phosphorus Magnetic Resonance Spectroscopy (31P-MRS) to assess the impact of sex and menopause on brain high-energy phosphates [adenosine triphosphate (ATP), phosphocreatine (PCr), inorganic phosphate (Pi)] and membrane phospholipids [phosphomonoesters/phosphodiesters (PME/PDE)] in 216 midlife cognitively normal individuals at risk for AD, 80% female. Ninety-seven participants completed amyloid-beta (Aβ) 11C-PiB PET. Women exhibited higher ATP utilization than men in AD-vulnerable frontal, posterior cingulate, fusiform, medial and lateral temporal regions (p < 0.001). This profile was evident in frontal cortex at the pre-menopausal and peri-menopausal stage and extended to the other regions at the post-menopausal stage (p = 0.001). Results were significant after multi-variable adjustment for age, APOE-4 status, midlife health indicators, history of hysterectomy/oophorectomy, use of menopause hormonal therapy, and total intracranial volume. While associations between ATP/PCr and Aβ load were not significant, individuals with the highest Aβ load were post-menopausal and peri-menopausal women with ATP/PCr ratios in the higher end of the distribution. No differences in Pi/PCr, Pi/ATP or PME/PDE were detected. Outcomes are consistent with dynamic bioenergetic brain adaptations that are associated with female sex and endocrine aging.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Eva Schelbaum
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Grace Jang
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Camila Boneu Yepez
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ivan Diaz
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Roberta Diaz Brinton
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA.
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Dewanjee S, Chakraborty P, Bhattacharya H, Chacko L, Singh B, Chaudhary A, Javvaji K, Pradhan SR, Vallamkondu J, Dey A, Kalra RS, Jha NK, Jha SK, Reddy PH, Kandimalla R. Altered glucose metabolism in Alzheimer's disease: Role of mitochondrial dysfunction and oxidative stress. Free Radic Biol Med 2022; 193:134-157. [PMID: 36206930 DOI: 10.1016/j.freeradbiomed.2022.09.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/06/2022]
Abstract
Increasing evidence suggests that abnormal cerebral glucose metabolism is largely present in Alzheimer's disease (AD). The brain utilizes glucose as its main energy source and a decline in its metabolism directly reflects on brain function. Weighing on recent evidence, here we systematically assessed the aberrant glucose metabolism associated with amyloid beta and phosphorylated tau accumulation in AD brain. Interlink between insulin signaling and AD highlighted the involvement of the IRS/PI3K/Akt/AMPK signaling, and GLUTs in the disease progression. While shedding light on the mitochondrial dysfunction in the defective glucose metabolism, we further assessed functional consequences of AGEs (advanced glycation end products) accumulation, polyol activation, and other contributing factors including terminal respiration, ROS (reactive oxygen species), mitochondrial permeability, PINK1/parkin defects, lysosome-mitochondrial crosstalk, and autophagy/mitophagy. Combined with the classic plaque and tangle pathologies, glucose hypometabolism with acquired insulin resistance and mitochondrial dysfunction potentiate these factors to exacerbate AD pathology. To this end, we further reviewed AD and DM (diabetes mellitus) crosstalk in disease progression. Taken together, the present work discusses the emerging role of altered glucose metabolism, contributing impact of insulin signaling, and mitochondrial dysfunction in the defective cerebral glucose utilization in AD.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Regional Station, Palampur, 176061, Himachal Pradesh, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, 132001, Haryana, India
| | - Kalpana Javvaji
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India
| | | | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Rajkumar Singh Kalra
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 9040495, Japan
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology Departments School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India; Department of Biochemistry, Kakatiya Medical College, Warangal, India.
| |
Collapse
|
12
|
Song Y, Liu Z, Zhu X, Hao C, Hao W, Wu S, Yang J, Lu X, Jin C. Metformin alleviates the cognitive impairment caused by aluminum by improving energy metabolism disorders in mice. Biochem Pharmacol 2022; 202:115140. [PMID: 35700760 DOI: 10.1016/j.bcp.2022.115140] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
Long-term exposure to environmental aluminum was found to be related to the occurrence and development of neurodegenerative diseases. Energy metabolism disorders, one of the pathological features of neurodegenerative diseases, may occur in the early stage of the disease and are of potential intervention significance. Here, sub-chronic aluminum exposure mouse model was established, and metformin was used to intervene. We found that sub-chronic aluminum exposure decreased the protein levels of phosphorylation AMPK (p-AMPK), glucose transporter 1 (GLUT1) and GLUT3, taking charge of glucose uptake in the brain, reduced the levels of lactate shuttle-related proteins monocarboxylate transporter 4 (MCT4) and MCT2, as well as lactate content in the cerebral cortex, while increased hypoxia-inducible factor-1α (HIF-1α) level to drive downstream pyruvate dehydrogenase kinase 1 (PDK1) expression, thereby inhibiting pyruvate dehydrogenase (PDH) activity, and ultimately led to ATP depletion, neuronal death, and cognitive dysfunction. However, metformin could rescue these injuries. Thus, it came to a conclusion that aluminum could damage glucose uptake, interfere with astrocyte-neuron lactate shuttle (ANLS), interrupt the balance in energy metabolism, and resulting in cognitive function, while metformin has a neuroprotective effect against the disorder of energy metabolism caused by aluminum in mice.
Collapse
Affiliation(s)
- Yushuai Song
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Ziyue Liu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiaoying Zhu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Chenyu Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Wudi Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
13
|
Rezaeian AH, Wei W, Inuzuka H. The regulation of neuronal autophagy and cell survival by MCL1 in Alzheimer's disease. ACTA MATERIA MEDICA 2022; 1:42-55. [PMID: 35233562 DOI: 10.15212/amm-2021-0002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maintaining neuronal integrity and functions requires precise mechanisms controlling organelle and protein quality. Alzheimer's disease (AD) is characterized by functional defects in the clearance and recycling of intracellular components. As such, neuronal homeostasis involves autophagy, mitophagy, and apoptosis. Compromised activity in these cellular processes may cause pathological phenotypes of AD. Dysfunction of mitochondria is one of the hallmarks of AD. Mitophagy is a critical mitochondria quality control system, and the impaired mitophagy is observed in AD. Myeloid cell leukemia 1 (MCL1), a member of the pro-survival B-cell lymphoma protein 2 (BCL2) family, is a mitochondria-targeted protein that contributes to maintaining mitochondrial integrity. Mcl1 knockout mice display peri-implantation lethality. The studies on conditional Mcl1 knockout mice demonstrate that MCL1 plays a central role in neurogenesis and neuronal survival during brain development. Accumulating evidence reveals the critical role of MCL1 as a regulator of neuronal autophagy, mitophagy, and survival. In this review, we discuss the emerging neuroprotective function of MCL1 and how dysregulation of MCL1 signaling is involved in the pathogenesis of AD. As the pro-survival BCL2 family of proteins are promising targets of pharmacological intervention with BH3 mimetic drugs, we also discuss the promise of MCL1-targeting therapy in AD.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Mishra A, Wang Y, Yin F, Vitali F, Rodgers KE, Soto M, Mosconi L, Wang T, Brinton RD. A tale of two systems: Lessons learned from female mid-life aging with implications for Alzheimer's prevention & treatment. Ageing Res Rev 2022; 74:101542. [PMID: 34929348 PMCID: PMC8884386 DOI: 10.1016/j.arr.2021.101542] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
Neurological aging is frequently viewed as a linear process of decline, whereas in reality, it is a dynamic non-linear process. The dynamic nature of neurological aging is exemplified during midlife in the female brain. To investigate fundamental mechanisms of midlife aging that underlie risk for development of Alzheimer's disease (AD) in late life, we investigated the brain at greatest risk for the disease, the aging female brain. Outcomes of our research indicate that mid-life aging in the female is characterized by the emergence of three phases: early chronological (pre-menopause), endocrinological (peri-menopause) and late chronological (post-menopause) aging. The endocrinological aging program is sandwiched between early and late chronological aging. Throughout the three stages of midlife aging, two systems of biology, metabolic and immune, are tightly integrated through a network of signaling cascades. The network of signaling between these two systems of biology underlie an orchestrated sequence of adaptative starvation responses that shift the brain from near exclusive dependence on a single fuel, glucose, to utilization of an auxiliary fuel derived from lipids, ketone bodies. The dismantling of the estrogen control of glucose metabolism during mid-life aging is a critical contributor to the shift in fuel systems and emergence of dynamic neuroimmune phenotype. The shift in fuel reliance, puts the largest reservoir of local fatty acids, white matter, at risk for catabolism as a source of lipids to generate ketone bodies through astrocytic beta oxidation. APOE4 genotype accelerates the tipping point for emergence of the bioenergetic crisis. While outcomes derived from research conducted in the female brain are not directly translatable to the male brain, the questions addressed in a female centric program of research are directly applicable to investigation of the male brain. Like females, males with AD exhibit deficits in the bioenergetic system of the brain, activation of the immune system and hallmark Alzheimer's pathologies. The drivers and trajectory of mechanisms underlying neurodegeneration in the male brain will undoubtedly share common aspects with the female in addition to factors unique to the male. Preclinical and clinical evidence indicate that midlife endocrine aging can also be a transitional bridge to autoimmune disorders. Collectively, the data indicate that endocrinological aging is a critical period "tipping point" in midlife which can initiate emergence of the prodromal stage of late-onset-Alzheimer's disease. Interventions that target both immune and metabolic shifts that occur during midlife aging have the potential to alter the trajectory of Alzheimer's risk in late life. Further, to achieve precision medicine for AD, chromosomal sex is a critical variable to consider along with APOE genotype, other genetic risk factors and stage of disease.
