1
|
Yoo J, Jeon J, Baik M, Kim J. Lobeglitazone, a novel thiazolidinedione, for secondary prevention in patients with ischemic stroke: a nationwide nested case-control study. Cardiovasc Diabetol 2023; 22:106. [PMID: 37147722 PMCID: PMC10163714 DOI: 10.1186/s12933-023-01841-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
INTRODUCTION Ischemic stroke patients with diabetes are at high risk for recurrent stroke and cardiovascular complications. Pioglitazone, a type of thiazolidinedione, has been shown to reduce cardiovascular complications in patients with ischemic stroke and type 2 diabetes (T2D) or insulin resistance. Lobeglitazone is a novel thiazolidinedione agent that improves insulin resistance and has similar glycemic efficacy to pioglitazone. Using population-based health claims data, we evaluated whether lobeglitazone has secondary cardiovascular preventive effects in patients with ischemic stroke and T2D. METHODS This study has a nested case-control design. From nationwide health claims data in Korea, we identified patients with T2D admitted for acute ischemic stroke in 2014-2018. Cases were defined who suffered the primary outcome (a composite of recurrent stroke, myocardial infarction, and all-cause death) before December 2020. Three controls were selected by incidence density sampling for each case from those who were at risk at the time of their case occurrence with exact matching on sex, age, the presence of comorbidities, and medications. As a safety outcome, we also evaluated the risk of heart failure (HF) according to the use of lobeglitazone. RESULTS From the cohort of 70,897 T2D patients with acute ischemic stroke, 20,869 cases and 62,607 controls were selected. In the multivariable conditional logistic regression, treatment with lobeglitazone (adjusted OR 0.74; 95% CI 0.61-0.90; p = 0.002) and pioglitazone (adjusted OR 0.71; 95% CI 0.64-0.78; p < 0.001) were significantly associated with a lower risk for the primary outcome. In a safety outcome analysis for HF, treatment with lobeglitazone did not increase the risk of HF (adjusted OR 0.90; 95% CI 0.66-1.22; p = 0.492). CONCLUSIONS In T2D patients with ischemic stroke, lobeglitazone reduced the risk of cardiovascular complications similar to that of pioglitazone without an increased risk of HF. There is a need for further studies on the cardioprotective role of lobeglitazone, a novel thiazolidinedione.
Collapse
Affiliation(s)
- Joonsang Yoo
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Jimin Jeon
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Minyoul Baik
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Jinkwon Kim
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea.
| |
Collapse
|
2
|
Terra M, García-Arévalo M, Avelino T, Degaki K, Malospirito C, de Carvalho M, Torres F, Saito Â, Figueira A. AM-879, a PPARy non-agonist and Ser273 phosphorylation blocker, promotes insulin sensitivity without adverse effects in mice. Metabol Open 2023; 17:100221. [PMID: 36588655 PMCID: PMC9800205 DOI: 10.1016/j.metop.2022.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Obesity is one of the main risk factors for type 2 diabetes, and peroxisome proliferator-activated receptor γ (PPARγ) is considered a promising pathway on insulin sensitivity and adipose tissue metabolism. The search for molecules acting as insulin sensitizers have increased, especially for molecules that block PPARγ-Ser273 phosphorylation, without reaching full agonism. We evaluated the in vivo effects of AM-879, a PPARγ non-agonist, and found that AM-879 exerts different effects in mice depending on the dose. At lower doses, this ligand decreased BAT, increased leptin and Crh expression. However, at a higher dose, it promoted improvement on insulin sensitivity, ameliorates expression of metabolism-related genes, decreased the expression of genes related to liver toxicity, maintaining body weight and adipocyte size. These results present a new lead molecule to ameliorates insulin resistance and confirm AM-879 as a PPARγ non-agonist which blocks Ser273 phosphorylation as a good strategy to modulate insulin sensitivity without developing the adverse effects promoted by PPARγ full agonists.
