1
|
Deng A, Zhang F, Wang M, Jiang D, Cen J, Xue M, Wang Y, Dou X, Wu Q, Yang X, Chen S. A novel KMT2A::DCP1A fusion gene in acute myeloid leukemia. Leuk Res 2025; 149:107645. [PMID: 39823765 DOI: 10.1016/j.leukres.2025.107645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Affiliation(s)
- Ailing Deng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Fenghong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Man Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Dongyun Jiang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Jiannong Cen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Mengxing Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Yun Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Xueqing Dou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Qian Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Xiaofei Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, PR China; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, PR China.
| |
Collapse
|
2
|
Perner F, Gadrey JY, Armstrong SA, Kühn MWM. Targeting the Menin-KMT2A interaction in leukemia: Lessons learned and future directions. Int J Cancer 2025. [PMID: 39887730 DOI: 10.1002/ijc.35332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Chromosomal rearrangements involving the Mixed Lineage Leukemia gene (MLL1, KMT2A) are defining a genetically distinct subset in about 10% of human acute leukemias. Translocations involving the KMT2A-locus at chromosome 11q23 are resulting in the formation of a chimeric oncogene, where the N-terminal part of KMT2A is fused to a variety of translocation partners. The most frequently found fusion partners of KMT2A in acute leukemia are the C-terminal parts of AFF1, MLLT3, MLLT1 and MLLT10. Unfortunately, the presence of an KMT2A-rearrangements is associated with adverse outcomes in leukemia patients. Moreover, non-rearranged KMT2A-complexes have been demonstrated to be crucial for disease development and maintenance in NPM1-mutated and NUP98-rearranged leukemia, expanding the spectrum of genetic disease subtypes that are dependent on KMT2A. Recent advances in the development of targeted therapy strategies to disrupt the function of KMT2A-complexes in leukemia have led to the establishment of Menin-KMT2A interaction inhibitors that effectively eradicate leukemia in preclinical model systems and show favorable tolerability and significant efficacy in early-phase clinical trials. Indeed, one Menin inhibitor, Revumenib, was recently approved for the treatment of patients with relapsed or refractory KMT2A-rearranged acute leukemia. However, single agent therapy can lead to resistance. In this Review article we summarize our current understanding about the biology of pathogenic KMT2A-complex function in cancer, specifically leukemia, and give a systematic overview of lessons learned from recent clinical and preclinical studies using Menin inhibitors.
Collapse
Affiliation(s)
- Florian Perner
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
- DGHO, Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. working group, Clinical and Translational Epigenetics, Berlin, Germany
| | - Jayant Y Gadrey
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael W M Kühn
- DGHO, Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. working group, Clinical and Translational Epigenetics, Berlin, Germany
- Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
3
|
Hojjatipour T, Ajeli M, Maali A, Azad M. Epigenetic-modifying agents: The potential game changers in the treatment of hematologic malignancies. Crit Rev Oncol Hematol 2024; 204:104498. [PMID: 39244179 DOI: 10.1016/j.critrevonc.2024.104498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Hematologic malignancies are lethal diseases arising from accumulated leukemic cells with substantial genetic or epigenetic defects in their natural development. Epigenetic modifications, including DNA methylation and histone modifications, are critical in hematologic malignancy formation, propagation, and treatment response. Both mutations and aberrant recruitment of epigenetic modifiers are reported in different hematologic malignancies, which regarding the reversible nature of epigenetic regulations, make them a potential target for cancer treatment. Here, we have first outlined a comprehensive overview of current knowledge related to epigenetic regulation's impact on the development and prognosis of hematologic malignancies. Furthermore, we have presented an updated overview regarding the current status of epigenetic-based drugs in hematologic malignancies treatment. And finally, discuss current challenges and ongoing clinical trials based on the manipulation of epigenetic modifies in hematologic malignancies.
Collapse
Affiliation(s)
- Tahereh Hojjatipour
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mina Ajeli
- Department of Medical Laboratory Sciences, Guilan University of Medical Sciences, Guilan, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, School of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
4
|
Leahey AM, Shah A, Shields CL. Three vs 6 Cycles of Adjuvant Chemotherapy for Retinoblastoma. JAMA Ophthalmol 2024; 142:1107-1108. [PMID: 39432285 DOI: 10.1001/jamaophthalmol.2024.4859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Affiliation(s)
- Ann M Leahey
- Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Amish Shah
- Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Sharma S. Unraveling the role of long non-coding RNAs in therapeutic resistance in acute myeloid leukemia: New prospects & challenges. Noncoding RNA Res 2024; 9:1203-1221. [PMID: 39036603 PMCID: PMC11259994 DOI: 10.1016/j.ncrna.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/23/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is a fatal hematological disease characterized by the unchecked proliferation of immature myeloid blasts in different tissues developed by various mutations in hematopoiesis. Despite intense chemotherapeutic regimens, patients often experience poor outcomes, leading to substandard remission rates. In recent years, long non-coding RNAs (lncRNAs) have increasingly become important prognostic and therapeutic hotspots, due to their contributions to dysregulating many functional epigenetic, transcriptional, and post-translational mechanisms leading to alterations in cell expressions, resulting in increased chemoresistance and reduced apoptosis in leukemic cells. Through this review, I highlight and discuss the latest advances in understanding the major mechanisms through which lncRNAs confer therapy resistance in AML. In addition, I also provide perspective on the current strategies to target lncRNA expressions. A better knowledge of the critical role that lncRNAs play in controlling treatment outcomes in AML will help improve existing medications and devise new ones.
Collapse
Affiliation(s)
- Siddhant Sharma
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
6
|
Cuglievan B, Kantarjian H, Rubnitz JE, Cooper TM, Zwaan CM, Pollard JA, DiNardo CD, Kadia TM, Guest E, Short NJ, McCall D, Daver N, Nunez C, Haddad FG, Garcia M, Bhalla KN, Maiti A, Catueno S, Fiskus W, Carter BZ, Gibson A, Roth M, Khazal S, Tewari P, Abbas HA, Bourgeois W, Andreeff M, Shukla NN, Truong DD, Connors J, Ludwig JA, Stutterheim J, Salzer E, Juul-Dam KL, Sasaki K, Mahadeo KM, Tasian SK, Borthakur G, Dickson S, Jain N, Jabbour E, Meshinchi S, Garcia-Manero G, Ravandi F, Stein EM, Kolb EA, Issa GC. Menin inhibitors in pediatric acute leukemia: a comprehensive review and recommendations to accelerate progress in collaboration with adult leukemia and the international community. Leukemia 2024; 38:2073-2084. [PMID: 39179671 PMCID: PMC11436367 DOI: 10.1038/s41375-024-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Aberrant expression of HOX and MEIS1 family genes, as seen in KMT2A-rearranged, NUP98-rearranged, or NPM1-mutated leukemias leads to arrested differentiation and leukemia development. HOX family genes are essential gatekeepers of physiologic hematopoiesis, and their expression is regulated by the interaction between KMT2A and menin. Menin inhibitors block this interaction, downregulate the abnormal expression of MEIS1 and other transcription factors and thereby release the differentiation block. Menin inhibitors show significant clinical efficacy against KMT2A-rearranged and NPM1-mutated acute leukemias, with promising potential to address unmet needs in various pediatric leukemia subtypes. In this collaborative initiative, pediatric and adult hematologists/oncologists, and stem cell transplant physicians have united their expertise to explore the potential of menin inhibitors in pediatric leukemia treatment internationally. Our efforts aim to provide a comprehensive clinical overview of menin inhibitors, integrating preclinical evidence and insights from ongoing global clinical trials. Additionally, we propose future international, inclusive, and efficient clinical trial designs, integrating pediatric populations in adult trials, to ensure broad access to this promising therapy for all children and adolescents with menin-dependent leukemias.
Collapse
Affiliation(s)
- Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd M Cooper
- Cancer and Blood Disorders Center, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - C Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands; Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; The Innovative Therapies for Children with Cancer Consortium, Paris, France
| | | | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erin Guest
- Department of Pediatric Oncology, Children's Mercy, Kansas City, MO, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miriam Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kapil N Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Warren Fiskus
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z Carter
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sajad Khazal
- Division of Transplant and Cellular Therapy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Priti Tewari
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Danh D Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeremy Connors
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Elisabeth Salzer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kristian L Juul-Dam
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kris M Mahadeo
- Division of Pediatric Transplantation and Cellular Therapy, Duke University, Durham, NC, USA
| | - Sarah K Tasian
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samantha Dickson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eytan M Stein
- Department of Leukemia, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Anders Kolb
- Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, DE, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Kwon MC, Thuring JW, Querolle O, Dai X, Verhulst T, Pande V, Marien A, Goffin D, Wenge DV, Yue H, Cutler JA, Jin C, Perner F, Hogeling SM, Shaffer PL, Jacobs F, Vinken P, Cai W, Keersmaekers V, Eyassu F, Bhogal B, Verstraeten K, El Ashkar S, Perry JA, Jayaguru P, Barreyro L, Kuchnio A, Darville N, Krosky D, Urbanietz G, Verbist B, Edwards JP, Cowley GS, Kirkpatrick R, Steele R, Ferrante L, Guttke C, Daskalakis N, Pietsch EC, Wilson DM, Attar R, Elsayed Y, Fischer ES, Schuringa JJ, Armstrong SA, Packman K, Philippar U. Preclinical efficacy of the potent, selective menin-KMT2A inhibitor JNJ-75276617 (bleximenib) in KMT2A- and NPM1-altered leukemias. Blood 2024; 144:1206-1220. [PMID: 38905635 PMCID: PMC11419783 DOI: 10.1182/blood.2023022480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT The interaction between menin and histone-lysine N-methyltransferase 2A (KMT2A) is a critical dependency for KMT2A- or nucleophosmin 1 (NPM1)-altered leukemias and an emerging opportunity for therapeutic development. JNJ-75276617 (bleximenib) is a novel, orally bioavailable, potent, and selective protein-protein interaction inhibitor of the binding between menin and KMT2A. In KMT2A-rearranged (KMT2A-r) and NPM1-mutant (NPM1c) acute myeloid leukemia (AML) cells, JNJ-75276617 inhibited the association of the menin-KMT2A complex with chromatin at target gene promoters, resulting in reduced expression of several menin-KMT2A target genes, including MEIS1 and FLT3. JNJ-75276617 displayed potent antiproliferative activity across several AML and acute lymphoblastic leukemia (ALL) cell lines and patient samples harboring KMT2A or NPM1 alterations in vitro. In xenograft models of AML and ALL, JNJ-75276617 reduced leukemic burden and provided a significant dose-dependent survival benefit accompanied by expression changes of menin-KMT2A target genes. JNJ-75276617 demonstrated synergistic effects with gilteritinib in vitro in AML cells harboring KMT2A-r. JNJ-75276617 further exhibited synergistic effects with venetoclax and azacitidine in AML cells bearing KMT2A-r in vitro, and significantly increased survival in mice. Interestingly, JNJ-75276617 showed potent antiproliferative activity in cell lines engineered with recently discovered mutations (MEN1M327I or MEN1T349M) that developed in patients refractory to the menin-KMT2A inhibitor revumenib. A cocrystal structure of menin in complex with JNJ-75276617 indicates a unique binding mode distinct from other menin-KMT2A inhibitors, including revumenib. JNJ-75276617 is being clinically investigated for acute leukemias harboring KMT2A or NPM1 alterations, as a monotherapy for relapsed/refractory acute leukemia (NCT04811560), or in combination with AML-directed therapies (NCT05453903).