Collapse
Affiliation(s)
- Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Fei Yin
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Francesca Vitali
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Kathleen E Rodgers
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Maira Soto
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tian Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Roberta D Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA.
| |
Collapse
|
15
|
Zuccoli GS, Carregari VC. Mitochondrial Dysregulation and the Influence in Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:109-118. [DOI: 10.1007/978-3-031-05460-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Song T, Song X, Zhu C, Patrick R, Skurla M, Santangelo I, Green M, Harper D, Ren B, Forester BP, Öngür D, Du F. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res Rev 2021; 72:101503. [PMID: 34751136 PMCID: PMC8662951 DOI: 10.1016/j.arr.2021.101503] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Accumulating evidence demonstrates that metabolic changes in the brain associated with neuroinflammation, oxidative stress, and mitochondrial dysfunction play an important role in the pathophysiology of mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the neural signatures associated with these metabolic alterations and underlying molecular mechanisms are still elusive. Accordingly, we reviewed the literature on in vivo human brain 1H and 31P-MRS studies and use meta-analyses to identify patterns of brain metabolic alterations in MCI and AD. 40 and 39 studies on MCI and AD, respectively, were classified according to brain regions. Our results indicate decreased N-acetyl aspartate and creatine but increased myo-inositol levels in both MCI and AD, decreased glutathione level in MCI as well as disrupted energy metabolism in AD. In addition, the hippocampus shows the strongest alterations in most of these metabolites. This meta-analysis also illustrates progressive metabolite alterations from MCI to AD. Taken together, it suggests that 1) neuroinflammation and oxidative stress may occur in the early stages of AD, and likely precede neuron loss in its progression; 2) the hippocampus is a sensitive region of interest for early diagnosis and monitoring the response of interventions; 3) targeting bioenergetics associated with neuroinflammation/oxidative stress is a promising approach for treating AD.
Collapse
Affiliation(s)
- Tao Song
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiaopeng Song
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Chenyawen Zhu
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA
| | - Regan Patrick
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Department of Neuropsychology, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Miranda Skurla
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA
| | | | - Morgan Green
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA
| | - David Harper
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Boyu Ren
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brent P Forester
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
17
|
Litwiniuk A, Baranowska-Bik A, Domańska A, Kalisz M, Bik W. Contribution of Mitochondrial Dysfunction Combined with NLRP3 Inflammasome Activation in Selected Neurodegenerative Diseases. Pharmaceuticals (Basel) 2021; 14:ph14121221. [PMID: 34959622 PMCID: PMC8703835 DOI: 10.3390/ph14121221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease and Parkinson's disease are the most common forms of neurodegenerative illnesses. It has been widely accepted that neuroinflammation is the key pathogenic mechanism in neurodegeneration. Both mitochondrial dysfunction and enhanced NLRP3 (nucleotide-binding oligomerization domain (NOD)-like receptor protein 3) inflammasome complex activity have a crucial role in inducing and sustaining neuroinflammation. In addition, mitochondrial-related inflammatory factors could drive the formation of inflammasome complexes, which are responsible for the activation, maturation, and release of pro-inflammatory cytokines, including interleukin-1β (IL-1β) and interleukin-18 (IL-18). The present review includes a broadened approach to the role of mitochondrial dysfunction resulting in abnormal NLRP3 activation in selected neurodegenerative diseases. Moreover, we also discuss the potential mitochondria-focused treatments that could influence the NLRP3 complex.
Collapse
Affiliation(s)
- Anna Litwiniuk
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.L.); (A.D.); (M.K.); (W.B.)
| | - Agnieszka Baranowska-Bik
- Department of Endocrinology, Centre of Postgraduate Medical Education, Cegłowska 80, 01-809 Warsaw, Poland
- Correspondence:
| | - Anita Domańska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.L.); (A.D.); (M.K.); (W.B.)
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Małgorzata Kalisz
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.L.); (A.D.); (M.K.); (W.B.)
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.L.); (A.D.); (M.K.); (W.B.)
| |
Collapse
|
18
|
Liang J, Wang C, Zhang H, Huang J, Xie J, Chen N. Exercise-Induced Benefits for Alzheimer's Disease by Stimulating Mitophagy and Improving Mitochondrial Function. Front Aging Neurosci 2021; 13:755665. [PMID: 34658846 PMCID: PMC8519401 DOI: 10.3389/fnagi.2021.755665] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Neurons are highly specialized post-mitotic cells that are inherently dependent on mitochondria due to their higher bioenergetic demand. Mitochondrial dysfunction is closely associated with a variety of aging-related neurological disorders, such as Alzheimer’s disease (AD), and the accumulation of dysfunctional and superfluous mitochondria has been reported as an early stage that significantly facilitates the progression of AD. Mitochondrial damage causes bioenergetic deficiency, intracellular calcium imbalance and oxidative stress, thereby aggravating β-amyloid (Aβ) accumulation and Tau hyperphosphorylation, and further leading to cognitive decline and memory loss. Although there is an intricate parallel relationship between mitochondrial dysfunction and AD, their triggering factors, such as Aβ aggregation and hyperphosphorylated Tau protein and action time, are still unclear. Moreover, many studies have confirmed abnormal mitochondrial biosynthesis, dynamics and functions will present once the mitochondrial quality control is impaired, thus leading to aggravated AD pathological changes. Accumulating evidence shows beneficial effects of appropriate exercise on improved mitophagy and mitochondrial function to promote mitochondrial plasticity, reduce oxidative stress, enhance cognitive capacity and reduce the risks of cognitive impairment and dementia in later life. Therefore, stimulating mitophagy and optimizing mitochondrial function through exercise may forestall the neurodegenerative process of AD.
Collapse
Affiliation(s)
- Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Cenyi Wang
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Juying Xie
- Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
19
|
Mroczek K, Fernando S, Fisher PR, Annesley SJ. Interactions and Cytotoxicity of Human Neurodegeneration- Associated Proteins Tau and α-Synuclein in the Simple Model Dictyostelium discoideum. Front Cell Dev Biol 2021; 9:741662. [PMID: 34552934 PMCID: PMC8450459 DOI: 10.3389/fcell.2021.741662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
The abnormal accumulation of the tau protein into aggregates is a hallmark in neurodegenerative diseases collectively known as tauopathies. In normal conditions, tau binds off and on microtubules aiding in their assembly and stability dependent on the phosphorylation state of the protein. In disease-affected neurons, hyperphosphorylation leads to the accumulation of the tau protein into aggregates, mainly neurofibrillary tangles (NFT) which have been seen to colocalise with other protein aggregates in neurodegeneration. One such protein is α-synuclein, the main constituent of Lewy bodies (LB), a hallmark of Parkinson's disease (PD). In many neurodegenerative diseases, including PD, the colocalisation of tau and α-synuclein has been observed, suggesting possible interactions between the two proteins. To explore the cytotoxicity and interactions between these two proteins, we expressed full length human tau and α-synuclein in Dictyostelium discoideum alone, and in combination. We show that tau is phosphorylated in D. discoideum and colocalises closely (within 40 nm) with tubulin throughout the cytoplasm of the cell as well as with α-synuclein at the cortex. Expressing wild type α-synuclein alone caused inhibited growth on bacterial lawns, phagocytosis and intracellular Legionella proliferation rates, but activated mitochondrial respiration and non-mitochondrial oxygen consumption. The expression of tau alone impaired multicellular morphogenesis, axenic growth and phototaxis, while enhancing intracellular Legionella proliferation. Direct respirometric assays showed that tau impairs mitochondrial ATP synthesis and increased the "proton leak," while having no impact on respiratory complex I or II function. In most cases depending on the phenotype, the coexpression of tau and α-synuclein exacerbated (phototaxis, fruiting body morphology), or reversed (phagocytosis, growth on plates, mitochondrial respiratory function, Legionella proliferation) the defects caused by either tau or α-synuclein expressed individually. Proteomics data revealed distinct patterns of dysregulation in strains ectopically expressing tau or α-synuclein or both, but down regulation of expression of cytoskeletal proteins was apparent in all three groups and most evident in the strain expressing both proteins. These results indicate that tau and α-synuclein exhibit different but overlapping patterns of intracellular localisation, that they individually exert distinct but overlapping patterns of cytotoxic effects and that they interact, probably physically in the cell cortex as well as directly or indirectly in affecting some phenotypes. The results show the efficacy of using D. discoideum as a model to study the interaction of proteins involved in neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Sarah J. Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
20
|
Tams ALM, Sanz-Morello B, Westi EW, Mouhammad ZA, Andersen JV, Freude KK, Vohra R, Hannibal J, Aldana BI, Kolko M. Decreased Glucose Metabolism and Glutamine Synthesis in the Retina of a Transgenic Mouse Model of Alzheimer's Disease. Cell Mol Neurobiol 2021; 42:291-303. [PMID: 34259962 DOI: 10.1007/s10571-021-01126-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022]
Abstract
Visual changes are some of the earliest symptoms that patients with Alzheimer's disease (AD) experience. Pathophysiological processes such as amyloid-β plaque formation, vascular changes, neuroinflammation, and loss of retinal ganglion cells (RGCs) have been detected in the retina of AD patients and animal models. However, little is known about the molecular processes that underlie retinal neurodegeneration in AD. The cellular architecture and constant sensory activity of the retina impose high metabolic demands. We thus hypothesized that energy metabolism might be compromised in the AD retina similarly to what has been observed in the AD brain. To address this question, we explored cellular alterations and retinal metabolic activity in the 5 × FAD mouse model of AD. We used 8-month-old female 5 × FAD mice, in which the AD-related pathology has been shown to be apparent. We observed that RGC density is selectively affected in the retina of 5 × FAD mice. To map retinal metabolic activity, we incubated isolated retinal tissue with [U-13C] glucose and analyzed tissue extracts by gas chromatography-mass spectrometry. We found that the retinas of 5 × FAD mice exhibit glucose hypometabolism. Moreover, we detected decreased glutamine synthesis in 5 × FAD retinas but no changes in the expression of markers of Müller glia, the main glial cell type responsible for glutamate uptake and glutamine synthesis in the retina. These findings suggest that AD presents with metabolic alterations not only in the brain but also in the retina that may be detrimental to RGC activity and survival, potentially leading to the visual impairments that AD patients suffer.