Collapse
Affiliation(s)
- M.F. Terra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Post Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - M. García-Arévalo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - T.M. Avelino
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Post Graduate Program in Pharmacological Science, State University of Campinas (Unicamp), Campinas, Brazil
| | - K.Y. Degaki
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - C.C. Malospirito
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Post Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | - M. de Carvalho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - F.R. Torres
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Â. Saito
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - A.C.M. Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| |
Collapse
|
3
|
Tahri-Joutey M, Andreoletti P, Surapureddi S, Nasser B, Cherkaoui-Malki M, Latruffe N. Mechanisms Mediating the Regulation of Peroxisomal Fatty Acid Beta-Oxidation by PPARα. Int J Mol Sci 2021; 22:ijms22168969. [PMID: 34445672 PMCID: PMC8396561 DOI: 10.3390/ijms22168969] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
In mammalian cells, two cellular organelles, mitochondria and peroxisomes, share the ability to degrade fatty acid chains. Although each organelle harbors its own fatty acid β-oxidation pathway, a distinct mitochondrial system feeds the oxidative phosphorylation pathway for ATP synthesis. At the same time, the peroxisomal β-oxidation pathway participates in cellular thermogenesis. A scientific milestone in 1965 helped discover the hepatomegaly effect in rat liver by clofibrate, subsequently identified as a peroxisome proliferator in rodents and an activator of the peroxisomal fatty acid β-oxidation pathway. These peroxisome proliferators were later identified as activating ligands of Peroxisome Proliferator-Activated Receptor α (PPARα), cloned in 1990. The ligand-activated heterodimer PPARα/RXRα recognizes a DNA sequence, called PPRE (Peroxisome Proliferator Response Element), corresponding to two half-consensus hexanucleotide motifs, AGGTCA, separated by one nucleotide. Accordingly, the assembled complex containing PPRE/PPARα/RXRα/ligands/Coregulators controls the expression of the genes involved in liver peroxisomal fatty acid β-oxidation. This review mobilizes a considerable number of findings that discuss miscellaneous axes, covering the detailed expression pattern of PPARα in species and tissues, the lessons from several PPARα KO mouse models and the modulation of PPARα function by dietary micronutrients.
Collapse
Affiliation(s)
- Mounia Tahri-Joutey
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco;
| | - Pierre Andreoletti
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
| | - Sailesh Surapureddi
- Office of Pollution Prevention and Toxics, United States Environmental Protection Agency, Washington, DC 20460, USA;
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco;
| | - Mustapha Cherkaoui-Malki
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
| | - Norbert Latruffe
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
- Correspondence:
| |
Collapse
|
4
|
Monroy-Ramirez HC, Galicia-Moreno M, Sandoval-Rodriguez A, Meza-Rios A, Santos A, Armendariz-Borunda J. PPARs as Metabolic Sensors and Therapeutic Targets in Liver Diseases. Int J Mol Sci 2021; 22:ijms22158298. [PMID: 34361064 PMCID: PMC8347792 DOI: 10.3390/ijms22158298] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Carbohydrates and lipids are two components of the diet that provide the necessary energy to carry out various physiological processes to help maintain homeostasis in the body. However, when the metabolism of both biomolecules is altered, development of various liver diseases takes place; such as metabolic-associated fatty liver diseases (MAFLD), hepatitis B and C virus infections, alcoholic liver disease (ALD), and in more severe cases, hepatocelular carcinoma (HCC). On the other hand, PPARs are a family of ligand-dependent transcription factors with an important role in the regulation of metabolic processes to hepatic level as well as in other organs. After interaction with specific ligands, PPARs are translocated to the nucleus, undergoing structural changes to regulate gene transcription involved in lipid metabolism, adipogenesis, inflammation and metabolic homeostasis. This review aims to provide updated data about PPARs’ critical role in liver metabolic regulation, and their involvement triggering the genesis of several liver diseases. Information is provided about their molecular characteristics, cell signal pathways, and the main pharmacological therapies that modulate their function, currently engaged in the clinic scenario, or in pharmacological development.
Collapse
Affiliation(s)
- Hugo Christian Monroy-Ramirez
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
| | - Marina Galicia-Moreno
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
| | - Ana Sandoval-Rodriguez
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
| | - Alejandra Meza-Rios
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45138, Jalisco, Mexico; (A.M.-R.); (A.S.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45138, Jalisco, Mexico; (A.M.-R.); (A.S.)
| | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (H.C.M.-R.); (M.G.-M.); (A.S.-R.)
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45138, Jalisco, Mexico; (A.M.-R.); (A.S.)
