1
|
Ng XY, Cao M. Dysfunction of synaptic endocytic trafficking in Parkinson's disease. Neural Regen Res 2024; 19:2649-2660. [PMID: 38595283 PMCID: PMC11168511 DOI: 10.4103/nrr.nrr-d-23-01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 04/11/2024] Open
Abstract
Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum. The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive. Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease. Notably, several of these genes are linked to the synaptic vesicle recycling process, particularly the clathrin-mediated endocytosis pathway. This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease, followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a "dying back" mechanism. Recently, several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized. These models faithfully recapitulate certain Parkinson's disease-like features at the animal, circuit, and cellular levels, and exhibit defects in synaptic membrane trafficking, further supporting the findings from human genetics and clinical studies. In this review, we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins: auxilin (DNAJC6/PARK19) and synaptojanin 1 (SYNJ1/PARK20). The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect. Subsequently, we will delve into the involvement of several clathrin-mediated endocytosis-related proteins (GAK, endophilin A1, SAC2/INPP5F, synaptotagmin-11), identified as Parkinson's disease risk factors through genome-wide association studies, in Parkinson's disease pathogenesis. We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins (alpha-synuclein (PARK1/4), Parkin (PARK2), and LRRK2 (PARK8)) in synaptic endocytic trafficking. Additionally, we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways, particularly autophagy. Given that synaptic dysfunction is considered as an early event in Parkinson's disease, a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel targets for early diagnosis and the development of interventional therapies for Parkinson's disease. Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Xin Yi Ng
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Mian Cao
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Lai MSL, Sørensen MH, Lee K, Chu JMT, Chang RCC. 3D mapping of direct VTA-CA2 circuit with potential involvement in Parkinson's disease degeneration. Neurobiol Dis 2024; 202:106723. [PMID: 39486774 DOI: 10.1016/j.nbd.2024.106723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
Parkinson's disease dementia (PDD) is commonly developed in patients at the late stage of Parkinson's disease (PD) with unknown progression mechanisms. From the post-mortem tissues and animal models, the ventral tegmental area (VTA) and the CA2 regions are closely associated with dementia development in PDD. However, the structural connection between the two regions has not been fully traced. In this study, we applied tissue clearing and adeno-associated virus (AAV) tracing to map the neural circuits in a 3D manner. Hence, we have confirmed the direct connection between the regions with two dual AAV tracing systems and traced the VTA-CA2 circuit in 3D reconstruction. With the immunostaining, we have shown that the GABAergic neurons are the potential subtype of the postsynaptic CA2 neurons in the VTA-CA2 circuit. Under the 6-hydroxydopamine (6-OHDA), we have demonstrated the degeneration of the VTA-CA2 circuit from the observation of fragmented axonal projections. Collectively, we have first traced the direct connection of the whole VTA-CA2 circuit in an intact 3D manner and monitored the fragmentation of this target circuit in the 6-OHDA model. This VTA-CA2 circuit can be a target for future studies of the pathological spreading and degeneration mechanism from PD to PDD.
Collapse
Affiliation(s)
- Michael Siu-Lun Lai
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Maja Højvang Sørensen
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Krit Lee
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - John Man-Tak Chu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.
| |
Collapse
|
3
|
Douma EH, Stoop J, Lingl MVR, Smidt MP, van der Heide LP. Phosphodiesterase inhibition and Gucy2C activation enhance tyrosine hydroxylase Ser40 phosphorylation and improve 6-hydroxydopamine-induced motor deficits. Cell Biosci 2024; 14:132. [PMID: 39456033 PMCID: PMC11515495 DOI: 10.1186/s13578-024-01312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Parkinson's disease is characterized by a progressive loss of dopaminergic neurons in the nigrostriatal pathway, leading to dopamine deficiency and motor impairments. Current treatments, such as L-DOPA, provide symptomatic relief but result in off-target effects and diminished efficacy over time. This study explores an alternative approach by investigating the activation of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Specifically, we explore the effects of phosphodiesterase (PDE) inhibition and guanylate cyclase-C (GUCY2C) activation on tyrosine hydroxylase Ser40 phosphorylation and their impact on motor behavior in a 6-hydroxydopamine (6-OHDA) Parkinson's disease model. RESULTS Our findings demonstrate that increasing cyclic nucleotide levels through PDE inhibition and GUCY2C activation significantly enhances tyrosine hydroxylase Ser40 phosphorylation. In a Pitx3-deficient mouse model, which mimics the loss of dopaminergic neurons seen in Parkinson's disease, Ser40 phosphorylation remained manipulable despite reduced tyrosine hydroxylase protein levels. Moreover, we observed no evidence of tyrosine hydroxylase degradation due to Ser40 phosphorylation, challenging previous reports. Furthermore, both PDE inhibition and GUCY2C activation resulted in improved motor behavior in the 6-OHDA Parkinson's disease mouse model, highlighting the potential therapeutic benefits of these approaches. CONCLUSIONS This study underscores the therapeutic potential of enhancing tyrosine hydroxylase Ser40 phosphorylation to improve motor function in Parkinson's disease. Both PDE inhibition and GUCY2C activation represent promising non-invasive strategies to modulate endogenous dopamine biosynthesis and address motor deficits. These findings suggest that targeting cyclic nucleotide pathways could lead to novel therapeutic approaches, either as standalone treatments or in combination with existing therapies like L-DOPA, aiming to provide more durable symptom relief and potentially mitigate neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Erik H Douma
- Macrobian-Biotech B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Parkinnova Therapeutics B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jesse Stoop
- Macrobian-Biotech B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Matthijs V R Lingl
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lars P van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Daniels N, Bindoff AD, Vickers JC, King AE, Collins JM. Vulnerability of neurofilament-expressing neurons in frontotemporal dementia. Mol Cell Neurosci 2024; 131:103974. [PMID: 39369804 DOI: 10.1016/j.mcn.2024.103974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024] Open
Abstract
Frontotemporal dementia (FTD) is an umbrella term for several early onset dementias, that are caused by frontotemporal lobar degeneration (FTLD), which involves the atrophy of the frontal and temporal lobes of the brain. Neuron loss in the frontal and temporal lobes is a characteristic feature of FTLD, however the selective vulnerability of different neuronal populations in this group of diseases is not fully understood. Neurofilament-expressing neurons have been shown to be selectively vulnerable in other neurodegenerative diseases, including Alzheimer's disease and amyotrophic lateral sclerosis, therefore we sought to investigate whether this neuronal population is vulnerable in FTLD. We also examined whether neuronal sub-type vulnerability differed between FTLD with TDP-43 inclusions (FTLD-TDP) and FTLD with tau inclusions (FTLD-Tau). Post-mortem human tissue from the superior frontal gyrus (SFG) of FTLD-TDP (n = 15), FTLD-Tau (n = 8) and aged Control cases (n = 6) was immunolabelled using antibodies against non-phosphorylated neurofilaments (SMI32 antibody), calretinin and NeuN, to explore neuronal cell loss. The presence of non-phosphorylated neurofilament immunolabelling in axons of the SFG white matter was also quantified as a measure of axon pathology, as axonal neurofilaments are normally phosphorylated. We demonstrate the selective loss of neurofilament-expressing neurons in both FTLD-TDP and FTLD-Tau cases compared to aged Controls. We also show that non-phosphorylated neurofilament axonal pathology in the SFG white matter was associated with increasing age, but not FTLD. This data suggests neurofilament-expressing neurons are vulnerable in both FTLD-TDP and FTLD-Tau.
Collapse
Affiliation(s)
- Nina Daniels
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia.
| | - Aidan D Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
5
|
Honhar P, Ebrahimian Sadabad F, Tinaz S, Gallezot JD, Dias M, Naganawa M, Yang Y, Henry S, Hillmer AT, Gao H, Najafzadeh S, Comley R, Nabulsi N, Huang Y, Finnema SJ, Carson RE, Matuskey D. Clinical correlates of dopamine transporter availability in cross-sectional and longitudinal studies with [ 18F]FE-PE2I PET: independent validation with new insights. Brain Commun 2024; 6:fcae345. [PMID: 39429243 PMCID: PMC11487911 DOI: 10.1093/braincomms/fcae345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/02/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
[18F]FE-PE2I PET is a promising alternative to single positron emission computed tomography-based dopamine transporter (DAT) imaging in Parkinson's disease. While the excellent discriminative power of [18F]FE-PE2I PET has been established, so far only one study has reported meaningful associations between motor severity scores and DAT availability. In this study, we use high-resolution (∼3 mm isotropic) PET to provide an independent validation for the clinical correlates of [18F]FE-PE2I imaging in separate cross-sectional (28 participants with Parkinson's disease, Hoehn-Yahr: 2 and 14 healthy individuals) and longitudinal (initial results from 6 participants with Parkinson's disease with 2-year follow-up) cohorts. In the cross-sectional cohort, DAT availability in the putamen and substantia nigra of patients with Parkinson's disease showed a significant negative association with total motor severity (r = -0.59, P = 0.002 for putamen; r = -0.46, P = 0.018 for substantia nigra), but not tremor severity. To our knowledge, this is the first observed association between motor severity in Parkinson's disease and DAT availability in the substantia nigra. The associations with motor severity in most nigrostriatal regions improved if tremor scores were excluded from motor scores. Further, we found significant asymmetry in DAT availability in the putamen (∼28% lower DAT availability within the more-affected side of the putamen), and DAT-based asymmetry index for the putamen was correlated with asymmetry in motor severity (r = -0.60, P = 0.001). In the longitudinal study, [18F]FE-PE2I PET detected significant annual percentage reduction of DAT availability at the individual level in the putamen (9.7 ± 2.6%), caudate (10.5 ± 3.8%) and ventral striatum (5.5 ± 2.7%), but not the substantia nigra. Longitudinal per cent reduction in DAT availability within the putamen was strongly associated with increase in motor severity (r = 0.91, P = 0.011) at follow-up, demonstrating the high sensitivity of [18F]FE-PE2I PET in tracking longitudinal changes. These results provide further evidence for the utility of [18F]FE-PE2I as an important in vivo PET biomarker in future clinical trials of Parkinson's disease.
Collapse
Affiliation(s)
- Praveen Honhar
- Department of Biomedical Engineering, Yale School of Engineering and Applied Sciences, Yale University, New Haven, CT 06511, USA
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Sule Tinaz
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Mark Dias
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mika Naganawa
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yanghong Yang
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shannan Henry
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ansel T Hillmer
- Department of Biomedical Engineering, Yale School of Engineering and Applied Sciences, Yale University, New Haven, CT 06511, USA
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Hong Gao
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Soheila Najafzadeh
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Nabeel Nabulsi
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yiyun Huang
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Richard E Carson
- Department of Biomedical Engineering, Yale School of Engineering and Applied Sciences, Yale University, New Haven, CT 06511, USA
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - David Matuskey
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
6
|
Patton T, Comini G, Narasimhan K, Cairns AG, Ådén J, Almqvist F, Bemelmans A, Brouillet E, McKernan DP, Dowd E. Intra-striatal infusion of the small molecule alpha-synuclein aggregator, FN075, does not enhance parkinsonism in a subclinical AAV-alpha-synuclein rat model. Eur J Neurosci 2024; 60:5234-5248. [PMID: 39143728 DOI: 10.1111/ejn.16493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
Numerous challenges hinder the development of neuroprotective treatments for Parkinson's disease, with a regularly identified issue being the lack of clinically relevant animal models. Viral vector overexpression of α-synuclein is widely considered the most relevant model; however, this has been limited by high variability and inconsistency. One potential method of optimisation is pairing it with a secondary insult such as FN075, a synthetic molecule demonstrated to accelerate α-synucleinopathy. Thus, the aim of this study was to investigate if sequential infusion of adeno-associated virus (AAV)-α-synuclein and FN075 into the rat brain can replicate α-synucleinopathy, nigrostriatal pathology and motor dysfunction associated with Parkinson's disease. Rats received a unilateral injection of AAV-α-synuclein (or AAV-green fluorescent protein) into two sites in the substantia nigra, followed 4 weeks later by unilateral injection of FN075 (or vehicle) into the striatum. Animals underwent behavioural testing every 4 weeks until sacrifice at 20 weeks, followed by immunohistochemistry assessment post-mortem. As anticipated, AAV-α-synuclein led to extensive overexpression of human α-synuclein throughout the nigrostriatal pathway, as well as elevated levels of phosphorylated and aggregated forms of the protein. However, the sequential administration of FN075 into the striatum did not exacerbate any of the α-synuclein pathology. Furthermore, despite the extensive α-synuclein pathology, neither administration of AAV-α-synuclein nor FN075, alone or in combination, was sufficient to induce dopaminergic degeneration or motor deficits. In conclusion, this approach did not replicate the key characteristics of Parkinson's disease, and further studies are required to create more representational models for testing of novel compounds and treatments for Parkinson's disease.