Collapse
Affiliation(s)
- Anna Luna Mølgaard Tams
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Berta Sanz-Morello
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Emil Winther Westi
- Neurometabolism Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Zaynab Ahmad Mouhammad
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Velde Andersen
- Neurometabolism Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Karla Freude
- Group of Stem Cells and Modeling of Neurodegeneration, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rupali Vohra
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Group of Stem Cells and Modeling of Neurodegeneration, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Blanca Irene Aldana
- Neurometabolism Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Miriam Kolko
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark. .,Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark.
| |
Collapse
|
21
|
Han S, Zhang M, Jeong YY, Margolis DJ, Cai Q. The role of mitophagy in the regulation of mitochondrial energetic status in neurons. Autophagy 2021; 17:4182-4201. [PMID: 33757395 DOI: 10.1080/15548627.2021.1907167] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the main cellular energy powerhouses and supply most of the energy in the form of ATP to fuel essential neuronal functions through oxidative phosphorylation (OXPHOS). In Alzheimer disease (AD), metabolic and mitochondrial disruptions are an early feature preceding any histopathological and clinical manifestations. Mitochondrial malfunction is also linked to synaptic defects in early AD. Mitophagy serves as a key cellular quality control mechanism involving sequestration of damaged mitochondria within autophagosomes and their subsequent degradation in lysosomes. However, it remains largely unknown whether mitophagy is involved in the regulation of energy metabolism in neurons, and if so, whether metabolic deficiency in AD is attributed to mitophagy dysfunction. Here we reveal that mitophagy is broadly activated in metabolically enhanced neurons upon OXPHOS stimulation, which sustains high energetic activity by increasing mitochondrial turnover and hence facilitating mitochondrial maintenance. Unexpectedly, in AD-related mutant HsAPP Tg mouse brains, early stimulation of OXPHOS activity fails to correct energy deficits but exacerbates synapse loss as a consequence of mitophagy failure. Excitingly, lysosomal enhancement in AD neurons restores impaired metabolic function by promoting elimination of damaged mitochondria, protecting against synaptic damage in AD mouse brains. Taken together, we propose a new mechanism by which mitophagy controls bioenergetic status in neurons, furthering our understanding of the direct impact of mitophagy defects on AD-linked metabolic deficits and shedding light on the development of novel therapeutic strategies to treat AD by the early stimulation of mitochondrial metabolism combined with elevation of lysosomal proteolytic activity.
Collapse
Affiliation(s)
- Sinsuk Han
- Department of Cell Biology and Neuroscience, Division of Life Science, School of Arts and Sciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Mingyang Zhang
- Department of Cell Biology and Neuroscience, Division of Life Science, School of Arts and Sciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Yu Young Jeong
- Department of Cell Biology and Neuroscience, Division of Life Science, School of Arts and Sciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Division of Life Science, School of Arts and Sciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Division of Life Science, School of Arts and Sciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
22
|
Khodagholi F, Zareh Shahamati S, Maleki Chamgordani M, Mousavi MA, Moslemi M, Salehpour M, Rafiei S, Foolad F. Interval aerobic training improves bioenergetics state and mitochondrial dynamics of different brain regions in restraint stressed rats. Mol Biol Rep 2021; 48:2071-2082. [PMID: 33723690 DOI: 10.1007/s11033-021-06177-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/20/2021] [Indexed: 10/21/2022]
Abstract
Evidence has validated the prophylactic effects of exercising on different aspects of health. On the opposite side, immobilization may lead to various destructive effects causing neurodegeneration. Here, we investigated the association between exercising and mitochondrial quality for preventing the destructive effects of restraint stress in different rat brain regions. Twenty-four male Wistar rats, were randomized into four groups (n = 6), exercise, stress, exercise + stress, and control. The exercise procedure consisted of running on a rodent treadmill for 8 weeks, and rats in the stress group were immobilized for 6 h. Rats were then euthanized by decapitation and tricarboxylic acid (TCA) cycle enzyme activity, antioxidant levels, and mitochondrial biogenesis factors were assessed in the frontal, hippocampus, parietal and temporal regions using spectrophotometer and western blot technique. Based on our results, increased activity of TCA cycle enzymes in the exercised and exercise-stressed groups was detected, except for malate dehydrogenase which was decreased in exercise-stressed group, and fumarase that did not change. Furthermore, the level of antioxidant agents (superoxide dismutase and reduced glutathione), mitochondrial biogenesis factors (peroxisome proliferator-activated receptor gamma coactivator 1-alpha and mitochondrial transcription factor A), and dynamics markers (Mitofusin 2, dynamic related protein 1, PTEN induced putative kinase-1, and parkin) increased in both mentioned groups. Interestingly our results also revealed that the majority of the mitochondrial factors increased in the frontal and parietal lobes, which may be in relation with the location of motor and sensory areas. Exercise can be used as a prophylactic approach against bioenergetics and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Zareh Shahamati
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Alsadat Mousavi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Moslemi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Salehpour
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Shahrbanoo Rafiei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Foolad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
23
|
Yang L, Jiang Y, Shi L, Zhong D, Li Y, Li J, Jin R. AMPK: Potential Therapeutic Target for Alzheimer's Disease. Curr Protein Pept Sci 2021; 21:66-77. [PMID: 31424367 DOI: 10.2174/1389203720666190819142746] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 06/30/2019] [Accepted: 08/31/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. The pathogenesis of AD is very complicated. For decades, the amyloid hypothesis has influenced and guided research in the field of AD. Meanwhile, researchers gradually realized that AD is caused by multiple concomitant factors, such as autophagy, mitochondrial quality control, insulin resistance and oxidative stress. In current clinical trials, the improvement strategies of AD, such as Aβ antibody immunotherapy and gamma secretase inhibitors, are limited. There is mounting evidence of neurodegenerative disorders indicated that activation of AMP-activated protein kinase (AMPK) may have broad neuroprotective effects. We reviewed the researches on AMPK for AD, the results demonstrated that activation of AMPK is controversial in Aβ deposition and tau phosphorylation, but is positive to promote autophagy, maintain mitochondrial quality control, reduce insulin resistance and relieve oxidative stress. It is concluded that AMPK might be a new target for AD by aggressively treating the risk factors in the future.