Collapse
MESH Headings
- Nucleophosmin
- Humans
- Animals
- Mice
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/antagonists & inhibitors
- Histone-Lysine N-Methyltransferase/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nuclear Proteins/antagonists & inhibitors
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Xenograft Model Antitumor Assays
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Mice, SCID
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
| | | | - Olivier Querolle
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Xuedong Dai
- Discovery Product Development and Supply, Janssen R&D, Shanghai, China
| | | | - Vineet Pande
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Ann Marien
- Discovery Oncology, Janssen R&D, Beerse, Belgium
| | - Dries Goffin
- Discovery Oncology, Janssen R&D, Beerse, Belgium
| | - Daniela V. Wenge
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Jevon A. Cutler
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Cyrus Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Florian Perner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Shanna M. Hogeling
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paul L. Shaffer
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | - Frank Jacobs
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Petra Vinken
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Wei Cai
- Discovery Product Development and Supply, Janssen R&D, Shanghai, China
| | | | | | - Balpreet Bhogal
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | | | | | - Jennifer A. Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | | | | | - Anna Kuchnio
- Discovery Oncology, Janssen R&D, Beerse, Belgium
| | - Nicolas Darville
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Daniel Krosky
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | - Gregor Urbanietz
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | | | - James P. Edwards
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | - Glenn S. Cowley
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | | | - Ruth Steele
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | | | | | | | | | - David M. Wilson
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Ricardo Attar
- Translational Research, Janssen R&D, Spring House, PA
| | | | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
8
|
Cuevas D, Amigo R, Agurto A, Heredia AA, Guzmán C, Recabal-Beyer A, González-Pecchi V, Caprile T, Haigh JJ, Farkas C. The Role of Epithelial-to-Mesenchymal Transition Transcription Factors (EMT-TFs) in Acute Myeloid Leukemia Progression. Biomedicines 2024; 12:1915. [PMID: 39200378 PMCID: PMC11351244 DOI: 10.3390/biomedicines12081915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a diverse malignancy originating from myeloid progenitor cells, with significant genetic and clinical variability. Modern classification systems like those from the World Health Organization (WHO) and European LeukemiaNet use immunophenotyping, molecular genetics, and clinical features to categorize AML subtypes. This classification highlights crucial genetic markers such as FLT3, NPM1 mutations, and MLL-AF9 fusion, which are essential for prognosis and directing targeted therapies. The MLL-AF9 fusion protein is often linked with therapy-resistant AML, highlighting the risk of relapse due to standard chemotherapeutic regimes. In this sense, factors like the ZEB, SNAI, and TWIST gene families, known for their roles in epithelial-mesenchymal transition (EMT) and cancer metastasis, also regulate hematopoiesis and may serve as effective therapeutic targets in AML. These genes contribute to cell proliferation, differentiation, and extramedullary hematopoiesis, suggesting new possibilities for treatment. Advancing our understanding of the molecular mechanisms that promote AML, especially how the bone marrow microenvironment affects invasion and drug resistance, is crucial. This comprehensive insight into the molecular and environmental interactions in AML emphasizes the need for ongoing research and more effective treatments.
Collapse
Affiliation(s)
- Diego Cuevas
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Roberto Amigo
- Laboratorio de Regulación Transcripcional, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Adolfo Agurto
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Adan Andreu Heredia
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Catherine Guzmán
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Antonia Recabal-Beyer
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Valentina González-Pecchi
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Jody J. Haigh
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Carlos Farkas
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| |
Collapse
|
9
|
Klein DC, Lardo SM, Hainer SJ. The ncBAF Complex Regulates Transcription in AML Through H3K27ac Sensing by BRD9. CANCER RESEARCH COMMUNICATIONS 2024; 4:237-252. [PMID: 38126767 PMCID: PMC10831031 DOI: 10.1158/2767-9764.crc-23-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The non-canonical BAF complex (ncBAF) subunit BRD9 is essential for acute myeloid leukemia (AML) cell viability but has an unclear role in leukemogenesis. Because BRD9 is required for ncBAF complex assembly through its DUF3512 domain, precise bromodomain inhibition is necessary to parse the role of BRD9 as a transcriptional regulator from that of a scaffolding protein. To understand the role of BRD9 bromodomain function in regulating AML, we selected a panel of five AML cell lines with distinct driver mutations, disease classifications, and genomic aberrations and subjected these cells to short-term BRD9 bromodomain inhibition. We examined the bromodomain-dependent growth of these cell lines, identifying a dependency in AML cell lines but not HEK293T cells. To define a mechanism through which BRD9 maintains AML cell survival, we examined nascent transcription, chromatin accessibility, and ncBAF complex binding genome-wide after bromodomain inhibition. We identified extensive regulation of transcription by BRD9 bromodomain activity, including repression of myeloid maturation factors and tumor suppressor genes, while standard AML chemotherapy targets were repressed by inhibition of the BRD9 bromodomain. BRD9 bromodomain activity maintained accessible chromatin at both gene promoters and gene-distal putative enhancer regions, in a manner that qualitatively correlated with enrichment of BRD9 binding. Furthermore, we identified reduced chromatin accessibility at GATA, ETS, and AP-1 motifs and increased chromatin accessibility at SNAIL-, HIC-, and TP53-recognized motifs after BRD9 inhibition. These data suggest a role for BRD9 in regulating AML cell differentiation through modulation of accessibility at hematopoietic transcription factor binding sites. SIGNIFICANCE The bromodomain-containing protein BRD9 is essential for AML cell viability, but it is unclear whether this requirement is due to the protein's role as an epigenetic reader. We inhibited this activity and identified altered gene-distal chromatin regulation and transcription consistent with a more mature myeloid cell state.
Collapse
Affiliation(s)
- David C. Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Santana M. Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Aryal S, Lu R. HOXA9 Regulome and Pharmacological Interventions in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:405-430. [PMID: 39017854 DOI: 10.1007/978-3-031-62731-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
HOXA9, an important transcription factor (TF) in hematopoiesis, is aberrantly expressed in numerous cases of both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and is a strong indicator of poor prognosis in patients. HOXA9 is a proto-oncogene which is both sufficient and necessary for leukemia transformation. HOXA9 expression in leukemia correlates with patient survival outcomes and response to therapy. Chromosomal transformations (such as NUP98-HOXA9), mutations, epigenetic dysregulation (e.g., MLL- MENIN -LEDGF complex or DOT1L/KMT4), transcription factors (such as USF1/USF2), and noncoding RNA (such as HOTTIP and HOTAIR) regulate HOXA9 mRNA and protein during leukemia. HOXA9 regulates survival, self-renewal, and progenitor cell cycle through several of its downstream target TFs including LMO2, antiapoptotic BCL2, SOX4, and receptor tyrosine kinase FLT3 and STAT5. This dynamic and multilayered HOXA9 regulome provides new therapeutic opportunities, including inhibitors targeting DOT1L/KMT4, MENIN, NPM1, and ENL proteins. Recent findings also suggest that HOXA9 maintains leukemia by actively repressing myeloid differentiation genes. This chapter summarizes the recent advances understanding biochemical mechanisms underlying HOXA9-mediated leukemogenesis, the clinical significance of its abnormal expression, and pharmacological approaches to treat HOXA9-driven leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
11
|
Sharma R, Incoronato A, Zhang C, Jayanthan A, Shah R, Narendran A. Establishment of a t(11;19), KMT2A Rearranged B-ALL Cell Line for Preclinical Evaluation and Novel Therapeutics Development for Refractory Infant Leukemia. J Pediatr Hematol Oncol 2023; 45:e750-e756. [PMID: 37494611 DOI: 10.1097/mph.0000000000002697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/04/2023] [Indexed: 07/28/2023]
Abstract
Leukemia, diagnosed in children less than 12 months of age, is a rare condition with an aggressive disease presentation and poor response to conventional chemotherapeutic agents. In addition, the unique vulnerability of the affected population does not always permit the use of markedly intense regimens with higher doses of cytotoxic agents. However, the unique biology of these leukemic cells also provides opportunities for the identification of effective and potentially well-tolerated targeted therapeutic strategies. In this report, we describe the establishment and characterization of a cell line from the blasts of an infant diagnosed with refractory B-cell acute lymphoblastic leukemia (ALL) carrying the characteristic histone lysine methyltransferase 2A (KMT2A) gene rearrangement. This cell line consists of rapidly proliferating clones of cells with chemosensitivity patterns previously described for KMT2A rearranged leukemia cells, including relative resistance to glucocorticoids and sensitivity to cytarabine. We also show effective targetability with menin inhibitors, indicating the activity of abnormal KMT2A-related pathways and the potential utility of this cell line in comprehensive drug library screens. Overall, our findings report the establishment and in vitro validation of a cell line for research into key aspects of infant leukemia biology and targeted therapeutics development.
Collapse
Affiliation(s)
- Ritul Sharma
- Department of Pediatrics and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrea Incoronato
- Department of Hemato-oncology, Pereira Rossell Hospital, Montevideo, Uruguay
| | - Chunfen Zhang
- Department of Pediatrics and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Ravi Shah
- Department of Pediatrics and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Aru Narendran
- Department of Pediatrics and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Lomov NA, Viushkov VS, Rubtsov MA. Mechanisms of Secondary Leukemia Development Caused by Treatment with DNA Topoisomerase Inhibitors. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:892-911. [PMID: 37751862 DOI: 10.1134/s0006297923070040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 09/28/2023]
Abstract
Leukemia is a blood cancer originating in the blood and bone marrow. Therapy-related leukemia is associated with prior chemotherapy. Although cancer therapy with DNA topoisomerase II inhibitors is one of the most effective cancer treatments, its side effects include development of secondary leukemia characterized by the chromosomal rearrangements affecting AML1 or MLL genes. Recurrent chromosomal translocations in the therapy-related leukemia differ from chromosomal rearrangements associated with other neoplasias. Here, we reviewed the factors that drive chromosomal translocations induced by cancer treatment with DNA topoisomerase II inhibitors, such as mobility of ends of double-strand DNA breaks formed before the translocation and gain of function of fusion proteins generated as a result of translocation.
