1
|
Whittington RJ, Ingram L, Rubio A. Environmental Conditions Associated with Four Index Cases of Pacific Oyster Mortality Syndrome (POMS) in Crassostrea gigas in Australia Between 2010 and 2024: Emergence or Introduction of Ostreid herpesvirus-1? Animals (Basel) 2024; 14:3052. [PMID: 39518775 PMCID: PMC11545696 DOI: 10.3390/ani14213052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Warm water temperature is a risk factor for recurrent mass mortality in farmed Pacific oysters Crassostrea gigas caused by Ostreid herpesvirus-1, but there is little information on environmental conditions when the disease first appears in a region-the index case. Environmental conditions between four index cases in Australia (2010, 2013, 2016 and 2024) were compared to provide insight into possible origins of the virus. Each index case was preceded by unusually low rainfall and higher rates of temperature change that could increase oyster susceptibility through thermal flux stress. Water temperature alone did not explain the index cases, there being no consistency in sea surface, estuary or air temperatures between them. Tidal cycles and chlorophyll-a levels were unremarkable, harmful algae were present in all index cases and anthropogenic environmental contamination was unlikely. The lack of an interpretable change in the estuarine environment suggests the recent introduction of OsHV-1; however, viral emergence from a local reservoir cannot be excluded. Future events will be difficult to predict. Temperature flux and rainfall are likely important, but they are proxies for a range of undetermined factors and to identify these, it will be necessary to develop comprehensive protocols for data acquisition during future index cases.
Collapse
Affiliation(s)
- Richard J. Whittington
- School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Lachlan Ingram
- NSW Department of Primary Industries, Queanbeyan, NSW 2620, Australia;
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Ana Rubio
- Environment Branch, Hornsby Shire Council, Hornsby, NSW 2077, Australia;
| |
Collapse
|
2
|
Rosani U, Bortoletto E, Zhang X, Huang BW, Xin LS, Krupovic M, Bai CM. Long-read transcriptomics of Ostreid herpesvirus 1 uncovers a conserved expression strategy for the capsid maturation module and pinpoints a mechanism for evasion of the ADAR-based antiviral defence. Virus Evol 2024; 10:veae088. [PMID: 39555210 PMCID: PMC11565193 DOI: 10.1093/ve/veae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Ostreid herpesvirus 1 (OsHV-1), a member of the family Malacoherpesviridae (order Herpesvirales), is a major pathogen of bivalves. However, the molecular details of the malacoherpesvirus infection cycle and its overall similarity to the replication of mammalian herpesviruses (family Orthoherpesviridae) remain obscure. Here, to gain insights into the OsHV-1 biology, we performed long-read sequencing of infected blood clams, Anadara broughtonii, which yielded over one million OsHV-1 long reads. These data enabled the annotation of the viral genome with 78 gene units and 274 transcripts, of which 67 were polycistronic mRNAs, 35 ncRNAs, and 20 natural antisense transcripts (NATs). Transcriptomics and proteomics data indicate preferential transcription and independent translation of the capsid scaffold protein as an OsHV-1 capsid maturation protease isoform. The conservation of this transcriptional architecture across Herpesvirales likely indicates its functional importance and ancient origin. Moreover, we traced RNA editing events using short-read sequencing and supported the presence of inosine nucleotides in native OsHV-1 RNA, consistent with the activity of adenosine deaminase acting on dsRNA 1 (ADAR1). Our data suggest that, whereas RNA hyper-editing is concentrated in specific regions of the OsHV-1 genome, single-nucleotide editing is more dispersed along the OsHV-1 transcripts. In conclusion, we reveal the existence of conserved pan-Herpesvirales transcriptomic architecture of the capsid maturation module and uncover a transcription-based viral counter defence mechanism, which presumably facilitates the evasion of the host ADAR antiviral system.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, Via U. Bassi, 58/B, Padova 35121, Italy
| | - Enrico Bortoletto
- Department of Biology, University of Padova, Via U. Bassi, 58/B, Padova 35121, Italy
| | - Xiang Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Rd, Qingdao 266071, China
| | - Bo-Wen Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Rd, Qingdao 266071, China
| | - Lu-Sheng Xin
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Rd, Qingdao 266071, China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr. Roux, Paris 75015, France
| | - Chang-Ming Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Rd, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Rd, Qingdao 266237, China
| |
Collapse
|
3
|
Rowley AF, Baker-Austin C, Boerlage AS, Caillon C, Davies CE, Duperret L, Martin SAM, Mitta G, Pernet F, Pratoomyot J, Shields JD, Shinn AP, Songsungthong W, Srijuntongsiri G, Sritunyalucksana K, Vidal-Dupiol J, Uren Webster TM, Taengchaiyaphum S, Wongwaradechkul R, Coates CJ. Diseases of marine fish and shellfish in an age of rapid climate change. iScience 2024; 27:110838. [PMID: 39318536 PMCID: PMC11420459 DOI: 10.1016/j.isci.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
A recurring trend in evidence scrutinized over the past few decades is that disease outbreaks will become more frequent, intense, and widespread on land and in water, due to climate change. Pathogens and the diseases they inflict represent a major constraint on seafood production and yield, and by extension, food security. The risk(s) for fish and shellfish from disease is a function of pathogen characteristics, biological species identity, and the ambient environmental conditions. A changing climate can adversely influence the host and environment, while augmenting pathogen characteristics simultaneously, thereby favoring disease outbreaks. Herein, we use a series of case studies covering some of the world's most cultured aquatic species (e.g., salmonids, penaeid shrimp, and oysters), and the pathogens (viral, fungal, bacterial, and parasitic) that afflict them, to illustrate the magnitude of disease-related problems linked to climate change.
Collapse
Affiliation(s)
- Andrew F Rowley
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | | | - Annette S Boerlage
- Centre for Epidemiology and Planetary Health (CEPH), SRUC School of Veterinary Medicine, Inverness, Scotland, UK
| | - Coline Caillon
- Université of Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Charlotte E Davies
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Léo Duperret
- IHPE, Université of Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Montpellier, France
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Guillaume Mitta
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Tahiti, French Polynesia
| | - Fabrice Pernet
- Université of Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Jarunan Pratoomyot
- Institute of Marine Science, Burapha University, Chonburi 20131, Thailand
| | - Jeffrey D Shields
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Andrew P Shinn
- INVE Aquaculture (Thailand), 471 Bond Street, Bangpood, Pakkred, Nonthaburi 11120, Thailand
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Warangkhana Songsungthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | - Gun Srijuntongsiri
- School of Information, Computer, and Communication Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| | - Kallaya Sritunyalucksana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | - Jeremie Vidal-Dupiol
- IHPE, Université of Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Montpellier, France
| | - Tamsyn M Uren Webster
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Suparat Taengchaiyaphum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | | | - Christopher J Coates
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
- Zoology and Ryan Institute, School of Natural Sciences, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
4
|
Li YN, Zhang X, Huang BW, Xin LS, Wang CM, Bai CM. Localization and Tissue Tropism of Ostreid Herpesvirus 1 in Blood Clam Anadara broughtonii. BIOLOGY 2024; 13:720. [PMID: 39336147 PMCID: PMC11429395 DOI: 10.3390/biology13090720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
OsHV-1 caused detrimental infections in a variety of bivalve species of major importance to aquaculture worldwide. Since 2012, there has been a notable increase in the frequency of mass mortality events of the blood clam associated with OsHV-1 infection. The pathological characteristics, tissue and cellular tropisms of OsHV-1 in A. broughtonii remain unknown. In this study, we sought to investigate the distribution of OsHV-1 in five different organs (mantle, hepatopancreas, gill, foot, and adductor muscle) of A. broughtonii by quantitative PCR, histopathology and in situ hybridization (ISH), to obtain insight into the progression of the viral infection. Our results indicated a continuous increase in viral loads with the progression of OsHV-1 infection, reaching a peak at 48 h or 72 h post-infection according to different tissues. Tissue damage and necrosis, as well as colocalized OsHV-1 ISH signals, were observed primarily in the connective tissues of various organs and gills. Additionally, minor tissue damage accompanied by relatively weak ISH signals was detected in the foot and adductor muscle, which were filled with muscle tissue. The predominant cell types labeled by ISH signals were infiltrated hemocytes, fibroblastic-like cells, and flat cells in the gill filaments. These results collectively illustrated the progressive alterations in pathological confusion and OsHV-1 distribution in A. broughtonii, which represent most of the possible responses of cells and tissues to the virus.