Collapse
Affiliation(s)
- Luping Yang
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, 610037, China
| | - Yijing Jiang
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine Fuzhou 350003 Fujian Key Laboratory of Rehabilitation Technology, Fuzhou 350003, China
| | - Lihong Shi
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, 610037, China
| | - Dongling Zhong
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, 610037, China
| | - Yuxi Li
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, 610037, China
| | - Juan Li
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, 610037, China
| | - Rongjiang Jin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, 610037, China
| |
Collapse
|
24
|
Song M, Zhao X, Song F. Aging-Dependent Mitophagy Dysfunction in Alzheimer's Disease. Mol Neurobiol 2021; 58:2362-2378. [PMID: 33417222 DOI: 10.1007/s12035-020-02248-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common late-onset dementia characterized by the deposition of extracellular amyloid plaques and formation of intracellular neurofibrillary tangles, which eventually lead to neuronal loss and cognitive deficits. Multiple lines of evidence indicate that mitochondrial dysfunction is involved in the initiation and progression of AD. As essential machinery for mitochondrial quality control, mitophagy plays a housekeeping role in neuronal cells by eliminating dysfunctional or excessive mitochondria. At present, mounting evidence support that the activity of mitophagy markedly declines in human brains during aging. Impaired mitophagy and mitochondrial dysfunction were causally linked to bioenergetic deficiency, oxidative stress, microglial activation, and chronic inflammation, thereby aggravating the Aβ and tau pathologies and leading to neuron loss in AD. This review summarizes recent evidence for age-associated mitophagy decline during human aging and provides an overview of mitochondrial dysfunction involved in the process of AD. It also discusses the underlying mechanisms through which defective mitophagy leads to neuronal cell death in AD. Therapeutic interventions aiming to restore mitophagy functions can be used as a strategy for ameliorating AD pathogenesis.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
25
|
Canepa E, Fossati S. Impact of Tau on Neurovascular Pathology in Alzheimer's Disease. Front Neurol 2021; 11:573324. [PMID: 33488493 PMCID: PMC7817626 DOI: 10.3389/fneur.2020.573324] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most prevalent cause of dementia. The main cerebral histological hallmarks are represented by parenchymal insoluble deposits of amyloid beta (Aβ plaques) and neurofibrillary tangles (NFT), intracellular filamentous inclusions of tau, a microtubule-associated protein. It is well-established that cerebrovascular dysfunction is an early feature of AD pathology, but the detrimental mechanisms leading to blood vessel impairment and the associated neurovascular deregulation are not fully understood. In 90% of AD cases, Aβ deposition around the brain vasculature, known as cerebral amyloid angiopathy (CAA), alters blood brain barrier (BBB) essential functions. While the effects of vascular Aβ accumulation are better documented, the scientific community has only recently started to consider the impact of tau on neurovascular pathology in AD. Emerging compelling evidence points to transmission of neuronal tau to different brain cells, including astrocytes, as well as to the release of tau into brain interstitial fluids, which may lead to perivascular neurofibrillar tau accumulation and toxicity, affecting vessel architecture, cerebral blood flow (CBF), and vascular permeability. BBB integrity and functionality may therefore be impacted by pathological tau, consequentially accelerating the progression of the disease. Tau aggregates have also been shown to induce mitochondrial damage: it is known that tau impairs mitochondrial localization, distribution and dynamics, alters ATP and reactive oxygen species production, and compromises oxidative phosphorylation systems. In light of this previous knowledge, we postulate that tau can initiate neurovascular pathology in AD through mitochondrial dysregulation. In this review, we will explore the literature investigating tau pathology contribution to the malfunction of the brain vasculature and neurovascular unit, and its association with mitochondrial alterations and caspase activation, in cellular, animal, and human studies of AD and tauopathies.
Collapse
Affiliation(s)
- Elisa Canepa
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Silvia Fossati
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Bastrup J, Hansen KH, Poulsen TB, Kastaniegaard K, Asuni AA, Christensen S, Belling D, Helboe L, Stensballe A, Volbracht C. Anti-Aβ Antibody Aducanumab Regulates the Proteome of Senile Plaques and Closely Surrounding Tissue in a Transgenic Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2021; 79:249-265. [DOI: 10.3233/jad-200715] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Alzheimer’s disease (AD) is characterized by accumulation of amyloid-β (Aβ) species and deposition of senile plaques (SPs). Clinical trials with the anti-Aβ antibody aducanumab have been completed recently. Objective: To characterize the proteomic profile of SPs and surrounding tissue in a mouse model of AD in 10-month-old tgAPPPS1-21 mice after chronic treatment with aducanumab for four months with weekly dosing (10 mg/kg). Methods: After observing significant reduction of SP numbers in hippocampi of aducanumab-treated mice, we applied a localized proteomic analysis by combining laser microdissection and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of the remaining SPs in hippocampi. We microdissected three subregions, containing SPs, SP penumbra level 1, and an additional penumbra level 2 to follow the proteomic profile as gradient. Results: In the aducanumab-treated mice, we identified 17 significantly regulated proteins that were associated with 1) mitochondria and metabolism (ACAT2, ATP5J, ETFA, EXOG, HK1, NDUFA4, NDUFS7, PLCB1, PPP2R4), 2) cytoskeleton and axons (ADD1, CAPZB, DPYSL3, MAG), 3) stress response (HIST1H1C/HIST1H1D, HSPA12A), and 4) AβPP trafficking/processing (CD81, GDI2). These pathways and some of the identified proteins are implicated in AD pathogenesis. Proteins associated with mitochondria and metabolism were mainly upregulated while proteins associated with AβPP trafficking/processing and stress response pathways were mainly downregulated, suggesting that aducanumab could lead to a beneficial proteomic profile around SPs in tgAPPPS1-21 mice. Conclusion: We identified novel proteomic patterns of SPs and surrounding tissue indicating that chronic treatment with aducanumab could inhibit Aβ toxicity and increase phagocytosis and cell viability.
Collapse
Affiliation(s)
- Joakim Bastrup
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
- Neuroscience, H. Lundbeck A/S, Valby, Denmark
| | | | - Thomas B.G. Poulsen
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | | | | | | | | | - Lone Helboe
- Neuroscience, H. Lundbeck A/S, Valby, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | | |
Collapse
|
27
|
Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K, Orkisz S, Beggiato S, Serviddio G, Cassano T. The Dual Role of Glutamatergic Neurotransmission in Alzheimer's Disease: From Pathophysiology to Pharmacotherapy. Int J Mol Sci 2020; 21:ijms21207452. [PMID: 33050345 PMCID: PMC7589203 DOI: 10.3390/ijms21207452] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related dementia and neurodegenerative disorder, characterized by Aβ and tau protein deposition impairing learning, memory and suppressing synaptic plasticity of neurons. Increasing evidence suggests that there is a link between the glucose and glutamate alterations with age that down-regulates glucose utilization reducing glutamate levels in AD patients. Deviations in brain energy metabolism reinforce the development of AD by hampering glutamate levels in the brain. Glutamate is a nonessential amino acid and the major excitatory neurotransmitter synthesized from glucose. Alterations in cerebral glucose and glutamate levels precede the deposition of Aβ plaques. In the brain, over 40% of neuronal synapses are glutamatergic and disturbances in glutamatergic function have been implicated in pathophysiology of AD. Nevertheless, targeting the glutamatergic system seems to be a promising strategy to develop novel, improved therapeutics for AD. Here, we review data supporting the involvement of the glutamatergic system in AD pathophysiology as well as the efficacy of glutamatergic agents in this neurodegenerative disorder. We also discuss exciting new prospects for the development of improved therapeutics for this devastating disorder.
Collapse
Affiliation(s)
- Vidyasagar Naik Bukke
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Moola Archana
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Agata Wawrzyniak
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Krzysztof Balawender
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Stanislaw Orkisz
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- Correspondence:
| |
Collapse
|
28
|
Hou X, Watzlawik JO, Cook C, Liu C, Kang SS, Lin W, DeTure M, Heckman MG, Diehl NN, Al‐Shaikh FSH, Walton RL, Ross OA, Melrose HL, Ertekin‐Taner N, Bu G, Petrucelli L, Fryer JD, Murray ME, Dickson DW, Fiesel FC, Springer W. Mitophagy alterations in Alzheimer's disease are associated with granulovacuolar degeneration and early tau pathology. Alzheimers Dement 2020; 17:417-430. [PMID: 33090691 PMCID: PMC8048674 DOI: 10.1002/alz.12198] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The cytoprotective PTEN-induced kinase 1 (PINK1)-parkin RBR E3 ubiquitin protein ligase (PRKN) pathway selectively labels damaged mitochondria with phosphorylated ubiquitin (pS65-Ub) for their autophagic removal (mitophagy). Because dysfunctions of mitochondria and degradation pathways are early features of Alzheimer's disease (AD), mitophagy impairments may contribute to the pathogenesis. METHODS Morphology, levels, and distribution of the mitophagy tag pS65-Ub were evaluated by biochemical analyses combined with tissue and single cell imaging in AD autopsy brain and in transgenic mouse models. RESULTS Analyses revealed significant increases of pS65-Ub levels in AD brain, which strongly correlated with granulovacuolar degeneration (GVD) and early phospho-tau deposits, but were independent of amyloid beta pathology. Single cell analyses revealed predominant co-localization of pS65-Ub with mitochondria, GVD bodies, and/or lysosomes depending on the brain region analyzed. DISCUSSION Our study highlights mitophagy alterations in AD that are associated with early tau pathology, and suggests that distinct mitochondrial, autophagic, and/or lysosomal failure may contribute to the selective vulnerability in disease.