Collapse
Affiliation(s)
- Nikolai A Lomov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Vladimir S Viushkov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail A Rubtsov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Biochemistry, Center for Industrial Technologies and Entrepreneurship Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| |
Collapse
|
13
|
Blatter M, Meylan C, Cléry A, Giambruno R, Nikolaev Y, Heidecker M, Solanki JA, Diaz MO, Gabellini D, Allain FHT. RNA binding induces an allosteric switch in Cyp33 to repress MLL1-mediated transcription. SCIENCE ADVANCES 2023; 9:eadf5330. [PMID: 37075125 PMCID: PMC10115415 DOI: 10.1126/sciadv.adf5330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mixed-lineage leukemia 1 (MLL1) is a transcription activator of the HOX family, which binds to specific epigenetic marks on histone H3 through its third plant homeodomain (PHD3) domain. Through an unknown mechanism, MLL1 activity is repressed by cyclophilin 33 (Cyp33), which binds to MLL1 PHD3. We determined solution structures of Cyp33 RNA recognition motif (RRM) free, bound to RNA, to MLL1 PHD3, and to both MLL1 and the histone H3 lysine N6-trimethylated. We found that a conserved α helix, amino-terminal to the RRM domain, adopts three different positions facilitating a cascade of binding events. These conformational changes are triggered by Cyp33 RNA binding and ultimately lead to MLL1 release from the histone mark. Together, our mechanistic findings rationalize how Cyp33 binding to MLL1 can switch chromatin to a transcriptional repressive state triggered by RNA binding as a negative feedback loop.
Collapse
Affiliation(s)
- Markus Blatter
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Corresponding author. (F.H.-T.A.); (M.B.)
| | - Charlotte Meylan
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Antoine Cléry
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Roberto Giambruno
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Yaroslav Nikolaev
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Michel Heidecker
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Jessica Arvindbhai Solanki
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago Medical Center, University of Chicago, Chicago, IL, USA
| | - Manuel O. Diaz
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago Medical Center, University of Chicago, Chicago, IL, USA
| | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Frédéric H.-T. Allain
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Corresponding author. (F.H.-T.A.); (M.B.)
| |
Collapse
|
14
|
Telomere Transcription in MLL-Rearranged Leukemia Cell Lines: Increased Levels of TERRA Associate with Lymphoid Lineage and Are Independent of Telomere Length and Ploidy. Biomedicines 2023; 11:biomedicines11030925. [PMID: 36979904 PMCID: PMC10046226 DOI: 10.3390/biomedicines11030925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Telomere transcription into telomeric repeat-containing RNA (TERRA) is an integral component of all aspects of chromosome end protection consisting of telomerase- or recombination-dependent telomere elongation, telomere capping, and the preservation of the (sub)telomeric heterochromatin structure. The chromatin modifier and transcriptional regulator MLL binds to telomeres and regulates TERRA transcription in telomere length homeostasis and response to telomere dysfunction. MLL fusion proteins (MLL-FPs), the product of MLL rearrangements in leukemia, also bind to telomeric chromatin. However, an effect on telomere transcription in MLL-rearranged (MLL-r) leukemia has not yet been evaluated. Here, we show increased UUAGGG repeat-containing RNA levels in MLL-r acute lymphoblastic leukemia (ALL) when compared to non-MLL-r ALL and myeloid leukemia. MLL rearrangements do not affect telomere length and UUAGGG repeat-containing RNA levels correlate with mean telomere length and reflect increased levels of TERRA. Furthermore, high levels of TERRA in MLL-r ALL occur in the presence of telomerase activity and are independent of ploidy, an underestimated source of variation on the overall transcriptome size in a cell. This MLL rearrangement-dependent and lymphoid lineage-associated increase in levels of TERRA supports a sustained telomere transcription by MLL-FPs that correlates with marked genomic stability previously reported in pediatric MLL-r ALL.
Collapse
|
15
|
Mishra S, Pandey N, Chawla S, Sharma M, Chandra O, Jha IP, SenGupta D, Natarajan KN, Kumar V. Matching queried single-cell open-chromatin profiles to large pools of single-cell transcriptomes and epigenomes for reference supported analysis. Genome Res 2023; 33:218-231. [PMID: 36653120 PMCID: PMC10069468 DOI: 10.1101/gr.277015.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
The true benefits of large single-cell transcriptome and epigenome data sets can be realized only with the development of new approaches and search tools for annotating individual cells. Matching a single-cell epigenome profile to a large pool of reference cells remains a major challenge. Here, we present scEpiSearch, which enables searching, comparison, and independent classification of single-cell open-chromatin profiles against a large reference of single-cell expression and open-chromatin data sets. Across performance benchmarks, scEpiSearch outperformed multiple methods in accuracy of search and low-dimensional coembedding of single-cell profiles, irrespective of platforms and species. Here we also demonstrate the unconventional utilities of scEpiSearch by applying it on single-cell epigenome profiles of K562 cells and samples from patients with acute leukaemia to reveal different aspects of their heterogeneity, multipotent behavior, and dedifferentiated states. Applying scEpiSearch on our single-cell open-chromatin profiles from embryonic stem cells (ESCs), we identified ESC subpopulations with more activity and poising for endoplasmic reticulum stress and unfolded protein response. Thus, scEpiSearch solves the nontrivial problem of amalgamating information from a large pool of single cells to identify and study the regulatory states of cells using their single-cell epigenomes.
Collapse
Affiliation(s)
- Shreya Mishra
- Department for Computational Biology, IIIT Delhi 110020, India
| | - Neetesh Pandey
- Department for Computational Biology, IIIT Delhi 110020, India
| | - Smriti Chawla
- Department for Computational Biology, IIIT Delhi 110020, India
| | - Madhu Sharma
- Department for Computational Biology, IIIT Delhi 110020, India
| | - Omkar Chandra
- Department for Computational Biology, IIIT Delhi 110020, India
| | | | - Debarka SenGupta
- Department for Computational Biology, IIIT Delhi 110020, India.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4001, Australia
| | - Kedar Nath Natarajan
- DTU Bioengineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Vibhor Kumar
- Department for Computational Biology, IIIT Delhi 110020, India;
| |
Collapse
|
16
|
Baghel VS, Shinde S, Sinha V, Dixit V, Tiwari AK, Saxena S, Vishvakarma NK, Shukla D, Bhatt P. Inhibitors targeting epigenetic modifications in cancer. TRANSCRIPTION AND TRANSLATION IN HEALTH AND DISEASE 2023:287-324. [DOI: 10.1016/b978-0-323-99521-4.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Aryal S, Zhang Y, Wren S, Li C, Lu R. Molecular regulators of HOXA9 in acute myeloid leukemia. FEBS J 2023; 290:321-339. [PMID: 34743404 DOI: 10.1111/febs.16268] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Dysregulation of the oncogenic transcription factor HOXA9 is a prominent feature for most aggressive acute myeloid leukemia cases and a strong indicator of poor prognosis in patients. Leukemia subtypes with hallmark overexpression of HOXA9 include those carrying MLL gene rearrangements, NPM1c mutations, and other genetic alternations. A growing body of evidence indicates that HOXA9 dysregulation is both sufficient and necessary for leukemic transformation. The HOXA9 mRNA and protein regulation includes multilayered controls by transcription factors (such as CDX2/4 and USF2/1), epigenetic factors (such as MLL-menin-LEDGF, DOT1L, ENL, HBO1, NPM1c-XPO1, and polycomb proteins), microRNAs (such as miR-126 and miR-196b), long noncoding RNAs (such as HOTTIP), three-dimensional chromatin interactions, and post-translational protein modifications. Recently, insights into the dynamic regulation of HOXA9 have led to an advanced understanding of the HOXA9 regulome and provided new cancer therapeutic opportunities, including developing inhibitors targeting DOT1L, menin, and ENL proteins. This review summarizes recent advances in understanding the molecular mechanisms controlling HOXA9 regulation and the pharmacological approaches that target HOXA9 regulators to treat HOXA9-driven acute myeloid leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Yang Zhang
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Wren
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Chunliang Li
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rui Lu
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
18
|
Bioinformatic Analyses of Broad H3K79me2 Domains in Different Leukemia Cell Line Data Sets. Cells 2022; 11:cells11182830. [PMID: 36139405 PMCID: PMC9496709 DOI: 10.3390/cells11182830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
A subset of expressed genes is associated with a broad H3K4me3 (histone H3 trimethylated at lysine 4) domain that extends throughout the gene body. Genes marked in this way in normal cells are involved in cell-identity and tumor-suppressor activities, whereas in cancer cells, genes driving the cancer phenotype (oncogenes) have this feature. Other histone modifications associated with expressed genes that display a broad domain have been less studied. Here, we identified genes with the broadest H3K79me2 (histone H3 dimethylated at lysine 79) domain in human leukemic cell lines representing different forms of leukemia. Taking a bioinformatic approach, we provide evidence that genes with the broadest H3K79me2 domain have known roles in leukemia (e.g., JMJD1C). In the mixed-lineage leukemia cell line MOLM-13, the HOXA9 gene is in a 100 kb broad H3K79me2 domain with other HOXA protein-coding and oncogenic long non-coding RNA genes. The genes in this domain contribute to leukemia. This broad H3K79me2 domain has an unstable chromatin structure, as was evident by enhanced chromatin accessibility throughout. Together, we provide evidence that identification of genes with the broadest H3K79me2 domain will aid in generating a panel of genes in the diagnosis and therapeutic treatment of leukemia in the future.