Collapse
Affiliation(s)
- Tommy Patton
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Giulia Comini
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Kaushik Narasimhan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | | | - Jörgen Ådén
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Alexis Bemelmans
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Research Center (MIRCen), Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Research Center (MIRCen), Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Declan P McKernan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
7
|
Ren J, Liu T, You L, Hu M, Zhu J, Wang X, Zhang H, Zhang J, Li Z, Wei S, Geng X. Time association study on a sub-acute mouse model of Parkinson's disease. Heliyon 2024; 10:e34082. [PMID: 39071603 PMCID: PMC11283032 DOI: 10.1016/j.heliyon.2024.e34082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease that disturbs human health. In the laboratory researches about PD, the mice model induced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was widely used. However, there has been controversy about the model effectiveness to simulate PD symptoms and pathology, and the time-varying development of behavioral and pathological characteristic after MPTP treatment remains unclear. In order to solve these problems, we designed a series of experiments to evaluate this PD model at different time points. We constructed the subacute PD mouse model by intraperitoneal injection of MPTP for 5 consecutive days. The rotarod test, open field test and the immunohistochemical staining of tyrosine hydroxylase were conducted at -5, 1, 5, 7, 14, 21 and 28 days after the last injection of MPTP. The results showed that 5 days after the last MPTP administration, typical motor disorders with significant balance function damage in rotarod test began to appear and remained stable throughout the entire experiment. Simultaneously, we also observed the loss of tyrosine hydroxylase (TH) positive cells in the substantia nigra compacta and reduction of TH content in the striatum but this pathological change in the substantia nigra compacta reversed 21 days after injection. Besides, the spontaneous movement of mice in open field test remained unchanged by MPTP. This research indicated the time-dependence of MPTP neurotoxicity that impair the motor function and histological features and confirmed the symptom occurrence time after MPTP injection, which provides a reference for the future research about MPTP-induced PD.
Collapse
Affiliation(s)
- Jinfeng Ren
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Tongzheng Liu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Luyan You
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Minghui Hu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Jianping Zhu
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Xinyu Wang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Hao Zhang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Jiayu Zhang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Zifa Li
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Sheng Wei
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Xiwen Geng
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
- Chinese Medicine and Brain Science Interdisciplinary Research Center (CMBS), Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| |
Collapse
|
8
|
Latham AS, Rocha SM, McDermott CP, Reigan P, Slayden RA, Tjalkens RB. Neuroprotective efficacy of the glucocorticoid receptor modulator PT150 in the rotenone mouse model of Parkinson's disease. Neurotoxicology 2024; 103:320-334. [PMID: 38960072 DOI: 10.1016/j.neuro.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.
Collapse
Affiliation(s)
- Amanda S Latham
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Savannah M Rocha
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Casey P McDermott
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Richard A Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States.
| |
Collapse
|
9
|
D'Antonio F, Teghil A, Boccia M, Bechi Gabrielli G, Giulietti G, Conti D, Suppa A, Fabbrini A, Fiorelli M, Caramia F, Bruno G, Guariglia C, Aarsland D, Ffytche D. Distinct grey and white matter changes are associated with the phenomenology of visual hallucinations in Lewy Body Disease. Sci Rep 2024; 14:14748. [PMID: 38926597 PMCID: PMC11208453 DOI: 10.1038/s41598-024-65536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Visual hallucinations in Lewy body disease (LBD) can be differentiated based on phenomenology into minor phenomena (MVH) and complex hallucinations (CVH). MVH include a variety of phenomena, such as illusions, presence and passage hallucinations occurring at early stages of LBD. The neural mechanisms of visual hallucinations are largely unknown. The hodotopic model posits that the hallucination state is due to abnormal activity in specialized visual areas, that occurs in the context of wider network connectivity alterations and that phenomenology of VH, including content and temporal characteristics, may help identify brain regions underpinning these phenomena. Here we investigated both the topological and hodological neural basis of visual hallucinations integrating grey and white matter imaging analyses. We studied LBD patients with VH and age matched healthy controls (HC). VH were assessed using a North-East-Visual-Hallucinations-Interview that captures phenomenological detail. Then we applied voxel-based morphometry and tract based spatial statistics approaches to identify grey and white matter changes. First, we compared LBD patients and HC. We found a reduced grey matter volume and a widespread damage of white tracts in LBD compared to HC. Then we tested the association between CVH and MVH and grey and white matter indices. We found that CVH duration was associated with decreased grey matter volume in the fusiform gyrus suggesting that LBD neurodegeneration-related abnormal activity in this area is responsible for CVH. An unexpected finding was that MVH severity was associated with a greater integrity of white matter tracts, specifically those connecting dorsal, ventral attention networks and visual areas. Our results suggest that networks underlying MVH need to be partly intact and functional for MVH experiences to occur, while CVH occur when cortical areas are damaged. The findings support the hodotopic view and the hypothesis that MVH and CVH relate to different neural mechanisms, with wider implications for the treatment of these symptoms in a clinical context.
Collapse
Affiliation(s)
- Fabrizia D'Antonio
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Alice Teghil
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Maddalena Boccia
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Giulia Bechi Gabrielli
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
| | | | - Desirée Conti
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Antonio Suppa
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, IS, Italy
| | - Andrea Fabbrini
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
| | - Marco Fiorelli
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
| | - Francesca Caramia
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, Viale Dell'università 30, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Cecilia Guariglia
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Dag Aarsland
- Department of Old Age Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, IOPPN, London, UK
| | - Dominic Ffytche
- Department of Old Age Psychiatry, King's College London, Institute of Psychiatry, Psychology and Neuroscience, IOPPN, London, UK
| |
Collapse
|
10
|
Madhubala D, Patra A, Khan MR, Mukherjee AK. Phytomedicine for neurodegenerative diseases: The road ahead. Phytother Res 2024; 38:2993-3019. [PMID: 38600725 DOI: 10.1002/ptr.8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Neurodegenerative disorders (NDs) are among the most common causes of death across the globe. NDs are characterized by progressive damage to CNS neurons, leading to defects in specific brain functions such as memory, cognition, and movement. The most common NDs are Parkinson's, Alzheimer's, Huntington's, and amyotrophic lateral sclerosis (ALS). Despite extensive research, no therapeutics or medications against NDs have been proven to be effective. The current treatment of NDs involving symptom-based targeting of the disease pathogenesis has certain limitations, such as drug resistance, adverse side effects, poor blood-brain barrier permeability, and poor bioavailability of drugs. Some studies have shown that plant-derived natural compounds hold tremendous promise for treating and preventing NDs. Therefore, the primary objective of this review article is to critically analyze the properties and potency of some of the most studied phytomedicines, such as quercetin, curcumin, epigallocatechin gallate (EGCG), apigenin, and cannabinoids, and highlight their advantages and limitations for developing next-generation alternative treatments against NDs. Further extensive research on pre-clinical and clinical studies for developing plant-based drugs against NDs from bench to bedside is warranted.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Aparup Patra
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| |
Collapse
|
11
|
Andica C, Kamagata K. Neural plasticity in Parkinson's disease: a neuroimaging perspective. Neural Regen Res 2024; 19:1203-1205. [PMID: 37905865 PMCID: PMC11467949 DOI: 10.4103/1673-5374.386404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/12/2023] [Accepted: 09/13/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Iovino L, VanderZwaag J, Kaur G, Khakpour M, Giusti V, Donadon M, Chiavegato A, Tenorio-Lopes L, Greggio E, Tremblay ME, Civiero L. Investigation of microglial diversity in a LRRK2 G2019S mouse model of Parkinson's disease. Neurobiol Dis 2024; 195:106481. [PMID: 38527708 DOI: 10.1016/j.nbd.2024.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/15/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Microglia contribute to the outcomes of various pathological conditions including Parkinson's disease (PD). Microglia are heterogenous, with a variety of states recently identified in aging and neurodegenerative disease models. Here, we delved into the diversity of microglia in a preclinical PD model featuring the G2019S mutation in LRRK2, a known pathological mutation associated with PD. Specifically, we investigated the 'dark microglia' (DM) and the 'disease-associated microglia' (DAM) which present a selective enrichment of CLEC7A expression. In the dorsal striatum - a region affected by PD pathology - extensive ultrastructural features of cellular stress as well as reduced direct cellular contacts, were observed for microglia from old LRRK2 G2019S mice versus controls. In addition, DM were more prevalent while CLEC7A-positive microglia had extensive phagocytic ultrastructural characteristics in the LRRK2 G2019S mice. Furthermore, our findings revealed a higher proportion of DM in LRRK2 G2019S mice, and an increased number of CLEC7A-positive cells with age, exacerbated by the pathological mutation. These CLEC7A-positive cells exhibited a selective enrichment of ameboid morphology and tended to cluster in the affected animals. In summary, we provide novel insights into the occurrence and features of recently defined microglial states, CLEC7A-positive cells and DM, in the context of LRRK2 G2019S PD pathology.
Collapse
Affiliation(s)
- L Iovino
- National Research Council (CNR), Institute of Neuroscience, Pisa, Italy; Stella Maris Foundation, IRCCS, Calambrone, Pisa, Italy
| | - J VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - G Kaur
- University of Padua, Department of Biology, Padova, Italy
| | - M Khakpour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - V Giusti
- University of Padua, Department of Biology, Padova, Italy; San Camillo Hospital srl Società unipersonale, IRCCS, Venice, Italy
| | - M Donadon
- University of Padua, Department of Biology, Padova, Italy
| | - A Chiavegato
- National Research Council (CNR), Neuroscience Institute, Section of Padova, Padova, Italy; Università degli Studi di Padova, Department of Biomedical Sciences, Padova, Italy
| | - L Tenorio-Lopes
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - E Greggio
- University of Padua, Department of Biology, Padova, Italy; University of Padova, Study Center for Neurodegeneration (CESNE), Padova, Italy
| | - M E Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Département de médecine moléculaire, Université Laval, Québec City, QC, Canada; Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada; Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - L Civiero
- University of Padua, Department of Biology, Padova, Italy; San Camillo Hospital srl Società unipersonale, IRCCS, Venice, Italy.
| |
Collapse
|
13
|
Rademacher K, Doric Z, Haddad D, Mamaligas A, Liao SC, Creed RB, Kano K, Chatterton Z, Fu Y, Garcia JH, Vance V, Sei Y, Kreitzer A, Halliday GM, Nelson AB, Margolis EB, Nakamura K. Chronic hyperactivation of midbrain dopamine neurons causes preferential dopamine neuron degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588321. [PMID: 38645054 PMCID: PMC11030348 DOI: 10.1101/2024.04.05.588321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Parkinson's disease (PD) is characterized by the death of substantia nigra (SNc) dopamine (DA) neurons, but the pathophysiological mechanisms that precede and drive their death remain unknown. The activity of DA neurons is likely altered in PD, but we understand little about if or how chronic changes in activity may contribute to degeneration. To address this question, we developed a chemogenetic (DREADD) mouse model to chronically increase DA neuron activity, and confirmed this increase using ex vivo electrophysiology. Chronic hyperactivation of DA neurons resulted in prolonged increases in locomotor activity during the light cycle and decreases during the dark cycle, consistent with chronic changes in DA release and circadian disturbances. We also observed early, preferential degeneration of SNc projections, recapitulating the PD hallmarks of selective vulnerability of SNc axons and the comparative resilience of ventral tegmental area axons. This was followed by eventual loss of midbrain DA neurons. Continuous DREADD activation resulted in a sustained increase in baseline calcium levels, supporting an important role for increased calcium in the neurodegeneration process. Finally, spatial transcriptomics from DREADD mice examining midbrain DA neurons and striatal targets, and cross-validation with human patient samples, provided insights into potential mechanisms of hyperactivity-induced toxicity and PD. Our results thus reveal the preferential vulnerability of SNc DA neurons to increased neural activity, and support a potential role for increased neural activity in driving degeneration in PD.