- Correspondence:
| |
Collapse
|
5
|
Desoye G, Herrera E. Adipose tissue development and lipid metabolism in the human fetus: The 2020 perspective focusing on maternal diabetes and obesity. Prog Lipid Res 2020; 81:101082. [PMID: 33383022 DOI: 10.1016/j.plipres.2020.101082] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
During development, the human fetus accrues the highest proportion of fat of all mammals. Precursors of fat lobules can be found at week 14 of pregnancy. Thereafter, they expand, filling with triacylglycerols during pregnancy. The resultant mature lipid-filled adipocytes emerge from a developmental programme of embryonic stem cells, which is regulated differently than adult adipogenesis. Fetal triacylglycerol synthesis uses glycerol and fatty acids derived predominantly from glycolysis and lipogenesis in liver and adipocytes. The fatty acid composition of fetal adipose tissue at the end of pregnancy shows a preponderance of palmitic acid, and differs from the mother. Maternal diabetes mellitus does not influence this fatty acid profile. Glucose oxidation is the main source of energy for the fetus, but mitochondrial fatty acid oxidation also contributes. Indirect evidence suggests the presence of lipoprotein lipase in fetal adipose tissue. Its activity may be increased under hyperinsulinemic conditions as in maternal diabetes mellitus and obesity, thereby contributing to increased triacylglycerol deposition found in the newborns of such pregnancies. Fetal lipolysis is low. Changes in the expression of genes controlling metabolism in fetal adipose tissue appear to contribute actively to the increased neonatal fat mass found in diabetes and obesity. Many of these processes are under endocrine regulation, principally by insulin, and show sex-differences. Novel fatty acid derived signals such as oxylipins are present in cord blood with as yet undiscovered function. Despite many decades of research on fetal lipid deposition and metabolism, many key questions await answers.
Collapse
Affiliation(s)
- G Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
| | - E Herrera
- Faculties of Pharmacy and Medicine, University CEU San Pablo, Madrid, Spain.
| |
Collapse
|
6
|
Dias MMG, Batista FAH, Tittanegro TH, de Oliveira AG, Le Maire A, Torres FR, Filho HVR, Silveira LR, Figueira ACM. PPARγ S273 Phosphorylation Modifies the Dynamics of Coregulator Proteins Recruitment. Front Endocrinol (Lausanne) 2020; 11:561256. [PMID: 33329381 PMCID: PMC7729135 DOI: 10.3389/fendo.2020.561256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
The nuclear receptor PPARγ is essential to maintain whole-body glucose homeostasis and insulin sensitivity, acting as a master regulator of adipogenesis, lipid, and glucose metabolism. Its activation through natural or synthetic ligands induces the recruitment of coactivators, leading to transcription of target genes such as cytokines and hormones. More recently, post translational modifications, such as PPARγ phosphorylation at Ser273 by CDK5 in adipose tissue, have been linked to insulin resistance trough the dysregulation of expression of a specific subset of genes. Here, we investigate how this phosphorylation may disturb the interaction between PPARγ and some coregulator proteins as a new mechanism that may leads to insulin resistance. Through cellular and in vitro assays, we show that PPARγ phosphorylation inhibition increased the activation of the receptor, therefore the increased recruitment of PGC1-α and TIF2 coactivators, whilst decreases the interaction with SMRT and NCoR corepressors. Moreover, our results show a shift in the coregulators interaction domains preferences, suggesting additional interaction interfaces formed between the phosphorylated PPARγ and some coregulator proteins. Also, we observed that the CDK5 presence disturb the PPARγ-coregulator's synergy, decreasing interaction with PGC1-α, TIF2, and NCoR, but increasing coupling of SMRT. Finally, we conclude that the insulin resistance provoked by PPARγ phosphorylation is linked to a differential coregulators recruitment, which may promote dysregulation in gene expression.
Collapse
Affiliation(s)
- Marieli Mariano Gonçalves Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| | | | - Thais Helena Tittanegro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - André Gustavo de Oliveira
- Mitochondrial Molecular Biology Laboratory, Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Albane Le Maire
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Centre de Biochimie Structurale CNRS, Université de Montpellier, Montpellier, France
| | - Felipe Rafael Torres
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Helder Veras Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Leonardo Reis Silveira
- Mitochondrial Molecular Biology Laboratory, Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
7
|
Kaupang Å, Hansen TV. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. PPAR Res 2020; 2020:9657380. [PMID: 32695150 PMCID: PMC7351019 DOI: 10.1155/2020/9657380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
The past decade of PPARγ research has dramatically improved our understanding of the structural and mechanistic bases for the diverging physiological effects of different classes of PPARγ ligands. The discoveries that lie at the heart of these developments have enabled the design of a new class of PPARγ ligands, capable of isolating central therapeutic effects of PPARγ modulation, while displaying markedly lower toxicities than previous generations of PPARγ ligands. This review examines the emerging framework around the design of these ligands and seeks to unite its principles with the development of new classes of ligands for PPARα and PPARβ/δ. The focus is on the relationships between the binding modes of ligands, their influence on PPAR posttranslational modifications, and gene expression patterns. Specifically, we encourage the design and study of ligands that primarily bind to the Ω pockets of PPARα and PPARβ/δ. In support of this development, we highlight already reported ligands that if studied in the context of this new framework may further our understanding of the gene programs regulated by PPARα and PPARβ/δ. Moreover, recently developed pharmacological tools that can be utilized in the search for ligands with new binding modes are also presented.