Collapse
Affiliation(s)
- Xu Hou
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Casey Cook
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Chia‐Chen Liu
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Silvia S. Kang
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Wen‐Lang Lin
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Michael DeTure
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Michael G. Heckman
- Division of Biomedical Statistics and InformaticsMayo ClinicJacksonvilleFloridaUSA
| | - Nancy N. Diehl
- Division of Biomedical Statistics and InformaticsMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Owen A. Ross
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| | - Guojun Bu
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Leonard Petrucelli
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - John D. Fryer
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Melissa E. Murray
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Dennis W. Dickson
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | | | - Wolfdieter Springer
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| |
Collapse
|
29
|
Wu BW, Guo JD, Wu MS, Liu Y, Lu M, Zhou YH, Han HW. Osteoblast-derived lipocalin-2 regulated by miRNA-96-5p/Foxo1 advances the progression of Alzheimer's disease. Epigenomics 2020; 12:1501-1513. [PMID: 32901506 DOI: 10.2217/epi-2019-0215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Alzheimer's disease (AD) is the most frequent cause of dementia and characterized by the accumulation of β-amyloid peptides in plaques and vessel walls. This study proposed a hypothesis of an inhibitory role of miR-96-5p in AD via regulating Foxo1. Methods & methods: AD mouse models were established by injecting with 1% pentobarbital. Results: Knockdown of miR-96-5p in the presence of naringin was shown to reduce the expression of Foxo1 and contents of superoxide dismutase, catalase and glutathione peroxidase, yet increase lipocalin-2 expression as well as hydroxyproline and malondialdehyde contents. Also, Foxo1-mediated lipocalin-2 inhibition attenuated AD. Conclusion: Our study shows downregulating miR-96-5p limited AD progression, highlighting miR-96-5p a potential therapeutic target in treating AD.
Collapse
Affiliation(s)
- Bo-Wen Wu
- Department of Biochemistry, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, PR China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050091, Hebei Province, PR China
| | - Jin-Dong Guo
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050091, Hebei Province, PR China.,Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, PR China
| | - Mi-Shan Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050091, Hebei Province, PR China.,Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, PR China
| | - Yu Liu
- Department of Biochemistry, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, PR China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050091, Hebei Province, PR China
| | - Meng Lu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050091, Hebei Province, PR China.,Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, PR China
| | - Yu-Hui Zhou
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050091, Hebei Province, PR China.,Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, PR China
| | - Hong-Wei Han
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050091, Hebei Province, PR China.,Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, PR China
| |
Collapse
|
30
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 453] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
31
|
Han S, Jeong YY, Sheshadri P, Su X, Cai Q. Mitophagy regulates integrity of mitochondria at synapses and is critical for synaptic maintenance. EMBO Rep 2020; 21:e49801. [PMID: 32627320 DOI: 10.15252/embr.201949801] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/25/2023] Open
Abstract
Synaptic mitochondria are particularly vulnerable to physiological insults, and defects in synaptic mitochondria are linked to early pathophysiology of Alzheimer's disease (AD). Mitophagy, a cargo-specific autophagy for elimination of dysfunctional mitochondria, constitutes a key quality control mechanism. However, how mitophagy ensures synaptic mitochondrial integrity remains largely unknown. Here, we reveal Rheb and Snapin as key players regulating mitochondrial homeostasis at synapses. Rheb initiates mitophagy to target damaged mitochondria for autophagy, whereas dynein-Snapin-mediated retrograde transport promotes clearance of mitophagosomes from synaptic terminals. We demonstrate that synaptic accumulation of mitophagosomes is a feature in AD-related mutant hAPP mouse brains, which is attributed to increased mitophagy initiation coupled with impaired removal of mitophagosomes from AD synapses due to defective retrograde transport. Furthermore, while deficiency in dynein-Snapin-mediated retrograde transport recapitulates synaptic mitophagy stress and induces synaptic degeneration, elevated Snapin expression attenuates mitochondrial defects and ameliorates synapse loss in AD mouse brains. Taken together, our study provides new insights into mitophagy regulation of synaptic mitochondrial integrity, establishing a foundation for mitigating AD-associated mitochondria deficits and synaptic damage through mitophagy enhancement.
Collapse
Affiliation(s)
- Sinsuk Han
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yu Young Jeong
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Preethi Sheshadri
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Xiao Su
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Qian Cai
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
32
|
Schiavi A, Strappazzon F, Ventura N. Mitophagy and iron: two actors sharing the stage in age-associated neuronal pathologies. Mech Ageing Dev 2020; 188:111252. [PMID: 32330468 DOI: 10.1016/j.mad.2020.111252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Aging is characterized by the deterioration of different cellular and organismal structures and functions. A typical hallmark of the aging process is the accumulation of dysfunctional mitochondria and excess iron, leading to a vicious cycle that promotes cell and tissue damage, which ultimately contribute to organismal aging. Accordingly, altered mitochondrial quality control pathways such as mitochondrial autophagy (mitophagy) as well as altered iron homeostasis, with consequent iron overload, can accelerate the aging process and the development and progression of different age-associated disorders. In this review we first briefly introduce the aging process and summarize molecular mechanisms regulating mitophagy and iron homeostasis. We then provide an overview on how dysfunction of these two processes impact on aging and age-associated neurodegenerative disorders with a focus on Alzheimer's disease, Parkinson's disease and Amyotrophic Lateral Sclerosis. Finally, we summarize some recent evidence showing mechanistic links between iron metabolism and mitophagy and speculate on how regulating the crosstalk between the two processes may provide protective effects against aging and age-associated neuronal pathologies.
Collapse
Affiliation(s)
- Alfonso Schiavi
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; IUF- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; IUF- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
33
|
Wang H, Zhang T, Ge X, Chen J, Zhao Y, Fu J. Parkin overexpression attenuates Aβ-induced mitochondrial dysfunction in HEK293 cells by restoring impaired mitophagy. Life Sci 2020; 244:117322. [PMID: 31958419 DOI: 10.1016/j.lfs.2020.117322] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
AIMS Mitochondrial dysfunction is an early prominent feature of Alzheimer's disease (AD). In the present study, we sought to investigate whether defective mitophagy is tightly related to amyloid-β (Aβ)-induced mitochondrial dysfunction. MAIN METHODS Immunofluorescence, western blot and transmission electron microscopy were used to examine mitophagy. Mitochondrial membrane potential was assessed using the JC-1 dye. Mitochondrial ROS was detected using MitoSOX™ Red staining. KEY FINDINGS Aβ induced mitochondrial dysfunction in HEK293 cells. Moreover, Aβ induced an increase in parkin translocation to mitochondria and led to a drastic reduction in cytosolic parkin. Furthermore, Aβ-treated cells displayed a microtubule-associated protein 1 light chain 3 (LC3) punctate pattern and elevated mitochondrial LC3-II levels, suggesting the upregulation of mitophagy. Notably, Aβ induced the accumulation of mitochondrial p62, which was associated with impaired mitophagy. In addition, Aβ-treated cells exhibited fragmented or swollen mitochondria with severely decreased cristae. We then investigated whether overexpression of parkin could protect cells against Aβ-induced mitochondrial dysfunction. Interestingly, parkin overexpression inhibited Aβ-induced mitochondrial dysfunction. Besides, parkin overexpression increased cytosolic and mitochondrial parkin levels as well as mitochondrial LC3-II levels in Aβ-treated cells. Additionally, parkin overexpression reversed the accumulation of p62 in mitochondria, indicating that parkin overexpression restored impaired mitophagy in Aβ-treated cells. Importantly, parkin overexpression remarkably reversed Aβ-induced mitochondrial fragmentation. SIGNIFICANCE Our data demonstrate that overexpression of parkin ameliorates impaired mitophagy and promotes the removal of damaged mitochondria in Aβ-treated cells, indicating that upregulation of parkin-mediated mitophagy may be a potential strategy for the therapy of AD.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xuhua Ge
- Department of General Medicine, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Jingjiong Chen
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
34
|
Cai Q, Jeong YY. Mitophagy in Alzheimer's Disease and Other Age-Related Neurodegenerative Diseases. Cells 2020; 9:cells9010150. [PMID: 31936292 PMCID: PMC7017092 DOI: 10.3390/cells9010150] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is a central aspect of aging and neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Mitochondria are the main cellular energy powerhouses, supplying most of ATP by oxidative phosphorylation, which is required to fuel essential neuronal functions. Efficient removal of aged and dysfunctional mitochondria through mitophagy, a cargo-selective autophagy, is crucial for mitochondrial maintenance and neuronal health. Mechanistic studies into mitophagy have highlighted an integrated and elaborate cellular network that can regulate mitochondrial turnover. In this review, we provide an updated overview of the recent discoveries and advancements on the mitophagy pathways and discuss the molecular mechanisms underlying mitophagy defects in Alzheimer's disease and other age-related neurodegenerative diseases, as well as the therapeutic potential of mitophagy-enhancing strategies to combat these disorders.