Collapse
Affiliation(s)
- Katerina Rademacher
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Zak Doric
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
| | - Dominik Haddad
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
| | - Aphroditi Mamaligas
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
| | - Szu-Chi Liao
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA
| | - Rose B. Creed
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA
| | - Kohei Kano
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Zac Chatterton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Yuhong Fu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Joseph H. Garcia
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- School of Medicine, University of California, San Francisco, California, USA
| | - Victoria Vance
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- College of Science, Northeastern University, Boston, MA
| | - Yoshitaka Sei
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Anatol Kreitzer
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- UCSF Department of Physiology, University of California San Francisco, CA
| | - Glenda M Halliday
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Alexandra B. Nelson
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA
| | - Elyssa B. Margolis
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA
| | - Ken Nakamura
- Gladstone Institute for Neurological Disease, Gladstone Institutes, San Francisco, CA
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco , CA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA
- Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco
| |
Collapse
|
14
|
Nunes ACL, Carmo M, Behrenswerth A, Canas PM, Agostinho P, Cunha RA. Adenosine A 2A Receptor Blockade Provides More Effective Benefits at the Onset Rather than after Overt Neurodegeneration in a Rat Model of Parkinson's Disease. Int J Mol Sci 2024; 25:4903. [PMID: 38732120 PMCID: PMC11084368 DOI: 10.3390/ijms25094903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Adenosine A2A receptor (A2AR) antagonists are the leading nondopaminergic therapy to manage Parkinson's disease (PD) since they afford both motor benefits and neuroprotection. PD begins with a synaptic dysfunction and damage in the striatum evolving to an overt neuronal damage of dopaminergic neurons in the substantia nigra. We tested if A2AR antagonists are equally effective in controlling these two degenerative processes. We used a slow intracerebroventricular infusion of the toxin MPP+ in male rats for 15 days, which caused an initial loss of synaptic markers in the striatum within 10 days, followed by a neuronal loss in the substantia nigra within 30 days. Interestingly, the initial loss of striatal nerve terminals involved a loss of both dopaminergic and glutamatergic synaptic markers, while GABAergic markers were preserved. The daily administration of the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) in the first 10 days after MPP+ infusion markedly attenuated both the initial loss of striatal synaptic markers and the subsequent loss of nigra dopaminergic neurons. Strikingly, the administration of SCH58261 (0.1 mg/kg, i.p. for 10 days) starting 20 days after MPP+ infusion was less efficacious to attenuate the loss of nigra dopaminergic neurons. This prominent A2AR-mediated control of synaptotoxicity was directly confirmed by showing that the MPTP-induced dysfunction (MTT assay) and damage (lactate dehydrogenase release assay) of striatal synaptosomes were prevented by 50 nM SCH58261. This suggests that A2AR antagonists may be more effective to counteract the onset rather than the evolution of PD pathology.
Collapse
Affiliation(s)
- Ana Carla L. Nunes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Marta Carmo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Andrea Behrenswerth
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Paula M. Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
15
|
Latham AS, Rocha SM, McDermott CP, Reigan P, Slayden RA, Tjalkens RB. Neuroprotective Efficacy of the Glucocorticoid Receptor Modulator PT150 in the Rotenone Mouse Model of Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589261. [PMID: 38659796 PMCID: PMC11042181 DOI: 10.1101/2024.04.12.589261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days, immediately followed by oral treatment with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.
Collapse
|
16
|
Valderhaug VD, Ramstad OH, van de Wijdeven R, Heiney K, Nichele S, Sandvig A, Sandvig I. Micro-and mesoscale aspects of neurodegeneration in engineered human neural networks carrying the LRRK2 G2019S mutation. Front Cell Neurosci 2024; 18:1366098. [PMID: 38644975 PMCID: PMC11026646 DOI: 10.3389/fncel.2024.1366098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been widely linked to Parkinson's disease, where the G2019S variant has been shown to contribute uniquely to both familial and sporadic forms of the disease. LRRK2-related mutations have been extensively studied, yet the wide variety of cellular and network events related to these mutations remain poorly understood. The advancement and availability of tools for neural engineering now enable modeling of selected pathological aspects of neurodegenerative disease in human neural networks in vitro. Our study revealed distinct pathology associated dynamics in engineered human cortical neural networks carrying the LRRK2 G2019S mutation compared to healthy isogenic control neural networks. The neurons carrying the LRRK2 G2019S mutation self-organized into networks with aberrant morphology and mitochondrial dynamics, affecting emerging structure-function relationships both at the micro-and mesoscale. Taken together, the findings of our study points toward an overall heightened metabolic demand in networks carrying the LRRK2 G2019S mutation, as well as a resilience to change in response to perturbation, compared to healthy isogenic controls.
Collapse
Affiliation(s)
- Vibeke Devold Valderhaug
- Department of Research and Innovation, Møre and Romsdal Hospital Trust, Ålesund, Norway
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rosanne van de Wijdeven
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Kristine Heiney
- Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University (OsloMet), Oslo, Norway
- Department of Computer Science, Faculty of Information Technology and Electrical Engineering, NTNU, Trondheim, Norway
| | - Stefano Nichele
- Department of Computer Science, Faculty of Technology, Art and Design, Oslo Metropolitan University (OsloMet), Oslo, Norway
- Department of Computer Science and Communication, Østfold University College, Halden, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Neuroscience, Division of Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
- Department of Neurology and Clinical Neurophysiology, St Olav’s Hospital, Trondheim, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
17
|
Centner A, Del Priore I, Chambers N, Cohen SR, Terry ML, Coyle M, Glinski J, Stoll AC, Patterson JR, Kemp CJ, Miller KM, Kubik M, Kuhn N, Luk KC, Sortwell CE, Bishop C. Deficits in basal and evoked striatal dopamine release following alpha-synuclein preformed fibril injection: An in vivo microdialysis study. Eur J Neurosci 2024; 59:1585-1603. [PMID: 38356120 DOI: 10.1111/ejn.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
Parkinson's disease (PD) is characterized by the accumulation of misfolded alpha-synuclein (α-syn) protein, forming intraneuronal Lewy body (LB) inclusions. The α-syn preformed fibril (PFF) model of PD recapitulates α-syn aggregation, progressive nigrostriatal degeneration and motor dysfunction; however, little is known about the time course of PFF-induced alterations in basal and evoked dopamine (DA). In vivo microdialysis is well suited for identifying small changes in neurotransmitter levels over extended periods. In the present study, adult male Fischer 344 rats received unilateral, intrastriatal injections of either α-syn PFFs or phosphate-buffered saline (PBS). At 4 or 8 months post-injection (p.i.), animals underwent in vivo microdialysis to evaluate basal extracellular striatal DA and metabolite levels, local KCl-evoked striatal DA release and the effects of systemic levodopa (l-DOPA). Post-mortem analysis demonstrated equivalent PFF-induced reductions in tyrosine hydroxylase (TH) immunoreactive nigral neurons (~50%) and striatal TH (~20%) at both time points. Compared with reduction in striatal TH, reduction in striatal dopamine transporter (DAT) was more pronounced and progressed between the 4- and 8-month p.i. intervals (36% ➔ 46%). Significant PFF-induced deficits in basal and evoked striatal DA, as well as deficits in motor performance, were not observed until 8 months p.i. Responses to l-DOPA did not differ regardless of PBS or PFF treatment. These results suggest that basal and evoked striatal DA are maintained for several months following PFF injection, with loss of both associated with motor dysfunction. Our studies provide insight into the time course and magnitude of PFF-induced extracellular dopaminergic deficits in the striatum.
Collapse
Affiliation(s)
- Ashley Centner
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| | | | - Nicole Chambers
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Sophie R Cohen
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Michelle L Terry
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Michael Coyle
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - John Glinski
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| | - Anna C Stoll
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Joseph R Patterson
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
| | - Christopher J Kemp
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
| | - Kathryn M Miller
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
| | - Michael Kubik
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
| | - Nathan Kuhn
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
| | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
18
|
Li C, Elabi OF, Fieblinger T, Cenci MA. Structural-functional properties of direct-pathway striatal neurons at early and chronic stages of dopamine denervation. Eur J Neurosci 2024; 59:1227-1241. [PMID: 37876330 DOI: 10.1111/ejn.16166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
The dendritic arbour of striatal projection neurons (SPNs) is the primary anatomical site where dopamine and glutamate inputs to the basal ganglia functionally interact to control movement. These dendritic arbourisations undergo atrophic changes in Parkinson's disease. A reduction in the dendritic complexity of SPNs is found also in animal models with severe striatal dopamine denervation. Using 6-hydroxydopamine (6-OHDA) lesions of the medial forebrain bundle as a model, we set out to compare morphological and electrophysiological properties of SPNs at an early versus a chronic stage of dopaminergic degeneration. Ex vivo recordings were performed in transgenic mice where SPNs forming the direct pathway (dSPNs) express a fluorescent reporter protein. At both the time points studied (5 and 28 days following 6-OHDA lesion), there was a complete loss of dopaminergic fibres through the dorsolateral striatum. A reduction in dSPN dendritic complexity and spine density was manifest at 28, but not 5 days post-lesion. At the late time point, dSPN also exhibited a marked increase in intrinsic excitability (reduced rheobase current, increased input resistance, more evoked action potentials in response to depolarising currents), which was not present at 5 days. The increase in neuronal excitability was accompanied by a marked reduction in inward-rectifying potassium (Kir) currents (which dampen the SPN response to depolarising stimuli). Our results show that dSPNs undergo delayed coordinate changes in dendritic morphology, intrinsic excitability and Kir conductance following dopamine denervation. These changes are predicted to interfere with the dSPN capacity to produce a normal movement-related output.
Collapse
Affiliation(s)
- Chang Li
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Osama F Elabi
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tim Fieblinger
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- Evotec SE, Hamburg, Germany
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Belfiori LF, Dueñas Rey A, Ralbovszki DM, Jimenez-Ferrer I, Fredlund F, Balikai SS, Ahrén D, Brolin KA, Swanberg M. Nigral transcriptomic profiles in Engrailed-1 hemizygous mouse models of Parkinson's disease reveal upregulation of oxidative phosphorylation-related genes associated with delayed dopaminergic neurodegeneration. Front Aging Neurosci 2024; 16:1337365. [PMID: 38374883 PMCID: PMC10875038 DOI: 10.3389/fnagi.2024.1337365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Parkinson's disease (PD) is the second most common neurodegenerative disorder, increasing both in terms of prevalence and incidence. To date, only symptomatic treatment is available, highlighting the need to increase knowledge on disease etiology in order to develop new therapeutic strategies. Hemizygosity for the gene Engrailed-1 (En1), encoding a conserved transcription factor essential for the programming, survival, and maintenance of midbrain dopaminergic neurons, leads to progressive nigrostriatal degeneration, motor impairment and depressive-like behavior in SwissOF1 (OF1-En1+/-). The neurodegenerative phenotype is, however, absent in C57Bl/6j (C57-En1+/-) mice. En1+/- mice are thus highly relevant tools to identify genetic factors underlying PD susceptibility. Methods Transcriptome profiles were defined by RNAseq in microdissected substantia nigra from 1-week old OF1, OF1- En1+/-, C57 and C57- En1+/- male mice. Differentially expressed genes (DEGs) were analyzed for functional enrichment. Neurodegeneration was assessed in 4- and 16-week old mice by histology. Results Nigrostriatal neurodegeneration was manifested in OF1- En1+/- mice by increased dopaminergic striatal axonal swellings from 4 to 16 weeks and decreased number of dopaminergic neurons in the SNpc at 16 weeks compared to OF1. In contrast, C57- En1+/- mice had no significant increase in axonal swellings or cell loss in SNpc at 16 weeks. Transcriptomic analyses identified 198 DEGs between OF1- En1+/- and OF1 mice but only 52 DEGs between C57- En1+/- and C57 mice. Enrichment analysis of DEGs revealed that the neuroprotective phenotype of C57- En1+/- mice was associated with a higher expression of oxidative phosphorylation-related genes compared to both C57 and OF1- En1+/- mice. Discussion Our results suggest that increased expression of genes encoding mitochondrial proteins before the onset of neurodegeneration is associated with increased resistance to PD-like nigrostriatal neurodegeneration. This highlights the importance of genetic background in PD models, how different strains can be used to model clinical and sub-clinical pathologies and provides insights to gene expression mechanisms associated with PD susceptibility and progression.