Collapse
Affiliation(s)
- Ya-Nan Li
- College of Ocean and Biology Engineering, Yancheng Teachers University, Yancheng 224007, China;
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (B.-W.H.); (L.-S.X.); (C.-M.W.)
| | - Xiang Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (B.-W.H.); (L.-S.X.); (C.-M.W.)
| | - Bo-Wen Huang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (B.-W.H.); (L.-S.X.); (C.-M.W.)
| | - Lu-Sheng Xin
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (B.-W.H.); (L.-S.X.); (C.-M.W.)
| | - Chong-Ming Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (B.-W.H.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (B.-W.H.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
5
|
Renault T, Faury N, Morga B. Propidium monoazide PCR, a method to determine OsHV-1 undamaged capsids and to estimate virus Lethal Dose 50. Virus Res 2024; 340:199307. [PMID: 38160910 PMCID: PMC10800765 DOI: 10.1016/j.virusres.2023.199307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Ostreid herpes virus 1 (OsHV-1) has been classified within the Malacoherpesviridae family from the Herpesvirales order. OsHV-1 is the etiological agent of a contagious viral disease of Pacific oysters, C. gigas, affecting also other bivalve species. Mortality rates reported associated with the viral infection vary considerably between sites and countries and depend on the age of affected stocks. A variant called μVar has been reported since 2008 in Europe and other variants in Australia and in New Zealand last decade. These variants are considered as the main causative agents of mass mortality events affecting C. gigas. Presently there is no established cell line that allows for the detection of infectious OsHV-1. In this context, a technique of propidium monoazide (PMA) PCR was developed in order to quantify "undamaged" capsids. This methodology is of interest to explore the virus infectivity. Being able to quantify viral particles getting an undamaged capsid (not only an amount of viral DNA) in tissue homogenates prepared from infected oysters or in seawater samples can assist in the definition of a Lethal Dose (LD) 50 and gain information in the experiments conducted to reproduce the viral infection. The main objectives of the present study were (i) the development/optimization of a PMA PCR technique for OsHV-1 detection using the best quantity of PMA and verifying its effectiveness through heat treatment, (ii) the definition of the percentage of undamaged capsids in four different tissue homogenates prepared from infected Pacific oysters and (iii) the approach of a LD50 during experimental viral infection assays on the basis of a number of undamaged capsids. Although the developped PMA PCR technique was unable to determine OsHV-1 infectivity in viral supensions, it could greatly improve interpretation of virus positive results obtained by qPCR. This technique is not intended to replace the quantification of viral DNA by qPCR, but it does make it possible to give a form of biological meaning to the detection of this DNA.
Collapse
Affiliation(s)
- Tristan Renault
- Département Ressources Biologiques et Environnement, Ifremer, Nantes, France.
| | - Nicole Faury
- ASIM, Adaptation Santé des Invertébrés, Ifremer, La Tremblade, France
| | - Benjamin Morga
- ASIM, Adaptation Santé des Invertébrés, Ifremer, La Tremblade, France
| |
Collapse
|
6
|
de Kantzow M, Hick PM, Whittington RJ. Immune Priming of Pacific Oysters ( Crassostrea gigas) to Induce Resistance to Ostreid herpesvirus 1: Comparison of Infectious and Inactivated OsHV-1 with Poly I:C. Viruses 2023; 15:1943. [PMID: 37766349 PMCID: PMC10536431 DOI: 10.3390/v15091943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Pacific oyster mortality syndrome (POMS), which is caused by Ostreid herpesvirus 1 (OsHV-1), causes economic losses in Pacific oyster (Crassostrea gigas) aquaculture in many countries. Reducing the mortality in disease outbreaks requires changing the host, pathogen and environment interactions to favor the host. Survivors of natural exposure to OsHV-1 are able to survive subsequent outbreaks. This has been replicated under laboratory conditions, suggesting the existence of an immune response. The aim of the present study is to compare the effects of prior exposure to infectious OsHV-1, heat-inactivated OsHV-1 and the chemical anti-viral immune stimulant poly I:C on mortality following exposure to virulent OsHV-1. All treatments were administered by intramuscular injection. Oysters were maintained at 18 °C for 14 days; then, the temperature was increased to 22 °C and the oysters were challenged with virulent OsHV-1. Heat-inactivated OsHV-1, infectious OsHV-1 and poly I:C all induced significant protection against mortality, with the hazard of death being 0.41, 0.18 and 0.02, respectively, compared to the controls, which had no immune priming. The replication of OsHV-1 on first exposure was not required to induce a protective response. While the underlying mechanisms for protection remain to be elucidated, conditioning for resistance to POMS by prior exposure to inactivated or infectious OsHV-1 may have practical applications in oyster farming but requires further development to optimize the dose and delivery mechanism and evaluate the duration of protection.
Collapse
Affiliation(s)
| | | | - Richard J. Whittington
- School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| |
Collapse
|
7
|
Liu OM, Hick PM, Whittington RJ. The Resistance to Lethal Challenge with Ostreid herpesvirus-1 of Pacific Oysters ( Crassostrea gigas) Previously Exposed to This Virus. Viruses 2023; 15:1706. [PMID: 37632048 PMCID: PMC10458589 DOI: 10.3390/v15081706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pacific oyster (Crassostrea gigas) aquaculture has been economically impacted in many countries by Pacific oyster mortality syndrome (POMS), a disease initiated by Ostreid herpesvirus 1. The objectives of this study were to determine whether naturally exposed, adult C. gigas could act as reservoirs for OsHV-1 and explain the recurrent seasonal outbreaks of POMS and to test whether or not they were resistant to OsHV-1. In a laboratory infection experiment using thermal shock, OsHV-1 replication was not reactivated within the tissues of such oysters and the virus was not transmitted to naïve cohabitating spat. The adult oysters were resistant to intramuscular injection with a lethal dose of OsHV-1 and had 118 times lower risk of mortality than naïve oysters. Considered together with the results of other studies in C. gigas, natural exposure or laboratory exposure to OsHV-1 may result in immunity during subsequent exposure events, either in the natural environment or the laboratory. While adult C. gigas can carry OsHV-1 infection for lengthy periods, reactivation of viral replication leading to mortality and transmission of the virus to naïve oysters may require specific conditions that were not present in the current experiment. Further investigation is required to evaluate the mechanisms responsible for resistance to disease in oysters previously exposed to OsHV-1, whether immunity can be exploited commercially to prevent POMS outbreaks and to determine the source of the virus for recurrent seasonal outbreaks.
Collapse
Affiliation(s)
- Olivia M. Liu
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia; (O.M.L.); (P.M.H.)
- Biosecurity Animal Division, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT 2601, Australia
| | - Paul M. Hick
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia; (O.M.L.); (P.M.H.)
- Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia
| | - Richard J. Whittington
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia; (O.M.L.); (P.M.H.)
| |
Collapse
|
8
|
Eraso-Ordoñez JF, Yee-Duarte JA, Roldán-Wong NT, García-Ulloa M, Góngora-Gómez AM, Arellano-Martínez M. Histopathological alterations in the gonads of wild white clams Dosinia ponderosa inhabiting a former copper mine locality in the Gulf of California. JOURNAL OF AQUATIC ANIMAL HEALTH 2023. [PMID: 37243331 DOI: 10.1002/aah.10184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Prolonged exposure to heavy metals, such as Pb, Hg, or Cu, has multiple adverse effects on marine organisms at the cellular, physiological, and population levels. Bivalves' histopathology provides a sensitive biomarker of pollutant-induced stress and environmental health. Gonad tissue deterioration is of particular concern, as it affects the reproductive success of a species. This study aimed to examine the histopathological alterations caused by metal exposure in the gonad of the white clam Dosinia ponderosa. METHODS Organisms were sampled from three locations in the Gulf of California: Santa Rosalia (SR), a former Cu mining town; San Lucas beach (SL), a nearby site influenced by pollution; and Escondida beach (EB), which served as a control site. Histological and histochemical stains were used, and the prevalence and intensity level of each alteration were calculated. RESULT The prevalence of alterations was higher in the ovaries of SR clams (92% compared to 60% in SL clams and 32.7% in EB clams), during spawning (91.4% compared to 20% in SL clams and 4.7% in EB clams), and in winter (93.5% compared to 30% in SL clams and 17.4% in EB clams). CONCLUSION These findings suggest a significant deterioration in the gonads of white clams from SR, probably linked to the chronic exposure to high concentrations of Cu and possibly other heavy metals; hence, the reproductive health of the clams is likely compromised.
