1
|
Martorelli M, Dengler M, Laux J, Fischer T, Vaiceliunaite A, Hahn U, Weinstein T, Cruces S, Pokoj C, de Oliveira da Cunha L, Wohlbold L, Koch P, Laufer S, Burnet M, Maier F. A Defined Diet Combined with Sonicated Inoculum Provides a High Incidence, Moderate Severity Form of Experimental Autoimmune Encephalomyelitis (EAE). ACS Pharmacol Transl Sci 2024; 7:3827-3845. [PMID: 39698286 PMCID: PMC11650733 DOI: 10.1021/acsptsci.4c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein 35-55 (MOG35-55)-peptide induced experimental autoimmune encephalomyelitis (EAE) is a model for inflammation of the brain and spinal cord. However, its severity and incidence vary within and between laboratories. Severe scores can lead to premature termination and are both unnecessary for readouts and detrimental to animal welfare. Ideally, the model would have high incidence, moderate severity, and low interindividual variability to fulfill the "Refine" aspect of the 3R concept. Nevertheless, most efforts to increase incidence also increase the severity. When the effects of potential therapies are tested, moderate severity is sufficient to detect useful drug effects as long as variation is low. Low variation can also reduce group sizes, which supports the "Reduce" aspect of 3R approaches in disease modeling. We set out to reduce variation and control severity by assessing the effects of mouse age, dietary fiber, antigen emulsion, and the dose of MOG and pertussis toxin on incidence, variability, and severity in the MOG-EAE model. METHODS We compared 14- and 33-week-old female C57BL/6 mice and varied the diet and inoculum in two studies. We measured disease signs in vivo as well as gene expression in the brain and spinal cord and histology by immunofluorescence. Ordinary one-way ANOVA was used for multiple comparisons. RESULTS The most reliable induction conditions were with a low-fermentative/fiber diet (AIN 93M) combined with a sonicated emulsion of the MOG35-55-peptide. High-dose pertussis toxin increased EAE severity and incidence in 14-week-old mice (25% survival) while being more moderate in mature mice (100% survival). Varying all parameters suggests that duration of prefeeding defined diet, emulsion quality, and mouse maturity were factors that increase uniformity of response allowing incidence to reach 100% without excess severity. Microglia and astrocyte-associated markers were upregulated proportionally to score consistent with known EAE pathology. CONCLUSIONS A defined fiber/high-sugar diet with sonicated inoculum provides for a moderate severity, high incidence, and less variable EAE. The resulting uniformity in animal response and associated cytokine patterns, and the strong link to a defined diet, suggest that this may be a more clinically translatable protocol for the induction of EAE. This is consistent with reported effects of low-fermentable diets on immune modulation in human patients with autoimmune diseases.
Collapse
Affiliation(s)
- Mariella Martorelli
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
- Department
of Pharmaceutical/Medicinal Chemistry, Eberhard
Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | - Julian Laux
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
- Department
of Pharmaceutical/Medicinal Chemistry, Eberhard
Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tina Fischer
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| | | | - Ulrike Hahn
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| | - Thilo Weinstein
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| | - Santiago Cruces
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| | - Christina Pokoj
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| | | | - Lara Wohlbold
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| | - Pierre Koch
- Department
of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Stefan Laufer
- Department
of Pharmaceutical/Medicinal Chemistry, Eberhard
Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, University
of Tübingen, 72076 Tübingen, Germany
- Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Michael Burnet
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| | - Florian Maier
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Yang C, Wang T, Zhao C, Lu J, Shen R, Li G, Zhao J. Causal relationship of salt intake with osteoarthritis: A Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e40497. [PMID: 39560570 PMCID: PMC11575978 DOI: 10.1097/md.0000000000040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Recent studies have demonstrated a correlation between salt intake (SI) and various diseases. However, it remains uncertain whether the relationship between SI (including salt added to food and sodium levels in urine) and benign osteoarthritis is causal. To investigate this, we conducted a 2-sample Mendelian randomization (MR) analysis to estimate the causal impact of SI on osteoarthritis (OA). A genome-wide association study of salt added to food and sodium in urine was used as the exposure, while hip osteoarthritis, knee osteoarthritis, and rheumatoid arthritis were defined as the outcomes. Inverse variance weighting (IVW) was used to calculate causal estimates, and sensitivity analyses were performed using methods including weighted mode, weighted median, MR-Egger, and Bayesian weighted MR. All statistical analyses were conducted using R software. Our results, primarily based on the IVW method, support the existence of a causal relationship between salt added to food and knee osteoarthritis (KOA). Specifically, salt added to food was associated with a decreased risk of KOA (OR = 1.248, P = .024, 95% CI: 1.030-1.512). This study is the first MR investigation exploring the causal relationship between salt added to food and KOA, potentially providing new insights and a theoretical basis for the prevention and treatment of KOA in the future.
Collapse
Affiliation(s)
- Chengrui Yang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Tieqiang Wang
- Cangzhou Hospital of Integrated Chinese and Western Medicine, Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, Hebei, China
| | - Chunzhi Zhao
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jiawei Lu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Runbin Shen
- Cangzhou Hospital of Integrated Chinese and Western Medicine, Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, Hebei, China
| | - Guoliang Li
- Cangzhou Hospital of Integrated Chinese and Western Medicine, Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, Hebei, China
| | - Jianyong Zhao
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Cangzhou Hospital of Integrated Chinese and Western Medicine, Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, Cangzhou, Hebei, China
| |
Collapse
|
3
|
Ryuno H, Hanafusa Y, Fujisawa T, Ogawa M, Adachi H, Naguro I, Ichijo H. HES1 potentiates high salt stress response as an enhancer of NFAT5-DNA binding. Commun Biol 2024; 7:1290. [PMID: 39384976 PMCID: PMC11464898 DOI: 10.1038/s42003-024-06997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
High salt conditions and subsequent hyperosmolarity are injurious cellular stresses that can activate immune signaling. Nuclear factor of activated T-cells 5 (NFAT5) is an essential transcription factor that induces osmoprotective genes such as aldose reductase (AR) and betaine-GABA transporter 1 (BGT1). High salt stress-mediated NFAT5 activation is also reported to accelerate the inflammatory response and autoimmune diseases. However, the systemic regulation of NFAT5 remains unclear. Here, we performed a genome-wide siRNA screen to comprehensively identify the regulators of NFAT5. We monitored NFAT5 nuclear translocation and identified one of the Notch signaling effectors, Hairy and enhancer of split-1 (HES1), as a positive regulator of NFAT5. HES1 was induced by high salinity via ERK signaling and facilitated NFAT5 recruitment to its target promoter region, resulting in the proper induction of osmoprotective genes and cytoprotection under high salt stress. These findings suggest that, though HES1 is well known as a transcriptional repressor, it positively regulates NFAT5-dependent transcription in the context of a high salinity/hyperosmotic response.
Collapse
Affiliation(s)
- Hiroki Ryuno
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Hanafusa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
| | - Motoyuki Ogawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
- Laboratory of Bioresponse Signaling, Faculty of Pharmacy, Juntendo University, Urayasu, Chiba, Japan
| | - Hiroki Adachi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan.
- Laboratory of Bioresponse Signaling, Faculty of Pharmacy, Juntendo University, Urayasu, Chiba, Japan.