Collapse
|
19
|
Reynisdottir T, Anderson KJ, Boukas L, Bjornsson HT. Missense variants causing Wiedemann-Steiner syndrome preferentially occur in the KMT2A-CXXC domain and are accurately classified using AlphaFold2. PLoS Genet 2022; 18:e1010278. [PMID: 35727845 PMCID: PMC9249231 DOI: 10.1371/journal.pgen.1010278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/01/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Wiedemann-Steiner syndrome (WDSTS) is a neurodevelopmental disorder caused by de novo variants in KMT2A, which encodes a multi-domain histone methyltransferase. To gain insight into the currently unknown pathogenesis of WDSTS, we examined the spatial distribution of likely WDSTS-causing variants across the 15 different domains of KMT2A. Compared to variants in healthy controls, WDSTS variants exhibit a 61.9-fold overrepresentation within the CXXC domain–which mediates binding to unmethylated CpGs–suggesting a major role for this domain in mediating the phenotype. In contrast, we find no significant overrepresentation within the catalytic SET domain. Corroborating these results, we find that hippocampal neurons from Kmt2a-deficient mice demonstrate disrupted histone methylation (H3K4me1 and H3K4me3) preferentially at CpG-rich regions, but this has no systematic impact on gene expression. Motivated by these results, we combine accurate prediction of the CXXC domain structure by AlphaFold2 with prior biological knowledge to develop a classification scheme for missense variants in the CXXC domain. Our classifier achieved 92.6% positive and 92.9% negative predictive value on a hold-out test set. This classification performance enabled us to subsequently perform an in silico saturation mutagenesis and classify a total of 445 variants according to their functional effects. Our results yield a novel insight into the mechanistic basis of WDSTS and provide an example of how AlphaFold2 can contribute to the in silico characterization of variant effects with very high accuracy, suggesting a paradigm potentially applicable to many other Mendelian disorders. Wiedemann-Steiner syndrome (WDSTS) is a neurodevelopmental pediatric disorder caused by the genetic disruption of the histone methyltransferase KMT2A. Since KMT2A has many different domains that perform different functions, we reasoned that by identifying the domains most enriched for WDSTS-causing genetic variants we would gain insights into the incompletely understood molecular pathogenesis of WDSTS. We discovered that the CXXC domain—which binds unmethylated CpGs—shows by far the greatest enrichment, suggesting that loss of the CpG-binding ability of KMT2A plays a central role in WDSTS. Next, to understand specific rules underlying the genetic disruption of the CXXC domain, we combined prior knowledge about the function/structure of the domain with 3D structure prediction by AlphaFold2 to develop an effect classifier for CXXC missense variants. We found that this classifier exhibits accurate performance, and we therefore applied it to provide classifications for any such variant that can possibly arise, in order to aid in the interpretation of such variants in the clinic. Our work provides novel insights into WDSTS and suggests a strategy for missense variant classification that can potentially be applied to many other pediatric genetic disorders.
Collapse
Affiliation(s)
- Tinna Reynisdottir
- Laboratory of Translational Medicine, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kimberley Jade Anderson
- Laboratory of Translational Medicine, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Leandros Boukas
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (LB); (HTB)
| | - Hans Tomas Bjornsson
- Laboratory of Translational Medicine, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
- * E-mail: (LB); (HTB)
| |
Collapse
|
20
|
High-Risk Acute Myeloid Leukemia: A Pediatric Prospective. Biomedicines 2022; 10:biomedicines10061405. [PMID: 35740427 PMCID: PMC9220202 DOI: 10.3390/biomedicines10061405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric acute myeloid leukemia is a clonal disorder characterized by malignant transformation of the hematopoietic stem cell. The incidence and the outcome remain inferior when compared to pediatric ALL, although prognosis has improved in the last decades, with 80% overall survival rate reported in some studies. The standard therapeutic approach is a combined cytarabine and anthracycline-based regimen followed by consolidation with allogeneic stem cell transplantation (allo-SCT) for high-risk AML and allo-SCT for non-high-risk patients only in second complete remission after relapse. In the last decade, several drugs have been used in clinical trials to improve outcomes in pediatric AML treatment.
Collapse
|
21
|
Kim T, Jeong K, Kim E, Yoon K, Choi J, Park JH, Kim JH, Kim HS, Youn HD, Cho EJ. Menin Enhances Androgen Receptor-Independent Proliferation and Migration of Prostate Cancer Cells. Mol Cells 2022; 45:202-215. [PMID: 35014621 PMCID: PMC9001152 DOI: 10.14348/molcells.2021.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022] Open
Abstract
The androgen receptor (AR) is an important therapeutic target for treating prostate cancer (PCa). Moreover, there is an increasing need for understanding the AR-independent progression of tumor cells such as neuroendocrine prostate cancer (NEPC). Menin, which is encoded by multiple endocrine neoplasia type 1 (MEN1), serves as a direct link between AR and the mixed-lineage leukemia (MLL) complex in PCa development by activating AR target genes through histone H3 lysine 4 methylation. Although menin is a critical component of AR signaling, its tumorigenic role in AR-independent PCa cells remains unknown. Here, we compared the role of menin in AR-positive and AR-negative PCa cells via RNAi-mediated or pharmacological inhibition of menin. We demonstrated that menin was involved in tumor cell growth and metastasis in PCa cells with low or deficient levels of AR. The inhibition of menin significantly diminished the growth of PCa cells and induced apoptosis, regardless of the presence of AR. Additionally, transcriptome analysis showed that the expression of many metastasis-associated genes was perturbed by menin inhibition in AR-negative DU145 cells. Furthermore, wound-healing assay results showed that menin promoted cell migration in AR-independent cellular contexts. Overall, these findings suggest a critical function of menin in tumorigenesis and provide a rationale for drug development against menin toward targeting high-risk metastatic PCa, especially those independent of AR.
Collapse
Affiliation(s)
- Taewan Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Kwanyoung Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Eunji Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Kwanghyun Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jinmi Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Jae-Hwan Kim
- NineBiopharm, Co., Ltd., Cheongju 28161, Korea
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eun-Jung Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
22
|
An Orally Bioavailable and Highly Efficacious Inhibitor of CDK9/FLT3 for the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:cancers14051113. [PMID: 35267421 PMCID: PMC8909834 DOI: 10.3390/cancers14051113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in FMS-like tyrosine kinase 3 (FLT3) occur in approximately one-third of AML patients and are associated with a particularly poor prognosis. The most common mutation, FLT3-ITD, is a self-activating internal tandem duplication (ITD) in the FLT3 juxtamembrane domain. Many FLT3 inhibitors have shown encouraging results in clinical trials, but the rapid emergence of resistance has severely limited sustainable efficacy. Co-targeting of CDK9 and FLT3 is a promising two-pronged strategy to overcome resistance as the former plays a role in the transcription of cancer cell-survival genes. Most prominently, MCL-1 is known to be associated with AML tumorigenesis and drug resistance and can be down-regulated by CDK9 inhibition. We have developed CDDD11-8 as a potent CDK9 inhibitor co-targeting FLT3-ITD with Ki values of 8 and 13 nM, respectively. The kinome selectivity has been confirmed when the compound was tested in a panel of 369 human kinases. CDDD11-8 displayed antiproliferative activity against leukemia cell lines, and particularly potent effects were observed against MV4-11 and MOLM-13 cells, which are known to harbor the FLT3-ITD mutation and mixed lineage leukemia (MLL) fusion proteins. The mode of action was consistent with inhibition of CDK9 and FLT3-ITD. Most importantly, CDDD11-8 caused a robust tumor growth inhibition by oral administration in animal xenografts. At 125 mg/kg, CDDD11-8 induced tumor regression, and this was translated to an improved survival of animals. The study demonstrates the potential of CDDD11-8 towards the future development of a novel AML treatment.
Collapse
|
23
|
Deshpande N, Jordan R, Henderson Pozzi M, Bryk M. Histone 3 lysine 4 monomethylation supports activation of transcription in S. cerevisiae during nutrient stress. Curr Genet 2022; 68:181-194. [PMID: 35041077 PMCID: PMC8976815 DOI: 10.1007/s00294-022-01226-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
Mono-methylation of the fourth lysine on the N-terminal tail of histone H3 was found to support the induction of RNA polymerase II transcription in S. cerevisiae during nutrient stress. In S. cerevisiae, the mono-, di- and tri-methylation of lysine 4 on histone H3 (H3K4) is catalyzed by the protein methyltransferase, Set1. The three distinct methyl marks on H3K4 act in discrete ways to regulate transcription. Nucleosomes enriched with tri-methylated H3K4 are usually associated with active transcription whereas di-methylated H3K4 is associated with gene repression. Mono-methylated H3K4 has been shown to repress gene expression in S. cerevisiae and is detected at enhancers and promoters in eukaryotes. S. cerevisiae set1Δ mutants unable to methylate H3K4 exhibit growth defects during histidine starvation. The growth defects are rescued by either a wild-type allele of SET1 or partial-function alleles of set1, including a mutant that predominantly generates H3K4me1 and not H3K4me3. Rescue of the growth defect is associated with induction of the HIS3 gene. Growth defects observed when set1Δ cultures were starved for isoleucine and valine were also rescued by wild-type SET1 or partial-function set1 alleles. The results show that H3K4me1, in the absence of H3K4me3, supports transcription of the HIS3 gene and expression of one or more of the genes required for biosynthesis of isoleucine and valine during nutrient stress. Set1-like methyltransferases are evolutionarily conserved, and research has linked their functions to developmental gene regulation and several cancers in higher eukaryotes. Identification of mechanisms of H3K4me1-mediated activation of transcription in budding yeast will provide insight into gene regulation in all eukaryotes.
Collapse
Affiliation(s)
- Neha Deshpande
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Rachel Jordan
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
- iBio, 8800 HSC Blvd, Bryan, TX, 77807, USA
| | - Michelle Henderson Pozzi
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | - Mary Bryk
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
24
|
Molecular mechanisms in governing genomic stability and tumor suppression by the SETD2 H3K36 methyltransferase. Int J Biochem Cell Biol 2022; 144:106155. [PMID: 34990836 DOI: 10.1016/j.biocel.2021.106155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 01/15/2023]
Abstract
Epigenetic dysregulation is an important contributor to carcinogenesis. This is not surprising, as chromatin-genomic DNA organized around structural histone scaffolding-serves as the template on which occurs essential nuclear processes, such as transcription, DNA replication and DNA repair. Histone H3 lysine 36 (H3K36) methyltransferases, such as the SET-domain 2 protein (SETD2), have emerged as critical tumor suppressors. Previous work on mammalian SETD2 and its counterpart in model organisms, Set2, has highlighted the role of this protein in governing genomic stability through transcriptional elongation and splicing, as well as in DNA damage response processes and cell cycle progression. A compendium of SETD2 mutations have been documented, garnered from sequenced cancer patient genome data, and these findings underscore the cancer-driving properties of SETD2 loss-of-function. In this review, we consolidate the molecular mechanisms regulated by SETD2/Set2 and discuss evidence of its dysregulation in tumorigenesis. Insight into the genetic interactions that exist between SETD2 and various canonical intracellular signaling pathways has not only empowered pharmacological intervention by taking advantage of synthetic lethality but underscores SETD2 as a druggable target for precision cancer therapy.