Collapse
|
35
|
Meta-Analysis of Gene Expression Changes in the Blood of Patients with Mild Cognitive Impairment and Alzheimer's Disease Dementia. Int J Mol Sci 2019; 20:ijms20215403. [PMID: 31671574 PMCID: PMC6862214 DOI: 10.3390/ijms20215403] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Dementia is a major public health concern affecting approximately 47 million people worldwide. Mild cognitive impairment (MCI) is one form of dementia that affects an individual’s memory with or without affecting their daily life. Alzheimer’s disease dementia (ADD) is a more severe form of dementia that usually affects elderly individuals. It remains unclear whether MCI is a distinct disorder from or an early stage of ADD. Methods: Gene expression data from blood were analyzed to identify potential biomarkers that may be useful for distinguishing between these two forms of dementia. Results: A meta-analysis revealed 91 genes dysregulated in individuals with MCI and 387 genes dysregulated in ADD. Pathway analysis identified seven pathways shared between MCI and ADD and nine ADD-specific pathways. Fifteen transcription factors were associated with MCI and ADD, whereas seven transcription factors were specific for ADD. Mir-335-5p was specific for ADD, suggesting that it may be useful as a biomarker. Diseases that are associated with MCI and ADD included developmental delays, cognition impairment, and movement disorders. Conclusion: These results provide a better molecular understanding of peripheral changes that occur in MCI and ADD patients and may be useful in the identification of diagnostic and prognostic biomarkers.
Collapse
|
36
|
Zhang M, Cheng X, Dang R, Zhang W, Zhang J, Yao Z. Lactate Deficit in an Alzheimer Disease Mouse Model: The Relationship With Neuronal Damage. J Neuropathol Exp Neurol 2019; 77:1163-1176. [PMID: 30383244 DOI: 10.1093/jnen/nly102] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/08/2018] [Indexed: 01/07/2023] Open
Abstract
Cerebral energy metabolism in Alzheimer disease (AD) has recently been given increasing attention. This study focuses on the alterations of cerebral lactate metabolism in the double-transgenic amyloid precursor protein/presenilin 1 (APP/PS1) mouse model of AD. Immunofluorescence staining and Western blotting analysis were used to identify the alterations of lactate content and lactate transporters (MCT1, MCT2, MCT4) in APP/PS1 mouse brains, which display amyloid beta plaques, reduced amounts of neurons and oligodendrocytes, and increased quantity of astrocytes. We found that lactate content and expressions of cerebral MCT1, MCT2, and MCT4 were decreased in APP/PS1 mice. In particular, lactate dehydrogenase A (LDHA) and B (LDHB) were reduced in neurons with increased ratios of LDHA and LDHB. This study suggests that the decreases of cerebral lactate content and lactate transporters may lead to the blockage of lactate transport from glia to neurons, resulting in neuronal lactate deficit. The increased ratio of neuronal LDHA and LDHB may represent a reaction of neurons to lactate deficit, although it cannot reverse the energy deficiency in neurons.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Physiology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaofang Cheng
- Department of Physiology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ruozhi Dang
- Department of Physiology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weiwei Zhang
- Department of Physiology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Zhang
- Department of Physiology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhongxiang Yao
- Department of Physiology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
37
|
Lanzillotta C, Di Domenico F, Perluigi M, Butterfield DA. Targeting Mitochondria in Alzheimer Disease: Rationale and Perspectives. CNS Drugs 2019; 33:957-969. [PMID: 31410665 PMCID: PMC6825561 DOI: 10.1007/s40263-019-00658-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A decline in mitochondrial function plays a key role in the aging process and increases the incidence of age-related disorders, including Alzheimer disease (AD). Mitochondria-the power station of the organism-can affect several different cellular activities, including abnormal cellular energy generation, response to toxic insults, regulation of metabolism, and execution of cell death. In AD subjects, mitochondria are characterized by impaired function such as lowered oxidative phosphorylation, decreased adenosine triphosphate production, significant increased reactive oxygen species generation, and compromised antioxidant defense. The current review discusses the most relevant mitochondrial defects that are considered to play a significant role in AD and that may offer promising therapeutic targets for the treatment/prevention of AD. In addition, we discuss mechanisms of action and translational potential of some promising mitochondrial and bioenergetic therapeutics for AD including compounds able to potentiate energy production, antioxidants to scavenge reactive oxygen species and reduce oxidative damage, glucose metabolism, and candidates that target mitophagy. While mitochondrial therapeutic strategies have shown promise at the preclinical stage, there has been little progress in clinical trials. Thus, there is an urgent need to better understand the mechanisms regulating mitochondrial homeostasis in order to identify powerful drug candidates that target 'in and out' the mitochondria to preserve cognitive functions.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA.
| |
Collapse
|
38
|
Cenini G, Voos W. Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Front Pharmacol 2019; 10:902. [PMID: 31507410 PMCID: PMC6716473 DOI: 10.3389/fphar.2019.00902] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer disease (AD) is a progressive and deleterious neurodegenerative disorder that affects mostly the elderly population. At the moment, no effective treatments are available in the market, making the whole situation a compelling challenge for societies worldwide. Recently, novel mechanisms have been proposed to explain the etiology of this disease leading to the new concept that AD is a multifactor pathology. Among others, the function of mitochondria has been considered as one of the intracellular processes severely compromised in AD since the early stages and likely represents a common feature of many neurodegenerative diseases. Many mitochondrial parameters decline already during the aging, reaching an extensive functional failure concomitant with the onset of neurodegenerative conditions, although the exact timeline of these events is still unclear. Thereby, it is not surprising that mitochondria have been already considered as therapeutic targets in neurodegenerative diseases including AD. Together with an overview of the role of mitochondrial dysfunction, this review examines the pros and cons of the tested therapeutic approaches targeting mitochondria in the context of AD. Since mitochondrial therapies in AD have shown different degrees of progress, it is imperative to perform a detailed analysis of the significance of mitochondrial deterioration in AD and of a pharmacological treatment at this level. This step would be very important for the field, as an effective drug treatment in AD is still missing and new therapeutic concepts are urgently needed.
Collapse
Affiliation(s)
- Giovanna Cenini
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
39
|
Flannery PJ, Trushina E. Mitochondrial dynamics and transport in Alzheimer's disease. Mol Cell Neurosci 2019; 98:109-120. [PMID: 31216425 DOI: 10.1016/j.mcn.2019.06.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial dysfunction is now recognized as a contributing factor to the early pathology of multiple human conditions including neurodegenerative diseases. Mitochondria are signaling organelles with a multitude of functions ranging from energy production to a regulation of cellular metabolism, energy homeostasis, stress response, and cell fate. The success of these complex processes critically depends on the fidelity of mitochondrial dynamics that include the ability of mitochondria to change shape and location in the cell, which is essential for the maintenance of proper function and quality control, particularly in polarized cells such as neurons. This review highlights several aspects of alterations in mitochondrial dynamics in Alzheimer's disease, which may contribute to the etiology of this debilitating condition. We also discuss therapeutic strategies to improve mitochondrial dynamics and function that may provide an alternative approach to failed amyloid-directed interventions.
Collapse
Affiliation(s)
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
40
|
Wang ZT, Lu MH, Zhang Y, Ji WL, Lei L, Wang W, Fang LP, Wang LW, Yu F, Wang J, Li ZY, Wang JR, Wang TH, Dou F, Wang QW, Wang XL, Li S, Ma QH, Xu RX. Disrupted-in-schizophrenia-1 protects synaptic plasticity in a transgenic mouse model of Alzheimer's disease as a mitophagy receptor. Aging Cell 2019; 18:e12860. [PMID: 30488644 PMCID: PMC6351828 DOI: 10.1111/acel.12860] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/09/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is an early feature of Alzheimer's disease (AD). Accumulated damaged mitochondria, which are associated with impaired mitophagy, contribute to neurodegeneration in AD. We show levels of Disrupted‐in‐schizophrenia‐1 (DISC1), which is genetically associated with psychiatric disorders and AD, decrease in the brains of AD patients and transgenic model mice and in Aβ‐treated cultured cells. Disrupted‐in‐schizophrenia‐1 contains a canonical LC3‐interacting region (LIR) motif (210FSFI213), through which DISC1 directly binds to LC3‐I/II. Overexpression of DISC1 enhances mitophagy through its binding to LC3, whereas knocking‐down of DISC1 blocks Aβ‐induced mitophagy. We further observe overexpression of DISC1, but not its mutant (muFSFI) which abolishes the interaction of DISC1 with LC3, rescues Aβ‐induced mitochondrial dysfunction, loss of spines, suppressed long‐term potentiation (LTP). Overexpression of DISC1 via adeno‐associated virus (serotype 8, AAV8) in the hippocampus of 8‐month‐old APP/PS1 transgenic mice for 4 months rescues cognitive deficits, synaptic loss, and Aβ plaque accumulation, in a way dependent on the interaction of DISC1 with LC3. These results indicate that DISC1 is a novel mitophagy receptor, which protects synaptic plasticity from Aβ accumulation‐induced toxicity through promoting mitophagy.