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
4
|
Wen Z, Qiu L, Ye Z, Tan X, Xu X, Lu M, Kuang G. The role of Th/Treg immune cells in osteoarthritis. Front Immunol 2024; 15:1393418. [PMID: 39364408 PMCID: PMC11446774 DOI: 10.3389/fimmu.2024.1393418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent clinical condition affecting the entire joint, characterized by its multifactorial etiology and complex pathophysiology. The onset of OA is linked to inflammatory mediators produced by the synovium, cartilage, and subchondral bone, all of which are closely tied to cartilage degradation. Consequently, OA may also be viewed as a systemic inflammatory disorder. Emerging studies have underscored the significance of T cells in the development of OA. Notably, imbalances in Th1/Th2 and Th17/Treg immune cells may play a crucial role in the pathogenesis of OA. This review aims to compile recent advancements in understanding the role of T cells and their Th/Treg subsets in OA, examines the immune alterations and contributions of Th/Treg cells to OA progression, and proposes novel directions for future research, including potential therapeutic strategies for OA.
Collapse
Affiliation(s)
- Zhi Wen
- Department of Joint Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Liguo Qiu
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Zifeng Ye
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xuyi Tan
- Department of Joint Orthopedics, The Affiliated Hospital, Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xiaotong Xu
- Department of Joint Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Min Lu
- Department of Joint Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gaoyan Kuang
- Department of Joint Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
5
|
Derluyn N, Foucart V, Verce M, Abdo R, Vaudoisey L, Lipski D, Flamand V, Everard A, Bruyns C, Willermain F. High salt diet alleviates disease severity in native experimental autoimmune uveitis. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1370374. [PMID: 38984146 PMCID: PMC11182228 DOI: 10.3389/fopht.2024.1370374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/19/2024] [Indexed: 07/11/2024]
Abstract
Background Recent studies reported a link between high salt diet (HSD) and clinical exacerbation in mouse models of autoimmune diseases, mainly through the induction of pathogenic Th17 cells and/or HSD-induced dysbiosis. However, the topic remains controversial and not fully understood. Purpose In this study, we investigated the effects of HSD on the development of experimental autoimmune uveitis (EAU) in C57BL/6J mice. Methods and results Unexpectedly, our data showed a significant attenuating effect of HSD on disease severity of native EAU, induced by direct immunization with IRBP peptide. That said, HSD had no effect on EAU disease severity induced by adoptive transfer of semi-purified auto-reactive IRBP-specific T lymphocytes. Accordingly, HSD did not affect IRBP-specific systemic afferent immune response as attested by no HSD-linked changes in T lymphocytes proliferation, cytokine production and Treg proportion. Gut microbiota analysis from cecal samples in naïve and EAU mice demonstrated that HSD affected differentially α-diversity between groups, whereas β-diversity was significantly modified in all groups. Unknown Tannerellaceae was the only taxon associated to HSD exposure in all treatment groups. Interestingly, a significantly higher abundance of unknown Gastranaerophilales, with potential anti-inflammatory properties, appeared in HSD-fed native EAU mice, only. Discussion In conclusion, our study suggests a possible impact of HSD on gut microbiota composition and consequently on development and clinical severity of EAU. Further studies are required to investigate the potential beneficial role of Gastranaerophilales in EAU.
Collapse
Affiliation(s)
- Naomi Derluyn
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Foucart
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Wavre, Belgium
| | - Rami Abdo
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Louis Vaudoisey
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Deborah Lipski
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Wavre, Belgium
| | - Catherine Bruyns
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - François Willermain
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
6
|
Afsar B, Afsar RE. Salt Behind the Scenes of Systemic Lupus Erythematosus and Rheumatoid Arthritis. Curr Nutr Rep 2023; 12:830-844. [PMID: 37980312 DOI: 10.1007/s13668-023-00509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE OF REVIEW Sodium is vital for human health. High salt intake is a global health problem and is associated with cardiovascular morbidity and mortality. Recent evidence suggests that both innate and adaptive immune systems are affected by sodium. In general, excess salt intake drives immune cells toward a pro-inflammatory phenotype. The incidence of autoimmune diseases, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), is steadily increasing. As excess salt induces a pro-inflammatory state, increased salt intake may have impacts on autoimmune diseases. The relationship between salt intake and autoimmune diseases is most widely studied in patients with SLE or RA. This review aimed to summarize the relationship between salt intake and SLE and RA. RECENT FINDINGS Most, but not all, of these studies showed that high salt intake might promote SLE by M1 macrophage shift, increase in Th17/Treg cell ratio, activation of dendritic and follicular helper T cells, and increased secretion of pro-inflammatory cytokines. In RA, apart from driving immune cells toward a pro-inflammatory state, high salt intake also influences cellular signaling pathways, including receptor activator of nuclear factor κB ligand (RANKL), Rho GTPases, and MAPK (mitogen-activated protein kinase). There is now sufficient evidence that excess salt intake may be related to the development and progression of SLE and RA, although there are still knowledge gaps. More studies are warranted to further highlight the relationship between excess salt intake, SLE, and RA. Salt intake may affect cell types and pro-inflammatory cytokines and signaling pathways associated with the development and progression of systemic lupus erythematosus and rheumatoid arthritis. Bcl-6 B-cell lymphoma, 6 Erk extracellular signal-regulated kinases, IFN-γ interferon-gamma, JNK c-Jun N-terminal kinase, IL-4 interleukin 4, IL-6 interleukin 6, MAPK mitogen-activated protein kinase, STAT signal transducer and activator of transcription, Tnf-α tumor necrosis factor, Treg T regulatory cell.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, 32260, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, 32260, Turkey
| |
Collapse
|
7
|
Zlatar L, Mahajan A, Muñoz-Becerra M, Weidner D, Bila G, Bilyy R, Titze J, Hoffmann MH, Schett G, Herrmann M, Steffen U, Muñoz LE, Knopf J. Suppression of neutrophils by sodium exacerbates oxidative stress and arthritis. Front Immunol 2023; 14:1174537. [PMID: 37600805 PMCID: PMC10433750 DOI: 10.3389/fimmu.2023.1174537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Typical Western diet, rich in salt, contributes to autoimmune disease development. However, conflicting reports exist about the effect of salt on neutrophil effector functions, also in the context of arthritis. Methods We investigated the effect of sodium chloride (NaCl) on neutrophil viability and functions in vitro, and in vivo employing the murine K/BxN-serum transfer arthritis (STA) model. Results and discussion The effects of NaCl and external reactive oxygen species (H2O2) were further examined on osteoclasts in vitro. Hypertonic sodium-rich media caused primary/secondary cell necrosis, altered the nuclear morphology, inhibited phagocytosis, degranulation, myeloperoxidase (MPO) peroxidation activity and neutrophil extracellular trap (NET) formation, while increasing total ROS production, mitochondrial ROS production, and neutrophil elastase (NE) activity. High salt diet (HSD) aggravated arthritis by increasing inflammation, bone erosion, and osteoclast differentiation, accompanied by increased NE expression and activity. Osteoclast differentiation was decreased with 25 mM NaCl or 100 nM H2O2 addition to isotonic media. In contrast to NaCl, external H2O2 had pro-resorptive effects in vitro. We postulate that in arthritis under HSD, increased bone erosion can be attributed to an enhanced oxidative milieu maintained by infiltrating neutrophils, rather than a direct effect of NaCl.