Collapse
Affiliation(s)
- Jessica F Eraso-Ordoñez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | - Josué Alonso Yee-Duarte
- Universidad Autónoma de Baja California Sur, Departamento Académico de Ciencias Marinas y Costeras, La Paz, Baja California Sur, Mexico
| | - Nefertiti Taydé Roldán-Wong
- Universidad Autónoma de Baja California Sur, Departamento Académico de Ciencias Marinas y Costeras, La Paz, Baja California Sur, Mexico
| | - Manuel García-Ulloa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Guasave, Sinaloa, Mexico
| | - Andrés M Góngora-Gómez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Guasave, Sinaloa, Mexico
| | - Marcial Arellano-Martínez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| |
Collapse
|
9
|
Dai W, Ye J, Xue Q, Liu S, Xu H, Liu M, Lin Z. Changes in Bacterial Communities of Kumamoto Oyster Larvae During Their Early Development and Following Vibrio Infection Resulting in a Mass Mortality Event. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:30-44. [PMID: 36370246 DOI: 10.1007/s10126-022-10178-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Vibrio and Ostreid herpesvirus 1 are responsible for mass mortalities of oyster larvae in hatcheries. Relevant works have focused on their relationships with the disease when larval mortality occurs. On the contrary, little is known about how the resident microbiota in oyster larvae responds to Vibrio-infected disease causing mortality as the disease progressed, whereas this knowledge is fundamental to unveil the etiology of the disease. Here, we analyzed the temporal succession of the microbiome of Kumamoto oyster (Crassostrea sikamea) larvae during their early development, accompanied by a Vibrio-caused mortality event that occurred at the post D-stage of larval development in a shellfish hatchery in Ningbo, China, on June 2020. The main causative agent of larval mortality was attributable to Vibrio infection, which was confirmed by linearly increased Vibrio abundance over disease progression. Larval bacterial communities dramatically changed over host development and disease progression, as highlighted by reduced α-diversity and less diverse core taxa when the disease occurred. Null model and phylogenetic-based mean nearest taxon distance analyses showed that the relative importance of deterministic processes governing larval bacterial assembly initially increased over host development, whereas this dominance was depleted over disease progression. Furthermore, we screened the disease-discriminatory taxa with a significant change in their relative abundances, which could be indicative of disease progression. In addition, network analysis revealed that disease occurrence remodeled the co-occurrence patterns and niche characteristics of larval microbiota. Our findings demonstrate that the dysbiosis of resident bacterial communities and the shift of microecological mechanisms in the larval microbiome may contribute to mortality during oyster early development.
Collapse
Affiliation(s)
- Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Jing Ye
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qinggang Xue
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| | - Sheng Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Hongqiang Xu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Minhai Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| |
Collapse
|
10
|
Trancart S, Tweedie A, Liu O, Paul-Pont I, Hick P, Houssin M, Whittington RJ. Diversity and molecular epidemiology of Ostreid herpesvirus 1 in farmed Crassostrea gigas in Australia: Geographic clusters and implications for "microvariants" in global mortality events. Virus Res 2023; 323:198994. [PMID: 36332723 PMCID: PMC10194400 DOI: 10.1016/j.virusres.2022.198994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Abstract
Since 2010, mass mortality events known as Pacific oyster mortality syndrome (POMS) have occurred in Crassostrea gigas in Australia associated with Ostreid herpesvirus 1. The virus was thought to be an OsHV-1 µVar or "microvariant", i.e. one of the dominant variants associated with POMS in Europe, but there are few data to characterize the genotype in Australia. Consequently, the genetic identity and diversity of the virus was determined to understand the epidemiology of the disease in Australia. Samples were analysed from diseased C. gigas over five summer seasons between 2011 and 2016 in POMS-affected estuaries: Georges River in New South Wales (NSW), Hawkesbury River (NSW) and Pitt Water in Tasmania. Sequencing was attempted for six genomic regions. Numerous variants were identified among these regions (n = 100 isolates) while twelve variants were identified from concatenated nucleotide sequences (n = 61 isolates). Nucleotide diversity of the seven genotypes of C region among Australian isolates (Pi 0.99 × 10-3) was the lowest globally. All Australian isolates grouped in a cluster distinct from other OsHV-1 isolates worldwide. This is the first report that Australian outbreaks of POMS were associated with OsHV-1 distinct from OsHV-1 reference genotype, µVar and other microvariants from other countries. The findings illustrate that microvariants are not the only variants of OsHV-1 associated with mass mortality events in C. gigas. In addition, there was mutually exclusive spatial clustering of viral genomic and amino acid sequence variants between estuaries, and a possible association between genotype/amino acid sequence and the prevalence and severity of POMS, as this differed between these estuaries. The sequencing findings supported prior epidemiological evidence for environmental reservoirs of OsHV-1 for POMS outbreaks in Australia.
Collapse
Affiliation(s)
- Suzanne Trancart
- LABÉO Research Department, 1 Route de Rosel, Cedex 4, Caen 14053, France
| | - Alison Tweedie
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia; Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Olivia Liu
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia; Department of Agriculture, Water and the Environment, Canberra, ACT 2601, Australia
| | - Ika Paul-Pont
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia; LEMAR, Rue Dumont d'Urville, Plouzané 29280, France
| | - Paul Hick
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia; Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Maryline Houssin
- LABÉO Research Department, 1 Route de Rosel, Cedex 4, Caen 14053, France; UMR BOREA Université de Caen Normandie, MNHN, CNRS 8067, SU, IRD 207, UCN, UA, Esplanade de la Paix Caen Cedex 4 14032, France
| | - Richard J Whittington
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia.
| |
Collapse
|
11
|
Delisle L, Rolton A, Vignier J. Inactivated ostreid herpesvirus-1 induces an innate immune response in the Pacific oyster, Crassostrea gigas, hemocytes. Front Immunol 2023; 14:1161145. [PMID: 37187746 PMCID: PMC10175643 DOI: 10.3389/fimmu.2023.1161145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Infectious diseases are a major constraint to the expansion of shellfish production worldwide. Pacific oyster mortality syndrome (POMS), a polymicrobial disease triggered by the Ostreid herpesvirus-1 (OsHV-1), has devastated the global Pacific oyster (Crassostrea gigas) aquaculture industry. Recent ground-breaking research revealed that C. gigas possess an immune memory, capable of adaption, which improves the immune response upon a second exposure to a pathogen. This paradigm shift opens the door for developing 'vaccines' to improve shellfish survival during disease outbreaks. In the present study, we developed an in-vitro assay using hemocytes - the main effectors of the C. gigas immune system - collected from juvenile oysters susceptible to OsHV-1. The potency of multiple antigen preparations (e.g., chemically and physically inactivated OsHV-1, viral DNA, and protein extracts) to stimulate an immune response in hemocytes was evaluated using flow cytometry and droplet digital PCR to measure immune-related subcellular functions and gene expression, respectively. The immune response to the different antigens was benchmarked against that of hemocytes treated with Poly (I:C). We identified 10 antigen preparations capable of inducing immune stimulation in hemocytes (ROS production and positively expressed immune- related genes) after 1 h of exposure, without causing cytotoxicity. These findings are significant, as they evidence the potential for priming the innate immunity of oysters using viral antigens, which may enable cost-effective therapeutic treatment to mitigate OsHV-1/POMS. Further testing of these antigen preparations using an in-vivo infection model is essential to validate promising candidate pseudo-vaccines.