Collapse
Affiliation(s)
- Zhao-Tao Wang
- Department of Neurosurgery; Affiliated Bayi Brain Hospital, General Army Hospital; Southern Medical University; Beijing China
| | - Mei-Hong Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience; Soochow University; Suzhou China
| | - Yan Zhang
- Department of Neurosurgery; Affiliated Bayi Brain Hospital, General Army Hospital; Southern Medical University; Beijing China
| | - Wen-Li Ji
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience; Soochow University; Suzhou China
| | - Lei Lei
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases; Dalian Medical University; Dalian China
| | - Wang Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience; Soochow University; Suzhou China
| | - Li-Pao Fang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience; Soochow University; Suzhou China
| | - Lu-Wen Wang
- Department of Pathology; Case Western Reserve University; Cleveland Ohio
| | - Fan Yu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience; Soochow University; Suzhou China
| | - Ji Wang
- Department of Neurosurgery; Affiliated Bayi Brain Hospital, General Army Hospital; Southern Medical University; Beijing China
| | - Zhen-Yu Li
- Department of Neurosurgery; Affiliated Bayi Brain Hospital, General Army Hospital; Southern Medical University; Beijing China
| | - Jian-Rong Wang
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Key Laboratory of Stem Cells and Biomedical; Materials of Jiangsu Province and Chinese Ministry of Science and Technology, State Key Laboratory of Radiation Medicine and Radioprotection; Soochow University School of Medicine; Suzhou China
| | - Ting-Hua Wang
- Institute of Neuroscience; Kunming Medical University; Kunming China
| | - Fei Dou
- College of Life Sciences; Beijing Normal University; Beijing China
| | - Qin-Wen Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine; Ningbo University; Ningbo China
| | - Xing-Long Wang
- Department of Pathology; Case Western Reserve University; Cleveland Ohio
| | - Shao Li
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases; Dalian Medical University; Dalian China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience; Soochow University; Suzhou China
| | - Ru-Xiang Xu
- Department of Neurosurgery; Affiliated Bayi Brain Hospital, General Army Hospital; Southern Medical University; Beijing China
| |
Collapse
|
41
|
Mustaly-Kalimi S, Littlefield AM, Stutzmann GE. Calcium Signaling Deficits in Glia and Autophagic Pathways Contributing to Neurodegenerative Disease. Antioxid Redox Signal 2018; 29:1158-1175. [PMID: 29634342 DOI: 10.1089/ars.2017.7266] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Numerous cellular processes and signaling mechanisms have been identified that contribute to Alzheimer's disease (AD) pathology; however, a comprehensive or unifying pathway that binds together the major disease features remains elusive. As an upstream mechanism, altered calcium (Ca2+) signaling is a common driving force for many pathophysiological events that emerge during normal aging and development of neurodegenerative disease. Recent Advances: Over the previous three decades, accumulated evidence has validated the concept that intracellular Ca2+ dysregulation is centrally involved in AD pathogenesis, including the aggregation of pathogenic β-amyloid (Aβ) and phospho-τ species, synapse loss and dysfunction, cognitive impairment, and neurotoxicity. CRITICAL ISSUES Although neuronal Ca2+ signaling within the cytosol and endoplasmic reticulum (ER) has been well studied, other critical central nervous system-resident cell types affected by aberrant Ca2+ signaling, such as astrocytes and microglia, have not been considered as thoroughly. In addition, certain intracellular Ca2+-harboring organelles have been well studied, such as the ER and mitochondria; however other critical Ca2+-regulated organelles, such as lysosomes and autophagosomes, have only more recently been investigated. In this review, we examine Ca2+ dysregulation in microglia and astrocytes, as well as key intracellular organelles important for cellular maintenance and protein handling. Ca2+ dysregulation within these non-neuronal cells and organelles is hypothesized to disrupt the effective clearance of misaggregated proteins and cellular signaling pathways needed for memory networks. FUTURE DIRECTIONS Overall, we aim to explore how these disrupted mechanisms could be involved in AD pathology and consider their role as potential therapeutic targets. Antioxid. Redox Signal. 29, 1158-1175.
Collapse
Affiliation(s)
- Sarah Mustaly-Kalimi
- 1 Department of Neuroscience, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Alyssa M Littlefield
- 1 Department of Neuroscience, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Grace E Stutzmann
- 2 Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| |
Collapse
|
42
|
Tranah GJ, Maglione JE, Yaffe K, Katzman SM, Manini TM, Kritchevsky S, Newman AB, Harris TB, Cummings SR. Mitochondrial DNA m.13514G>A heteroplasmy is associated with depressive symptoms in the elderly. Int J Geriatr Psychiatry 2018; 33:1319-1326. [PMID: 29984425 DOI: 10.1002/gps.4928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Mitochondrial DNA (mtDNA) heteroplasmy is a mixture of normal and mutated mtDNA molecules in a cell. High levels of heteroplasmy at several mtDNA sites in complex I lead to inherited neurological neurologic diseases and brain magnetic resonance imaging (MRI) abnormalities. Here, we test the hypothesis that mtDNA heteroplasmy at these complex I sites is associated with depressive symptoms in the elderly. METHODS We examined platelet mtDNA heteroplasmy for associations with depressive symptoms among 137 participants over age 70 from the community-based Health, Aging and Body Composition Study. Depressive symptoms were assessed using the 10-point version of the Center for Epidemiologic Studies Depression Scale (CES-D 10). Complete mtDNA sequencing was performed and heteroplasmy derived for 5 mtDNA sites associated with neurologic mitochondrial diseases and tested for associations with depressive symptoms. RESULTS Of 5 candidate complex I mtDNA mutations examined for effects on depressive symptoms, increased heteroplasmy at m.13514A>G, ND5, was significantly associated with higher CES-D score (P = .01). A statistically significant interaction between m.13514A > G heteroplasmy and sex was detected (P = .04); in sex-stratified analyses, the impact of m.13514A>G heteroplasmy was stronger in male (P = .003) than in female (P = .98) participants. Men in highest tertile of mtDNA heteroplasmy exhibited significantly higher (P = .0001) mean ± SE CES-D 10 scores, 5.37 ± 0.58, when compared with those in the middle, 2.13 ± 0.52, and lowest tertiles, 2.47 ± 0.58. No associations between the 4 other candidate sites and depressive symptoms were observed. CONCLUSIONS Increased mtDNA heteroplasmy at m.13514A>G is associated with depressive symptoms in older men. Heteroplasmy may represent a novel biological risk factor for depression.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, San Francisco, CA, USA
| | - Jeanne E Maglione
- University of California, San Diego, Department of Psychiatry, La Jolla, CA, USA
| | - Kristine Yaffe
- University of California, San Francisco, Departments of Psychiatry, Neurology, and Epidemiology, San Francisco, CA, USA.,San Francisco VA Medical Center, San Francisco, CA, USA
| | | | - Todd M Manini
- University of Florida, Department of Aging and Geriatric Research, Gainesville, FL, USA
| | - Stephen Kritchevsky
- Wake Forest School of Medicine, Sticht Center on Aging, Winston-Salem, NC, USA
| | - Anne B Newman
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA, USA
| | - Tamara B Harris
- National Institute on Aging, Intramural Research Program, Laboratory of Epidemiology and Population Sciences, Bethesda, MD, USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
43
|
Pérez MJ, Jara C, Quintanilla RA. Contribution of Tau Pathology to Mitochondrial Impairment in Neurodegeneration. Front Neurosci 2018; 12:441. [PMID: 30026680 PMCID: PMC6041396 DOI: 10.3389/fnins.2018.00441] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Tau is an essential protein that physiologically promotes the assembly and stabilization of microtubules, and participates in neuronal development, axonal transport, and neuronal polarity. However, in a number of neurodegenerative diseases, including Alzheimer’s disease (AD), tau undergoes pathological modifications in which soluble tau assembles into insoluble filaments, leading to synaptic failure and neurodegeneration. Mitochondria are responsible for energy supply, detoxification, and communication in brain cells, and important evidence suggests that mitochondrial failure could have a pivotal role in the pathogenesis of AD. In this context, our group and others investigated the negative effects of tau pathology on specific neuronal functions. In particular, we observed that the presence of these tau forms could affect mitochondrial function at three different levels: (i) mitochondrial transport, (ii) morphology, and (iii) bioenergetics. Therefore, mitochondrial dysfunction mediated by anomalous tau modifications represents a novel mechanism by which these forms contribute to the pathogenesis of AD. In this review, we will discuss the main results reported on pathological tau modifications and their effects on mitochondrial function and their importance for the synaptic communication and neurodegeneration.