Collapse
Affiliation(s)
- Leticija Zlatar
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aparna Mahajan
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Marco Muñoz-Becerra
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Daniela Weidner
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Galyna Bila
- Department of Histology, Cytology, Embryology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Rostyslav Bilyy
- Department of Histology, Cytology, Embryology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Jens Titze
- Division of Nephrology and Hypertension, Universitätsklinikum Erlangen, Erlangen, Germany
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Markus H. Hoffmann
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Georg Schett
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ulrike Steffen
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
8
|
Kondo N, Kanai T, Okada M. Rheumatoid Arthritis and Reactive Oxygen Species: A Review. Curr Issues Mol Biol 2023; 45:3000-3015. [PMID: 37185721 PMCID: PMC10137217 DOI: 10.3390/cimb45040197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disease that causes progressive joint damage and can lead to lifelong disability. Numerous studies support the hypothesis that reactive oxygen species (ROS) are associated with RA pathogenesis. Recent advances have clarified the anti-inflammatory effect of antioxidants and their roles in RA alleviation. In addition, several important signaling pathway components, such as nuclear factor kappa B, activator-protein-1, nuclear factor (erythroid-derived 2)-like 2/kelch-like associated protein, signal transducer and activator of transcription 3, and mitogen-activated protein kinases, including c-Jun N-terminal kinase, have been identified to be associated with RA. In this paper, we outline the ROS generation process and relevant oxidative markers, thereby providing evidence of the association between oxidative stress and RA pathogenesis. Furthermore, we describe various therapeutic targets in several prominent signaling pathways for improving RA disease activity and its hyper oxidative state. Finally, we reviewed natural foods, phytochemicals, chemical compounds with antioxidant properties and the association of microbiota with RA pathogenesis.
Collapse
Affiliation(s)
- Naoki Kondo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tomotake Kanai
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
9
|
Achmad A, Suharjono S, Soeroso J, Suprapti B, Siswandono S, Pristianty L, Rahmadi M, Nugraha J, Nugroho CW, Surya Y, Persada Isma SP, Rahadiansyah E, Huwae TEC, Putra Suryana BP. The sodium does not affect joint pain and functional activity of knee osteoarthritis patients. J Public Health Afr 2023. [PMID: 37492557 PMCID: PMC10365668 DOI: 10.4081/jphia.2023.2494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background: The sodium may aggravate synovial inflammation and cartilage thinning. This incidence can cause joint pain and reduce functional activity. Not many people know the effect of sodium on the incidence of OA.
Objective: This study aims to determine the relationship between sodium in the body and knee joint pain which results in functional activity.
Methods: The quantitative descriptive study used accidental sampling. The study was conducted at three outpatient polyclinic orthopedics of hospitals and was approved by the Health Ethics Committee. All data were collected during the interview. The Semi-Quantitative Food Frequency Questionnaire (SQ-FFQ) and the Nutrisurvey Indonesia 2007 application were used as a tool to collect daily sodium intake (mg). Knee joint pain score was measured using the Visual Analog Scale (VAS) while functional body activity was measured using the Western Ontario McMaster Osteoarthritis Index (WOMAC). The Pearson and Spearman test (p<0.05) were used as a correlation test.
Results: 80 subjects were according to the inclusion criteria. Characteristics of the subjects were pre-elderly (32, 40%), women (74, 92.5%), BMI≥ 30 kg/m2 (54, 67.5%) and occupation (43, 53.75%). Average sodium intake = 2090.78 ± 1084.33 mg, VAS score = 6.28 ± 1.95 and WOMAC score = 32.65 ± 14.88. The correlation sodium, VAS, and WOMAC were not significant (p=0.196, p=0.372).
Conclusions: Increased sodium intake is not associated with knee joint pain and functional body activity.
Collapse
|
10
|
Lanspa M, Kothe B, Pereira MR, Kesselman MM, Petrosky SN. A Systematic Review of Nutritional Interventions on Key Cytokine Pathways in Rheumatoid Arthritis and Its Implications for Comorbid Depression: Is a More Comprehensive Approach Required? Cureus 2022; 14:e28031. [PMID: 35990558 PMCID: PMC9380898 DOI: 10.7759/cureus.28031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is associated with both local and systemic inflammatory processes via the aberrant regulation of inflammatory pathways and imbalances in several mediators of inflammation. Cytokines, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1B, IL-6, IL-17, IL-18, rheumatoid factor, anti-cyclic citrullinated protein, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) have been used in diagnosing and tracking the progression of RA. The primary objective of this review is to identify and summarize which specific dietary patterns and nutritional interventions go beyond symptom management to improve the response to known inflammatory cytokines and possibly decrease markers of inflammation in the RA disease process. Analysis of the 41 identified publications demonstrated that certain dietary patterns, the consumption of specific macronutrients, and supplementation with herbals or other compounds have shown some effect on improving cytokine profiles in patients with RA. This review illustrates the importance of proper patient education on the anti-inflammatory and potential protective impacts substantial dietary change may have on the disease progression and symptoms of RA. Identifying nutritional interventions and dietary patterns that improve the inflammatory cytokine profile, and therefore disease progression and inflammatory comorbidities of RA will help further focus research on treatments that may provide a better overall improvement in quality of life for RA patients by focusing on the root cause inflammatory processes that affect not only joint destruction but also depression-rated disability. This review further notes that while depression is commonly found in patients who suffer from chronic illnesses, it is especially prevalent in the RA population. The pathology of depression is associated with systemic inflammation, which is a known outcome of RA and may explain this strong association. Cytokines IL-6, IL-1, and TNF-α, known mediators involved in the progression of RA, are strongly associated with stress-related disorders including depression and anxiety. The presence of these cytokines is also correlated with the severity and duration of depression. This may signal a potential use of cytokines in diagnosing and following the progression of depression not only in patients with RA but also others. Given the statistics presented on depression and suicide in patients with RA, and the shared inflammatory pathway between the two diseases, depression and suicide screening scales should be included along with analysis of inflammatory markers and disease activity scores (DAS) in any future RA study.
Collapse
|
11
|
Concerted regulation of OPG/RANKL/ NF‑κB/MMP-13 trajectories contribute to ameliorative capability of prodigiosin and/or low dose γ-radiation against adjuvant- induced arthritis in rats. Int Immunopharmacol 2022; 111:109068. [PMID: 35944459 DOI: 10.1016/j.intimp.2022.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prodigiosin (PDG) is a microbial red dye with antioxidant and anti-inflammatory properties, although its effect on rheumatoid arthritis (RA) remains uncertain. Also, multiple doses of low dose γ- radiation (LDR) have been observed to be as a successful intervention for RA. Thus, the purpose of this study was to investigate the ameliorative potential of PDG and/or LDR on adjuvant-induced arthritis (AIA) in rats. METHODS The anti-inflammatory and anti-arthritic effects of PDG and/or LDR were examined in vitro and in vivo, respectively. In the AIA model, the arthritic indexes, paw swelling degrees, body weight gain, and histopathological assessment in AIA rats were assayed. The impact of PDG (200 µg/kg; p.o) and/or LDR (0.5 Gy) on the levels of pro- and anti-inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-18, IL-17A, and IL-10) as well as the regulation of osteoprotegrin (OPG)/ receptor activator of nuclear factor κB ligand (RANKL)/ nuclear factor-κB (NF-κB)/MMP-13 pathways was determined. Methotrexate (MTX; 0.05 mg/kg; twice/week, i.p) was administered concurrently as a standard anti-arthritic drug. RESULTS PDG and/or LDR markedly diminished the arthritic indexes, paw edema, weigh loss in AIA rats, alleviated the pathological alterations in joints, reduced the levels of pro-inflammatory cytokines IL-1β, TNF-α, IL-6, IL-18, IL-17A, and RANKL in serum and synovial tissues, while increasing anti-inflammatory cytokines IL-10 and OPG levels. Moreover, PDG and/or LDR down-regulated the expression of RANKL, NF-κBp65, MMP13, caspase-3, and decreased the RANKL/OPG ratio, whereas OPG and collagen II were enhanced in synovial tissues. CONCLUSION PDG and/or LDR exhibited obvious anti-RA activity on AIA.