Collapse
Affiliation(s)
- Lizenn Delisle
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Lizenn Delisle, ; Anne Rolton,
| | - Anne Rolton
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Lizenn Delisle, ; Anne Rolton,
| | - Julien Vignier
- Aquaculture Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
12
|
Delisle L, Laroche O, Hilton Z, Burguin JF, Rolton A, Berry J, Pochon X, Boudry P, Vignier J. Understanding the Dynamic of POMS Infection and the Role of Microbiota Composition in the Survival of Pacific Oysters, Crassostrea gigas. Microbiol Spectr 2022; 10:e0195922. [PMID: 36314927 PMCID: PMC9769987 DOI: 10.1128/spectrum.01959-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
For over a decade, Pacific oyster mortality syndrome (POMS), a polymicrobial disease, induced recurring episodes of massive mortality affecting Crassostrea gigas oysters worldwide. Recent studies evidenced a combined infection of the ostreid herpesvirus (OsHV-1 μVar) and opportunistic bacteria in affected oysters. However, the role of the oyster microbiota in POMS is not fully understood. While some bacteria can protect hosts from infection, even minor changes to the microbial communities may also facilitate infection and worsen disease severity. Using a laboratory-based experimental infection model, we challenged juveniles from 10 biparental oyster families with previously established contrasted genetically based ability to survive POMS in the field. Combining molecular analyses and 16S rRNA gene sequencing with histopathological observations, we described the temporal kinetics of POMS and characterized the changes in microbiota during infection. By associating the microbiota composition with oyster mortality rate, viral load, and viral gene expression, we were able to identify both potentially harmful and beneficial bacterial amplicon sequence variants (ASVs). We also observed a delay in viral infection resulting in a later onset of mortality in oysters compared to previous observations and a lack of evidence of fatal dysbiosis in infected oysters. Overall, these results provide new insights into how the oyster microbiome may influence POMS disease outcomes and open new perspectives on the use of microbiome composition as a complementary screening tool to determine shellfish health and potentially predict oyster vulnerability to POMS. IMPORTANCE For more than a decade, Pacific oyster mortality syndrome (POMS) has severely impacted the Crassostrea gigas aquaculture industry, at times killing up to 100% of young farmed Pacific oysters, a key commercial species that is cultivated globally. These disease outbreaks have caused major financial losses for the oyster aquaculture industry. Selective breeding has improved disease resistance in oysters, but some levels of mortality persist, and additional knowledge of the disease progression and pathogenicity is needed to develop complementary mitigation strategies. In this holistic study, we identified some potentially harmful and beneficial bacteria that can influence the outcome of the disease. These results will contribute to advance disease management and aquaculture practices by improving our understanding of the mechanisms behind genetic resistance to POMS and assisting in predicting oyster vulnerability to POMS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xavier Pochon
- Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Warkworth, New Zealand
| | - Pierre Boudry
- Département Ressources Biologiques et Environnement, Ifremer, ZI de la pointe du diable, Plouzané, France
| | | |
Collapse
|
13
|
Worden PJ, Bogema DR, Micallef ML, Go J, Deutscher AT, Labbate M, Green TJ, King WL, Liu M, Seymour JR, Jenkins C. Phylogenomic diversity of Vibrio species and other Gammaproteobacteria isolated from Pacific oysters ( Crassostrea gigas) during a summer mortality outbreak. Microb Genom 2022; 8:mgen000883. [PMID: 36748707 PMCID: PMC9837568 DOI: 10.1099/mgen.0.000883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Pacific oyster (PO), Crassostrea gigas, is an important commercial marine species but periodically experiences large stock losses due to disease events known as summer mortality. Summer mortality has been linked to environmental perturbations and numerous viral and bacterial agents, indicating this disease is multifactorial in nature. In 2013 and 2014, several summer mortality events occurred within the Port Stephens estuary (NSW, Australia). Extensive culture and molecular-based investigations were undertaken and several potentially pathogenic Vibrio species were identified. To improve species identification and genomically characterise isolates obtained from this outbreak, whole-genome sequencing (WGS) and subsequent genomic analyses were performed on 48 bacterial isolates, as well as a further nine isolates from other summer mortality studies using the same batch of juveniles. Average nucleotide identity (ANI) identified most isolates to the species level and included members of the Photobacterium, Pseudoalteromonas, Shewanella and Vibrio genera, with Vibrio species making up more than two-thirds of all species identified. Construction of a phylogenomic tree, ANI analysis, and pan-genome analysis of the 57 isolates represents the most comprehensive culture-based phylogenomic survey of Vibrios during a PO summer mortality event in Australian waters and revealed large genomic diversity in many of the identified species. Our analysis revealed limited and inconsistent associations between isolate species and their geographical origins, or host health status. Together with ANI and pan-genome results, these inconsistencies suggest that to determine the role that microbes may have in Pacific oyster summer mortality events, isolate identification must be at the taxonomic level of strain. Our WGS data (specifically, the accessory genomes) differentiated bacterial strains, and coupled with associated metadata, highlight the possibility of predicting a strain's environmental niche and level of pathogenicity.
Collapse
Affiliation(s)
- Paul J. Worden
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW 2568
| | - Daniel R. Bogema
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW 2568
| | - Melinda L. Micallef
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW 2568
| | - Jeffrey Go
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW 2568
| | - Ania T. Deutscher
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW 2568
| | - Maurizio Labbate
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Timothy J. Green
- Centre for Shellfish Research, Vancouver Island University, Nanaimo, British Columbia,, Canada
| | - William L. King
- Department of Plant Pathology and Environmental MIcrobiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael Liu
- iThree Institute, University of Technology Sydney, Building 4, 745 Harris Street, Broadway, Ultimo, NSW, 2007
| | - Justin R. Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW 2568,*Correspondence: Cheryl Jenkins,
| |
Collapse
|
14
|
Dotto-Maurel A, Pelletier C, Morga B, Jacquot M, Faury N, Dégremont L, Bereszczynki M, Delmotte J, Escoubas JM, Chevignon G. Evaluation of tangential flow filtration coupled to long-read sequencing for ostreid herpesvirus type 1 genome assembly. Microb Genom 2022; 8:mgen000895. [PMID: 36355418 PMCID: PMC9836095 DOI: 10.1099/mgen.0.000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Whole-genome sequencing is widely used to better understand the transmission dynamics, the evolution and the emergence of new variants of viral pathogens. This can bring crucial information to stakeholders for disease management. Unfortunately, aquatic virus genomes are usually difficult to characterize because most of these viruses cannot be easily propagated in vitro. Developing methodologies for routine genome sequencing of aquatic viruses is timely given the ongoing threat of disease emergence. This is particularly true for pathogenic viruses infecting species of commercial interest that are widely exchanged between production basins or countries. For example, the ostreid herpesvirus type 1 (OsHV-1) is a Herpesvirus widely associated with mass mortality events of juvenile Pacific oyster Crassostrea gigas. Genomes of Herpesviruses are large and complex with long direct and inverted terminal repeats. In addition, OsHV-1 is unculturable. It therefore accumulates several features that make its genome sequencing and assembly challenging. To overcome these difficulties, we developed a tangential flow filtration (TFF) method to enrich OsHV-1 infective particles from infected host tissues. This virus purification allowed us to extract high molecular weight and high-quality viral DNA that was subjected to Illumina short-read and Nanopore long-read sequencing. Dedicated bioinformatic pipelines were developed to assemble complete OsHV-1 genomes with reads from both sequencing technologies. Nanopore sequencing allowed characterization of new structural variations and major viral isomers while having 99,98 % of nucleotide identity with the Illumina assembled genome. Our study shows that TFF-based purification method, coupled with Nanopore sequencing, is a promising approach to enable in field sequencing of unculturable aquatic DNA virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean Delmotte
- IHPE, Univ. Montpellier, CNRS, Ifremer, UPVD, F-34095 Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, Univ. Montpellier, CNRS, Ifremer, UPVD, F-34095 Montpellier, France,*Correspondence: Jean-Michel Escoubas,
| | - Germain Chevignon
- Ifremer, ASIM, F-17390 La Tremblade, France,*Correspondence: Germain Chevignon,
| |
Collapse
|
15
|
Fuhrmann M, Georgiades E, Cattell G, Brosnahan C, Lane HS, Hick PM. Aquatic pathogens and biofouling: pilot study of ostreid herpesvirus 1 translocation by bivalves. BIOFOULING 2021; 37:949-963. [PMID: 34628999 DOI: 10.1080/08927014.2021.1985474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Ostreid herpesvirus 1 (OsHV-1) has caused mass mortalities in Pacific oysters (Crassostrea gigas) in Europe, Australia, and New Zealand. While aquaculture-associated movements of infected Pacific oysters are a well-known cause of OsHV-1 spread once established in a region, translocation via biofouling of aquaculture equipment or vessels needs further investigation to explain the more distant spread of OsHV-1. Laboratory experiments were designed to test for transmission of OsHV-1 between infected and naïve Pacific oysters via a simulated biofouling translocation scenario. Three common biofouling species [Sydney rock oysters (Saccostrea glomerata), Mediterranean mussels (Mytilus galloprovincialis) and Pacific oysters] were tested as intermediaries using a cohabitation challenge with Pacific oysters infected by injection. Transmission occurred, albeit for one of eight replicates when Pacific oysters were the intermediary species. This demonstrated a possible pathway for pathogen spread via biofouling containing Pacific oysters while highlighting the complexity of OsHV-1 transmission. Such complexities require further investigation to inform future risk assessments and management of fouled aquaculture equipment and vessels.