Collapse
Affiliation(s)
- Åsmund Kaupang
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Trond Vidar Hansen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
8
|
Analysis of Tks4 Knockout Mice Suggests a Role for Tks4 in Adipose Tissue Homeostasis in the Context of Beigeing. Cells 2019; 8:cells8080831. [PMID: 31387265 PMCID: PMC6721678 DOI: 10.3390/cells8080831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Obesity and adipocyte malfunction are related to and arise as consequences of disturbances in signaling pathways. Tyrosine kinase substrate with four Src homology 3 domains (Tks4) is a scaffold protein that establishes a platform for signaling cascade molecules during podosome formation and epidermal growth factor receptor (EGFR) signaling. Several lines of evidence have also suggested that Tks4 has a role in adipocyte biology; however, its roles in the various types of adipocytes at the cellular level and in transcriptional regulation have not been studied. Therefore, we hypothesized that Tks4 functions as an organizing molecule in signaling networks that regulate adipocyte homeostasis. Our aims were to study the white and brown adipose depots of Tks4 knockout (KO) mice using immunohistology and western blotting and to analyze gene expression changes regulated by the white, brown, and beige adipocyte-related transcription factors via a PCR array. Based on morphological differences in the Tks4-KO adipocytes and increased uncoupling protein 1 (UCP1) expression in the white adipose tissue (WAT) of Tks4-KO mice, we concluded that the beigeing process was more robust in the WAT of Tks4-KO mice compared to the wild-type animals. Furthermore, in the Tks4-KO WAT, the expression profile of peroxisome proliferator-activated receptor gamma (PPARγ)-regulated adipogenesis-related genes was shifted in favor of the appearance of beige-like cells. These results suggest that Tks4 and its downstream signaling partners are novel regulators of adipocyte functions and PPARγ-directed white to beige adipose tissue conversion.
Collapse
|
9
|
Phloretin and phloridzin improve insulin sensitivity and enhance glucose uptake by subverting PPARγ/Cdk5 interaction in differentiated adipocytes. Exp Cell Res 2019; 383:111480. [PMID: 31279631 DOI: 10.1016/j.yexcr.2019.06.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 11/21/2022]
Abstract
Activators of peroxisome proliferator-activated receptor-γ (PPARγ agonists) are therapeutically promising candidates against insulin resistance and hyperglycemia. Synthetic PPARγ agonists are known to effectively enhance insulin sensitivity, but these are also associated with adverse side-effects and rising cost of treatment. Therefore, natural PPARγ targeting ligands are desirable alternatives for the management of insulin resistance associated with type 2 diabetes. Phloretin (PT) and Phloridzin (PZ) are predominant apple phenolics, which are recognized for their various pharmacological functions. The present study assessed the potential of PT and PZ in enhancing insulin sensitivity and glucose uptake by inhibiting Cdk5 activation and corresponding PPARγ phosphorylation in differentiated 3T3L1 cells. In silico docking and subsequent validation using 3T3L1 cells revealed that PT and PZ not only block the ser273 site of PPARγ but also inhibit the activation of Cdk5 itself, thereby, indicating their potent PPARγ regulatory attributes. Corroborating this, application of PT and PZ significantly enhanced the accumulation of cellular triglycerides as well as expression of insulin-sensitizing genes in adipocytes ultimately resulting in improved glucose uptake. Taken together, the present study reports that PT and PZ inhibit Cdk5 activation, which could be directly influencing the apparent PPARγ inhibition at ser273, ultimately resulting in improved insulin sensitivity and glucose uptake.