Collapse
|
12
|
Arleevskaya M, Takha E, Petrov S, Kazarian G, Renaudineau Y, Brooks W, Larionova R, Korovina M, Valeeva A, Shuralev E, Mukminov M, Kravtsova O, Novikov A. Interplay of Environmental, Individual and Genetic Factors in Rheumatoid Arthritis Provocation. Int J Mol Sci 2022; 23:ijms23158140. [PMID: 35897715 PMCID: PMC9329780 DOI: 10.3390/ijms23158140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
In this review, we explore systemization of knowledge about the triggering effects of non-genetic factors in pathogenic mechanisms that contribute to the development of rheumatoid arthritis (RA). Possible mechanisms involving environmental and individual factors in RA pathogenesis were analyzed, namely, infections, mental stress, sleep deprivation ecology, age, perinatal and gender factors, eating habits, obesity and smoking. The non-genetic factors modulate basic processes in the body with the impact of these factors being non-specific, but these common challenges may be decisive for advancement of the disease in the predisposed body at risk for RA. The provocation of this particular disease is associated with the presence of congenital loci minoris resistentia. The more frequent non-genetic factors form tangles of interdependent relationships and, thereby, several interdependent external factors hit one vulnerable basic process at once, either provoking or reinforcing each other. Understanding the specific mechanisms by which environmental and individual factors impact an individual under RA risk in the preclinical stages can contribute to early disease diagnosis and, if the factor is modifiable, might be useful for the prevention or delay of its development.
Collapse
Affiliation(s)
- Marina Arleevskaya
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
- Correspondence: ; Tel.: +7-89172-886-679; Fax: +7-843-238-5413
| | - Elena Takha
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Sergey Petrov
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Gevorg Kazarian
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Yves Renaudineau
- Department of Immunology, CHU Toulouse, INSERM U1291, CNRS U5051, University Toulouse IIII, 31000 Toulouse, France;
| | - Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA;
| | - Regina Larionova
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Marina Korovina
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Anna Valeeva
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Eduard Shuralev
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Malik Mukminov
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Olga Kravtsova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Andrey Novikov
- Mathematical Center, Sobolev Instiute of Mathematics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| |
Collapse
|
13
|
Li X, Alu A, Wei Y, Wei X, Luo M. The modulatory effect of high salt on immune cells and related diseases. Cell Prolif 2022; 55:e13250. [PMID: 35747936 PMCID: PMC9436908 DOI: 10.1111/cpr.13250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The adverse effect of excessive salt intake has been recognized in decades. Researchers have mainly focused on the association between salt intake and hypertension. However, studies in recent years have proposed the existence of extra-renal sodium storage and provided insight into the immunomodulatory function of sodium. OBJECTIVES In this review, we discuss the modulatory effects of high salt on various innate and adaptive immune cells and immune-regulated diseases. METHODS We identified papers through electronic searches of PubMed database from inception to March 2022. RESULTS An increasing body of evidence has demonstrated that high salt can modulate the differentiation, activation and function of multiple immune cells. Furthermore, a high-salt diet can increase tissue sodium concentrations and influence the immune responses in microenvironments, thereby affecting the development of immune-regulated diseases, including hypertension, multiple sclerosis, cancer and infections. These findings provide a novel mechanism for the pathology of certain diseases and indicate that salt might serve as a target or potential therapeutic agent in different disease contexts. CONCLUSION High salt has a profound impact on the differentiation, activation and function of multiple immune cells. Additionally, an HSD can modulate the development of various immune-regulated diseases.
Collapse
Affiliation(s)
- Xian Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Heintzman DR, Fisher EL, Rathmell JC. Microenvironmental influences on T cell immunity in cancer and inflammation. Cell Mol Immunol 2022; 19:316-326. [PMID: 35039633 PMCID: PMC8762638 DOI: 10.1038/s41423-021-00833-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
T cell metabolism is dynamic and highly regulated. While the intrinsic metabolic programs of T cell subsets are integral to their distinct differentiation and functional patterns, the ability of cells to acquire nutrients and cope with hostile microenvironments can limit these pathways. T cells must function in a wide variety of tissue settings, and how T cells interpret these signals to maintain an appropriate metabolic program for their demands or if metabolic mechanisms of immune suppression restrain immunity is an area of growing importance. Both in inflamed and cancer tissues, a wide range of changes in physical conditions and nutrient availability are now acknowledged to shape immunity. These include fever and increased temperatures, depletion of critical micro and macro-nutrients, and accumulation of inhibitory waste products. Here we review several of these factors and how the tissue microenvironment both shapes and constrains immunity.
Collapse
Affiliation(s)
- Darren R Heintzman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37205, USA
| | - Emilie L Fisher
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37205, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37205, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, 37205, USA.
| |
Collapse
|
15
|
Yunnan Baiyao Ameliorates Rheumatoid Arthritis in Rats by Shifting the Th17/Treg Cell Balance and Preventing Osteoclast Differentiation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3764444. [PMID: 35178101 PMCID: PMC8843773 DOI: 10.1155/2022/3764444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
Yunnan Baiyao (YNB) is a traditional Chinese medicine that possesses anti-inflammatory effects. Previously, we have demonstrated the effects of YNB in rheumatoid arthritis (RA) animal models; however, the underlying mechanisms are unclear. In the present study, we aimed to investigate the effects of YNB on the T-helper (Th)17/T-regulatory (Treg) cell balance in a collagen-induced arthritis rat model orally administrated YNB or methotrexate, a widely used therapeutic agent for treating RA. Our results showed that YNB treatment significantly decreased the voix pedis thickness and joint functionality scores and alleviated joint histopathology in these rats. These YNB-induced effects were achieved by decreasing the number of Th17 cells and increasing that of Treg cells in the spleen. Moreover, the interleukin- (IL-) 17 level considerably decreased in the serum of YNB-treated rats, whereas the IL-10 level significantly increased. Furthermore, YNB could inhibit RANKL-induced osteoclast formation by regulating the tumor necrosis factor receptor-associated factor 6/NF-κB/nuclear factor of the activated T-cell pathway. In summary, our study shows that YNB exhibits antiarthritic activity by decreasing the ratio of Th17/Treg cells, regulating the cytokine balance, and inhibiting osteoclast activation, providing an experimental basis that supports the use of this traditional Chinese medicine for the clinical treatment of RA.