Collapse
Affiliation(s)
- M Fuhrmann
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - E Georgiades
- Ministry for Primary Industries, Wellington, New Zealand
| | - G Cattell
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - C Brosnahan
- Ministry for Primary Industries, Wellington, New Zealand
| | - H S Lane
- Ministry for Primary Industries, Wellington, New Zealand
| | - P M Hick
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| |
Collapse
|
16
|
Morga B, Jacquot M, Pelletier C, Chevignon G, Dégremont L, Biétry A, Pepin JF, Heurtebise S, Escoubas JM, Bean TP, Rosani U, Bai CM, Renault T, Lamy JB. Genomic Diversity of the Ostreid Herpesvirus Type 1 Across Time and Location and Among Host Species. Front Microbiol 2021; 12:711377. [PMID: 34326830 PMCID: PMC8313985 DOI: 10.3389/fmicb.2021.711377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. This is particularly true for pathogens with low per-site mutation rates, such as DNA viruses, that do not exhibit a large amount of evolutionary change among genetic sequences sampled at different time points. However, whole-genome sequencing can reveal the accumulation of novel genetic variation between samples, promising to render most, if not all, microbial pathogens measurably evolving and suitable for analytical techniques derived from population genetic theory. Here, we aim to assess the measurability of evolution on epidemiological time scales of the Ostreid herpesvirus 1 (OsHV-1), a double stranded DNA virus of which a new variant, OsHV-1 μVar, emerged in France in 2008, spreading across Europe and causing dramatic economic and ecological damage. We performed phylogenetic analyses of heterochronous (n = 21) OsHV-1 genomes sampled worldwide. Results show sufficient temporal signal in the viral sequences to proceed with phylogenetic molecular clock analyses and they indicate that the genetic diversity seen in these OsHV-1 isolates has arisen within the past three decades. OsHV-1 samples from France and New Zealand did not cluster together suggesting a spatial structuration of the viral populations. The genome-wide study of simple and complex polymorphisms shows that specific genomic regions are deleted in several isolates or accumulate a high number of substitutions. These contrasting and non-random patterns of polymorphism suggest that some genomic regions are affected by strong selective pressures. Interestingly, we also found variant genotypes within all infected individuals. Altogether, these results provide baseline evidence that whole genome sequencing could be used to study population dynamic processes of OsHV-1, and more broadly herpesviruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jean-François Pepin
- Ifremer, ODE-Littoral-Laboratoire Environnement Ressources des Pertuis Charentais (LER-PC), La Tremblade, France
| | | | - Jean-Michel Escoubas
- IHPE, CNRS, Ifremer, Université de Montpellier - Université de Perpignan Via Domitia, Montpellier, France
| | - Tim P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom.,Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - Umberto Rosani
- Department of Biology, University of Padua, Padua, Italy
| | - Chang-Ming Bai
- Yellow Sea Fisheries Research Institute, CAFS, Qingdao, China
| | | | | |
Collapse
|
17
|
A rapid phenotype change in the pathogen Perkinsus marinus was associated with a historically significant marine disease emergence in the eastern oyster. Sci Rep 2021; 11:12872. [PMID: 34145372 PMCID: PMC8213716 DOI: 10.1038/s41598-021-92379-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
The protozoan parasite Perkinsus marinus, which causes dermo disease in Crassostrea virginica, is one of the most ecologically important and economically destructive marine pathogens. The rapid and persistent intensification of dermo in the USA in the 1980s has long been enigmatic. Attributed originally to the effects of multi-year drought, climatic factors fail to fully explain the geographic extent of dermo’s intensification or the persistence of its intensified activity. Here we show that emergence of a unique, hypervirulent P. marinus phenotype was associated with the increase in prevalence and intensity of this disease and associated mortality. Retrospective histopathology of 8355 archival oysters from 1960 to 2018 spanning Chesapeake Bay, South Carolina, and New Jersey revealed that a new parasite phenotype emerged between 1983 and 1990, concurrent with major historical dermo disease outbreaks. Phenotypic changes included a shortening of the parasite’s life cycle and a tropism shift from deeper connective tissues to digestive epithelia. The changes are likely adaptive with regard to the reduced oyster abundance and longevity faced by P. marinus after rapid establishment of exotic pathogen Haplosporidium nelsoni in 1959. Our findings, we hypothesize, illustrate a novel ecosystem response to a marine parasite invasion: an increase in virulence in a native parasite.
Collapse
|
18
|
Burge CA, Friedman CS, Kachmar ML, Humphrey KL, Moore JD, Elston RA. The first detection of a novel OsHV-1 microvariant in San Diego, California, USA. J Invertebr Pathol 2021; 184:107636. [PMID: 34116033 DOI: 10.1016/j.jip.2021.107636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/25/2021] [Accepted: 06/04/2021] [Indexed: 11/15/2022]
Abstract
The spread, emergence, and adaptation of pathogens causing marine disease has been problematic to fisheries and aquaculture industries for the last several decades creating the need for strategic management and biosecurity practices. The Pacific oyster (Crassostrea gigas), a highly productive species globally, has been a target of disease and mortality caused by a viral pathogen, the Ostreid herpesvirus 1 (OsHV-1) and its microvariants (OsHV-1 µvars). During routine surveillance to establish health history at a shellfish aquaculture nursery system in San Diego, California, the presence of OsHV-1 in Pacific oyster juveniles was detected. Quantification of OsHV-1 in tissues of oysters revealed OsHV-1 viral loads > 106 copies/mg. We characterized and identified the OsHV-1 variant by sequencing of ORFs 4 (C2/C6) and 43 (IA1/IA2), which demonstrated that this variant is a novel OsHV-1 microvariant: OsHV-1 µvar SD. A pilot transmission study indicates that OsHV-1 µvar SD is infectious with high viral loads ~ 7.57 × 106 copies/mg detected in dead individuals. The detection of OsHV-1 µvar SD in a large port mirrors previous studies conducted in Australia where aquaculture farms and feral populations near port locations may be at a higher risk of OsHV-1 emergence. Further research is needed to understand the impacts of OsHV-1 µvar SD, such as transmission studies focusing on potential vectors and characterization of virulence as compared to other OsHV-1 µvars. To increase biosecurity of the global aquaculture industry, active and passive surveillance may be necessary to reduce spread of pathogens and make appropriate management decisions.
Collapse
Affiliation(s)
- Colleen A Burge
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, 701 E Pratt Street, Baltimore, MD 21202, USA.
| | - Carolyn S Friedman
- School of Aquatic & Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98105, USA
| | - Mariah L Kachmar
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, 701 E Pratt Street, Baltimore, MD 21202, USA
| | | | - James D Moore
- California Department of Fish & Wildlife, UC Davis Bodega Marine Laboratory, 2099 Westside Road, Bodega Bay, CA 94923, USA
| | - Ralph A Elston
- AquaTechnics Inc, 455 West Bell Street, Sequim, WA 98382, USA
| |
Collapse
|
19
|
Potts RWA, Gutierrez AP, Penaloza CS, Regan T, Bean TP, Houston RD. Potential of genomic technologies to improve disease resistance in molluscan aquaculture. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200168. [PMID: 33813884 PMCID: PMC8059958 DOI: 10.1098/rstb.2020.0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Molluscan aquaculture is a major contributor to global seafood production, but is hampered by infectious disease outbreaks that can cause serious economic losses. Selective breeding has been widely used to improve disease resistance in major agricultural and aquaculture species, and has clear potential in molluscs, albeit its commercial application remains at a formative stage. Advances in genomic technologies, especially the development of cost-efficient genomic selection, have the potential to accelerate genetic improvement. However, tailored approaches are required owing to the distinctive reproductive and life cycle characteristics of molluscan species. Transgenesis and genome editing, in particular CRISPR/Cas systems, have been successfully trialled in molluscs and may further understanding and improvement of genetic resistance to disease through targeted changes to the host genome. Whole-organism genome editing is achievable on a much greater scale compared to other farmed species, making genome-wide CRISPR screening approaches plausible. This review discusses the current state and future potential of selective breeding, genomic tools and genome editing approaches to understand and improve host resistance to infectious disease in molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Robert W. A. Potts
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Dorset DT4 8UB, UK
| | - Alejandro P. Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Carolina S. Penaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Tim P. Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| |
Collapse
|
20
|
Reduction in Virulence over Time in Ostreid herpesvirus 1 (OsHV-1) Microvariants between 2011 and 2015 in Australia. Viruses 2021; 13:v13050946. [PMID: 34065570 PMCID: PMC8160646 DOI: 10.3390/v13050946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
Microvariant genotypes of Ostreid herpesvirus 1 (OsHV-1) are associated with mass mortality events of Pacific oysters in many countries. The OsHV-1 microvariant (µVar) emerged in France 2008 and caused significant economic losses as it became endemic and displaced the previously dominant OsHV-1 reference genotype. Recently, considerable genotypic variation has been described for OsHV-1 microvariants, however, less is known about variation in viral phenotype. This study used an in vivo laboratory infection model to assess differences in total cumulative mortality, peak viral load, transmissibility, and dose-response for three OsHV-1 isolates obtained between 2011 and 2015 from endemic waterways in Australia. This followed field observations of apparent reductions in the severity of mass mortalities over this time. Significantly higher hazard of death and cumulative mortality were observed for an isolate obtained in 2011 compared to isolates from 2014–2015. In keeping with other studies, the hazard of death was higher in oysters challenged by injection compared to challenge by cohabitation and the mortality was higher when the initial dose was 1 × 104 OsHV-1 DNA copies per oyster injection compared to 1 × 102 DNA copies. There was no difference in the quantity of OsHV-1 DNA at time of death that could be related to isolate or dose, suggesting similar pathogenetic processes in the individual oysters that succumbed to end-stage disease. While the isolates examined in this study were biased towards pathogenic types of OsHV-1, as they were collected during disease outbreaks, the variation in virulence that was observed, when combined with prior data on subclinical infections, suggests that surveillance for low virulence genotypes of OsHV-1 would be rewarding. This may lead to new approaches to disease management which utilize controlled exposure to attenuated strains of OsHV-1.