Collapse
|
25
|
Xu H, Wen Y, Jin R, Chen H. Epigenetic modifications and targeted therapy in pediatric acute myeloid leukemia. Front Pediatr 2022; 10:975819. [PMID: 36147798 PMCID: PMC9485478 DOI: 10.3389/fped.2022.975819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy resulting from the genetic alterations and epigenetic dysregulations of the hematopoietic progenitor cells. One-third of children with AML remain at risk of relapse even though outcomes have improved in recent decades. Epigenetic dysregulations have been identified to play a significant role during myeloid leukemogenesis. In contrast to genetic changes, epigenetic modifications are typically reversible, opening the door to the development of epigenetic targeted therapy. In this review, we provide an overview of the landscape of epigenetic alterations and describe the current progress that has been made in epigenetic targeted therapy, and pay close attention to the potential value of epigenetic abnormalities in the precision and combinational therapy of pediatric AML.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxi Wen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Tran TM, Philipp J, Bassi JS, Nibber N, Draper JM, Lin TL, Palanichamy JK, Jaiswal AK, Silva O, Paing M, King J, Katzman S, Sanford JR, Rao DS. The RNA-binding protein IGF2BP3 is critical for MLL-AF4-mediated leukemogenesis. Leukemia 2022; 36:68-79. [PMID: 34321607 PMCID: PMC8727287 DOI: 10.1038/s41375-021-01346-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Despite recent advances in therapeutic approaches, patients with MLL-rearranged leukemia still have poor outcomes. Here, we find that the RNA-binding protein IGF2BP3, which is overexpressed in MLL-translocated leukemia, strongly amplifies MLL-Af4-mediated leukemogenesis. Deletion of Igf2bp3 significantly increases the survival of mice with MLL-Af4-driven leukemia and greatly attenuates disease, with a minimal impact on baseline hematopoiesis. At the cellular level, MLL-Af4 leukemia-initiating cells require Igf2bp3 for their function in leukemogenesis. At the molecular level, IGF2BP3 regulates a complex posttranscriptional operon governing leukemia cell survival and proliferation. IGF2BP3-targeted mRNA transcripts include important MLL-Af4-induced genes, such as those in the Hoxa locus, and the Ras signaling pathway. Targeting of transcripts by IGF2BP3 regulates both steady-state mRNA levels and, unexpectedly, pre-mRNA splicing. Together, our findings show that IGF2BP3 represents an attractive therapeutic target in this disease, providing important insights into mechanisms of posttranscriptional regulation in leukemia.
Collapse
Affiliation(s)
- Tiffany M Tran
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, UCLA, Los Angeles, CA, 90095, USA
| | - Julia Philipp
- Department of Molecular, Cellular and Developmental Biology, UCSC, Santa Cruz, CA, 95064, USA
| | - Jaspal Singh Bassi
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Neha Nibber
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jolene M Draper
- Department of Molecular, Cellular and Developmental Biology, UCSC, Santa Cruz, CA, 95064, USA
| | - Tasha L Lin
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Interdepartmental Doctoral Program, UCLA, Los Angeles, CA, 90095, USA
| | - Jayanth Kumar Palanichamy
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Kumar Jaiswal
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Oscar Silva
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - May Paing
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jennifer King
- Division of Rheumatology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Sol Katzman
- UCSC Genomics Institute, Santa Cruz, CA, 95064, USA
| | - Jeremy R Sanford
- Department of Molecular, Cellular and Developmental Biology, UCSC, Santa Cruz, CA, 95064, USA
| | - Dinesh S Rao
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center (JCCC), UCLA, Los Angeles, CA, 90095, USA.
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
27
|
Identification of a c-MYB-directed therapeutic for acute myeloid leukemia. Leukemia 2022; 36:1541-1549. [PMID: 35368048 PMCID: PMC9162920 DOI: 10.1038/s41375-022-01554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
A significant proportion of patients suffering from acute myeloid leukemia (AML) cannot be cured by conventional chemotherapy, relapsed disease being a common problem. Molecular targeting of essential oncogenic mediators is an attractive approach to improving outcomes for this disease. The hematopoietic transcription factor c-MYB has been revealed as a central component of complexes maintaining aberrant gene expression programs in AML. We have previously screened the Connectivity Map database to identify mebendazole as an anti-AML therapeutic targeting c-MYB. In the present study we demonstrate that another hit from this screen, the steroidal lactone withaferin A (WFA), induces rapid ablation of c-MYB protein and consequent inhibition of c-MYB target gene expression, loss of leukemia cell viability, reduced colony formation and impaired disease progression. Although WFA has been reported to have pleiotropic anti-cancer effects, we demonstrate that its anti-AML activity depends on c-MYB modulation and can be partially reversed by a stabilized c-MYB mutant. c-MYB ablation results from disrupted HSP/HSC70 chaperone protein homeostasis in leukemia cells following induction of proteotoxicity and the unfolded protein response by WFA. The widespread use of WFA in traditional medicines throughout the world indicates that it represents a promising candidate for repurposing into AML therapy.
Collapse
|
28
|
MLL1 is required for maintenance of intestinal stem cells. PLoS Genet 2021; 17:e1009250. [PMID: 34860830 PMCID: PMC8641872 DOI: 10.1371/journal.pgen.1009250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic mechanisms are gatekeepers for the gene expression patterns that establish and maintain cellular identity in mammalian development, stem cells and adult homeostasis. Amongst many epigenetic marks, methylation of histone 3 lysine 4 (H3K4) is one of the most widely conserved and occupies a central position in gene expression. Mixed lineage leukemia 1 (MLL1/KMT2A) is the founding mammalian H3K4 methyltransferase. It was discovered as the causative mutation in early onset leukemia and subsequently found to be required for the establishment of definitive hematopoiesis and the maintenance of adult hematopoietic stem cells. Despite wide expression, the roles of MLL1 in non-hematopoietic tissues remain largely unexplored. To bypass hematopoietic lethality, we used bone marrow transplantation and conditional mutagenesis to discover that the most overt phenotype in adult Mll1-mutant mice is intestinal failure. MLL1 is expressed in intestinal stem cells (ISCs) and transit amplifying (TA) cells but not in the villus. Loss of MLL1 is accompanied by loss of ISCs and a differentiation bias towards the secretory lineage with increased numbers and enlargement of goblet cells. Expression profiling of sorted ISCs revealed that MLL1 is required to promote expression of several definitive intestinal transcription factors including Pitx1, Pitx2, Foxa1, Gata4, Zfp503 and Onecut2, as well as the H3K27me3 binder, Bahcc1. These results were recapitulated using conditional mutagenesis in intestinal organoids. The stem cell niche in the crypt includes ISCs in close association with Paneth cells. Loss of MLL1 from ISCs promoted transcriptional changes in Paneth cells involving metabolic and stress responses. Here we add ISCs to the MLL1 repertoire and observe that all known functions of MLL1 relate to the properties of somatic stem cells, thereby highlighting the suggestion that MLL1 is a master somatic stem cell regulator.
Collapse
|
29
|
Molina B, Chavez J, Grainger S. Zebrafish models of acute leukemias: Current models and future directions. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e400. [PMID: 33340278 PMCID: PMC8213871 DOI: 10.1002/wdev.400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemias (AML) and acute lymphoid leukemias (ALL) are heterogenous diseases encompassing a wide array of genetic mutations with both loss and gain of function phenotypes. Ultimately, these both result in the clonal overgrowth of blast cells in the bone marrow, peripheral blood, and other tissues. As a consequence of this, normal hematopoietic stem cell function is severely hampered. Technologies allowing for the early detection of genetic alterations and understanding of these varied molecular pathologies have helped to advance our treatment regimens toward personalized targeted therapies. In spite of this, both AML and ALL continue to be a major cause of morbidity and mortality worldwide, in part because molecular therapies for the plethora of genetic abnormalities have not been developed. This underscores the current need for better model systems for therapy development. This article reviews the current zebrafish models of AML and ALL and discusses how novel gene editing tools can be implemented to generate better models of acute leukemias. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease Technologies > Perturbing Genes and Generating Modified Animals.
Collapse
Affiliation(s)
- Brandon Molina
- Biology Department, San Diego State University, San Diego, California, USA
| | - Jasmine Chavez
- Biology Department, San Diego State University, San Diego, California, USA
| | - Stephanie Grainger
- Biology Department, San Diego State University, San Diego, California, USA
| |
Collapse
|
30
|
Aljazi MB, Gao Y, Wu Y, Mias GI, He J. Histone H3K36me2-Specific Methyltransferase ASH1L Promotes MLL-AF9-Induced Leukemogenesis. Front Oncol 2021; 11:754093. [PMID: 34692539 PMCID: PMC8534482 DOI: 10.3389/fonc.2021.754093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/17/2021] [Indexed: 01/19/2023] Open
Abstract
ASH1L and MLL1 are two histone methyltransferases that facilitate transcriptional activation during normal development. However, the roles of ASH1L and its enzymatic activity in the development of MLL-rearranged leukemias are not fully elucidated in Ash1L gene knockout animal models. In this study, we used an Ash1L conditional knockout mouse model to show that loss of ASH1L in hematopoietic progenitor cells impaired the initiation of MLL-AF9-induced leukemic transformation in vitro. Furthermore, genetic deletion of ASH1L in the MLL-AF9-transformed cells impaired the maintenance of leukemic cells in vitro and largely blocked the leukemia progression in vivo. Importantly, the loss of ASH1L function in the Ash1L-deleted cells could be rescued by wild-type but not the catalytic-dead mutant ASH1L, suggesting the enzymatic activity of ASH1L was required for its function in promoting MLL-AF9-induced leukemic transformation. At the molecular level, ASH1L enhanced the MLL-AF9 target gene expression by directly binding to the gene promoters and modifying the local histone H3K36me2 levels. Thus, our study revealed the critical functions of ASH1L in promoting the MLL-AF9-induced leukemogenesis, which provides a molecular basis for targeting ASH1L and its enzymatic activity to treat MLL-AF9-induced leukemias.