Collapse
|
16
|
Sehnert B, Pohle S, Heuberger C, Rzepka R, Seidl M, Nimmerjahn F, Chevalier N, Titze J, Voll RE. Low-Salt Diet Attenuates B-Cell- and Myeloid-Cell-Driven Experimental Arthritides by Affecting Innate as Well as Adaptive Immune Mechanisms. Front Immunol 2021; 12:765741. [PMID: 34925335 PMCID: PMC8678127 DOI: 10.3389/fimmu.2021.765741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022] Open
Abstract
A link between high sodium chloride (salt) intake and the development of autoimmune diseases was previously reported. These earlier studies demonstrated exacerbation of experimental autoimmune encephalomyelitis and colitis by excess salt intake associated with Th17- and macrophage-mediated mechanisms. Little is known about the impact of dietary salt intake on experimental arthritides. Here, we investigated if salt restriction can exert beneficial effects on collagen-induced arthritis (CIA) and K/BxN serum transfer-induced arthritis (STIA). CIA depends on both adaptive and innate immunity, while STIA predominantly mimics the innate immune cell-driven effector phase of arthritis. In both models, low salt (LS) diet significantly decreased arthritis severity compared to regular salt (RS) and high salt (HS) diet. We did not observe an aggravation of arthritis with HS diet compared to RS diet. Remarkably, in STIA, LS diet was as effective as IL-1 receptor blocking treatment. Complement-fixing anti-CII IgG2a antibodies are associated with inflammatory cell infiltration and cartilage destruction. LS diet reduced anti-CII IgG2a levels in CIA and decreased the anti-CII IgG2a/IgG1 ratios pointing toward a more Th2-like response. Significantly less inflammatory joint infiltrates and cartilage breakdown associated with reduced protein concentrations of IL-1 beta (CIA and STIA), IL-17 (CIA), and the monocyte chemoattractant protein-1 (MCP-1) (CIA) were detected in mice receiving LS diet compared to HS diet. However, we did not find a reduced IL-17A expression in CD4+ T cells upon salt restriction in CIA. Analysis of mRNA transcripts and immunoblots revealed a link between LS diet and inhibition of the p38 MAPK (mitogen-activated protein kinase)/NFAT5 (nuclear factor of activated T-cells 5) signaling axis in STIA. Further experiments indicated a decreased leukodiapedesis under LS conditions. In conclusion, dietary salt restriction ameliorates CIA and STIA, indicating a beneficial role of LS diet during both the immunization and effector phase of immune-mediated arthritides by predominantly modulating the humoral immunity and the activation status of myeloid lineage cells. Hence, salt restriction might represent a supportive dietary intervention not only to reduce cardiovascular risk, but also to improve human inflammatory joint diseases like rheumatoid arthritis.
Collapse
Affiliation(s)
- Bettina Sehnert
- Department of Rheumatology and Clinical Immunology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandy Pohle
- Department of Medicine 3, Friedrich-Alexander-University of Erlangen-Nuremberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cornelia Heuberger
- Department of Rheumatology and Clinical Immunology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rita Rzepka
- Department of Rheumatology and Clinical Immunology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Institute for Surgical Pathology, Department of Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Titze
- Interdisciplinary Center for Clinical Research and Department of Nephrology and Hypertension, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander-University, Erlangen, Germany
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI) Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Narula N, Wong ECL, Dehghan M, Mente A, Rangarajan S, Lanas F, Lopez-Jaramillo P, Rohatgi P, Lakshmi PVM, Varma RP, Orlandini A, Avezum A, Wielgosz A, Poirier P, Almadi MA, Altuntas Y, Ng KK, Chifamba J, Yeates K, Puoane T, Khatib R, Yusuf R, Boström KB, Zatonska K, Iqbal R, Weida L, Yibing Z, Sidong L, Dans A, Yusufali A, Mohammadifard N, Marshall JK, Moayyedi P, Reinisch W, Yusuf S. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. BMJ 2021; 374:n1554. [PMID: 34261638 PMCID: PMC8279036 DOI: 10.1136/bmj.n1554] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate the relation between intake of ultra-processed food and risk of inflammatory bowel disease (IBD). DESIGN Prospective cohort study. SETTING 21 low, middle, and high income countries across seven geographical regions (Europe and North America, South America, Africa, Middle East, south Asia, South East Asia, and China). PARTICIPANTS 116 087 adults aged 35-70 years with at least one cycle of follow-up and complete baseline food frequency questionnaire (FFQ) data (country specific validated FFQs were used to document baseline dietary intake). Participants were followed prospectively at least every three years. MAIN OUTCOME MEASURES The main outcome was development of IBD, including Crohn's disease or ulcerative colitis. Associations between ultra-processed food intake and risk of IBD were assessed using Cox proportional hazard multivariable models. Results are presented as hazard ratios with 95% confidence intervals. RESULTS Participants were enrolled in the study between 2003 and 2016. During the median follow-up of 9.7 years (interquartile range 8.9-11.2 years), 467 participants developed incident IBD (90 with Crohn's disease and 377 with ulcerative colitis). After adjustment for potential confounding factors, higher intake of ultra-processed food was associated with a higher risk of incident IBD (hazard ratio 1.82, 95% confidence interval 1.22 to 2.72 for ≥5 servings/day and 1.67, 1.18 to 2.37 for 1-4 servings/day compared with <1 serving/day, P=0.006 for trend). Different subgroups of ultra-processed food, including soft drinks, refined sweetened foods, salty snacks, and processed meat, each were associated with higher hazard ratios for IBD. Results were consistent for Crohn's disease and ulcerative colitis with low heterogeneity. Intakes of white meat, red meat, dairy, starch, and fruit, vegetables, and legumes were not associated with incident IBD. CONCLUSIONS Higher intake of ultra-processed food was positively associated with risk of IBD. Further studies are needed to identify the contributory factors within ultra-processed foods. STUDY REGISTRATION ClinicalTrials.gov NCT03225586.
Collapse
Affiliation(s)
- Neeraj Narula
- Department of Medicine (Division of Gastroenterology) and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Emily C L Wong
- Department of Medicine (Division of Gastroenterology) and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Mahshid Dehghan
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Andrew Mente
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Sumathy Rangarajan
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Fernando Lanas
- Department of Internal Medicine, Universidad de La Frontera, Temuco, Chile
| | - Patricio Lopez-Jaramillo
- Masira Research Institute, Universidad de Santander (UDES) Fundación Oftalmológica de Santander-FOSCAL-Bucaramanga, Colombia
| | - Priyanka Rohatgi
- Department of Nutrition and Dietetics, Apollo Hospitals, Bangalore, India
| | - P V M Lakshmi
- School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravi Prasad Varma
- Achutha Menon Centre for Health Science Studies, SCTIMST and Health Action by People, Thiruvananthapuram, India
| | - Andres Orlandini
- Department of Cardiology, Estudios Clinicos Latinoamerica ECLA Rosario, Santa Fe, Argentina
| | - Alvaro Avezum
- International Research Centre, Hospital Alemao Oswaldo Cruz, Sao Paulo, Brazil, Universidade Santo Amaro (UNISA), Sao Paulo, Brazil
| | - Andreas Wielgosz
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Paul Poirier
- Faculté de pharmacie, Université Laval Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Majid A Almadi
- Department of Medicine, Division of Gastroenterology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Yuksel Altuntas
- University of Health Sciences, Faculty of Medicine, Istanbul Sisli Hamidiye Etfal Health Training and Research Hospital, Clinic of Endocrinology and Metabolism Sisli/Istanbul, Turkey
| | - Kien Keat Ng
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Jephat Chifamba
- Department of Physiology, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Karen Yeates
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Thandi Puoane
- School of Public Health, University of the Western Cape, Bellville. South Africa
| | - Rasha Khatib
- Institute for Community and Public Health, Birzeit University, Birzeit, Palestine
| | - Rita Yusuf
- Advocate Research Institute, Advocate Health Care, IL, USA
- School of Life Sciences, Independent University, Bangladesh Bashundhara, Dhaka, Bangladesh
| | - Kristina Bengtsson Boström
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Katarzyna Zatonska
- Department of Social Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Romaina Iqbal
- Department of Community Health Sciences, The Aga Khan University, Karachi, Pakistan
| | - Liu Weida
- Medical Research and Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences Mentougou District, Beijing, China
| | - Zhu Yibing
- Medical Research and Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences Mentougou District, Beijing, China
| | - Li Sidong
- Medical Research and Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences Mentougou District, Beijing, China
| | - Antonio Dans
- Section of Adult Medicine and Medical Research Unit, University of Philippines, Manila, Philippines
| | - Afzalhussein Yusufali
- Hatta Hospital, Dubai Medical University, Dubai Health Authority, Dubai, United Arab Emirates
| | - Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - John K Marshall
- Department of Medicine (Division of Gastroenterology) and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Paul Moayyedi
- Department of Medicine (Division of Gastroenterology) and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Walter Reinisch
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Salim Yusuf
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| |
Collapse
|
18
|
Maifeld A, Wild J, Karlsen TV, Rakova N, Wistorf E, Linz P, Jung R, Birukov A, Gimenez-Rivera VA, Wilck N, Bartolomaeus T, Dechend R, Kleinewietfeld M, Forslund SK, Krause A, Kokolakis G, Philipp S, Clausen BE, Brand A, Waisman A, Kurschus FC, Wegner J, Schultheis M, Luft FC, Boschmann M, Kelm M, Wiig H, Kuehne T, Müller DN, Karbach S, Markó L. Skin Sodium Accumulates in Psoriasis and Reflects Disease Severity. J Invest Dermatol 2021; 142:166-178.e8. [PMID: 34237339 DOI: 10.1016/j.jid.2021.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Sodium can accumulate in the skin at concentrations exceeding serum levels. A high sodium environment can lead to pathogenic T helper 17 cell expansion. Psoriasis is a chronic inflammatory skin disease in which IL-17‒producing T helper 17 cells play a crucial role. In an observational study, we measured skin sodium content in patients with psoriasis and in age-matched healthy controls by Sodium-23 magnetic resonance imaging. Patients with PASI > 5 showed significantly higher sodium and water content in the skin but not in other tissues than those with lower PASI or healthy controls. Skin sodium concentrations measured by Sodium-23 spectroscopy or by atomic absorption spectrometry in ashed-skin biopsies verified the findings with Sodium-23 magnetic resonance imaging. In vitro T helper 17 cell differentiation of naive CD4+ cells from patients with psoriasis markedly induced IL-17A expression under increased sodium chloride concentrations. The imiquimod-induced psoriasis mouse model replicated the human findings. Extracellular tracer Chromium-51-EDTA measurements in imiquimod- and sham-treated skin showed similar extracellular volumes, rendering excessive water of intracellular origin. Chronic genetic IL-17A‒driven psoriasis mouse models underlined the role of IL-17A in dermal sodium accumulation and inflammation. Our data describe skin sodium as a pathophysiological feature of psoriasis, which could open new avenues for its treatment.