Collapse
|
21
|
Itoïz S, Perennou M, Mouronvalle C, Derelle E, Le Goïc N, Bidault A, de Montaudouin X, Arzul I, Soudant P, Chambouvet A. Development of duplex TaqMan-based real-time PCR assay for the simultaneous detection of Perkinsus olseni and P. chesapeaki in host Manila clam tissue samples. J Invertebr Pathol 2021; 184:107603. [PMID: 33971219 DOI: 10.1016/j.jip.2021.107603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 11/28/2022]
Abstract
The aetiological agent Perkinsus olseni is globally recognised as a major threat for shellfish production considering its wide geographical distribution across Asia, Europe, Australia and South America. Another species, Perkinsus chesapeaki, which has never been known to be associated with significant mortality events, was recently detected along French coasts infecting clam populations sporadically in association with P. olseni. Identifying potential cryptic infections affecting Ruditapes philippinarum is essential to develop appropriate host resource management strategies. Here, we developed a molecular method based on duplex real-time quantitative PCR for the simultaneous detection of these two parasites, P. olseni and P. chesapeaki, in the different clam tissues: gills, digestive gland, foot, mantle, adductor muscle and the rest of the soft body. We firstly checked the presence of possible PCR inhibitors in host tissue samples. The qPCR reactions were inhibited depending on the nature of the host organ. The mantle and the rest of the soft body have a high inhibitory effect from threshold of host gDNA concentration of 2 ng.µL-1, the adductor muscle and the foot have an intermediate inhibition of 5 ng.µL-1, and the gills and digestive gland do not show any inhibition of the qPCR reaction even at the highest host gDNA concentration of 20 ng.µL-1. Then, using the gills as a template, the suitability of the molecular technique was checked in comparison with the Ray's Fluid Thioglycolate Medium methodology recommended by the World Organisation for Animal Health. The duplex qPCR method brought new insights and unveiled cryptic infections as the co-occurrence of P. olseni and P. chesapeaki from in situ tissue samples in contrast to the RFTM diagnosis. The development of this duplex qPCR method is a fundamental work to monitor in situ co-infections that will lead to optimised resource management and conservation strategies to deal with emerging diseases.
Collapse
Affiliation(s)
- Sarah Itoïz
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Morgan Perennou
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Clara Mouronvalle
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France; EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Perpignan F-66360, France
| | - Evelyne Derelle
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Nelly Le Goïc
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Adeline Bidault
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Xavier de Montaudouin
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, Station Marine, F-33120 Arcachon, France
| | - Isabelle Arzul
- IFREMER, Laboratory of Genetics and Pathology, Av de Mus de Loup-17390, La Tremblade, France
| | - Philippe Soudant
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France.
| | | |
Collapse
|
22
|
Vanhuysse C, Normand J, Lepoittevin M, Orvain F. Changes in benthic macrofauna in oyster parks during an OsHV-1 μVar oyster spat mortality outbreak. MARINE POLLUTION BULLETIN 2021; 166:112239. [PMID: 33744802 DOI: 10.1016/j.marpolbul.2021.112239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
In intertidal areas, oyster farming creates a crosshatching pattern between oyster tables and aisles. Tables provide a refuge from the current and solar irradiance and the oysters facilitate the accumulation of OM, thereby structuring the spatial organization of the associated macrozoobenthic community at mesoscale. The aim of this study was to describe the quality of the oyster table environment at small scale and the response of the macrozoobenthic community to OsHV-1 μvar oyster mortality. The species assemblage was dominated by Golfingia vulgaris, Tubificoides benedii, Capitella capitata and Scoloplos armiger. The table habitat appeared to be in a bad ecological state throughout the 2-month survey (May and June 2017), whereas in the aisle, eutrophication occurred lately and was clearly related to be due to the massive stranding of dead seaweed at the end of the survey (in early July). So, this disturbance of the species assemblage seemed to occur in two phases: 1) after oyster spat mortality and 2) after seaweed stranding resulted in a bad ecological status, as revealed by macrofaunal indicators. Large quantities of OsHV-1 DNA were also found in some species, including small crabs and amphipods, one week after the mortality crisis, but there is no apparent virus reservoir found in the benthic species.
Collapse
Affiliation(s)
- Charles Vanhuysse
- BOREA - Biologie des ORganismes et Ecosystèmes Aquatiques MNHN, UPMC, UCN, CNRS-8207, IRD-207 UFR Sciences, Université de Caen Normandie, Esplanade de la Paix - CS, 14032 CAEN Cedex 5, France.
| | - Julien Normand
- Ifremer, Laboratoire Environnement Ressources de Normandie, Avenue du Général de Gaulle, 14 520 Port en Bessin, France
| | - Mélanie Lepoittevin
- BOREA - Biologie des ORganismes et Ecosystèmes Aquatiques MNHN, UPMC, UCN, CNRS-8207, IRD-207 UFR Sciences, Université de Caen Normandie, Esplanade de la Paix - CS, 14032 CAEN Cedex 5, France
| | - Francis Orvain
- BOREA - Biologie des ORganismes et Ecosystèmes Aquatiques MNHN, UPMC, UCN, CNRS-8207, IRD-207 UFR Sciences, Université de Caen Normandie, Esplanade de la Paix - CS, 14032 CAEN Cedex 5, France.
| |
Collapse
|
23
|
Leprêtre M, Faury N, Segarra A, Claverol S, Degremont L, Palos-Ladeiro M, Armengaud J, Renault T, Morga B. Comparative Proteomics of Ostreid Herpesvirus 1 and Pacific Oyster Interactions With Two Families Exhibiting Contrasted Susceptibility to Viral Infection. Front Immunol 2021; 11:621994. [PMID: 33537036 PMCID: PMC7848083 DOI: 10.3389/fimmu.2020.621994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Massive mortality outbreaks affecting Pacific oysters (Crassostrea gigas) spat/juveniles are often associated with the detection of a herpesvirus called ostreid herpesvirus type 1 (OsHV-1). In this work, experimental infection trials of C. gigas spat with OsHV-1 were conducted using two contrasted Pacific oyster families for their susceptibility to viral infection. Live oysters were sampled at 12, 26, and 144 h post infection (hpi) to analyze host-pathogen interactions using comparative proteomics. Shotgun proteomics allowed the detection of seven viral proteins in infected oysters, some of them with potential immunomodulatoy functions. Viral proteins were mainly detected in susceptible oysters sampled at 26 hpi, which correlates with the mortality and viral load observed in this oyster family. Concerning the Pacific oyster proteome, more than 3,000 proteins were identified and contrasted proteomic responses were observed between infected A- and P-oysters, sampled at different post-injection times. Gene ontology (GO) and KEGG pathway enrichment analysis performed on significantly modulated proteins uncover the main immune processes (such as RNA interference, interferon-like pathway, antioxidant defense) which contribute to the defense and resistance of Pacific oysters to viral infection. In the more susceptible Pacific oysters, results suggest that OsHV-1 manipulate the molecular machinery of host immune response, in particular the autophagy system. This immunomodulation may lead to weakening and consecutively triggering death of Pacific oysters. The identification of several highly modulated and defense-related Pacific oyster proteins from the most resistant oysters supports the crucial role played by the innate immune system against OsHV-1 and the viral infection. Our results confirm the implication of proteins involved in an interferon-like pathway for efficient antiviral defenses and suggest that proteins involved in RNA interference process prevent viral replication in C. gigas. Overall, this study shows the interest of multi-omic approaches applied on groups of animals with differing sensitivities and provides novel insight into the interaction between Pacific oyster and OsHV-1 with key proteins involved in viral infection resistance.