Collapse
Affiliation(s)
- Mohammad B Aljazi
- Department of Biochemistry and Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, United States
| | - Yuen Gao
- Department of Biochemistry and Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, United States
| | - Yan Wu
- Department of Biochemistry and Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, United States
| | - George I Mias
- Department of Biochemistry and Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Jin He
- Department of Biochemistry and Molecular Biology, College of Nature Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
31
|
Blasi F, Bruckmann C. MEIS1 in Hematopoiesis and Cancer. How MEIS1-PBX Interaction Can Be Used in Therapy. J Dev Biol 2021; 9:jdb9040044. [PMID: 34698191 PMCID: PMC8544432 DOI: 10.3390/jdb9040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Recently MEIS1 emerged as a major determinant of the MLL-r leukemic phenotype. The latest and most efficient drugs effectively decrease the levels of MEIS1 in cancer cells. Together with an overview of the latest drugs developed to target MEIS1 in MLL-r leukemia, we review, in detail, the role of MEIS1 in embryonic and adult hematopoiesis and suggest how a more profound knowledge of MEIS1 biochemistry can be used to design potent and effective drugs against MLL-r leukemia. In addition, we present data showing that the interaction between MEIS1 and PBX1 can be blocked efficiently and might represent a new avenue in anti-MLL-r and anti-leukemic therapy.
Collapse
|
32
|
Sasca D, Guezguez B, Kühn MWM. Next generation epigenetic modulators to target myeloid neoplasms. Curr Opin Hematol 2021; 28:356-363. [PMID: 34267079 DOI: 10.1097/moh.0000000000000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Comprehensive sequencing studies aimed at determining the genetic landscape of myeloid neoplasms have identified epigenetic regulators to be among the most commonly mutated genes. Detailed studies have also revealed a number of epigenetic vulnerabilities. The purpose of this review is to outline these vulnerabilities and to discuss the new generation of drugs that exploit them. RECENT FINDINGS In addition to deoxyribonucleic acid-methylation, novel epigenetic dependencies have recently been discovered in various myeloid neoplasms and many of them can be targeted pharmacologically. These include not only chromatin writers, readers, and erasers but also chromatin movers that shift nucleosomes to allow access for transcription. Inhibitors of protein-protein interactions represent a novel promising class of drugs that allow disassembly of oncogenic multiprotein complexes. SUMMARY An improved understanding of disease-specific epigenetic vulnerabilities has led to the development of second-generation mechanism-based epigenetic drugs against myeloid neoplasms. Many of these drugs have been introduced into clinical trials and synergistic drug combination regimens have been shown to enhance efficacy and potentially prevent drug resistance.
Collapse
Affiliation(s)
- Daniel Sasca
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz
| | - Borhane Guezguez
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz
- German Cancer Research Center (DKFZ), Heidelberg
- German Cancer Consortium (DKTK), Mainz, Germany
| | - Michael W M Kühn
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz
| |
Collapse
|
33
|
Role of the HOXA cluster in HSC emergence and blood cancer. Biochem Soc Trans 2021; 49:1817-1827. [PMID: 34374409 DOI: 10.1042/bst20210234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
Hematopoiesis, the process of blood formation, is controlled by a complex developmental program that involves intrinsic and extrinsic regulators. Blood formation is critical to normal embryonic development and during embryogenesis distinct waves of hematopoiesis have been defined that represent the emergence of hematopoietic stem or progenitor cells. The Class I family of homeobox (HOX) genes are also critical for normal embryonic development, whereby mutations are associated with malformations and deformity. Recently, members of the HOXA cluster (comprising 11 genes and non-coding RNA elements) have been associated with the emergence and maintenance of long-term repopulating HSCs. Previous studies identified a gradient of HOXA expression from high in HSCs to low in circulating peripheral cells, indicating their importance in maintaining blood cell numbers and differentiation state. Indeed, dysregulation of HOXA genes either directly or by genetic lesions of upstream regulators correlates with a malignant phenotype. This review discusses the role of the HOXA cluster in both HSC emergence and blood cancer formation highlighting the need for further research to identify specific roles of these master regulators in normal and malignant hematopoiesis.
Collapse
|
34
|
Smith AM, LaValle TA, Shinawi M, Ramakrishnan SM, Abel HJ, Hill CA, Kirkland NM, Rettig MP, Helton NM, Heath SE, Ferraro F, Chen DY, Adak S, Semenkovich CF, Christian DL, Martin JR, Gabel HW, Miller CA, Ley TJ. Functional and epigenetic phenotypes of humans and mice with DNMT3A Overgrowth Syndrome. Nat Commun 2021; 12:4549. [PMID: 34315901 PMCID: PMC8316576 DOI: 10.1038/s41467-021-24800-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023] Open
Abstract
Germline pathogenic variants in DNMT3A were recently described in patients with overgrowth, obesity, behavioral, and learning difficulties (DNMT3A Overgrowth Syndrome/DOS). Somatic mutations in the DNMT3A gene are also the most common cause of clonal hematopoiesis, and can initiate acute myeloid leukemia (AML). Using whole genome bisulfite sequencing, we studied DNA methylation in peripheral blood cells of 11 DOS patients and found a focal, canonical hypomethylation phenotype, which is most severe with the dominant negative DNMT3AR882H mutation. A germline mouse model expressing the homologous Dnmt3aR878H mutation phenocopies most aspects of the human DOS syndrome, including the methylation phenotype and an increased incidence of spontaneous hematopoietic malignancies, suggesting that all aspects of this syndrome are caused by this mutation.
Collapse
Affiliation(s)
- Amanda M Smith
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Taylor A LaValle
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sai M Ramakrishnan
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Haley J Abel
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cheryl A Hill
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO, USA
| | - Nicole M Kirkland
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO, USA
| | - Michael P Rettig
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nichole M Helton
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharon E Heath
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca Ferraro
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - David Y Chen
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Diana L Christian
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna R Martin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Miller
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy J Ley
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
35
|
Zhang M, Aguilar A, Xu S, Huang L, Chinnaswamy K, Sleger T, Wang B, Gross S, Nicolay BN, Ronseaux S, Harvey K, Wang Y, McEachern D, Kirchhoff PD, Liu Z, Stuckey J, Tron AE, Liu T, Wang S. Discovery of M-1121 as an Orally Active Covalent Inhibitor of Menin-MLL Interaction Capable of Achieving Complete and Long-Lasting Tumor Regression. J Med Chem 2021; 64:10333-10349. [PMID: 34196551 DOI: 10.1021/acs.jmedchem.1c00789] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeting the menin-MLL protein-protein interaction is being pursued as a new therapeutic strategy for the treatment of acute leukemia carrying MLL-rearrangements (MLLr leukemia). Herein, we report M-1121, a covalent and orally active inhibitor of the menin-MLL interaction capable of achieving complete and persistent tumor regression. M-1121 establishes covalent interactions with Cysteine 329 located in the MLL binding pocket of menin and potently inhibits growth of acute leukemia cell lines carrying MLL translocations with no activity in cell lines with wild-type MLL. Consistent with the mechanism of action, M-1121 drives dose-dependent down-regulation of HOXA9 and MEIS1 gene expression in the MLL-rearranged MV4;11 leukemia cell line. M-1121 is orally bioavailable and shows potent antitumor activity in vivo with tumor regressions observed at tolerated doses in the MV4;11 subcutaneous and disseminated models of MLL-rearranged leukemia. Together, our findings support development of an orally active covalent menin inhibitor as a new therapy for MLLr leukemia.
Collapse
Affiliation(s)
- Meng Zhang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Angelo Aguilar
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shilin Xu
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Liyue Huang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Taryn Sleger
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Bo Wang
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Stefan Gross
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Brandon N Nicolay
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Sebastien Ronseaux
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Kaitlin Harvey
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul D Kirchhoff
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhaomin Liu
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adriana E Tron
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Tao Liu
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Medicinal Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
36
|
Gao K, Shaabani S, Xu R, Zarganes-Tzitzikas T, Gao L, Ahmadianmoghaddam M, Groves MR, Dömling A. Nanoscale, automated, high throughput synthesis and screening for the accelerated discovery of protein modifiers. RSC Med Chem 2021; 12:809-818. [PMID: 34124680 PMCID: PMC8152715 DOI: 10.1039/d1md00087j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/14/2021] [Indexed: 11/26/2022] Open
Abstract
Hit finding in early drug discovery is often based on high throughput screening (HTS) of existing and historical compound libraries, which can limit chemical diversity, is time-consuming, very costly, and environmentally not sustainable. On-the-fly compound synthesis and in situ screening in a highly miniaturized and automated format has the potential to greatly reduce the medicinal chemistry environmental footprint. Here, we used acoustic dispensing technology to synthesize a library in a 1536 well format based on the Groebcke-Blackburn-Bienaymé reaction (GBB-3CR) on a nanomole scale. The unpurified library was screened by differential scanning fluorimetry (DSF) and cross-validated using microscale thermophoresis (MST) against the oncogenic protein-protein interaction menin-MLL. Several GBB reaction products were found as μM menin binder, and the structural basis of the interactions with menin was elucidated by co-crystal structure analysis. Miniaturization and automation of the organic synthesis and screening process can lead to an acceleration in the early drug discovery process, which is an alternative to classical HTS and a step towards the paradigm of continuous manufacturing.
Collapse
Affiliation(s)
- Kai Gao
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Shabnam Shaabani
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Ruixue Xu
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Tryfon Zarganes-Tzitzikas
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Li Gao
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Maryam Ahmadianmoghaddam
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Matthew R Groves
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| | - Alexander Dömling
- Pharmacy Department, Drug Design group, University of Groningen A. Deusinglaan 1 9700 AD Groningen The Netherlands
| |
Collapse
|
37
|
Recurrent genetic fusions redefine MLL germ line acute lymphoblastic leukemia in infants. Blood 2021; 137:1980-1984. [PMID: 33512459 DOI: 10.1182/blood.2020009032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/22/2020] [Indexed: 11/20/2022] Open
|
38
|
Amin S, Alam MM, Akhter M, Najmi AK, Siddiqui N, Husain A, Shaquiquzzaman M. A review on synthetic procedures and applications of phosphorus oxychloride (POCl 3) in the last biennial period (2018–19). PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1831499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaista Amin
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - A. K. Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nadeem Siddiqui
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asif Husain
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
39
|
Calissi G, Lam EWF, Link W. Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov 2021; 20:21-38. [PMID: 33173189 DOI: 10.1038/s41573-020-0088-2] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
FOXO proteins are transcription factors that are involved in numerous physiological processes and in various pathological conditions, including cardiovascular disease, cancer, diabetes and chronic neurological diseases. For example, FOXO proteins are context-dependent tumour suppressors that are frequently inactivated in human cancers, and FOXO3 is the second most replicated gene associated with extreme human longevity. Therefore, pharmacological manipulation of FOXO proteins is a promising approach to developing therapeutics for cancer and for healthy ageing. In this Review, we overview the role of FOXO proteins in health and disease and discuss the pharmacological approaches to modulate FOXO function.