Collapse
Affiliation(s)
- András Maifeld
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Wild
- Center of Cardiology - Cardiology I, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tine V Karlsen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Natalia Rakova
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Elisa Wistorf
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Peter Linz
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Rebecca Jung
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany; Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anna Birukov
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Nicola Wilck
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Theda Bartolomaeus
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Helios Clinic Berlin-Buch, Berlin, Germany
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University Campus Diepenbeek, Hasselt, Belgium
| | - Sofia K Forslund
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Krause
- Medical Centre for Rheumatology and Clinical Immunology, Immanuel Krankenhaus Berlin, Berlin, Germany
| | - Georgios Kokolakis
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Philipp
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Björn E Clausen
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Brand
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ari Waisman
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Florian C Kurschus
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joanna Wegner
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Schultheis
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael Boschmann
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus Kelm
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Congenital Heart Disease, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Titus Kuehne
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Congenital Heart Disease, German Heart Center Berlin (DHZB), Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Berlin, Germany
| | - Susanne Karbach
- Center of Cardiology - Cardiology I, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lajos Markó
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany; Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
19
|
Minamino H, Katsushima M, Hashimoto M, Fujita Y, Yoshida T, Ikeda K, Isomura N, Oguri Y, Yamamoto W, Watanabe R, Murakami K, Murata K, Nishitani K, Tanaka M, Ito H, Ohmura K, Matsuda S, Inagaki N, Morinobu A. Urinary sodium-to-potassium ratio associates with hypertension and current disease activity in patients with rheumatoid arthritis: a cross-sectional study. Arthritis Res Ther 2021; 23:96. [PMID: 33773587 PMCID: PMC8004419 DOI: 10.1186/s13075-021-02479-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
Background Excessive salt intake is thought to exacerbate both development of hypertension and autoimmune diseases in animal models, but the clinical impact of excessive salt in rheumatoid arthritis (RA) patients is still unknown. We performed a cross-sectional study to clarify the associations between salt load index (urinary sodium-to-potassium ratio (Na/K ratio)), current disease activity, and hypertension in an RA population. Methods Three hundred thirty-six participants from our cohort database (KURAMA) were enrolled. We used the spot urine Na/K ratio as a simplified index of salt loading and used the 28-Joint RA Disease Activity Score (DAS28-ESR) as an indicator of current RA disease activity. Using these indicators, we evaluated statistical associations between urinary Na/K ratio, DAS28-ESR, and prevalence of hypertension. Results Urinary Na/K ratio was positively associated with measured systolic and diastolic blood pressure and also with prevalence of hypertension even after covariate adjustment (OR 1.34, p < 0.001). In addition, increased urinary Na/K ratio was significantly and positively correlated with DAS28-ESR in multiple regression analysis (estimate 0.12, p < 0.001), as was also the case in gender-separated and prednisolone-separated sub-analyses. Conclusion Urinary Na/K ratio was independently associated with current disease activity as well as with prevalence of hypertension in RA patients. Thus, dietary modifications such as salt restriction and potassium supplementation should be investigated as a potential candidate for attenuating both disease activity and hypertension in RA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02479-x.
Collapse
Affiliation(s)
- Hiroto Minamino
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan. .,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.
| | - Masao Katsushima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Motomu Hashimoto
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan.
| | - Yoshihito Fujita
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan.
| | - Tamami Yoshida
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, Kyoto-shi, Kyoto, 602-8566, Japan
| | - Kaori Ikeda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Nozomi Isomura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Yasuo Oguri
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Wataru Yamamoto
- Department of Health Information Management, Kurashiki Sweet Hospital, 3542-1 Nakasho, Krashiki, Okayama, 710-0016, Japan
| | - Ryu Watanabe
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Kosaku Murakami
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Koichi Murata
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Kohei Nishitani
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Hiromu Ito
- Department of Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8507, Japan
| |
Collapse
|
20
|
Matthias J, Heink S, Picard F, Zeiträg J, Kolz A, Chao YY, Soll D, de Almeida GP, Glasmacher E, Jacobsen ID, Riedel T, Peters A, Floess S, Huehn J, Baumjohann D, Huber M, Korn T, Zielinski CE. Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. J Clin Invest 2021; 130:4587-4600. [PMID: 32484796 DOI: 10.1172/jci137786] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Th cells integrate signals from their microenvironment to acquire distinct specialization programs for efficient clearance of diverse pathogens or for immunotolerance. Ionic signals have recently been demonstrated to affect T cell polarization and function. Sodium chloride (NaCl) was proposed to accumulate in peripheral tissues upon dietary intake and to promote autoimmunity via the Th17 cell axis. Here, we demonstrate that high-NaCl conditions induced a stable, pathogen-specific, antiinflammatory Th17 cell fate in human T cells in vitro. The p38/MAPK pathway, involving NFAT5 and SGK1, regulated FoxP3 and IL-17A expression in high-NaCl conditions. The NaCl-induced acquisition of an antiinflammatory Th17 cell fate was confirmed in vivo in an experimental autoimmune encephalomyelitis (EAE) mouse model, which demonstrated strongly reduced disease symptoms upon transfer of T cells polarized in high-NaCl conditions. However, NaCl was coopted to promote murine and human Th17 cell pathogenicity, if T cell stimulation occurred in a proinflammatory and TGF-β-low cytokine microenvironment. Taken together, our findings reveal a context-dependent, dichotomous role for NaCl in shaping Th17 cell pathogenicity. NaCl might therefore prove beneficial for the treatment of chronic inflammatory diseases in combination with cytokine-blocking drugs.