Collapse
|
10
|
Grytting VS, Olderbø BP, Holme JA, Samuelsen JT, Solhaug A, Becher R, Bølling AK. Di-n-butyl phthalate modifies PMA-induced macrophage differentiation of THP-1 monocytes via PPARγ. Toxicol In Vitro 2019; 54:168-177. [DOI: 10.1016/j.tiv.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
|
11
|
Tinkov AA, Ajsuvakova OP, Skalnaya MG, Skalny AV, Aschner M, Suliburska J, Aaseth J. Organotins in obesity and associated metabolic disturbances. J Inorg Biochem 2018; 191:49-59. [PMID: 30458368 DOI: 10.1016/j.jinorgbio.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/30/2018] [Accepted: 11/04/2018] [Indexed: 01/01/2023]
Abstract
The objective of the present study was to review the mechanisms of organotin-induced adipogenesis, obesity, and associated metabolic disturbances. Peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα) activation is considered as the key mechanism of organotin-induced adipogenesis. Particularly, organotin exposure results in increased adipogenesis both in cell and animal models. Moreover, transgenerational inheritance of organotin-induced obese phenotype was demonstrated in vivo. At the same time, the existing data demonstrate that organotin compounds (OTCs) induces aberrant expression of PPARγ-targeted genes, resulting in altered of adipokine, glucose transporter, proinflammatory cytokines levels, and lipid and carbohydrate metabolism. The latter is generally characterized by hyperglycemia and insulin resistance. Other mechanisms involved in organotin-induced obesity may include estrogen receptor and corticosteroid signaling, altered DNA methylation, and gut dysfunction. In addition to cellular effects, organotin exposure may also affect neural circuits of appetite regulation, being characterized by neuropeptide Y (NPY) up-regulation in parallel with of pro-opiomelanocortin (POMC), Agouti-related protein (AgRP), and cocaine and amphetamine regulated transcript (CART) down-regulation in the arcuate nucleus. These changes result in increased orexigenic and reduced anorexigenic signaling, leading to increased food intake. The existing data demonstrate that organotins are potent adipogenic agents, however, no epidemiologic studies have been performed to reveal the association between organotin exposure and obesity and the existing indirect human data are contradictory.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia.
| | - Olga P Ajsuvakova
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | | | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; Trace Element Institute for UNESCO, Lyon, France
| | | | | | - Jan Aaseth
- Innlandet Hospital Trust, Kongsvinger, Norway; Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
12
|
Yunusova NV, Kondakova IV, Kolomiets LA, Afanas'ev SG, Kishkina AY, Spirina LV. The role of metabolic syndrome variant in the malignant tumors progression. Diabetes Metab Syndr 2018; 12:807-812. [PMID: 29699953 DOI: 10.1016/j.dsx.2018.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MS) is one of the leading risk factors for the development of some common cancers (endometrial cancer, postmenopausal breast cancer, colorectal cancer). Currently, a drug-induced metabolic syndrome related with androgen deprivation therapy in patients with prostate cancer represents a serious medical problem. Not only MS, or its individual components, but MS variants with different levels of leptin, adiponectin, visfatin, resistin are associated with tumor invasion, metastasis and survival rates in patients with MS-associated malignancies.
Collapse
Affiliation(s)
- Natalia V Yunusova
- Laboratory of tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia; Biochemistry Division, Siberian State Medical University, 634050, Tоmsk, Moskovskiy str. 2., Russia
| | - Irina V Kondakova
- Laboratory of tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia
| | - Larisa A Kolomiets
- Department of Oncogynecology, Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia; Oncology Division, Siberian State Medical University, 634050, Tоmsk, Moskovskiy str. 2., Russia
| | - Sergey G Afanas'ev
- Abdominal Oncology Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia; 2 - Siberian State Medical University, 634050, Tоmsk, Moskovskiy str. 2., Russia
| | - Anastasia Yu Kishkina
- Laboratory of tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia
| | - Liudmila V Spirina
- Laboratory of tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634009, Tomsk, Kooperativny str., 5, Russia; Biochemistry Division, Siberian State Medical University, 634050, Tоmsk, Moskovskiy str. 2., Russia.