Collapse
Affiliation(s)
- Giampaolo Calissi
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
40
|
Milan T, Celton M, Lagacé K, Roques É, Safa-Tahar-Henni S, Bresson E, Bergeron A, Hebert J, Meshinchi S, Cellot S, Barabé F, Wilhelm BT. Epigenetic changes in human model KMT2A leukemias highlight early events during leukemogenesis. Haematologica 2020; 107:86-99. [PMID: 33375773 PMCID: PMC8719083 DOI: 10.3324/haematol.2020.271619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 11/26/2022] Open
Abstract
Chromosomal translocations involving the KMT2A gene are among the most common genetic alterations found in pediatric acute myeloid leukemias although the molecular mechanisms that initiate the disease remain incompletely defined. To elucidate these initiating events we used a human model system of acute myeloid leukemia driven by the KMT2A-MLLT3 (KM3) fusion. More specifically, we investigated changes in DNA methylation, histone modifications, and chromatin accessibility at each stage of our model system and correlated these with expression changes. We observed the development of a pronounced hypomethyl - ation phenotype in the early stages of leukemic transformation after KM3 addition along with loss of expression of stem-cell-associated genes and skewed expression of other genes, such as S100A8/9, implicated in leukemogenesis. In addition, early increases in the expression of the lysine demethylase KDM4B was functionally linked to these expression changes as well as other key transcription factors. Remarkably, our ATAC-sequencing data showed that there were relatively few leukemia-specific changes and that the vast majority corresponded to open chromatin regions and transcription factor clusters previously observed in other cell types. Integration of the gene expression and epigenetic changes revealed that the adenylate cyclase gene ADCY9 is an essential gene in KM3-acute myeloid leukemia, and suggested the potential for autocrine signaling through the chemokine receptor CCR1 and CCL23 ligand. Collectively, our results suggest that KM3 induces subtle changes in the epigenome while co-opting the normal transcriptional machinery to drive leukemogenesis.
Collapse
Affiliation(s)
- Thomas Milan
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Magalie Celton
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Karine Lagacé
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Élodie Roques
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Safia Safa-Tahar-Henni
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Eva Bresson
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada; CHU de Québec - Université Laval - Hôpital Enfant-Jésus; Québec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC
| | - Anne Bergeron
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada; CHU de Québec - Université Laval - Hôpital Enfant-Jésus; Québec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC
| | - Josée Hebert
- Division of Hematology-Oncology and Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sonia Cellot
- Department of pediatrics, division of Hematology, Ste-Justine Hospital, Montréal, QC
| | - Frédéric Barabé
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada; CHU de Québec - Université Laval - Hôpital Enfant-Jésus; Québec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC
| | - Brian T Wilhelm
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC.
| |
Collapse
|
41
|
Louzada-Neto O, Lopes BA, Brisson GD, Andrade FG, Cezar IS, Santos-Rebouças CB, Albano RM, Pombo-de-Oliveira MS, Rossini A. XRCC4 rs28360071 intronic variant is associated with increased risk for infant acute lymphoblastic leukemia with KMT2A rearrangements. Genet Mol Biol 2020; 43:e20200160. [PMID: 33270074 PMCID: PMC7734917 DOI: 10.1590/1678-4685-gmb-2020-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022] Open
Abstract
Early age acute leukemia (EAL) shows a high frequency of
KMT2A-rearrangements (KMT2A-r). Previous
investigations highlighted double-strand breaks arising from maternal exposure
to xenobiotics during pregnancy as a risk factor for EAL and
KMT2A-r. In this case-control study, we investigated the
relationship between EAL and genetic variants of the nonhomologous end-joining
(XRCC6 rs5751129, XRCC4 rs6869366 and
rs28360071), since they might affect DNA repair capacity, leading to
KMT2A-r and leukemogenesis. Samples from 577 individuals
(acute lymphoblastic leukemia-ALL, n=164; acute myeloid leukemia-AML, n=113;
controls, n=300) were genotyped. No significant association was found for
rs5751129 and rs6869366, whereas rs28360071 was associated with an increased
risk for ALL with KMT2A-r (IIxID: OR - Odds ratio 2.23, CI
1.17-4.25, p=0.014). Bone marrow samples from ALL patients
showed a higher expression of XRCC4 compared to AML patients
(p=0.025). Human Splicing
Finder 3.1 predicted that the deleted allele of rs28360071 is
potentially associated with the activation of a 5’ cryptic splice site in intron
3 of XRCC4. The sequencing of cDNA did not show any differences
on the splicing process for the rs28360071 genotypes. Our results suggest that
the deleted allele for rs28360071 increases the risk for ALL with
KMT2A-r, but not by modifying the XRCC4
expression levels or its structure.
Collapse
Affiliation(s)
- Orlando Louzada-Neto
- Universidade do Estado do Rio de Janeiro, Departamento de Bioquímica, Laboratório de Toxicologia e Biologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Bruno A Lopes
- Centro de Pesquisas, Instituto Nacional do Câncer, Programa de Hematologia-Oncologia Pediátrica, Rio de Janeiro, RJ, Brazil
| | - Gisele D Brisson
- Centro de Pesquisas, Instituto Nacional do Câncer, Programa de Hematologia-Oncologia Pediátrica, Rio de Janeiro, RJ, Brazil
| | - Francianne G Andrade
- Centro de Pesquisas, Instituto Nacional do Câncer, Programa de Hematologia-Oncologia Pediátrica, Rio de Janeiro, RJ, Brazil
| | - Ingrid S Cezar
- Centro de Pesquisas, Instituto Nacional do Câncer, Programa de Hematologia-Oncologia Pediátrica, Rio de Janeiro, RJ, Brazil
| | | | - Rodolpho M Albano
- Universidade do Estado do Rio de Janeiro, Departamento de Bioquímica, Laboratório de Toxicologia e Biologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Maria S Pombo-de-Oliveira
- Centro de Pesquisas, Instituto Nacional do Câncer, Programa de Hematologia-Oncologia Pediátrica, Rio de Janeiro, RJ, Brazil
| | - Ana Rossini
- Universidade do Estado do Rio de Janeiro, Departamento de Bioquímica, Laboratório de Toxicologia e Biologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
42
|
SUV39H1 regulates the progression of MLL-AF9-induced acute myeloid leukemia. Oncogene 2020; 39:7239-7252. [PMID: 33037410 PMCID: PMC7728597 DOI: 10.1038/s41388-020-01495-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/11/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Epigenetic regulations play crucial roles in leukemogenesis and leukemia progression. SUV39H1 is the dominant H3K9 methyltransferase in the hematopoietic system, and its expression declines with aging. However, the role of SUV39H1 via its-mediated repressive modification H3K9me3 in leukemogenesis/leukemia progression remains to be explored. We found that SUV39H1 was down-regulated in a variety of leukemias, including MLL-r AML, as compared with normal individuals. Decreased levels of Suv39h1 expression and genomic H3K9me3 occupancy were observed in LSCs from MLL-r-induced AML mouse models in comparison with that of hematopoietic stem/progenitor cells. Suv39h1 overexpression increased leukemia latency and decreased the frequency of LSCs in MLL-r AML mouse models, while Suv39h1 knockdown accelerated disease progression with increased number of LSCs. Increased Suv39h1 expression led to the inactivation of Hoxb13 and Six1, as well as reversion of Hoxa9/Meis1 downstream target genes, which in turn decelerated leukemia progression. Interestingly, Hoxb13 expression is up-regulated in MLL-AF9-induced AML cells, while knockdown of Hoxb13 in MLL-AF9 leukemic cells significantly prolonged the survival of leukemic mice with reduced LSC frequencies. Our data revealed that SUV39H1 functions as a tumor suppressor in MLL-AF9-induced AML progression. These findings provide the direct link of SUV39H1 to AML development and progression.
Collapse
|
43
|
Zhou D, Xu P, Zhou X, Diao Z, Ouyang J, Yan G, Chen B. MiR-181a enhances drug sensitivity of mixed lineage leukemia-rearranged acute myeloid leukemia by increasing poly(ADP-ribose) polymerase1 acetylation. Leuk Lymphoma 2020; 62:136-146. [PMID: 32996365 DOI: 10.1080/10428194.2020.1824067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chromosomal translocations and rearrangements involving Mixed Lineage Leukemia (MLL) gene is associated with poor prognosis in AML. Extensive epigenetic changes were found in this group of patients. In clinical study, we found miR-181a expression level was significantly lower in MLL-rearranged AML. As an important epi-miRNA, the role of miR-181a as an epigenetic regulator in leukemia has not been investigated before. In this study, we found miR-181a overexpression enhanced total protein acetylation in THP-1 cells, which harbor MLL-AF9 fusion gene, and protein Mass Spectrum identified poly(ADP-ribose) polymerase 1 (PARP1) was a major downstream target. Increased PARP1 acetylation was mediated by down-regulation of histone deacetylase Sirtuin1 (Sirt1). MiR-181a overexpression resulted in DNA trapping of PARP1, increased DNA double strand break formation and increased chemosensitivity of leukemia cells both in vitro and in vivo. This study indicates miR-181a-Sirt1-PARP1 acetylation pathway could be a promising target for this special group of AML.