Collapse
Affiliation(s)
- Julia Matthias
- Institute of Virology, Technical University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Munich, Munich, Germany.,Department of Cellular Immunoregulation, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvia Heink
- Klinikum rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Felix Picard
- Institute for Medical Microbiology and Hygiene, University of Marburg, Marburg, Germany
| | - Julia Zeiträg
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU Munich), Planegg-Martinsried, Germany
| | - Anna Kolz
- Institute of Clinical Neuroimmunology, Hospital and Biomedical Center of LMU Munich, Planegg-Martinsried, Germany
| | - Ying-Yin Chao
- Institute of Virology, Technical University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Munich, Munich, Germany.,TranslaTUM, Technical University of Munich, Munich, Germany
| | - Dominik Soll
- Institute of Virology, Technical University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Gustavo P de Almeida
- Institute of Virology, Technical University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Munich, Munich, Germany.,TranslaTUM, Technical University of Munich, Munich, Germany
| | - Elke Glasmacher
- Roche Innovation Center Munich, pRED, Large Molecule Research, Penzberg, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig and German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover-Braunschweig, Germany
| | - Anneli Peters
- Institute of Clinical Neuroimmunology, Hospital and Biomedical Center of LMU Munich, Planegg-Martinsried, Germany
| | - Stefan Floess
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dirk Baumjohann
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU Munich), Planegg-Martinsried, Germany
| | - Magdalena Huber
- Institute for Medical Microbiology and Hygiene, University of Marburg, Marburg, Germany
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christina E Zielinski
- Institute of Virology, Technical University of Munich, Munich, Germany.,German Center for Infection Research, Partner Site Munich, Munich, Germany.,Department of Cellular Immunoregulation, Charité - Universitätsmedizin Berlin, Berlin, Germany.,TranslaTUM, Technical University of Munich, Munich, Germany
| |
Collapse
|
21
|
Woś I, Tabarkiewicz J. Effect of interleukin-6, -17, -21, -22, and -23 and STAT3 on signal transduction pathways and their inhibition in autoimmune arthritis. Immunol Res 2021; 69:26-42. [PMID: 33515210 PMCID: PMC7921069 DOI: 10.1007/s12026-021-09173-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
Rheumatic diseases are complex autoimmune diseases which include among others rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), and psoriatic arthritis (PsA). These diseases are characterized by prolonged and increased secretion of inflammatory factors, eventually leading to inflammation. This is often accompanied by persistent pain and stiffness in the joint and finally bone destruction and osteoporosis. These diseases can occur at any age, regardless of gender or origin. Autoimmune arthritis is admittedly associated with long-term treatment, and discontinuation of medication is associated with unavoidable relapse. Therefore, it is important to detect the disease at an early stage and apply appropriate preventative measures. During inflammation, pro-inflammatory factors such as interleukins (IL)-6, -17, -21, -22, and -23 are secreted, while anti-inflammatory factors including IL-10 are downregulated. Research conducted over the past several years has focused on inhibiting inflammatory pathways and activating anti-inflammatory factors to improve the quality of life of people with rheumatic diseases. The aim of this paper is to review current knowledge on stimulatory and inhibitory pathways involving the signal transducer and activator of transcription 3 (STAT3). STAT3 has been shown to be one of the crucial factors involved in inflammation and is directly linked with other pro-inflammatory factors and thus is a target of current research on rheumatoid diseases.
Collapse
Affiliation(s)
- Izabela Woś
- Laboratory for Translational Research in Medicine, Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
- Department of Human Immunology, Institute of Medical Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
| | - Jacek Tabarkiewicz
- Laboratory for Translational Research in Medicine, Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
- Department of Human Immunology, Institute of Medical Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
| |
Collapse
|
22
|
Dietary Salt Administration Decreases Enterotoxigenic Bacteroides fragilis (ETBF)-Promoted Tumorigenesis via Inhibition of Colonic Inflammation. Int J Mol Sci 2020; 21:ijms21218034. [PMID: 33126615 PMCID: PMC7663446 DOI: 10.3390/ijms21218034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022] Open
Abstract
Consumption of a Western-type diet has been linked to gut-microbiota-mediated colon inflammation that constitutes a risk factor for colorectal cancer. A high salt diet (HSD) exacerbates IL-17A-induced inflammation in inflammatory bowel disease and other autoimmune diseases. Enterotoxigenic Bacteroides fragilis (ETBF) is a gut commensal bacterium and reported to be a potent initiator of colitis via secretion of the Bacteroides fragilis toxin (BFT). BFT induces ectodomain cleavage of E-cadherin in colonic epithelial cells, consequently leading to cell rounding, epithelial barrier disruption, and the secretion of IL-8, which promotes tumorigenesis in mice via IL-17A-mediated inflammation. A HSD is characteristic of the Western-type diet and can exhibit inflammatory effects. However, a HSD induces effects in ETBF-induced colitis and tumorigenesis remain unknown. In this study, we investigated HSD effects in ETBF-colonized mice with azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced tumorigenesis as well as ETBF colitis mice. Unexpectedly, ETBF-infected mice fed a HSD exhibited decreased weight loss and splenomegaly and reduction of colon inflammation. The HSD significantly decreased the expression of IL-17A and inducible nitric oxide synthase (iNOS) in the colonic tissues of ETBF-infected mice. In addition, serum levels of IL-17A and nitric oxide (NO) were also diminished. However, HT29/C1 colonic epithelial cells treated with sodium chloride showed no changes in BFT-induced cellular rounding and IL-8 expression. Furthermore, HSD did not affect ETBF colonization in mice. In conclusion, HSD decreased ETBF-induced tumorigenesis through suppression of IL-17A and iNOS expression in the colon. HSD also inhibited colonic polyp numbers in the ETBF-infected AOM/DSS mice. Taken together, these findings suggest that a HSD consumption inhibited ETBF-promoted colon carcinogenesis in mice, indicating that a HSD could have beneficial effects under certain conditions.
Collapse
|
23
|
Rondanelli M, Perdoni F, Peroni G, Caporali R, Gasparri C, Riva A, Petrangolini G, Faliva MA, Infantino V, Naso M, Perna S, Rigon C. Ideal food pyramid for patients with rheumatoid arthritis: A narrative review. Clin Nutr 2020; 40:661-689. [PMID: 32928578 DOI: 10.1016/j.clnu.2020.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
Emerging literature suggests that diet plays an important modulatory role in rheumatoid arthritis (RA) because diet is an environmental factor that affects inflammation, antigen presentation, antioxidant defense mechanisms and gut microbiota. Patients with RA frequently ask their doctors about which diets to follow, and even in the absence of advice from their physicians, many patients are undertaking various dietary interventions. Given this background, the aim of this review is to evaluate the evidence to date regarding the ideal dietary approach for management of RA in order to reduce the counteracting inflammation, and to construct a food pyramid for patients with RA. The pyramid shows that carbohydrates should be consumed every day (3 portions of whole grains, preferably gluten free), together with fruits and vegetables (5 portions; among which fruit, berries and citrus fruit are to be preferred, and among the vegetables, green leafy ones.), light yogurt (125 ml), skim milk (200 ml), 1 glass (125 ml) of wine and extra virgin olive oil; weekly, fish (3 portions), white meat (3 portions), legumes (2 portions) eggs (2 portions), seasoned cheeses (2 portions), and red or processed meats (once a week). At the top of the pyramid, there are two pennants: one green means that subjects with RA need some personalized supplementation (vitamin D and omega 3) and one red means that there are some foods that are banned (salt and sugar). The food pyramid allows patients to easily figure out what to eat.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, 27100 Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, 27100 Italy.
| | - Federica Perdoni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100 Italy.