Collapse
Affiliation(s)
- Lautaro Francisco Belfiori
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Alfredo Dueñas Rey
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Dorottya Mária Ralbovszki
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Itzia Jimenez-Ferrer
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Filip Fredlund
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Sagar Shivayogi Balikai
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Dag Ahrén
- Department of Biology, National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Stockholm, Sweden
| | - Kajsa Atterling Brolin
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Yoo SW, Oh YS, Ryu DW, Ha S, Lyoo CH, Kim Y, Yoo JY, Kim JS. Cardiac sympathetic "morbidity" might reflect the neurobiology of early Parkinson's disease. J Neurol 2024; 271:944-954. [PMID: 37864716 DOI: 10.1007/s00415-023-12049-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND An appropriate extracranial biomarker that delineates endophenotypes of Parkinson's disease (PD) at an early stage and reflects the neurodegenerative process is lacking. An evaluation of myocardial sympathetic nerve terminals could be a good candidate. This study aimed to explore subtypes of PD patients that showed cardiac catecholaminergic vesicular defect and their characteristics. METHODS This study included 122 early drug-naïve PD patients who were followed for approximately 4-5 years. All patients were examined with 18F-N-(3-fluoropropyl)-2beta-carbon ethoxy-3beta-(4-iodophenyl) nortropane positron-emission tomography and 123I-meta-iodobenzylguanidine myocardial scintigraphy. Cardiac scans were reexamined two or three times. Patients were subgrouped into the sympathetic denervated group at the initial scan, those without evidence of denervated myocardium in the first and subsequent scans, and the converters whose myocardium was initially normal but became impaired in the subsequent scans. Cognition in 99 patients was initially assessed with neuropsychological tests. Any associations between cardiac denervation subtypes and presynaptic dopamine transporter densities were investigated. Cognitive status relevant to cardiac sympathetic denervation status was evaluated. RESULTS This study found that cross-sectional comparisons of presynaptic monoamine transporter availability with a predefined order of cardiac denervation groups revealed parallel degeneration. A quadratic correlation between cardiac catecholamine capacity and cognition was observed. This association was interpreted to reflect the early neurobiology of PD. CONCLUSION An observed cardiac catecholaminergic gradient was to mirror the central neurobiology of early PD.
Collapse
Affiliation(s)
- Sang-Won Yoo
- Department of Neurology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yoon-Sang Oh
- Department of Neurology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Dong-Woo Ryu
- Department of Neurology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine, Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yuna Kim
- Department of Neurology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ji-Yeon Yoo
- Department of Neurology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Joong-Seok Kim
- Department of Neurology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
21
|
Kolacheva A, Pavlova E, Bannikova A, Bogdanov V, Ugrumov M. Initial Molecular Mechanisms of the Pathogenesis of Parkinson's Disease in a Mouse Neurotoxic Model of the Earliest Preclinical Stage of This Disease. Int J Mol Sci 2024; 25:1354. [PMID: 38279354 PMCID: PMC10816442 DOI: 10.3390/ijms25021354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Studying the initial molecular mechanisms of the pathogenesis of Parkinson's disease (PD), primarily in the nigrostriatal dopaminergic system, is one of the priorities in neurology. Of particular interest is elucidating these mechanisms in the preclinical stage of PD, which lasts decades before diagnosis and is therefore not available for study in patients. Therefore, our main goal was to study the initial molecular mechanisms of the pathogenesis of PD in the striatum, the key center for dopamine regulation in motor function, in a mouse model of the earliest preclinical stage of PD, from 1 to 24 h after the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). It was shown that the content of tyrosine hydroxylase (TH), the first enzyme in dopamine synthesis, does not change within 6 h after the administration of MPTP, but decreases after 24 h. In turn, TH activity increases after 1 h, decreases after 3 h, remains at the control level after 6 h, and decreases 24 h after the administration of MPTP. The concentration of dopamine in the striatum gradually decreases after MPTP administration, despite a decrease in its degradation. The identified initial molecular mechanisms of PD pathogenesis are considered as potential targets for the development of preventive neuroprotective treatment.
Collapse
Affiliation(s)
| | | | | | | | - Michael Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; (A.K.); (E.P.); (A.B.); (V.B.)
| |
Collapse
|
22
|
Payne T, Burgess T, Bradley S, Roscoe S, Sassani M, Dunning MJ, Hernandez D, Scholz S, McNeill A, Taylor R, Su L, Wilkinson I, Jenkins T, Mortiboys H, Bandmann O. Multimodal assessment of mitochondrial function in Parkinson's disease. Brain 2024; 147:267-280. [PMID: 38059801 PMCID: PMC10766247 DOI: 10.1093/brain/awad364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/02/2023] [Accepted: 09/27/2023] [Indexed: 12/08/2023] Open
Abstract
The heterogenous aetiology of Parkinson's disease is increasingly recognized; both mitochondrial and lysosomal dysfunction have been implicated. Powerful, clinically applicable tools are required to enable mechanistic stratification for future precision medicine approaches. The aim of this study was to characterize bioenergetic dysfunction in Parkinson's disease by applying a multimodal approach, combining standardized clinical assessment with midbrain and putaminal 31-phosphorus magnetic resonance spectroscopy (31P-MRS) and deep phenotyping of mitochondrial and lysosomal function in peripheral tissue in patients with recent-onset Parkinson's disease and control subjects. Sixty participants (35 patients with Parkinson's disease and 25 healthy controls) underwent 31P-MRS for quantification of energy-rich metabolites [ATP, inorganic phosphate (Pi) and phosphocreatine] in putamen and midbrain. In parallel, skin biopsies were obtained from all research participants to establish fibroblast cell lines for subsequent quantification of total intracellular ATP and mitochondrial membrane potential (MMP) as well as mitochondrial and lysosomal morphology, using high content live cell imaging. Lower MMP correlated with higher intracellular ATP (r = -0.55, P = 0.0016), higher mitochondrial counts (r = -0.72, P < 0.0001) and higher lysosomal counts (r = -0.62, P = 0.0002) in Parkinson's disease patient-derived fibroblasts only, consistent with impaired mitophagy and mitochondrial uncoupling. 31P-MRS-derived posterior putaminal Pi/ATP ratio variance was considerably greater in Parkinson's disease than in healthy controls (F-tests, P = 0.0036). Furthermore, elevated 31P-MRS-derived putaminal, but not midbrain Pi/ATP ratios (indicative of impaired oxidative phosphorylation) correlated with both greater mitochondrial (r = 0.37, P = 0.0319) and lysosomal counts (r = 0.48, P = 0.0044) as well as lower MMP in both short (r = -0.52, P = 0.0016) and long (r = -0.47, P = 0.0052) mitochondria in Parkinson's disease. Higher 31P-MRS midbrain phosphocreatine correlated with greater risk of rapid disease progression (r = 0.47, P = 0.0384). Our data suggest that impaired oxidative phosphorylation in the striatal dopaminergic nerve terminals exceeds mitochondrial dysfunction in the midbrain of patients with early Parkinson's disease. Our data further support the hypothesis of a prominent link between impaired mitophagy and impaired striatal energy homeostasis as a key event in early Parkinson's disease.
Collapse
Affiliation(s)
- Thomas Payne
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Toby Burgess
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Stephen Bradley
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Sarah Roscoe
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Matilde Sassani
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Mark J Dunning
- The Bioinformatics Core, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Dena Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD 20814, USA
| | - Sonja Scholz
- Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Alisdair McNeill
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Rosie Taylor
- Statistical Services Unit, The University of Sheffield, Shefield S3 7RH, UK
| | - Li Su
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SP, UK
| | - Iain Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield S10 2JF, UK
| | - Thomas Jenkins
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Department of Neurology, Royal Perth Hospital, Perth WA6000, Australia
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
23
|
Airavaara M, Saarma M. Viral and nonviral approaches. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:83-97. [PMID: 39341664 DOI: 10.1016/b978-0-323-90120-8.00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Neurodegenerative diseases pose a substantial unmet medical need, and no disease-modifying treatments exist. Neurotrophic factors have been studied for decades as a therapy to slow down or stop the progression of these diseases. In this chapter, we focus on Parkinson disease, the second most common neurodegenerative disorder, and on studies carried out with neurotrophic factors. We explore the routes of administration, how the invasive intracranial administration is the challenge, and different ways to deliver the therapeutic proteins, for example, gene therapy and protein therapy. This therapy concept has been developed to mostly work on the restoration of the lost nigrostriatal dopaminergic neuronal connectivity in the brain. However, in recent years, the center of attention of neurotrophic factors has been on maintaining proteostasis and dissolving and preventing protein inclusions called Lewy bodies. We describe the most studied neurotrophic factor families and compare different preclinical experiments that have been carried out. We also analyze several clinical trials and describe their challenges and breakthroughs and discuss the prospects and challenges of neurotrophic support as a therapy for neurodegenerative diseases. In this chapter, we discuss why they still do and why it is essential to continue to work with this area of neurorestorative research around neurotrophic factors.
Collapse
Affiliation(s)
- Mikko Airavaara
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Gao Y, Su D, Xue Z, Ji L, Wang S. Association Between Serum Neurofilament Light Chain and Cognitive Performance Among Older Adults in the United States: A Cross-Sectional Study. Neurol Ther 2023; 12:2147-2160. [PMID: 37845473 PMCID: PMC10630257 DOI: 10.1007/s40120-023-00555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
INTRODUCTION Serum neurofilament light chain (sNfL) is an emerging biomarker of neuronal damage in several neurological disorders. Its association with cognitive function in the general US population aged 60 years and above is unknown. The aim of this study was to investigate the correlation between sNfL and cognitive function in the general US population aged 60 and above. METHODS The data were obtained from the 2013-2014 National Health and Nutrition Examination Survey (NHANES), which include 506 individuals aged 60 or older who met our search criteria. In our study, sNfL levels were divided into two groups based on dichotomization (19.0 pg/mL). After adjusting for multiple covariates, it was found that the high sNfL group (≥ 19.0 pg/mL) had lower cognitive performance than the low sNfL group (< 19.0 pg/mL). This relationship was also stable in subgroup analysis. CONCLUSION In this sample of an American elderly population, higher sNfL levels are correlated with lower cognitive performance. Our findings suggest that sNfL may become a potential screening tool for early prediction and confirmation of cognitive damage.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Affiliated Hospital Six of Nantong University, Yancheng Third People's Hospital, No. 75 Juchang Road, Yancheng, 224000, Jiangsu, China
- Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Dan Su
- Affiliated Hospital Six of Nantong University, Yancheng Third People's Hospital, No. 75 Juchang Road, Yancheng, 224000, Jiangsu, China
- Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Zhouya Xue
- The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China
| | - Lin Ji
- Affiliated Hospital Six of Nantong University, Yancheng Third People's Hospital, No. 75 Juchang Road, Yancheng, 224000, Jiangsu, China
- Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Shu Wang
- Affiliated Hospital Six of Nantong University, Yancheng Third People's Hospital, No. 75 Juchang Road, Yancheng, 224000, Jiangsu, China.
- Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China.
| |
Collapse
|
25
|
Alexandris AS, Koliatsos VE. NAD +, Axonal Maintenance, and Neurological Disease. Antioxid Redox Signal 2023; 39:1167-1184. [PMID: 37503611 PMCID: PMC10715442 DOI: 10.1089/ars.2023.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 07/29/2023]
Abstract
Significance: The remarkable geometry of the axon exposes it to unique challenges for survival and maintenance. Axonal degeneration is a feature of peripheral neuropathies, glaucoma, and traumatic brain injury, and an early event in neurodegenerative diseases. Since the discovery of Wallerian degeneration (WD), a molecular program that hijacks nicotinamide adenine dinucleotide (NAD+) metabolism for axonal self-destruction, the complex roles of NAD+ in axonal viability and disease have become research priority. Recent Advances: The discoveries of the protective Wallerian degeneration slow (WldS) and of sterile alpha and TIR motif containing 1 (SARM1) activation as the main instructive signal for WD have shed new light on the regulatory role of NAD+ in axonal degeneration in a growing number of neurological diseases. SARM1 has been characterized as a NAD+ hydrolase and sensor of NAD+ metabolism. The discovery of regulators of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) proteostasis in axons, the allosteric regulation of SARM1 by NAD+ and NMN, and the existence of clinically relevant windows of action of these signals has opened new opportunities for therapeutic interventions, including SARM1 inhibitors and modulators of NAD+ metabolism. Critical Issues: Events upstream and downstream of SARM1 remain unclear. Furthermore, manipulating NAD+ metabolism, an overdetermined process crucial in cell survival, for preventing the degeneration of the injured axon may be difficult and potentially toxic. Future Directions: There is a need for clarification of the distinct roles of NAD+ metabolism in axonal maintenance as contrasted to WD. There is also a need to better understand the role of NAD+ metabolism in axonal endangerment in neuropathies, diseases of the white matter, and the early stages of neurodegenerative diseases of the central nervous system. Antioxid. Redox Signal. 39, 1167-1184.