| |
Collapse
|
13
|
Vakrakou AG, Polyzos A, Kapsogeorgou EK, Thanos D, Manoussakis MN. Impaired anti-inflammatory activity of PPARγ in the salivary epithelia of Sjögren's syndrome patients imposed by intrinsic NF-κB activation. J Autoimmun 2017; 86:62-74. [PMID: 29033144 DOI: 10.1016/j.jaut.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Abstract
Sjögren's syndrome (SS) patients manifest inflammation in the salivary glands (SG) and evidence of persistent intrinsic activation of ductal SG epithelial cells (SGEC), demonstrable in non-neoplastic SGEC lines derived from patients (SS-SGEC). The peroxisome-proliferator-activated receptor-γ (PPARγ) mediates important anti-inflammatory activities in epithelial cells. Herein, the comparative analysis of SG biopsies and SGEC lines obtained from SS patients and controls had revealed constitutively reduced PPARγ expression, transcriptional activity and anti-inflammatory function in the ductal epithelia of SS patients that were associated with cell-autonomously activated NF-κB and IL-1β pathways. Transcriptome profiling analysis revealed several differentially expressed proinflammatory and metabolism-related gene sets in SS-SGEC lines. These aberrations largely correlated with the severity of histopathologic lesions, the disease activity and the occurrence of adverse manifestations in SS patients studied, a fact which corroborates the key role of the persistently-activated epithelia in the pathogenesis of both local and systemic features of this disease. The treatment of control SGEC lines with PPARγ agonists was found to diminish the NF-κB activation and apoptosis induced by proinflammatory agents. In addition, the in-vitro application of PPARγ agonists and pharmacologic inhibitors of IL-1β and NF-κB had significant beneficial effects on SS-SGEC lines, such as the restoration of PPARγ functions and the reduction of their intrinsic activation, a fact which may advocate the future clinical study of the above agents as therapeutic modalities for SS.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Hellenic Pasteur Institute, Laboratory of Molecular Immunology, Athens, Greece
| | | | - Efstathia K Kapsogeorgou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Thanos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Menelaos N Manoussakis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Hellenic Pasteur Institute, Laboratory of Molecular Immunology, Athens, Greece; Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
14
|
Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin KJ, Gao Y, Bennett MVL, Leak RK, Chen J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2017; 163-164:27-58. [PMID: 29032144 DOI: 10.1016/j.pneurobio.2017.10.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a widely expressed ligand-modulated transcription factor that governs the expression of genes involved in inflammation, redox equilibrium, trophic factor production, insulin sensitivity, and the metabolism of lipids and glucose. Synthetic PPARγ agonists (e.g. thiazolidinediones) are used to treat Type II diabetes and have the potential to limit the risk of developing brain injuries such as stroke by mitigating the influence of comorbidities. If brain injury develops, PPARγ serves as a master gatekeeper of cytoprotective stress responses, improving the chances of cellular survival and recovery of homeostatic equilibrium. In the acute injury phase, PPARγ directly restricts tissue damage by inhibiting the NFκB pathway to mitigate inflammation and stimulating the Nrf2/ARE axis to neutralize oxidative stress. During the chronic phase of acute brain injuries, PPARγ activation in injured cells culminates in the repair of gray and white matter, preservation of the blood-brain barrier, reconstruction of the neurovascular unit, resolution of inflammation, and long-term functional recovery. Thus, PPARγ lies at the apex of cell fate decisions and exerts profound effects on the chronic progression of acute injury conditions. Here, we review the therapeutic potential of PPARγ in stroke and brain trauma and highlight the novel role of PPARγ in long-term tissue repair. We describe its structure and function and identify the genes that it targets. PPARγ regulation of inflammation, metabolism, cell fate (proliferation/differentiation/maturation/survival), and many other processes also has relevance to other neurological diseases. Therefore, PPARγ is an attractive target for therapies against a number of progressive neurological disorders.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lijuan Han
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA
| | - Xuejing Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA.
| |
Collapse
|
15
|
Huang Y, Gao S, Chen J, Albrecht E, Zhao R, Yang X. Maternal butyrate supplementation induces insulin resistance associated with enhanced intramuscular fat deposition in the offspring. Oncotarget 2017; 8:13073-13084. [PMID: 28055958 PMCID: PMC5355078 DOI: 10.18632/oncotarget.14375] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022] Open
Abstract
Maternal nutrition is important for the risk of the offspring to develop insulin resistance and adiposity later in life. The study was undertaken to determine effects of maternal butyrate supplementation on lipid metabolism and insulin sensitivity in the offspring skeletal muscle. The offspring of rats, fed a control diet or a butyrate diet (1% sodium butyrate) throughout gestation and lactation, was studied at weaning and at 60 days of age. The offspring of dams fed a butyrate diet had higher HOMA-insulin resistance and impaired glucose tolerance. This was associated with elevated mRNA and protein expressions of lipogenic genes and decreased amounts of lipolytic enzyme. Simultaneously, enhanced acetylation of histone H3 lysine 9 and histone H3 lysine 27 modification on the lipogenic genes in skeletal muscle of adult offspring was observed. Higher concentration of serum insulin and intramuscular triglyceride in skeletal muscle of offspring from the butyrate group at weaning were accompanied by increasing levels of lipogenic genes and enrichment of acetylation of histone H3 lysine 27. Maternal butyrate supplementation leads to insulin resistance and ectopic lipid accumulation in skeletal muscle of offspring, indicating the importance of short chain fatty acids in the maternal diet on lipid metabolism.