Collapse
Affiliation(s)
- María J Pérez
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| |
Collapse
|
44
|
Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer's disease. Pharmacol Res 2018; 131:87-101. [DOI: 10.1016/j.phrs.2018.03.010] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
|
45
|
Schelke MW, Attia P, Palenchar DJ, Kaplan B, Mureb M, Ganzer CA, Scheyer O, Rahman A, Kachko R, Krikorian R, Mosconi L, Isaacson RS. Mechanisms of Risk Reduction in the Clinical Practice of Alzheimer's Disease Prevention. Front Aging Neurosci 2018; 10:96. [PMID: 29706884 PMCID: PMC5907312 DOI: 10.3389/fnagi.2018.00096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/21/2018] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative dementia that affects nearly 50 million people worldwide and is a major source of morbidity, mortality, and healthcare expenditure. While there have been many attempts to develop disease-modifying therapies for late-onset AD, none have so far shown efficacy in humans. However, the long latency between the initial neuronal changes and onset of symptoms, the ability to identify patients at risk based on family history and genetic markers, and the emergence of AD biomarkers for preclinical disease suggests that early risk-reducing interventions may be able to decrease the incidence of, delay or prevent AD. In this review, we discuss six mechanisms—dysregulation of glucose metabolism, inflammation, oxidative stress, trophic factor release, amyloid burden, and calcium toxicity—involved in AD pathogenesis that offer promising targets for risk-reducing interventions. In addition, we offer a blueprint for a multi-modality AD risk reduction program that can be clinically implemented with the current state of knowledge. Focused risk reduction aimed at particular pathological factors may transform AD to a preventable disorder in select cases.
Collapse
Affiliation(s)
- Matthew W Schelke
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Peter Attia
- Attia Medical, PC, San Diego, CA, United States
| | | | - Bob Kaplan
- Attia Medical, PC, San Diego, CA, United States
| | - Monica Mureb
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Christine A Ganzer
- Hunter College, City University of New York, New York, NY, United States
| | - Olivia Scheyer
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Aneela Rahman
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| | | | - Robert Krikorian
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa Mosconi
- Weill Cornell Medicine, Cornell University, New York, NY, United States
| | | |
Collapse
|
46
|
Tammineni P, Jeong YY, Feng T, Aikal D, Cai Q. Impaired axonal retrograde trafficking of the retromer complex augments lysosomal deficits in Alzheimer's disease neurons. Hum Mol Genet 2018; 26:4352-4366. [PMID: 28973312 DOI: 10.1093/hmg/ddx321] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/09/2017] [Indexed: 01/13/2023] Open
Abstract
Lysosomal proteolysis is essential for the quality control of intracellular components and the maintenance of cellular homeostasis. Lysosomal alterations have been implicated as one of the main cellular defects contributing to the onset and progression of Alzheimer's disease (AD). However, the mechanism underlying lysosomal deficits in AD remains poorly understood. Here, we reveal that lysosomal deficits are attributed to retromer dysfunction induced by altered retromer trafficking in the axon of AD-related mutant human amyloid precursor protein (hAPP) transgenic (Tg) mouse neurons. We demonstrate that retrograde transport of retromer is impaired, leading to its significant reduction in the soma and abnormal retention within late endosomes in distal axons of mutant hAPP neurons. Therefore, retromer-mediated endosome-to-Golgi retrieval of cation-independent mannose-6-phosphate receptors (CI-MPR) in the soma is disrupted in mutant hAPP neurons, causing defects in lysosome biogenesis. Such defects result in protease deficiency in lysosomes and impaired lysosomal proteolysis, as evidenced by aberrant accumulation of sequestered substrates within lysosomes. Intriguingly, enhancement of retrograde transport in mutant hAPP neurons facilitates the trafficking of axonal retromer toward the soma and thus enhances protease transport to lysosomes, thereby restoring lysosomal proteolytic activity. Taken together, our study provides new insights into the regulation of retromer trafficking through retrograde axonal transport to fulfil its function in promoting lysosome biogenesis in the soma, suggesting a potential approach for rescuing lysosomal proteolysis deficits in AD.
Collapse
Affiliation(s)
- Prasad Tammineni
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yu Young Jeong
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tuancheng Feng
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Daniyal Aikal
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
47
|
Abstract
Alzheimer's disease (AD) is characterized by brain deposition of amyloid plaques and tau neurofibrillary tangles along with steady cognitive decline. Synaptic damage, an early pathological event, correlates strongly with cognitive deficits and memory loss. Mitochondria are essential organelles for synaptic function. Neurons utilize specialized mechanisms to drive mitochondrial trafficking to synapses in which mitochondria buffer Ca2+ and serve as local energy sources by supplying ATP to sustain neurotransmitter release. Mitochondrial abnormalities are one of the earliest and prominent features in AD patient brains. Amyloid-β (Aβ) and tau both trigger mitochondrial alterations. Accumulating evidence suggests that mitochondrial perturbation acts as a key factor that is involved in synaptic failure and degeneration in AD. The importance of mitochondria in supporting synaptic function has made them a promising target of new therapeutic strategies for AD. Here, we review the molecular mechanisms regulating mitochondrial function at synapses, highlight recent findings on the disturbance of mitochondrial dynamics and transport in AD, and discuss how these alterations impact synaptic vesicle release and thus contribute to synaptic pathology associated with AD.
Collapse
|
48
|
Onyango IG. Modulation of mitochondrial bioenergetics as a therapeutic strategy in Alzheimer's disease. Neural Regen Res 2018; 13:19-25. [PMID: 29451200 PMCID: PMC5840984 DOI: 10.4103/1673-5374.224362] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2018] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.
Collapse
|
49
|
Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 2017; 341:154-175. [PMID: 29289598 DOI: 10.1016/j.bbr.2017.12.036] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a unique form of programmed death, characterised by cytosolic accumulation of iron, lipid hydroperoxides and their metabolites, and effected by the fatal peroxidation of polyunsaturated fatty acids in the plasma membrane. It is a major driver of cell death in neurodegenerative neurological diseases. Moreover, cascades underpinning ferroptosis could be active drivers of neuropathology in major psychiatric disorders. Oxidative and nitrosative stress can adversely affect mechanisms and proteins governing cellular iron homeostasis, such as the iron regulatory protein/iron response element system, and can ultimately be a source of abnormally high levels of iron and a source of lethal levels of lipid membrane peroxidation. Furthermore, neuroinflammation leads to the upregulation of divalent metal transporter1 on the surface of astrocytes, microglia and neurones, making them highly sensitive to iron overload in the presence of high levels of non-transferrin-bound iron, thereby affording such levels a dominant role in respect of the induction of iron-mediated neuropathology. Mechanisms governing systemic and cellular iron homeostasis, and the related roles of ferritin and mitochondria are detailed, as are mechanisms explaining the negative regulation of ferroptosis by glutathione, glutathione peroxidase 4, the cysteine/glutamate antiporter system, heat shock protein 27 and nuclear factor erythroid 2-related factor 2. The potential role of DJ-1 inactivation in the precipitation of ferroptosis and the assessment of lipid peroxidation are described. Finally, a rational approach to therapy is considered, with a discussion on the roles of coenzyme Q10, iron chelation therapy, in the form of deferiprone, deferoxamine (desferrioxamine) and deferasirox, and N-acetylcysteine.
Collapse
|
50
|
Dhull DK, Kumar A. Tramadol ameliorates behavioural, biochemical, mitochondrial and histological alterations in ICV-STZ-induced sporadic dementia of Alzheimer's type in rats. Inflammopharmacology 2017; 26:925-938. [PMID: 29249049 DOI: 10.1007/s10787-017-0431-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022]
Abstract
Alzheimer disease represents a major public health issue with limited therapeutic interventions. We explored the possibility of therapeutic approach by repurposing of tramadol in a sporadic animal model of Alzheimer's type. Streptozocin (STZ 3 mg/kg; bilaterally) was injected to male SD rats through intracerebroventricular (ICV) route. Drug treatment was started just after streptozocin administration and continued for 3 weeks. The rats were killed on the 21st day following the last behavioral test, and cytoplasmic fractions of the hippocampus and pre-frontal cortex were prepared for the quantification of acetylcholinesterase, oxidative stress parameter, mitochondrial enzymes activity and histological examination. Tramadol (5, 10 and 20 mg/kg, i.p.) was used as a treatment drug, and memantine (10 mg/kg, i.p.) was used as a standard. Tramadol significantly attenuated behavioral, biochemical, mitochondrial and histological alterations at low (5 mg/kg) and intermediate (10 mg/kg) dose, suggesting its neuroprotective potential in ICV-STZ-treated rats. Further, the neuroprotective effect of tramadol (10 mg/kg) was comparable to memantine (10 mg/kg). In conclusion, our results indicate the effectiveness of tramadol in preventing ICV-STZ-induced cognitive impairment as well as mito-oxidative stress. Further, these findings reveal the possibility of MOR agonist as a therapeutic approach for sporadic Alzheimer disease.
Collapse
Affiliation(s)
- Dinesh K Dhull
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|