Collapse
Affiliation(s)
- Maxime Leprêtre
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, Reims, France
| | - Nicole Faury
- SG2M-LGPMM, Laboratoire De Génétique Et Pathologie Des Mollusques Marins, Ifremer, La Tremblade, France
| | - Amélie Segarra
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Stéphane Claverol
- Centre Génomique Fonctionnelle de Bordeaux, Plateforme Protéome, Université de Bordeaux, Bordeaux, France
| | - Lionel Degremont
- SG2M-LGPMM, Laboratoire De Génétique Et Pathologie Des Mollusques Marins, Ifremer, La Tremblade, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, Reims, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, DépartementMédicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Tristan Renault
- Département Ressources Biologiques Et Environnement, Ifremer, Nantes, France
| | - Benjamin Morga
- SG2M-LGPMM, Laboratoire De Génétique Et Pathologie Des Mollusques Marins, Ifremer, La Tremblade, France
| |
Collapse
|
24
|
Agnew MV, Friedman CS, Langdon C, Divilov K, Schoolfield B, Morga B, Degremont L, Dhar AK, Kirkland P, Dumbauld B, Burge CA. Differential Mortality and High Viral Load in Naive Pacific Oyster Families Exposed to OsHV-1 Suggests Tolerance Rather than Resistance to Infection. Pathogens 2020; 9:E1057. [PMID: 33348814 PMCID: PMC7766980 DOI: 10.3390/pathogens9121057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022] Open
Abstract
Pacific oysters, Crassostrea gigas, are one of the most productive aquaculture species in the world. However, they are threatened by the spread of Ostreid herpesvirus-1 (OsHV-1) and its microvariants (collectively "µvars"), which cause mass mortalities in all life stages of Pacific oysters globally. Breeding programs have been successful in reducing mortality due to OsHV-1 variants following viral outbreaks; however, an OsHV-1-resistant oyster line does not yet exist in the United States (US), and it is unknown how OsHV-1 µvars will affect US oyster populations compared to the current variant, which is similar to the OsHV-1 reference, found in Tomales Bay, CA. The goals of this study were to investigate the resistance of C. gigas juveniles produced by the Molluscan Broodstock Program (MBP) to three variants of OsHV-1: a California reference OsHV-1, an Australian µvar, and a French µvar. This is the first study to directly compare OsHV-1 µvars to a non-µvar. The survival probability of oysters exposed to the French (FRA) or Australian (AUS) µvar was significantly lower (43% and 71%, respectively) than to the reference variant and controls (96%). No oyster family demonstrated resistance to all three OsHV-1 variants, and many surviving oysters contained high copy numbers of viral DNA (mean ~3.53 × 108). These results indicate that the introduction of OsHV-1 µvars could have substantial effects on US Pacific oyster aquaculture if truly resistant lines are not achieved, and highlight the need to consider resistance to infection in addition to survival as traits in breeding programs to reduce the risk of the spread of OsHV-1 variants.
Collapse
Affiliation(s)
- M. Victoria Agnew
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA;
| | - Carolyn S. Friedman
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Christopher Langdon
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Newport, OR 97365, USA; (C.L.); (K.D.); (B.S.)
| | - Konstantin Divilov
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Newport, OR 97365, USA; (C.L.); (K.D.); (B.S.)
| | - Blaine Schoolfield
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Newport, OR 97365, USA; (C.L.); (K.D.); (B.S.)
| | - Benjamin Morga
- Ifremer, SG2M, LGPMM, 17390 La Tremblade, France; (B.M.); (L.D.)
| | - Lionel Degremont
- Ifremer, SG2M, LGPMM, 17390 La Tremblade, France; (B.M.); (L.D.)
| | - Arun K. Dhar
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | - Peter Kirkland
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia;
| | - Brett Dumbauld
- Hatfield Marine Science Center, USDA-ARS, Newport, OR 97365, USA;
| | - Colleen A. Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA;
| |
Collapse
|
25
|
Friedman CS, Reece KS, Wippel BJT, Agnew MV, Dégremont L, Dhar AK, Kirkland P, MacIntyre A, Morga B, Robison C, Burge CA. Unraveling concordant and varying responses of oyster species to Ostreid Herpesvirus 1 variants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139752. [PMID: 32846506 DOI: 10.1016/j.scitotenv.2020.139752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The Ostreid herpesvirus 1 (OsHV-1) and variants, particularly the microvariants (μVars), are virulent and economically devastating viruses impacting oysters. Since 2008 OsHV-1 μVars have emerged rapidly having particularly damaging effects on aquaculture industries in Europe, Australia and New Zealand. We conducted field trials in Tomales Bay (TB), California where a non-μVar strain of OsHV-1 is established and demonstrated differential mortality of naturally exposed seed of three stocks of Pacific oyster, Crassostrea gigas, and one stock of Kumamoto oyster, C. sikamea. Oysters exposed in the field experienced differential mortality that ranged from 64 to 99% in Pacific oysters (Tasmania>Midori = Willapa stocks), which was much higher than that of Kumamoto oysters (25%). Injection trials were done using French (FRA) and Australian (AUS) μVars with the same oyster stocks as planted in the field and, in addition, two stocks of the Eastern oyster, C. virginica. No mortality was observed in control oysters. One C. virginica stock suffered ~10% mortality when challenged with both μVars tested. Two Pacific oyster stocks suffered 75 to 90% mortality, while one C. gigas stock had relatively low mortality when challenged with the AUS μVar (~22%) and higher mortality when challenged with the French μVar (~72%). Conversely, C. sikamea suffered lower mortality when challenged with the French μVar (~22%) and higher mortality with the AUS μVar (~44%). All dead oysters had higher viral loads (~1000×) as measured by quantitative PCR relative to those that survived. However, some survivors had high levels of virus, including those from species with lower mortality. Field mortality in TB correlated with laboratory mortality of the FRA μVar (69% correlation) but not with that of the AUS μVar, which also lacked correlation with the FRA μVar. The variation in response to OsHV-1 variant challenges by oyster species and stocks demonstrates the need for empirical assessment of multiple OsHV-1 variants.
Collapse
Affiliation(s)
- Carolyn S Friedman
- School of Aquatic & Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98105, USA
| | - Kimberly S Reece
- Virginia Institute of Marine Sciences, William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, USA
| | - Bryanda J T Wippel
- School of Aquatic & Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98105, USA
| | - M Victoria Agnew
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, 701 E Pratt Street, Baltimore, MD 21202, USA
| | - Lionel Dégremont
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, Animal and Comparative Biomedical Sciences, The University of Arizona, 1117 E Lowell Road, Tucson, AZ 85721, USA
| | - Peter Kirkland
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia
| | - Alanna MacIntyre
- Virginia Institute of Marine Sciences, William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, USA
| | - Benjamin Morga
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Clara Robison
- Virginia Institute of Marine Sciences, William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, USA
| | - Colleen A Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, 701 E Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
26
|
Mendes AF, Goncalves P, Serrano-Solis V, Silva PMD. Identification of candidate microRNAs from Ostreid herpesvirus-1 (OsHV-1) and their potential role in the infection of Pacific oysters (Crassostrea gigas). Mol Immunol 2020; 126:153-164. [PMID: 32853878 DOI: 10.1016/j.molimm.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
Oyster production is an economic activity of great interest worldwide. Recently, oysters have been suffering significant mortalities from OsHV-1infection, which has resulted in substantial economic loses in several countries around the world. Understanding viral pathogenicity mechanisms is of central importance for the establishment of disease control measures. Thus, the present work aimed to identify and characterize miRNAs from OsHV-1 as well as to predict their target transcripts in the virus and the host. OsHV-1 genome was used for the in silico discovery of pre-miRNAs. Subsequently, viral and host target transcripts of the OsHV-1 miRNAs were predicted according to the base pairing interaction between mature miRNAs and mRNA 3' untranslated regions (UTRs). Six unique pre-miRNAs were found in different regions of the viral genome, ranging in length from 85 to 172 nucleotides. A complex network of self-regulation of viral gene expression mediated by the miRNAs was identified. These sequences also seem to have a broad ability to regulate the expression of host immune-related genes, especially those associated with pathogen recognition. Our results suggest that OsHV-1 encodes miRNAs with important functions in the infection process, inducing self-regulation of viral transcripts, as well as affecting the regulation of Pacific oyster transcripts related to immunity. Understanding the molecular basis of host-pathogen interactions can help mitigate the recurrent events of oyster mass mortalities by OsHV-1 observed worldwide.