Collapse
Affiliation(s)
- Yanping Huang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shixing Gao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jinglong Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Elke Albrecht
- Leibniz Institute for Farm Animal Biology, Institute for Muscle Biology and Growth, Dummerstorf, Germany
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
16
|
Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev Camb Philos Soc 2017; 92:2046-2069. [PMID: 28220655 DOI: 10.1111/brv.12320] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Over 25 years have passed since peroxisome proliferators-activated receptors (PPARs), were first described. Like other members of the nuclear receptors superfamily, PPARs have been defined as critical sensors and master regulators of cellular metabolism. Recognized as ligand-activated transcription factors, they are involved in lipid, glucose and amino acid metabolism, taking part in different cellular processes, including cellular differentiation and apoptosis, inflammatory modulation and attenuation of acute and chronic neurological damage in vivo and in vitro. Interestingly, PPAR activation can simultaneously reprogram the immune response, stimulate metabolic and mitochondrial functions, promote axonal growth, induce progenitor cells to differentiate into myelinating oligodendrocytes, and improve brain clearance of toxic molecules such as β-amyloid peptide. Although the molecular mechanisms and cross-talk with different molecular pathways are still the focus of intense research, PPARs are considered potential therapeutic targets for several neuropathological conditions, including degenerative disorders such as Alzheimer's, Parkinson's and Huntington's disease. This review considers recent advances regarding PPARs, as well as new PPAR agonists. We focus on the mechanisms behind the neuroprotective effects exerted by PPARs and summarise the roles of PPARs in different pathologies of the central nervous system, especially those associated with degenerative and inflammatory mechanisms.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Manuel J Santos
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Sussy Bastías-Candia
- Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Gral. Velásquez 1775, 1000007, Arica, Chile
| | - Claudio Pinto
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.,Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Avoca Street Randwick NSW 2031, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, PO Box 113-D, Avenida Bulnes 01855, 6210427, Punta Arenas, Chile
| |
Collapse
|
17
|
KVANDOVÁ M, MAJZÚNOVÁ M, DOVINOVÁ I. The Role of PPARγ in Cardiovascular Diseases. Physiol Res 2016; 65:S343-S363. [DOI: 10.33549/physiolres.933439] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPAR) belong to the nuclear superfamily of ligand-activated transcription factors. PPARγ acts as a nutrient sensor that regulates several homeostatic functions. Its disruption can lead to vascular pathologies, disorders of fatty acid/lipid metabolism and insulin resistance. PPARγ can modulate several signaling pathways connected with blood pressure regulation. Firstly, it affects the insulin signaling pathway and endothelial dysfunction by modulation of expression and/or phosphorylation of signaling molecules through the PI3K/Akt/eNOS or MAPK/ET-1 pathways. Secondly, it can modulate gene expression of the renin- angiotensin system – cascade proteins, which potentially slow down the progression of atherosclerosis and hypertension. Thirdly, it can modulate oxidative stress response either directly through PPAR or indirectly through Nrf2 activation. In this context, activation and functioning of PPARγ is very important in the regulation of several disorders such as diabetes mellitus, hypertension and/or metabolic syndrome.
Collapse
Affiliation(s)
| | | | - I. DOVINOVÁ
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
18
|
Lendvai Á, Deutsch MJ, Plösch T, Ensenauer R. The peroxisome proliferator-activated receptors under epigenetic control in placental metabolism and fetal development. Am J Physiol Endocrinol Metab 2016; 310:E797-810. [PMID: 26860983 DOI: 10.1152/ajpendo.00372.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/02/2016] [Indexed: 01/09/2023]
Abstract
The placental metabolism can adapt to the environment throughout pregnancy to both the demands of the fetus and the signals from the mother. Such adaption processes include epigenetic mechanisms, which alter gene expression and may influence the offspring's health. These mechanisms are linked to the diversity of prenatal environmental exposures, including maternal under- or overnutrition or gestational diabetes. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that contribute to the developmental plasticity of the placenta by regulating lipid and glucose metabolism pathways, including lipogenesis, steroidogenesis, glucose transporters, and placental signaling pathways, thus representing a link between energy metabolism and reproduction. Among the PPAR isoforms, PPARγ appears to be the main modulator of mammalian placentation. Certain fatty acids and lipid-derived moieties are the natural activating PPAR ligands. By controlling the amounts of maternal nutrients that go across to the fetus, the PPARs play an important regulatory role in placenta metabolism, thereby adapting to the maternal nutritional status. As demonstrated in animal studies, maternal nutrition during gestation can exert long-term influences on the PPAR methylation pattern in offspring organs. This review underlines the current state of knowledge on the relationship between environmental factors and the epigenetic regulation of the PPARs in placenta metabolism and offspring development.