Collapse
Affiliation(s)
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Slézia A, Hegedüs P, Rusina E, Lengyel K, Solari N, Kaszas A, Balázsfi D, Botzanowski B, Acerbo E, Missey F, Williamson A, Hangya B. Behavioral, neural and ultrastructural alterations in a graded-dose 6-OHDA mouse model of early-stage Parkinson's disease. Sci Rep 2023; 13:19478. [PMID: 37945922 PMCID: PMC10636184 DOI: 10.1038/s41598-023-46576-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Studying animal models furthers our understanding of Parkinson's disease (PD) pathophysiology by providing tools to investigate detailed molecular, cellular and circuit functions. Different versions of the neurotoxin-based 6-hydroxydopamine (6-OHDA) model of PD have been widely used in rats. However, these models typically assess the result of extensive and definitive dopaminergic lesions that reflect a late stage of PD, leading to a paucity of studies and a consequential gap of knowledge regarding initial stages, in which early interventions would be possible. Additionally, the better availability of genetic tools increasingly shifts the focus of research from rats to mice, but few mouse PD models are available yet. To address these, we characterize here the behavioral, neuronal and ultrastructural features of a graded-dose unilateral, single-injection, striatal 6-OHDA model in mice, focusing on early-stage changes within the first two weeks of lesion induction. We observed early onset, dose-dependent impairments of overall locomotion without substantial deterioration of motor coordination. In accordance, histological evaluation demonstrated a partial, dose-dependent loss of dopaminergic neurons of substantia nigra pars compacta (SNc). Furthermore, electron microscopic analysis revealed degenerative ultrastructural changes in SNc dopaminergic neurons. Our results show that mild ultrastructural and cellular degradation of dopaminergic neurons of the SNc can lead to certain motor deficits shortly after unilateral striatal lesions, suggesting that a unilateral dose-dependent intrastriatal 6-OHDA lesion protocol can serve as a successful model of the early stages of Parkinson's disease in mice.
Collapse
Affiliation(s)
- Andrea Slézia
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary.
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France.
- Institute of Cognitive Neuroscience and Psychology, Eotvos Lorand Research Network, Budapest, Hungary.
- Institut de Neurosciences de la Timone, CNRS UMR 7289, Aix-Marseille Université, Marseille, France.
| | - Panna Hegedüs
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Evgeniia Rusina
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Katalin Lengyel
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Nicola Solari
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Attila Kaszas
- Institut de Neurosciences de la Timone, CNRS UMR 7289, Aix-Marseille Université, Marseille, France
| | - Diána Balázsfi
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Boris Botzanowski
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Emma Acerbo
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Florian Missey
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Adam Williamson
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France.
- International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.
| | - Balázs Hangya
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary.
| |
Collapse
|
27
|
López-Aguirre M, Matarazzo M, Blesa J, Monje MHG, Rodríguez-Rojas R, Sánchez-Ferro A, Obeso JA, Pineda-Pardo JA. Dopaminergic denervation and associated MRI microstructural changes in the nigrostriatal projection in early Parkinson's disease patients. NPJ Parkinsons Dis 2023; 9:144. [PMID: 37852988 PMCID: PMC10584921 DOI: 10.1038/s41531-023-00586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and a profound reduction of striatal dopamine are two hallmarks of Parkinson's disease (PD). However, it's unclear whether degeneration starts at the neuronal soma or the striatal presynaptic terminals, and how microstructural degeneration is linked to dopaminergic loss is also uncertain. In this study, thirty de novo PD patients and twenty healthy subjects (HS) underwent 6-[18F]-fluoro-L-dopa (FDOPA) PET and MRI studies no later than 12 months from clinical diagnosis. FDOPA uptake rate (Ki), fractional volume of free-water (FW), and iron-sensitive R2* relaxometry were quantified within nigrostriatal regions. Inter-group differences (PD vs HS) were studied using non-parametric statistics and complemented with Cohen's d effect sizes and Bayesian statistics. Correlation analyses were performed exploring biomarker dependencies and their association with bradykinesia scores. PD patients exhibited a significant decline in nigrostriatal dopaminergic activity, being post-commissural putamen (-67%) and posterolateral SNc (-11.7%) the most affected subregions within striatum and SNc respectively. Microstructural alterations (FW) were restricted to the hemisphere corresponding to the most affected side and followed similar spatial gradients as FDOPA Ki (+20% in posterior putamen and +11% in posterolateral SNc). R2* revealed no relevant significant changes. FDOPA and FW were correlated within the posterolateral SNc, and clinical severity was associated with FDOPA Ki loss. The asymmetry between striatal and SNc changes for both dopaminergic depletion and microstructural degeneration biomarkers is consistent with a neurodegenerative process that begins in the striatal terminals before progressing toward the cell bodies in the SNc.
Collapse
Affiliation(s)
- M López-Aguirre
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Program in Physics, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - M Matarazzo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - J Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - M H G Monje
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - R Rodríguez-Rojas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - A Sánchez-Ferro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Neurology, University Hospital 12 de Octubre, Madrid, Spain
- Department of Medicine, Complutense University of Madrid, Madrid, Spain
| | - J A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- University CEU-San Pablo, Madrid, Spain
| | - J A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- University CEU-San Pablo, Madrid, Spain.
| |
Collapse
|
28
|
Lin Z, Zhang J, Wu R, Chen G, Peng J, Li R, Chen S. Pathogenic mechanisms and potential therapeutic targets for Parkinson disease revealed by bioinformatic analysis of necroptosis and immune cell infiltration. Medicine (Baltimore) 2023; 102:e35311. [PMID: 37773866 PMCID: PMC10545256 DOI: 10.1097/md.0000000000035311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Parkinson disease (PD) is an age-dependent neurodegenerative disease with very high prevalence by age 80 years. Necroptosis is a newly identified form of programmed cell death implicated in neurodegenerative diseases, but has not yet been conclusively associated with PD. This study examined the contributions of necroptosis to PD using bioinformatics analysis. Datasets GSE26927, GSE49036, and GSE54536 from the gene expression omnibus database were analyzed for differentially expressed genes (DEGs). These DEGs were then subjected to gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis to identify associated functions and signaling mechanisms. Necroptosis-related differentially expressed genes (NRDEGs) were then identified by the overlap of DEGs and the necroptosis gene set hsa04217. The STRING database and Cytoscape software were then used to build and visualize a protein-protein interaction network and identify hubs and key functional modules among NRDEGs. In addition, immune cell type abundance was analyzed based on DEGs using ImmuCellAI. The identified DEGs, KEGG pathway enrichment terms, and protein-protein interaction network structures of NRDEGs were validated using an independent dataset (GSE54536). The necroptosis pathway was significantly enriched and activated in PD samples. Thirteen NRDEGs were identified in the GSE26927 and GSE49036 datasets, including receptor interacting serine/threonine kinase 1, CASP8 and FADD like apoptosis regulator, TNFRSF1A associated via death domain, and interleukin 1 beta, of which 6 were validated in the GSE54536 dataset. According to gene ontology and KEGG analyses, these NRDEGs are involved in necroptosis-related processes, apoptosis, B cell receptor signaling pathways, and NOD-like receptor signaling pathways. Analysis of DEGs also revealed significant increases in CD8 + T cell and Tex cell infiltration and significant decreases in B cell and T gamma delta cell infiltration within the PD brain. Necroptosis pathways are active in PD and associated with immune cell infiltration. The factors controlling necroptotic signaling and immune infiltration identified in this study may be valuable diagnostic markers and therapeutic targets for PD.
Collapse
Affiliation(s)
- Zilong Lin
- Clinical Medicine Program of the Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Jiana Zhang
- Clinical Medicine Program of the Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Runa Wu
- Clinical Medicine Program of the Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Guanmei Chen
- Clinical Medicine Program of the Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Jieying Peng
- Clinical Medicine Program of the Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Renai Li
- Clinical Medicine Program of the Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Shengqiang Chen
- Neurology Institute, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
29
|
do Amaral L, Dos Santos NAG, Sisti FM, Del Bel E, Dos Santos AC. Doxycycline inhibits dopaminergic neurodegeneration through upregulation of axonal and synaptic proteins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1787-1796. [PMID: 36843128 DOI: 10.1007/s00210-023-02435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Doxycycline (DOX) is a widely used antibiotic that is able to cross the blood-brain barrier. Several studies have shown its neuroprotective effect against neurodegeneration and have associated it with antioxidant, anti-apoptotic, and anti-inflammatory mechanisms. We have recently demonstrated that DOX mimics nerve growth factor (NGF) signaling in PC12 cells. However, the involvement of this mechanism in the neuroprotective effect of DOX is unknown. Axonal degeneration and synaptic loss are key events at the early stages of neurodegeneration, and precede the neuronal death in neurodegenerative diseases, including Parkinson's disease (PD). Therefore, the regeneration of the axonal and synaptic network might be beneficial in PD. The effect of DOX in PC12 cells treated with the Parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+) was addressed. Doxycycline reduced the inhibition of neuritogenesis induced by MPP+, even in cells deprived of NGF. The mechanism involved the upregulation of GAP-43, synapsin I, β-III-tubulin, F-actin, and neurofilament-200, proteins that are associated with axonal and synaptic plasticity. Considering the role of axonal degeneration and synaptic loss at the initial stages of PD, the recent advances in early diagnosis of neurodegeneration, and the advantages of drug repurposing, doxycycline is a promising candidate to treat PD.
Collapse
Affiliation(s)
- Lilian do Amaral
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Flávia Malvestio Sisti
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, Faculty of Dentistry of Ribeirão Preto, USP, Av Do Café S/N, 14040-904, Ribeirão Preto, SP, Brazil
| | - Antônio Cardozo Dos Santos
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
30
|
Griswold JM, Bonilla-Quintana M, Pepper R, Lee CT, Raychaudhuri S, Ma S, Gan Q, Syed S, Zhu C, Bell M, Suga M, Yamaguchi Y, Chéreau R, Nägerl UV, Knott G, Rangamani P, Watanabe S. Membrane mechanics dictate axonal morphology and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549958. [PMID: 37503105 PMCID: PMC10370128 DOI: 10.1101/2023.07.20.549958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Axons are thought to be ultrathin membrane cables of a relatively uniform diameter, designed to conduct electrical signals, or action potentials. Here, we demonstrate that unmyelinated axons are not simple cylindrical tubes. Rather, axons have nanoscopic boutons repeatedly along their length interspersed with a thin cable with a diameter of ∼60 nm like pearls-on-a-string. These boutons are only ∼200 nm in diameter and do not have synaptic contacts or a cluster of synaptic vesicles, hence non-synaptic. Our in silico modeling suggests that axon pearling can be explained by the mechanical properties of the membrane including the bending modulus and tension. Consistent with modeling predictions, treatments that disrupt these parameters like hyper- or hypo-tonic solutions, cholesterol removal, and non-muscle myosin II inhibition all alter the degree of axon pearling, suggesting that axon morphology is indeed determined by the membrane mechanics. Intriguingly, neuronal activity modulates the cholesterol level of plasma membrane, leading to shrinkage of axon pearls. Consequently, the conduction velocity of action potentials becomes slower. These data reveal that biophysical forces dictate axon morphology and function and that modulation of membrane mechanics likely underlies plasticity of unmyelinated axons.