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100 Italy.
| | - Roberto Caporali
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy; Clinical Rheumatology Unit Gaetano Pini Hospital, Milan 20122, Italy.
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100 Italy.
| | - Antonella Riva
- Research and Development Department, Indena SpA, Milan, Italy.
| | | | - Milena Anna Faliva
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100 Italy.
| | - Vittoria Infantino
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, 27100 Italy.
| | - Maurizio Naso
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100 Italy.
| | - Simone Perna
- Department of Biology, University of Bahrain, College of Science, Sakhir Campus P. O. Box 32038 Bahrain.
| | - Chiara Rigon
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100 Italy.
| |
Collapse
|
24
|
Arvonen M, Vänni P, Sarangi AN, V Tejesvi M, Vähäsalo P, Aggarwal A, Stoll ML. Microbial orchestra in juvenile idiopathic arthritis: Sounds of disarray? Immunol Rev 2019; 294:9-26. [DOI: 10.1111/imr.12826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Miika Arvonen
- Department of Pediatrics Kuopio University HospitalUniversity of Eastern Finland Kuopio Finland
- PEDEGO Research Unit Faculty of Medicine University of Oulu Oulu Finland
| | - Petri Vänni
- PEDEGO Research Unit Faculty of Medicine University of Oulu Oulu Finland
- Genobiomics LLC Oulu Finland
| | - Aditya Narayan Sarangi
- Biomedical Informatics Center Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Mysore V Tejesvi
- Genobiomics LLC Oulu Finland
- Department of Ecology and Genetics University of Oulu Oulu Finland
| | - Paula Vähäsalo
- PEDEGO Research Unit Faculty of Medicine University of Oulu Oulu Finland
- Department of Children and Adolescents Oulu University Hospital Oulu Finland
- Medical Research Center Oulu Oulu Finland
| | - Amita Aggarwal
- Department of Clinical Immunology & Rheumatology Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India
| | - Matthew L Stoll
- Department of Pediatrics University of Alabama at Birmingham Birmingham AL USA
| |
Collapse
|
25
|
Dang J, Zhu S, Wang J. A protocol for humanized synovitis mice model. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2019; 8:47-52. [PMID: 31777685 PMCID: PMC6872480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disease that causes progressive chronic inflammation of the joints and destruction of articular cartilage and bone erosion. Cartilage destruction is a key characteristic in patients with RA. RA fibroblast-like synoviocytes (FLS) mainly contributes to local production of cytokines, inflammatory mediators and MMPs, and to migrate and destruct joint cartilage. Here, we summarized a detailed protocol for developing a humanized synovitis animal model. A cartilage-sponge complex without RA FLS was implanted under the left flank skin of a SCID mouse primarily, two weeks later, cartilage-sponge complex containing RA FLS was inserted under the right skin of the contralateral flank. The H&E staining clearly helps to identify the cartilage damage on the day 45 after second implantation. This model is highly significant to investigate the role and mechanisms of agents or cells in targeting RA FLS in vivo.
Collapse
Affiliation(s)
- Junlong Dang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
- Division of Rheumatology, Department of Medicine, Penn State University College of MedicineHershey 17033, USA
| | - Shangling Zhu
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Julie Wang
- Division of Rheumatology, Department of Medicine, Penn State University College of MedicineHershey 17033, USA
- Division of Immunology and Rheumatology, Department of Internal Medicine, Ohio State University College of MedicineColumbus 43210, USA
| |
Collapse
|
26
|
Li Q, Fang W, Hu F, Zhou X, Cheng Y, Jiang C. A high-salt diet aggravates retinal ischaemia/reperfusion injury. Exp Eye Res 2019; 188:107784. [PMID: 31476280 DOI: 10.1016/j.exer.2019.107784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/15/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
Ischaemia/reperfusion contributes to the pathophysiological process of many retinal diseases. Previous studies have shown that retinal ischaemia/reperfusion mainly results in neuronal degeneration, including thinning of the retina, retinal ganglion cell death and reductions in electroretinography. A high-salt diet contributes to the inflammatory response and tissue hypoperfusion and may be associated with ischaemia/reperfusion injury. In the present study, we investigated the influence of a high-salt diet on retinal ischaemia/reperfusion injury and explored the potential mechanism in a rat model. The results revealed that the high-salt diet aggravated ischaemia/reperfusion-induced thinning of the retina. A TUNEL assay and Brn-3a staining revealed substantially more severe cell death and loss of retinal ganglion cells, and electroretinography confirmed worse retinal function in the ischaemia/reperfusion eyes of rats fed the high-salt diet. These effects may be associated with upregulation of Caspase-3, Bax, Interleukin-1β and Interleukin-6 and decreased expression of nitric oxide. In summary, a high-salt diet aggravates ischaemia/reperfusion-induced retinal neuronal impairment by activating pro-apoptotic and pro-inflammatory signalling pathways and inhibiting vasodilation.
Collapse
Affiliation(s)
- Qingchen Li
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China; Key Laboratory of Myopia of State Health Ministry, Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Wangyi Fang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China; Key Laboratory of Myopia of State Health Ministry, Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Fangyuan Hu
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Xujiao Zhou
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yun Cheng
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Chunhui Jiang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China; Key Laboratory of Myopia of State Health Ministry, Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China.
| |
Collapse
|
27
|
Scrivo R, Perricone C, Altobelli A, Castellani C, Tinti L, Conti F, Valesini G. Dietary Habits Bursting into the Complex Pathogenesis of Autoimmune Diseases: The Emerging Role of Salt from Experimental and Clinical Studies. Nutrients 2019; 11:nu11051013. [PMID: 31060286 PMCID: PMC6566149 DOI: 10.3390/nu11051013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 01/30/2023] Open
Abstract
The incidence and prevalence of autoimmune diseases have increased in Western countries over the last years. The pathogenesis of these disorders is multifactorial, with a combination of genetic and environmental factors involved. Since the epidemiological changes cannot be related to genetic background, which did not change significantly in that time, the role of environmental factors has been reconsidered. Among these, dietary habits, and especially an excessive salt, typical of processed foods, has been implicated in the development of autoimmune diseases. In this review, we summarize current evidence, deriving both from experimental models and clinical studies, on the capability of excessive salt intake to exacerbate proinflammatory responses affecting the pathogenesis of immune-mediated diseases. Data on several diseases are presented, including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and Crohn’s disease, with many of them supporting a proinflammatory effect of salt. Likewise, a hypertonic microenvironment showed similar effects in experimental models both in vivo and in vitro. However, murine models of spontaneous autoimmune polyneuropathy exposed to high salt diet suggest opposite outcomes. These results dictate the need to further analyse the role of cooking salt in the treatment and prevention of autoimmune diseases, trying to shape a fine tuning between the possible advantages of a restricted salt intake and the changes in circulating metabolites, mediators, and hormones which come along salt consumption and could in turn influence autoimmunity.
Collapse
Affiliation(s)
- Rossana Scrivo
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome 00185, Italy.
| | - Carlo Perricone
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome 00185, Italy.
| | - Alessio Altobelli
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome 00185, Italy.
| | - Chiara Castellani
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome 00185, Italy.
| | - Lorenzo Tinti
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome 00185, Italy.
| | - Fabrizio Conti
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome 00185, Italy.
| | - Guido Valesini
- Department of Internal Medicine and Medical Specialties, Rheumatology, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|