Collapse
Affiliation(s)
- Ágnes Lendvai
- Center for Liver, Digestive, and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuel J Deutsch
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| | - Regina Ensenauer
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; Experimental Pediatrics, Department of General Pediatrics, Pediatric Cardiology, and Neonatology, Heinrich-Heine-University Düsseldorf, Dusseldorf, Germany
| |
Collapse
|
19
|
Iglesias J, Morales L, Barreto GE. Metabolic and Inflammatory Adaptation of Reactive Astrocytes: Role of PPARs. Mol Neurobiol 2016; 54:2518-2538. [PMID: 26984740 DOI: 10.1007/s12035-016-9833-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/04/2016] [Indexed: 01/10/2023]
Abstract
Astrocyte-mediated inflammation is associated with degenerative pathologies such as Alzheimer's and Parkinson's diseases and multiple sclerosis. The acute inflammation and morphological and metabolic changes that astrocytes develop after the insult are known as reactive astroglia or astrogliosis that is an important response to protect and repair the lesion. Astrocytes optimize their metabolism to produce lactate, glutamate, and ketone bodies in order to provide energy to the neurons that are deprived of nutrients upon insult. Firstly, we review the basis of inflammation and morphological changes of the different cell population implicated in reactive gliosis. Next, we discuss the more active metabolic pathways in healthy astrocytes and explain the metabolic response of astrocytes to the insult in different pathologies and which metabolic alterations generate complications in these diseases. We emphasize the role of peroxisome proliferator-activated receptors isotypes in the inflammatory and metabolic adaptation of astrogliosis developed in ischemia or neurodegenerative diseases. Based on results reported in astrocytes and other cells, we resume and hypothesize the effect of peroxisome proliferator-activated receptor (PPAR) activation with ligands on different metabolic pathways in order to supply energy to the neurons. The activation of selective PPAR isotype activity may serve as an input to better understand the role played by these receptors on the metabolic and inflammatory compensation of astrogliosis and might represent an opportunity to develop new therapeutic strategies against traumatic brain injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- José Iglesias
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| | - Ludis Morales
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
- Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
20
|
Dynamics of mRNA and polysomal abundance in early 3T3-L1 adipogenesis. BMC Genomics 2014; 15:381. [PMID: 24886538 PMCID: PMC4039748 DOI: 10.1186/1471-2164-15-381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
Background Adipogenesis is a complex process, in which immature pre-adipocytes change morphology, micro-anatomy and physiology to become mature adipocytes. These store and accumulate fat and release diverse hormones. Massive changes in protein content and protein composition of the transforming cell take place within a short time-frame. In a previous study we analyzed changes in the abundance of free and polysomal, i.e. ribosome bound, RNAs in the first hours of adipogenesis in the murine cell line 3T3-L1. Here we analyze changes of mRNA levels and their potential contribution to the changing protein pool by determination of mRNA levels and ribosome binding to mRNAs in 3T3-L1 cells stimulated for adipogenesis. We grouped mRNA species into categories with respect to up- or down-regulated transcription and translation and analyzed the groups regarding specific functionalities based on Gene Ontology (GO). Results A shift towards up-regulation of gene expression in early adipogenesis was detected. Genes up-regulated at the transcriptional (TC:up) and translational (TL:up) level (TC:up/TL:up) are very likely involved in control and logistics of translation. Many of them are known to contain a TOP motif. In the TC:up/TL:unchanged group we detected most of the metal binding proteins and metal transporters. In the TC:unchanged/TL:up group several factors of the olfactory receptor family were identified, while in TC:unchanged/TL:down methylation and repair genes are represented. In the TC:down/TL:up group we detected many signaling factors. The TC:down/TL:unchanged group mainly consists of regulatory factors. Conclusions Within the first hours of adipogenesis, changes in transcriptional and translational regulation take place. Notably, genes with a specific biological or molecular function tend to cluster in groups according to their transcriptional and translational regulation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-381) contains supplementary material, which is available to authorized users.
Collapse
|