Collapse
|
31
|
Okitsu M, Sugaya K, Nakata Y, Kawazoe T, Ikezawa J, Okiyama R, Takahashi K. Degeneration of nigrostriatal dopaminergic neurons in the early to intermediate stage of dementia with Lewy bodies and Parkinson's disease. J Neurol Sci 2023; 449:120660. [PMID: 37084522 DOI: 10.1016/j.jns.2023.120660] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE To investigate differences in nigrostriatal dopaminergic neuron degeneration between dementia with Lewy bodies (DLB) and Parkinson's disease (PD) in the early to intermediate stage of these diseases. METHODS An integrative neuroimaging analysis was developed using 3-Tesla neuromelanin-sensitive MRI and 123I-FP-CIT dopamine transporter SPECT, and the relationship and laterality of three variables, including neuromelanin-related contrast in the substantia nigra (NRCSN) and locus coeruleus (NRCLC) and the specific binding ratio (SBR) in the striatum, were examined in detail. Patients with DLB and PD and control subjects (n = 29, 52, and 18, respectively) were enrolled. RESULTS A significantly greater decrease in the SBR in the bilateral hemispheres was observed in DLB than in PD. After adjusting for the interhemispheric asymmetry in neuromelanin-related MRI contrast by using the Z-score, linear regression between the NRCSN and SBR was performed for the most-affected/least-affected sides of the hemispheres as defined by the interhemispheric differences in each variable (SBR, NRCSN, standardized [SBR + NRCSN]). In DLB, the highest, albeit statistically non-significant, correlation was observed in the SBR-based, most-affected side. In PD, the highest correlation was observed in the (SBR + NRCSN)-based, most-affected side, which approximated the value of the clinically-defined, most-affected side. A non-significant correlation was observed only in the (SBR + NRCSN)-based or clinically-defined, least-affected side. CONCLUSION Loss of the soma and presynaptic terminals may occur independently in DLB with a large decrease in the presynaptic terminals. The close relationship observed between the degeneration of the soma and presynaptic terminals suggested that axon degeneration may dominate in PD.
Collapse
Affiliation(s)
- Masato Okitsu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tomoya Kawazoe
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Jun Ikezawa
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Ryoichi Okiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
32
|
Skiteva O, Yao N, Mantas I, Zhang X, Perlmann T, Svenningsson P, Chergui K. Aberrant somatic calcium channel function in cNurr1 and LRRK2-G2019S mice. NPJ Parkinsons Dis 2023; 9:56. [PMID: 37029193 PMCID: PMC10082048 DOI: 10.1038/s41531-023-00500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
In Parkinson's disease (PD), axons of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) degenerate before their cell bodies. Calcium influx during pacemaker firing might contribute to neuronal loss, but it is not known if dysfunctions of voltage-gated calcium channels (VGCCs) occur in DA neurons somata and axon terminals. We investigated T-type and L-type VGCCs in SNc-DA neurons of two mouse models of PD: mice with a deletion of the Nurr1 gene in DA neurons from an adult age (cNurr1 mice), and mice bearing the G2019S mutation in the gene coding for LRRK2 (G2019S mice). Adult cNurr1 mice displayed motor and DA deficits, while middle-aged G2019S mice did not. The number and morphology of SNc-DA neurons, most of their intrinsic membrane properties and pacemaker firing were unaltered in cNurr1 and G2019S mice compared to their control and wild-type littermates. L-type VGCCs contributed to the pacemaker firing of SNc-DA neurons in G2019S mice, but not in control, wild-type, and cNurr1 mice. In cNurr1 mice, but not G2019S mice, the contribution of T-type VGCCs to the pacemaker firing of SNc-DA neurons was reduced, and somatic dopamine-D2 autoreceptors desensitized more. Altered contribution of L-type and T-type VGCCs to the pacemaker firing was not observed in the presence of a LRRK2 kinase inhibitor in G2019S mice, and in the presence of a flavonoid with antioxidant activity in G2019S and cNurr1 mice. The role of L-type and T-type VGCCs in controlling dopamine release from axon terminals in the striatum was unaltered in cNurr1 and G2019S mice. Our findings uncover opposite changes, linked to oxidative stress, in the function of two VGCCs in DA neurons somata, but not axon terminals, in two different experimental PD models.
Collapse
Affiliation(s)
- Olga Skiteva
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ning Yao
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Karima Chergui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
33
|
Jasutkar HG, Yamamoto A. Autophagy at the synapse, an early site of dysfunction in neurodegeneration. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100631. [PMID: 36968133 PMCID: PMC10035630 DOI: 10.1016/j.cophys.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macroautophagy, herein referred to as autophagy, has long been implicated in the pathophysiology of neurodegenerative diseases. However, an incomplete understanding of how autophagy contributes to disease pathogenesis has limited progress in acting on this potential target for the development of disease modifying therapeutics. Research in the past few decades has revealed that autophagy plays a specialized role in the synapse, a site of early dysfunction in multiple neurodegenerative diseases. In this review we discuss the evidence suggesting that inadequate autophagy at the synapse may contribute to neurodegeneration, and why the functions of autophagy may be particularly relevant for synaptic function.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
34
|
Masato A, Plotegher N, Terrin F, Sandre M, Faustini G, Thor A, Adams S, Berti G, Cogo S, De Lazzari F, Fontana CM, Martinez PA, Strong R, Bandopadhyay R, Bisaglia M, Bellucci A, Greggio E, Dalla Valle L, Boassa D, Bubacco L. DOPAL initiates αSynuclein-dependent impaired proteostasis and degeneration of neuronal projections in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:42. [PMID: 36966140 PMCID: PMC10039907 DOI: 10.1038/s41531-023-00485-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
Dopamine dyshomeostasis has been acknowledged among the determinants of nigrostriatal neuron degeneration in Parkinson's disease (PD). Several studies in experimental models and postmortem PD patients underlined increasing levels of the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is highly reactive towards proteins. DOPAL has been shown to covalently modify the presynaptic protein αSynuclein (αSyn), whose misfolding and aggregation represent a major trait of PD pathology, triggering αSyn oligomerization in dopaminergic neurons. Here, we demonstrated that DOPAL elicits αSyn accumulation and hampers αSyn clearance in primary neurons. DOPAL-induced αSyn buildup lessens neuronal resilience, compromises synaptic integrity, and overwhelms protein quality control pathways in neurites. The progressive decline of neuronal homeostasis further leads to dopaminergic neuron loss and motor impairment, as showed in in vivo models. Finally, we developed a specific antibody which detected increased DOPAL-modified αSyn in human striatal tissues from idiopathic PD patients, corroborating the translational relevance of αSyn-DOPAL interplay in PD neurodegeneration.
Collapse
Affiliation(s)
- Anna Masato
- Department of Biology, University of Padova, Padova, 35131, Italy
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, Padova, 35131, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Francesca Terrin
- Department of Biology, University of Padova, Padova, 35131, Italy
| | - Michele Sandre
- Department of Neuroscience, University of Padova, Padova, 35131, Italy
| | - Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Andrea Thor
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0608, USA
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, 92093-0608, USA
| | - Stephen Adams
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093-0608, USA
| | - Giulia Berti
- Department of Biology, University of Padova, Padova, 35131, Italy
| | - Susanna Cogo
- Department of Biology, University of Padova, Padova, 35131, Italy
| | | | | | - Paul Anthony Martinez
- Department of Pharmacology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care Network, San Antonio, TX, 78229, USA
| | - Randy Strong
- Department of Pharmacology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care Network, San Antonio, TX, 78229, USA
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, WC1N 1PJ, UK
| | - Marco Bisaglia
- Department of Biology, University of Padova, Padova, 35131, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, 35131, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | | | - Daniela Boassa
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0608, USA.
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, 92093-0608, USA.
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, 35131, Italy.
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy.
| |
Collapse
|
35
|
Madhubala D, Patra A, Islam T, Saikia K, Khan MR, Ahmed SA, Borah JC, Mukherjee AK. Snake venom nerve growth factor-inspired designing of novel peptide therapeutics for the prevention of paraquat-induced apoptosis, neurodegeneration, and alteration of metabolic pathway genes in the rat pheochromocytoma PC-12 cell. Free Radic Biol Med 2023; 197:23-45. [PMID: 36669545 DOI: 10.1016/j.freeradbiomed.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Neurodegenerative disorders (ND), associated with the progressive loss of neurons, oxidative stress-mediated production of reactive oxygen species (ROS), and mitochondrial dysfunction, can be treated with synthetic peptides possessing innate neurotrophic effects and neuroprotective activity. Computational analysis of two small synthetic peptides (trideca-neuropeptide, TNP; heptadeca-neuropeptide, HNP) developed from the nerve growth factors from snake venoms predicted their significant interaction with the human TrkA receptor (TrkA). In silico results were validated by an in vitro binding study of the FITC-conjugated custom peptides to rat pheochromocytoma PC-12 cell TrkA receptors. Pre-treatment of PC-12 cells with TNP and HNP induced neuritogenesis and significantly reduced the paraquat (PT)-induced cellular toxicity, the release of lactate dehydrogenase from the cell cytoplasm, production of intracellular ROS, restored the level of antioxidants, prevented alteration of mitochondrial transmembrane potential (ΔΨm) and adenosine triphosphate (ATP) production, and inhibited cellular apoptosis. These peptides lack in vitro cytotoxicity, haemolytic activity, and platelet-modulating properties and do not interfere with the blood coagulation system. Functional proteomic analyses demonstrated the reversal of PT-induced upregulated and downregulated metabolic pathway genes in PC-12 cells that were pre-treated with HNP and revealed the metabolic pathways regulated by HNP to induce neuritogenesis and confer protection against PT-induced neuronal damage in PC-12. The quantitative RT-PCR analysis confirmed that the PT-induced increased and decreased expression of critical pro-apoptotic and anti-apoptotic genes had been restored in the PC-12 cells pre-treated with the custom peptides. A network gene expression profile was proposed to elucidate the molecular interactions among the regulatory proteins for HNP to salvage the PT-induced damage. Taken together, our results show how the peptides can rescue PT-induced oxidative stress, mitochondrial dysfunction, and cellular death and suggest new opportunities for developing neuroprotective drugs.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Taufikul Islam
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Kangkon Saikia
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Mojibur R Khan
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Semim Akhtar Ahmed
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Jagat C Borah
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India.
| |
Collapse
|
36
|
Volta M. Lysosomal Pathogenesis of Parkinson's Disease: Insights From LRRK2 and GBA1 Rodent Models. Neurotherapeutics 2023; 20:127-139. [PMID: 36085537 PMCID: PMC10119359 DOI: 10.1007/s13311-022-01290-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 01/18/2023] Open
Abstract
The discovery of mutations in LRRK2 and GBA1 that are linked to Parkinson's disease provided further evidence that autophagy and lysosome pathways are likely implicated in the pathogenic process. Their protein products are important regulators of lysosome function. LRRK2 has kinase-dependent effects on lysosome activity, autophagic efficacy and lysosomal Ca2+ signaling. Glucocerebrosidase (encoded by GBA1) is a hydrolytic enzyme contained in the lysosomes and contributes to the degradation of alpha-synuclein. PD-related mutations in LRRK2 and GBA1 slow the degradation of alpha-synuclein, thus directly implicating the dysfunction of the process in the neuropathology of Parkinson's disease. The development of genetic rodent models of LRRK2 and GBA1 provided hopes of obtaining reliable preclinical models in which to study pathogenic processes and perform drug validation studies. Here, I will review the extensive characterization of these models, their impact on understanding lysosome alterations in the course of Parkinson's disease and what novel insights have been obtained. In addition, I will discuss how these models fare with respect to the features of a "gold standard" animal models and what could be attempted in future studies to exploit LRRK2 and GBA1 rodent models in the fight against Parkinson's disease.