Collapse
Affiliation(s)
- Di Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Peipei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xuan Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Zhenyu Diao
- Department of Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jian Ouyang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Guijun Yan
- Department of Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Bing Chen
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| |
Collapse
|
44
|
Klossowski S, Miao H, Kempinska K, Wu T, Purohit T, Kim E, Linhares BM, Chen D, Jih G, Perkey E, Huang H, He M, Wen B, Wang Y, Yu K, Lee SCW, Danet-Desnoyers G, Trotman W, Kandarpa M, Cotton A, Abdel-Wahab O, Lei H, Dou Y, Guzman M, Peterson L, Gruber T, Choi S, Sun D, Ren P, Li LS, Liu Y, Burrows F, Maillard I, Cierpicki T, Grembecka J. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. J Clin Invest 2020; 130:981-997. [PMID: 31855575 DOI: 10.1172/jci129126] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
The protein-protein interaction between menin and mixed lineage leukemia 1 (MLL1) plays a critical role in acute leukemias with translocations of the MLL1 gene or with mutations in the nucleophosmin 1 (NPM1) gene. As a step toward clinical translation of menin-MLL1 inhibitors, we report development of MI-3454, a highly potent and orally bioavailable inhibitor of the menin-MLL1 interaction. MI-3454 profoundly inhibited proliferation and induced differentiation in acute leukemia cells and primary patient samples with MLL1 translocations or NPM1 mutations. When applied as a single agent, MI-3454 induced complete remission or regression of leukemia in mouse models of MLL1-rearranged or NPM1-mutated leukemia, including patient-derived xenograft models, through downregulation of key genes involved in leukemogenesis. We also identified MEIS1 as a potential pharmacodynamic biomarker of treatment response with MI-3454 in leukemia, and demonstrated that this compound is well tolerated and did not impair normal hematopoiesis in mice. Overall, this study demonstrates, for the first time to our knowledge, profound activity of the menin-MLL1 inhibitor as a single agent in clinically relevant PDX models of leukemia. These data provide a strong rationale for clinical translation of MI-3454 or its analogs for leukemia patients with MLL1 rearrangements or NPM1 mutations.
Collapse
Affiliation(s)
- Szymon Klossowski
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Tao Wu
- Wellspring Biosciences, Inc., San Diego, California, USA
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - EunGi Kim
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Brian M Linhares
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dong Chen
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Huang Huang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Miao He
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Bo Wen
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Yi Wang
- Wellspring Biosciences, Inc., San Diego, California, USA
| | - Ke Yu
- Wellspring Biosciences, Inc., San Diego, California, USA
| | | | - Gwenn Danet-Desnoyers
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Winifred Trotman
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Malathi Kandarpa
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Hongwei Lei
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Luke Peterson
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tanja Gruber
- Saint Jude Children's Hospital, Memphis, Tennessee, USA
| | - Sarah Choi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Duxin Sun
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Pingda Ren
- Wellspring Biosciences, Inc., San Diego, California, USA.,Kura Oncology, Inc., San Diego, California, USA
| | - Lian-Sheng Li
- Wellspring Biosciences, Inc., San Diego, California, USA
| | - Yi Liu
- Wellspring Biosciences, Inc., San Diego, California, USA
| | | | - Ivan Maillard
- Life Sciences Institute and.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
Wong NHM, So CWE. Novel therapeutic strategies for MLL-rearranged leukemias. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194584. [PMID: 32534041 DOI: 10.1016/j.bbagrm.2020.194584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/18/2022]
Abstract
MLL rearrangement is one of the key drivers and generally regarded as an independent poor prognostic marker in acute leukemias. The standard of care for MLL-rearranged (MLL-r) leukemias has remained largely unchanged for the past 50 years despite unsatisfying clinical outcomes, so there is an urgent need for novel therapeutic strategies. An increasing body of evidence demonstrates that a vast number of epigenetic regulators are directly or indirectly involved in MLL-r leukemia, and they are responsible for supporting the aberrant gene expression program mediated by MLL-fusions. Unlike genetic mutations, epigenetic modifications can be reversed by pharmacologic targeting of the responsible epigenetic regulators. This leads to significant interest in developing epigenetic therapies for MLL-r leukemia. Intriguingly, many of the epigenetic enzymes also involve in DNA damage response (DDR), which can be potential targets for synthetic lethality-induced therapies. In this review, we will summarize some of the recent advances in the development of epigenetic and DDR therapeutics by targeting epigenetic regulators or protein complexes that mediate MLL-r leukemia gene expression program and key players in DDR that safeguard essential genome integrity. The rationale and molecular mechanisms underpinning the therapeutic effects will also be discussed with a focus on how these treatments can disrupt MLL-fusion mediated transcriptional programs and impair DDR, which may help overcome treatment resistance.
Collapse
Affiliation(s)
- Nok-Hei Mickey Wong
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Chi Wai Eric So
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK.
| |
Collapse
|
46
|
Abstract
Forkhead box O (FOXO) transcription factors regulate diverse biological processes, affecting development, metabolism, stem cell maintenance and longevity. They have also been increasingly recognised as tumour suppressors through their ability to regulate genes essential for cell proliferation, cell death, senescence, angiogenesis, cell migration and metastasis. Mechanistically, FOXO proteins serve as key connection points to allow diverse proliferative, nutrient and stress signals to converge and integrate with distinct gene networks to control cell fate, metabolism and cancer development. In consequence, deregulation of FOXO expression and function can promote genetic disorders, metabolic diseases, deregulated ageing and cancer. Metastasis is the process by which cancer cells spread from the primary tumour often via the bloodstream or the lymphatic system and is the major cause of cancer death. The regulation and deregulation of FOXO transcription factors occur predominantly at the post-transcriptional and post-translational levels mediated by regulatory non-coding RNAs, their interactions with other protein partners and co-factors and a combination of post-translational modifications (PTMs), including phosphorylation, acetylation, methylation and ubiquitination. This review discusses the role and regulation of FOXO proteins in tumour initiation and progression, with a particular emphasis on cancer metastasis. An understanding of how signalling networks integrate with the FOXO transcription factors to modulate their developmental, metabolic and tumour-suppressive functions in normal tissues and in cancer will offer a new perspective on tumorigenesis and metastasis, and open up therapeutic opportunities for malignant diseases.
Collapse
Affiliation(s)
- Yannasittha Jiramongkol
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| |
Collapse
|
47
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
48
|
The efficiency of murine MLL-ENL-driven leukemia initiation changes with age and peaks during neonatal development. Blood Adv 2020; 3:2388-2399. [PMID: 31405949 DOI: 10.1182/bloodadvances.2019000554] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
MLL rearrangements are translocation mutations that cause both acute lymphoblastic leukemia and acute myeloid leukemia (AML). These translocations can occur as sole clonal driver mutations in infant leukemias, suggesting that fetal or neonatal hematopoietic progenitors may be exquisitely sensitive to transformation by MLL fusion proteins. To test this possibility, we used transgenic mice to induce one translocation product, MLL-ENL, during fetal, neonatal, juvenile and adult stages of life. When MLL-ENL was induced in fetal or neonatal mice, almost all died of AML. In contrast, when MLL-ENL was induced in adult mice, most survived for >1 year despite sustained transgene expression. AML initiation was most efficient when MLL-ENL was induced in neonates, and even transient suppression of MLL-ENL in neonates could prevent AML in most mice. MLL-ENL target genes were induced more efficiently in neonatal progenitors than in adult progenitors, consistent with the distinct AML initiation efficiencies. Interestingly, transplantation stress mitigated the developmental barrier to leukemogenesis. Since fetal/neonatal progenitors were highly competent to initiate MLL-ENL-driven AML, we tested whether Lin28b, a fetal master regulator, could accelerate leukemogenesis. Surprisingly, Lin28b suppressed AML initiation rather than accelerating it. This may explain why MLL rearrangements often occur before birth in human infant leukemia patients, but transformation usually does not occur until after birth, when Lin28b levels decline. Our findings show that the efficiency of MLL-ENL-driven AML initiation changes through the course of pre- and postnatal development, and developmental programs can be manipulated to impede transformation.
Collapse
|
49
|
Chen J, Qi Y, Duan Y, Duan M, Yang M. C1188D mutation abolishes specific recognition between MLL1-CXXC domain and CpG site by inducing conformational switch of flexible N-terminal. Proteins 2020; 88:1401-1412. [PMID: 32519403 DOI: 10.1002/prot.25960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/22/2020] [Accepted: 06/06/2020] [Indexed: 01/19/2023]
Abstract
Mixed lineage leukemia protein (MLL1 protein) recognizes the CpG site via its CXXC domain and is frequently associated with leukemia. The specific recognition is abolished by C1188D mutation, which also prevents MLL-related leukemia. In this paper, multiple molecular dynamic (MD) simulations were performed to investigate the mechanism of recognition and influences of C1188D mutation. Started from fully dissociated DNA and MLL1-CXXC domain, remarkably, the center of mass (COM) of MLL1-CXXC domain quickly concentrates on the vicinity of the CpG site in all 53 short MD simulations. Extended simulations of the wild type showed that the native complex formed in 500 ns among 4 of 53 simulations. In contrast, the C1188D mutant COM distributed broadly around the DNA and the native complex was not observed in any of the extended simulations. Simulations on the apo MLL1-CXXC domain further suggest that the wild type protein remained predominantly in an open form that closely resembles its structure in the native complex whereas C1188D mutant formed predominantly compact structures in which the N- terminal bends to D1188. This conformational switch hinders the formation of encounter complex, thus abolishes the recognition. Our study also provides clues to the study mechanism of recognition, by the CXXC domain from proteins like DNA methyltransferase and ten-eleven translocation enzymes.
Collapse
Affiliation(s)
- Jiawen Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonances in Wuhan, State Key laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Yanping Qi
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonances in Wuhan, State Key laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,College of Physical Science and Technology, Central China Normal University, Wuhan, China
| | - Yong Duan
- Department of Biomedical Engineering and UC Davis Genome Center, University of California at Davis, Davis, California, USA
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonances in Wuhan, State Key laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonances in Wuhan, State Key laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Deutsch JL, Heath JL. MLLT10 in benign and malignant hematopoiesis. Exp Hematol 2020; 87:1-12. [PMID: 32569758 DOI: 10.1016/j.exphem.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023]
Abstract
Non-random chromosomal translocations involving the putative transcription factor Mixed Lineage Leukemia Translocated to 10 (MLLT10, also known as AF10) are commonly observed in both acute myeloid and lymphoid leukemias and are indicative of a poor prognosis. Despite the well-described actions of oncogenic MLLT10 fusion proteins, the role of wild-type MLLT10 in hematopoiesis is not well characterized. The protein structure and several interacting partners have been described and provide indications as to the potential functions of MLLT10. This review examines these aspects of MLLT10, contextualizing its function in benign and malignant hematopoiesis.
Collapse
Affiliation(s)
- Jamie L Deutsch
- Department of Pediatrics, University of Vermont, Burlington, VT
| | - Jessica L Heath
- Department of Pediatrics, University of Vermont, Burlington, VT; Department of Biochemistry, University of Vermont, Burlington, VT 05405; University of Vermont Cancer Center, Burlington, VT.
| |
Collapse
|