Collapse
Affiliation(s)
- Mattia Volta
- Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of Lübeck, via Volta 21, Bolzano, 39100, Italy.
| |
Collapse
|
37
|
Mamelak M. The Treatment of Parkinson's Disease with Sodium Oxybate. Curr Mol Pharmacol 2023; 16:564-579. [PMID: 36330625 DOI: 10.2174/1874467216666221103121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Sodiun Oxybate (SO) has a number of attributes that may mitigate the metabolic stress on the substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons in Parkinson's disease (PD). These neurons function at the borderline of energy sufficiency. SO is metabolized to succinate and supplies energy to the cell by generating ATP. SO is a GABAB agonist and, as such, also arrests the high energy requiring calcium pace-making activity of these neurons. In addition, blocking calcium entry impedes the synaptic release and subsequent neurotransmission of aggregated synuclein species. As DA neurons degenerate, a homeostatic failure exposes these neurons to glutamate excitotoxicity, which in turn accelerates the damage. SO inhibits the neuronal release of glutamate and blocks its agonistic actions. Most important, SO generates NADPH, the cell's major antioxidant cofactor. Excessive free radical production within DA neurons and even more so within activated microglia are early and key features of the degenerative process that are present long before the onset of motor symptoms. NADPH maintains cell glutathione levels and alleviates oxidative stress and its toxic consequences. SO, a histone deacetylase inhibitor also suppresses the expression of microglial NADPH oxidase, the major source of free radicals in Parkinson brain. The acute clinical use of SO at night has been shown to reduce daytime sleepiness and fatigue in patients with PD. With long-term use, its capacity to supply energy to DA neurons, impede synuclein transmission, block excitotoxicity and maintain an anti-oxidative redox environment throughout the night may delay the onset of PD and slow its progress.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Gubinelli F, Sarauskyte L, Venuti C, Kulacz I, Cazzolla G, Negrini M, Anwer D, Vecchio I, Jakobs F, Manfredsson F, Davidsson M, Heuer A. Characterisation of functional deficits induced by AAV overexpression of alpha-synuclein in rats. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100065. [PMID: 36632447 PMCID: PMC9827042 DOI: 10.1016/j.crneur.2022.100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background In the last decades different preclinical animal models of Parkinson's disease (PD) have been generated, aiming to mimic the progressive neuronal loss of midbrain dopaminergic (DA) cells as well as motor and non-motor impairment. Among all the available models, AAV-based models of human alpha-synuclein (h-aSYN) overexpression are promising tools for investigation of disease progression and therapeutic interventions. Objectives The goal with this work was to characterise the impairment in motor and non-motor domains following nigrostriatal overexpression of h-aSYN and correlate the behavioural deficits with histological assessment of associated pathology. Methods Intranigral injection of an AAV9 expressing h-aSYN was compared with untreated animals, 6-OHDA and AAV9 expressing either no transgene or GFP. The animals were assessed on a series of simple and complex behavioural tasks probing motor and non-motor domains. Post-mortem neuropathology was analysed using immunohistochemical methods. Results Overexpression of h-aSYN led to progressive degeneration of DA neurons of the SN and axonal terminals in the striatum (STR). We observed extensive nigral and striatal pathology, resembling that of human PD brain, as well as the development of stable progressive deficit in simple motor tasks and in non-motor domains such as deficits in motivation and lateralised neglect. Conclusions In the present work we characterized a rat model of PD that closely resembles human PD pathology at the histological and behavioural level. The correlation of cell loss with behavioural performance enables the selection of rats which can be used in neuroprotective or neurorestorative therapies.
Collapse
Affiliation(s)
- F. Gubinelli
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - L. Sarauskyte
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - C. Venuti
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - I. Kulacz
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - G. Cazzolla
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - M. Negrini
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - D. Anwer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - I. Vecchio
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - F. Jakobs
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - F.P. Manfredsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - M. Davidsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA,Molecular Neuromodulation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - A. Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden,Corresponding author. Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Sölvegatan 19, 22 184, Lund, Sweden.
| |
Collapse
|
39
|
Chronic Treatment with the Probiotics Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis BB12 Attenuates Motor Impairment, Striatal Microglial Activation, and Dopaminergic Loss in Rats with 6-Hydroxydopamine-induced Hemiparkinsonism. Neuroscience 2022; 507:79-98. [PMID: 36370934 DOI: 10.1016/j.neuroscience.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/05/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Gut dysbiosis is considered a risk factor for Parkinson's disease (PD), and chronic treatment with probiotics could prevent it. Here we report the assessment of a probiotic mixture [Lacticaseibacillus rhamnosus GG (LGG), and Bifidobacterium animalis lactis BB-12 (BB-12)] administered to male rats 2 weeks before and 3 weeks after injecting 6-hydroxydopamine (6-OHDA) into the right striatum, a model that mimics the early stages of PD. Before and after lesion, animals were subjected to behavioral tests: narrow beam, cylinder test, and apomorphine (APO)-induced rotations. Dopaminergic (DA) denervation and microglia recruitment were assessed with tyrosine hydroxylase (TH+) and ionized calcium-binding protein-1 adapter (Iba1+) immunostaining, respectively. Post 6-OHDA injury, rats treated with sunflower oil (probiotics vehicle) developed significant decrease in crossing speed and increases in contralateral paw slips (narrow beam), forepaw use asymmetry (cylinder), and APO-induced rotations. In striatum, 6-OHDA eliminated ≈2/3 of TH+ area and caused significant increase of Iba1+ microglia population. Retrograde axonal degeneration suppressed ≈2/5 of TH+ neurons in the substantia nigra pars compacta (SNpc). In hemiparkinsonian rats, probiotics treatment significantly improved the crossing speed, and also reduced paw slips (postlesion days 14 and 21), the loss of TH+ neurons in SNpc, and the loss of TH+ area and of Iba1+ microglia count in striatum, without affecting the proportion of microglia morphological phenotypes. Probiotics treatment did not attenuate forepaw use asymmetry nor APO-induced rotations. These results indicate that the mixture of probiotics LGG and BB-12 protects nigrostriatal DA neurons against 6-OHDA-induced damage, supporting their potential as preventive treatment of PD.
Collapse
|
40
|
Fathy YY, Jonkman LE, Bol JJ, Timmermans E, Jonker AJ, Rozemuller AJM, van de Berg WDJ. Axonal degeneration in the anterior insular cortex is associated with Alzheimer's co-pathology in Parkinson's disease and dementia with Lewy bodies. Transl Neurodegener 2022; 11:52. [PMID: 36474289 PMCID: PMC9728006 DOI: 10.1186/s40035-022-00325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Axons, crucial for impulse transmission and cellular trafficking, are thought to be primary targets of neurodegeneration in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Axonal degeneration occurs early, preceeding and exceeding neuronal loss, and contributes to the spread of pathology, yet is poorly described outside the nigrostriatal circuitry. The insula, a cortical brain hub, was recently discovered to be highly vulnerable to pathology and plays a role in cognitive deficits in PD and DLB. The aim of this study was to evaluate morphological features as well as burden of proteinopathy and axonal degeneration in the anterior insular sub-regions in PD, PD with dementia (PDD), and DLB. METHODS α-Synuclein, phosphorylated (p-)tau, and amyloid-β pathology load were evaluated in the anterior insular (agranular and dysgranular) subregions of post-mortem human brains (n = 27). Axonal loss was evaluated using modified Bielschowsky silver staining and quantified using stereology. Cytoskeletal damage was comprehensively studied using immunofluorescent multi-labelling and 3D confocal laser-scanning microscopy. RESULTS Compared to PD and PDD, DLB showed significantly higher α-synuclein and p-tau pathology load, argyrophilic grains, and more severe axonal loss, particularly in the anterior agranular insula. Alternatively, the dysgranular insula showed a significantly higher load of amyloid-β pathology and its axonal density correlated with cognitive performance. p-Tau contributed most to axonal loss in the DLB group, was highest in the anterior agranular insula and significantly correlated with CDR global scores for dementia. Neurofilament and myelin showed degenerative changes including swellings, demyelination, and detachment of the axon-myelin unit. CONCLUSIONS Our results highlight the selective vulnerability of the anterior insular sub-regions to various converging pathologies, leading to impaired axonal integrity in PD, PDD and DLB, disrupting their functional properties and potentially contributing to cognitive, emotional, and autonomic deficits.
Collapse
Affiliation(s)
- Yasmine Y. Fathy
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands ,grid.5645.2000000040459992XDepartment of Neurology, Erasmus Medical Center, Postbus 2040, 3000 CA Rotterdam, Netherlands
| | - Laura E. Jonkman
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - John J. Bol
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - Evelien Timmermans
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - Allert J. Jonker
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - Annemieke J. M. Rozemuller
- grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands ,grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Pathology, Amsterdam Neuroscience, Vrije University Amsterdam, De Boelelaan, Amsterdam, Netherlands
| | - Wilma D. J. van de Berg
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Wakhloo D, Oberhauser J, Madira A, Mahajani S. From cradle to grave: neurogenesis, neuroregeneration and neurodegeneration in Alzheimer's and Parkinson's diseases. Neural Regen Res 2022; 17:2606-2614. [PMID: 35662189 PMCID: PMC9165389 DOI: 10.4103/1673-5374.336138] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
Two of the most common neurodegenerative disorders - Alzheimer's and Parkinson's diseases - are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to abnormal protein accumulation. The intracellular aggregation of hyper-phosphorylated tau and the extracellular aggregation of amyloid beta plaques form the basis of Alzheimer's disease pathology. The major hallmark of Parkinson's disease is the loss of dopaminergic neurons in the substantia nigra pars compacta, following the formation of Lewy bodies, which consists primarily of alpha-synuclein aggregates. However, the discrete mechanisms that contribute to neurodegeneration in these disorders are still poorly understood. Both neuronal loss and impaired adult neurogenesis have been reported in animal models of these disorders. Yet these findings remain subject to frequent debate due to a lack of conclusive evidence in post mortem brain tissue from human patients. While some publications provide significant findings related to axonal regeneration in Alzheimer's and Parkinson's diseases, they also highlight the limitations and obstacles to the development of neuroregenerative therapies. In this review, we summarize in vitro and in vivo findings related to neurogenesis, neuroregeneration and neurodegeneration in the context of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Debia Wakhloo
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jane Oberhauser
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Angela Madira
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Sameehan Mahajani
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
42
|
Andrini D, Balbi V, Bevilacqua G, Lucci G, Pozzi G, Riccobelli D. Mathematical modelling of axonal cortex contractility. BRAIN MULTIPHYSICS 2022. [DOI: 10.1016/j.brain.2022.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
43
|
Virdee S. An atypical ubiquitin ligase at the heart of neural development and programmed axon degeneration. Neural Regen Res 2022; 17:2347-2350. [PMID: 35535869 PMCID: PMC9120709 DOI: 10.4103/1673-5374.338992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The degeneration of nerve fibres following injury was first described by Augustus Waller over 170 years ago. Initially assumed to be a passive process, it is now evident that axons respond to insult via regulated cellular signaling events resulting in their programmed degeneration. Pro-survival and pro-degenerative factors have been identified and their regulatory mechanisms are beginning to emerge. The ubiquitin system has been implicated in the pro-degenerative process and a key component is the ubiquitin E3 ligase MYCBP2 (also known as PHR1). Ubiquitin E3 ligases are tasked with the transfer of the small protein modifier ubiquitin to substrates and consist of hundreds of members. They can be classified as single subunit systems or as multi-subunit complexes. Their catalytic domains can also be assigned to three general architectures. Hints that MYCBP2 might not conform to these established formats came to light and it is now clear from biochemical and structural studies that MYCBP2 is indeed an outlier in terms of its modus operandi. Furthermore, the unconventional way in which MYCBP2 transfers ubiquitin to substrates has been linked to neurodevelopmental and pro-degenerative function. Herein, we will summarize these research developments relating to the unusual features of MYCBP2 and postulate therapeutic strategies that prevent Wallerian degeneration. These have exciting potential for providing relief from pathological neuropathies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
- Correspondence to: Satpal Virdee, .
| |
Collapse
|
44
|
van den Hurk M, Lau S, Marchetto MC, Mertens J, Stern S, Corti O, Brice A, Winner B, Winkler J, Gage FH, Bardy C. Druggable transcriptomic pathways revealed in Parkinson's patient-derived midbrain neurons. NPJ Parkinsons Dis 2022; 8:134. [PMID: 36258029 PMCID: PMC9579158 DOI: 10.1038/s41531-022-00400-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Complex genetic predispositions accelerate the chronic degeneration of midbrain substantia nigra neurons in Parkinson’s disease (PD). Deciphering the human molecular makeup of PD pathophysiology can guide the discovery of therapeutics to slow the disease progression. However, insights from human postmortem brain studies only portray the latter stages of PD, and there is a lack of data surrounding molecular events preceding the neuronal loss in patients. We address this gap by identifying the gene dysregulation of live midbrain neurons reprogrammed in vitro from the skin cells of 42 individuals, including sporadic and familial PD patients and matched healthy controls. To minimize bias resulting from neuronal reprogramming and RNA-seq methods, we developed an analysis pipeline integrating PD transcriptomes from different RNA-seq datasets (unsorted and sorted bulk vs. single-cell and Patch-seq) and reprogramming strategies (induced pluripotency vs. direct conversion). This PD cohort’s transcriptome is enriched for human genes associated with known clinical phenotypes of PD, regulation of locomotion, bradykinesia and rigidity. Dysregulated gene expression emerges strongest in pathways underlying synaptic transmission, metabolism, intracellular trafficking, neural morphogenesis and cellular stress/immune responses. We confirmed a synaptic impairment with patch-clamping and identified pesticides and endoplasmic reticulum stressors as the most significant gene-chemical interactions in PD. Subsequently, we associated the PD transcriptomic profile with candidate pharmaceuticals in a large database and a registry of current clinical trials. This study highlights human transcriptomic pathways that can be targeted therapeutically before the irreversible neuronal loss. Furthermore, it demonstrates the preclinical relevance of unbiased large transcriptomic assays of reprogrammed patient neurons.
Collapse
Affiliation(s)
- Mark van den Hurk
- grid.430453.50000 0004 0565 2606South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA Australia
| | - Shong Lau
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA
| | - Maria C. Marchetto
- grid.266100.30000 0001 2107 4242Department of Anthropology, University of California San Diego, La Jolla, CA USA
| | - Jerome Mertens
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA ,grid.5771.40000 0001 2151 8122Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Tyrol Austria
| | - Shani Stern
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA ,grid.18098.380000 0004 1937 0562Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Olga Corti
- grid.425274.20000 0004 0620 5939Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, DMU BioGeM, Paris, France
| | - Alexis Brice
- grid.425274.20000 0004 0620 5939Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, DMU BioGeM, Paris, France
| | - Beate Winner
- grid.411668.c0000 0000 9935 6525Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Department of Molecular Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- grid.411668.c0000 0000 9935 6525Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Department of Molecular Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Fred H. Gage
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA
| | - Cedric Bardy
- grid.430453.50000 0004 0565 2606South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA Australia ,grid.1014.40000 0004 0367 2697Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA Australia
| |
Collapse
|
45
|
Dantas CG, da Paixão AO, Nunes TLGM, Silva IJF, dos S. Lima B, Araújo AAS, de Albuquerque-Junior RLC, Gramacho KP, Padilha FF, da Costa LP, Severino P, Cardoso JC, Souto EB, Gomes MZ. Africanized Bee Venom ( Apis mellifera Linnaeus): Neuroprotective Effects in a Parkinson's Disease Mouse Model Induced by 6-hydroxydopamine. TOXICS 2022; 10:583. [PMID: 36287863 PMCID: PMC9609968 DOI: 10.3390/toxics10100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the neuroprotective effects of the Africanized bee venom (BV) and its mechanisms of action after 6-hydroxydopamine-(6-OHDA)-induced lesion in a mice model. Prior to BV treatment, mice received intrastriatal microinjections of 6-OHDA (no induced dopaminergic neuronal death) or ascorbate saline (as a control). BV was administered subcutaneously at different dosages (0.01, 0.05 or 0.1 mg·Kg-1) once every two days over a period of 3 weeks. The open field test was carried out, together with the immunohistochemical and histopathological analysis. The chemical composition of BV was also assessed, identifying the highest concentrations of apamin, phospholipase A2 and melittin. In the behavioral evaluation, the BV (0.1 mg·Kg-1) counteracted the 6-OHDA-induced decrease in crossings and rearing. 6-OHDA caused loss of dopaminergic cell bodies in the substantia nigra pars compacta and fibers in striatum (STR). Mice that received 0.01 mg·Kg-1 showed significant increase in the mean survival of dopaminergic cell bodies. Increased astrocytic infiltration occurred in the STR of 6-OHDA injected mice, differently from those of the groups treated with BV. The results suggested that Africanized BV has neuroprotective activity in an animal model of Parkinson's disease.
Collapse
Affiliation(s)
- Camila G. Dantas
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Ailma O. da Paixão
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Tássia L. G. M. Nunes
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Italo J. F. Silva
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Bruno dos S. Lima
- Department of Pharmacy, Federal University of Sergipe (U.F.S.), Cidade Universitária Prof. José Aloísio de Campos, Av. Marechal Rondon, Jardim Rosa Elze, São Cristóvão 49100-000, Sergipe, Brazil
| | - Adriano A. S. Araújo
- Department of Pharmacy, Federal University of Sergipe (U.F.S.), Cidade Universitária Prof. José Aloísio de Campos, Av. Marechal Rondon, Jardim Rosa Elze, São Cristóvão 49100-000, Sergipe, Brazil
| | | | - Kátia P. Gramacho
- Department of Animal Science, Rural Federal University of Semi-Árido (U.F.E.R.S.A), Av. Francisco Mota, Costa e Silva, Mossoró 49032-490, Natal, Brazil
| | - Francine F. Padilha
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Luiz P. da Costa
- Post-Graduation Program in Chemistry, Federal University of Sergipe (U.F.S.), Cidade Universitária Prof. José Aloísio de Campos, Av. Marechal Rondon, Jardim Rosa Elze, São Cristóvão 49100-000, Sergipe, Brazil
| | - Patricia Severino
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Juliana C. Cardoso
- Institute of Research and Technology, Tiradentes University, Av. Murilo Dantas, 300, Aracaju 49032-490, Sergipe, Brazil
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Margarete Z. Gomes
- Department of Animal Science, Rural Federal University of Semi-Árido (U.F.E.R.S.A), Av. Francisco Mota, Costa e Silva, Mossoró 49032-490, Natal, Brazil
| |
Collapse
|
46
|
The Effect of Aggregated Alpha Synuclein on Synaptic and Axonal Proteins in Parkinson’s Disease—A Systematic Review. Biomolecules 2022; 12:biom12091199. [PMID: 36139038 PMCID: PMC9496556 DOI: 10.3390/biom12091199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
α-synuclein is a core component of Lewy bodies, one of the pathological hallmarks of Parkinson’s disease. Aggregated α-synuclein can impair both synaptic functioning and axonal transport. However, understanding the pathological role that α-synuclein plays at a cellular level is complicated as existing findings are multifaceted and dependent on the mutation, the species, and the quantity of the protein that is involved. This systematic review aims to stratify the research findings to develop a more comprehensive understanding of the role of aggregated α-synuclein on synaptic and axonal proteins in Parkinson’s disease models. A literature search of the PubMed, Scopus, and Web of Science databases was conducted and a total of 39 studies were included for analysis. The review provides evidence for the dysregulation or redistribution of synaptic and axonal proteins due to α-synuclein toxicity. However, due to the high quantity of variables that were used in the research investigations, it was challenging to ascertain exactly what effect α-synuclein has on the expression of the proteins. A more standardized experimental approach regarding the variables that are employed in future studies is crucial so that existing literature can be consolidated. New research involving aggregated α-synuclein at the synapse and regarding axonal transport could be advantageous in guiding new treatment solutions.
Collapse
|
47
|
Huang YL, Zhang JN, Hou TZ, Gu L, Yang HM, Zhang H. Inhibition of Wnt/β-catenin signaling attenuates axonal degeneration in models of Parkinson's disease. Neurochem Int 2022; 159:105389. [PMID: 35809720 DOI: 10.1016/j.neuint.2022.105389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/27/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
There are currently no treatments to delay or prevent Parkinson's disease (PD), and protective treatments require early administration. Targeting axonal degeneration in early PD could have an important clinical effect; however, the underlying molecular mechanisms controlling axonal degeneration in PD are not fully understood. Here, we studied the role of Wnt/β-catenin signaling in axonal degeneration induced by 6-hydroxydopamine (6-OHDA) or overexpression of alpha-synuclein (α-Syn) in vitro and in vivo. We found that the levels of both β-catenin and p-S9-glycogen synthase kinase-3β (GSK-3β) increased and the levels of phosphorylated β-catenin (p-β-catenin) decreased during 6-OHDA-induced axonal degeneration and that the inhibitors of the Wnt/β-catenin pathway IWR-1 and Dickkopf-1 (DKK-1) attenuated the degenerative process in primary neurons in vitro. Furthermore, IWR-1 enhanced the increase of LC3-II levels and the decrease of p62 triggered by 6-OHDA treatment, whereas the autophagy inhibitor 3-Methyladenine (3-MA) alleviated the protective effect of IWR-1 on axons in vitro. Consistent with the in vitro findings, both β-catenin and p-S9-GSK-3β were upregulated in a 6-OHDA-induced rat PD model, and blocking the Wnt/β-catenin pathway with DKK-1 attenuated the degeneration of dopaminergic axons at an early time point in vivo. The protective effect of inhibition of Wnt/β-catenin signaling was further confirmed in an α-Syn overexpression-induced animal models of PD. Taken together, these data indicate that the Wnt/β-catenin pathway is involved axonal degeneration in PD, and suggest that Wnt/β-catenin pathway inhibitors have the therapeutic potential for the prevention of PD.
Collapse
Affiliation(s)
- Yan-Lin Huang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Jian-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| | - Tian-Zhong Hou
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Li Gu
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Hui-Min Yang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
48
|
Richard M, Doubková K, Nitta Y, Kawai H, Sugie A, Tavosanis G. A Quantitative Model of Sporadic Axonal Degeneration in the Drosophila Visual System. J Neurosci 2022; 42:4937-4952. [PMID: 35534228 PMCID: PMC9188428 DOI: 10.1523/jneurosci.2115-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
In human neurodegenerative diseases, neurons undergo axonal degeneration months to years before they die. Here, we developed a system modeling early degenerative events in Drosophila adult photoreceptor cells. Thanks to the stereotypy of their axonal projections, this system delivers quantitative data on sporadic and progressive axonal degeneration of photoreceptor cells. Using this method, we show that exposure of adult female flies to a constant light stimulation for several days overcomes the intrinsic resilience of R7 photoreceptors and leads to progressive axonal degeneration. This was not associated with apoptosis. We furthermore provide evidence that loss of synaptic integrity between R7 and a postsynaptic partner preceded axonal degeneration, thus recapitulating features of human neurodegenerative diseases. Finally, our experiments uncovered a role of postsynaptic partners of R7 to initiate degeneration, suggesting that postsynaptic cells signal back to the photoreceptor to maintain axonal structure. This model can be used to dissect cellular and circuit mechanisms involved in the early events of axonal degeneration, allowing for a better understanding of how neurons cope with stress and lose their resilience capacities.SIGNIFICANCE STATEMENT Neurons can be active and functional for several years. In the course of aging and in disease conditions leading to neurodegeneration, subsets of neurons lose their resilience and start dying. What initiates this turning point at the cellular level is not clear. Here, we developed a model allowing to systematically describe this phase. The loss of synapses and axons represents an early and functionally relevant event toward degeneration. Using the ordered distribution of Drosophila photoreceptor axon terminals, we assembled a system to study sporadic initiation of axon loss and delineated a role for non-cell-autonomous activity regulation in the initiation of axon degeneration. This work will help shed light on key steps in the etiology of nonfamilial cases of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mélisande Richard
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., 53127 Bonn, Germany
| | - Karolína Doubková
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., 53127 Bonn, Germany
| | - Yohei Nitta
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Gaia Tavosanis
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., 53127 Bonn, Germany
- Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
49
|
Prieto GA, Cotman CW. Early bioenergetic and autophagy impairments at the Parkinson's disease synapse. Brain 2022; 145:1877-1879. [PMID: 35616104 DOI: 10.1093/brain/awac191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- G Aleph Prieto
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.,Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697 USA
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697 USA
| |
Collapse
|
50
|
Tossing G, Livernoche R, Maios C, Bretonneau C, Labarre A, Parker JA. Genetic and pharmacological PARP inhibition reduces axonal degeneration in C. elegans models of ALS. Hum Mol Genet 2022; 31:3313-3324. [PMID: 35594544 DOI: 10.1093/hmg/ddac116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/12/2022] Open
Abstract
Axonal degeneration is observed in early stages of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). This degeneration generally precedes apoptosis and therefore may be a promising therapeutic target. An increasing number of genes have been identified to actively regulate axonal degeneration and regeneration, however, only a few potential therapeutic targets have been identified in the context of neurodegenerative diseases. Here we investigate DLK-1, a major axonal regeneration pathway and its contribution to axonal degeneration phenotypes in several C. elegans ALS models. From this pathway, we identified the PAR polymerases (PARP) PARP-1 and PARP-2 as the most consistent modifiers of axonal degeneration in our models of ALS. Genetic and pharmacological inhibition of PARP-1 and PARP-2 reduces axonal degeneration and improves related motor phenotypes.
Collapse
Affiliation(s)
- Gilles Tossing
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| | | | - Claudia Maios
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Constantin Bretonneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| | - Audrey Labarre
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| | - J Alex Parker
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| |
Collapse
|