Collapse
Affiliation(s)
- Andrei Félix Mendes
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil
| | - Priscila Goncalves
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Victor Serrano-Solis
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil
| | - Patricia Mirella da Silva
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
27
|
Robinson AN, Green TJ. Fitness costs associated with maternal immune priming in the oyster. FISH & SHELLFISH IMMUNOLOGY 2020; 103:32-36. [PMID: 32334127 DOI: 10.1016/j.fsi.2020.04.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Maternal immune priming is the transfer of immunity from mother to offspring, which may reduce the offspring's risk of disease from a pathogen that previously infected its mother. Maternal immune priming has been described in at least 25 invertebrate taxa, including Crassostrea gigas. Larvae of C. gigas have improved survival to Ostreid herpesvirus (OsHV-1) if their mothers are either infected with OsHV-1 or were injected with a virus mimic called poly(I:C). However, fitness costs associated with maternal immune priming in C. gigas are unknown. Here, we show C. gigas larvae produced from poly(I:C)-treated mothers are smaller, and have higher total bacteria and Vibrio loads compared to control larvae. These results suggest that the improved offspring survival of C. gigas to OsHV-1 due to maternal immune priming with poly(I:C) is potentially traded off with other important life history traits, such as larval growth rate and destabilisation of the microbiome.
Collapse
Affiliation(s)
- Andrew N Robinson
- Vancouver Island University, Centre for Shellfish Research, Nanaimo, British Columbia, Canada
| | - Timothy J Green
- Vancouver Island University, Centre for Shellfish Research, Nanaimo, British Columbia, Canada.
| |
Collapse
|
28
|
Immune Control of Herpesvirus Infection in Molluscs. Pathogens 2020; 9:pathogens9080618. [PMID: 32751093 PMCID: PMC7460283 DOI: 10.3390/pathogens9080618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Molluscan herpesviruses that are capable of infecting economically important species of abalone and oysters have caused significant losses in production due to the high mortality rate of infected animals. Current methods in preventing and controlling herpesviruses in the aquacultural industry are based around biosecurity measures which are impractical and do not contain the virus as farms source their water from oceans. Due to the lack of an adaptive immune system in molluscs, vaccine related therapies are not a viable option; therefore, a novel preventative strategy known as immune priming was recently explored. Immune priming has been shown to provide direct protection in oysters from Ostreid herpesvirus-1, as well as to their progeny through trans-generational immune priming. The mechanisms of these processes are not completely understood, however advancements in the characterisation of the oyster immune response has assisted in formulating potential hypotheses. Limited literature has explored the immune response of abalone infected with Haliotid herpesvirus as well as the potential for immune priming in these species, therefore, more research is required in this area to determine whether this is a practical solution for control of molluscan herpesviruses in an aquaculture setting.
Collapse
|
29
|
Delmotte J, Chaparro C, Galinier R, de Lorgeril J, Petton B, Stenger PL, Vidal-Dupiol J, Destoumieux-Garzon D, Gueguen Y, Montagnani C, Escoubas JM, Mitta G. Contribution of Viral Genomic Diversity to Oyster Susceptibility in the Pacific Oyster Mortality Syndrome. Front Microbiol 2020; 11:1579. [PMID: 32754139 PMCID: PMC7381293 DOI: 10.3389/fmicb.2020.01579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Juvenile Pacific oysters (Crassostrea gigas) are subjected to recurrent episodes of mass mortalities that constitute a threat for the oyster industry. This mortality syndrome named “Pacific Oyster Mortality Syndrome” (POMS) is a polymicrobial disease whose pathogenesis is initiated by a primary infection by a variant of an Ostreid herpes virus named OsHV-1 μVar. The characterization of the OsHV-1 genome during different disease outbreaks occurring in different geographic areas has revealed the existence of a genomic diversity for OsHV-1 μVar. However, the biological significance of this diversity is still poorly understood. To go further in understanding the consequences of OsHV-1 diversity on POMS, we challenged five biparental families of oysters to two different infectious environments on the French coasts (Atlantic and Mediterranean). We observed that the susceptibility to POMS can be different among families within the same environment but also for the same family between the two environments. Viral diversity analysis revealed that Atlantic and Mediterranean POMS are caused by two distinct viral populations. Moreover, we observed that different oyster families are infected by distinct viral populations within a same infectious environment. Altogether these results suggest that the co-evolutionary processes at play between OsHV-1 μVar and oyster populations have selected a viral diversity that could facilitate the infection process and the transmission in oyster populations. These new data must be taken into account in the development of novel selective breeding programs better adapted to the oyster culture environment.
Collapse
Affiliation(s)
- Jean Delmotte
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Cristian Chaparro
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Richard Galinier
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Bruno Petton
- LEMAR UMR 6539, Université de Bretagne Occidentale, CNRS, IRD, Ifremer, Argenton-en-Landunvez, France
| | - Pierre-Louis Stenger
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | | | - Yannick Gueguen
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Guillaume Mitta
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
30
|
Lassudrie M, Hégaret H, Wikfors GH, da Silva PM. Effects of marine harmful algal blooms on bivalve cellular immunity and infectious diseases: A review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103660. [PMID: 32145294 DOI: 10.1016/j.dci.2020.103660] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Bivalves were long thought to be "symptomless carriers" of marine microalgal toxins to human seafood consumers. In the past three decades, science has come to recognize that harmful algae and their toxins can be harmful to grazers, including bivalves. Indeed, studies have shown conclusively that some microalgal toxins function as active grazing deterrents. When responding to marine Harmful Algal Bloom (HAB) events, bivalves can reject toxic cells to minimize toxin and bioactive extracellular compound (BEC) exposure, or ingest and digest cells, incorporating nutritional components and toxins. Several studies have reported modulation of bivalve hemocyte variables in response to HAB exposure. Hemocytes are specialized cells involved in many functions in bivalves, particularly in immunological defense mechanisms. Hemocytes protect tissues by engulfing or encapsulating living pathogens and repair tissue damage caused by injury, poisoning, and infections through inflammatory processes. The effects of HAB exposure observed on bivalve cellular immune variables have raised the question of possible effects on susceptibility to infectious disease. As science has described a previously unrecognized diversity in microalgal bioactive substances, and also found a growing list of infectious diseases in bivalves, episodic reports of interactions between harmful algae and disease in bivalves have been published. Only recently, studies directed to understand the physiological and metabolic bases of these interactions have been undertaken. This review compiles evidence from studies of harmful algal effects upon bivalve shellfish that establishes a framework for recent efforts to understand how harmful algae can alter infectious disease, and particularly the fundamental role of cellular immunity, in modulating these interactions. Experimental studies reviewed here indicate that HABs can modulate bivalve-pathogen interactions in various ways, either by increasing bivalve susceptibility to disease or conversely by lessening infection proliferation or transmission. Alteration of immune defense and global physiological distress caused by HAB exposure have been the most frequent reasons identified for these effects on disease. Only few studies, however, have addressed these effects so far and a general pattern cannot be established. Other mechanisms are likely involved but are under-studied thus far and will need more attention in the future. In particular, the inhibition of bivalve filtration by HABs and direct interaction between HABs and infectious agents in the seawater likely interfere with pathogen transmission. The study of these interactions in the field and at the population level also are needed to establish the ecological and economical significance of the effects of HABs upon bivalve diseases. A more thorough understanding of these interactions will assist in development of more effective management of bivalve shellfisheries and aquaculture in oceans subjected to increasing HAB and disease pressures.
Collapse
Affiliation(s)
| | - Hélène Hégaret
- CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Gary H Wikfors
- NOAA Fisheries Service, Northeast Fisheries Science Center, Milford, CT, 0640, USA
| | - Patricia Mirella da Silva
- Laboratory of Immunology and Pathology of Invertebrates, Department of Molecular Biology, Federal University of Paraíba (UFPB), Paraíba, Brazil
| |
Collapse
|
31
|
Xin L, Huang B, Zhang H, Li C, Bai C, Wang C. OsHV-1 infection leads to mollusc tissue lesion and iron redistribution, revealing a strategy of iron limitation against pathogen. Metallomics 2020; 11:822-832. [PMID: 30843573 DOI: 10.1039/c9mt00018f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mass mortality of molluscs caused by OsHV-1 infection has frequently occurred worldwide in recent years. Meanwhile the interaction between OsHV-1 and its host is largely unknown. Innate immunity mainly makes up the mollusc defense system, due to the lack of adaptive immunity in invertebrates. The iron limitation strategy is an indispensable facet of innate immunity across vertebrate and invertebrate species. In this study, an iron limitation strategy was interestingly found to contribute to mollusc innate immune responses against OsHV-1 infection. Firstly, ark clams, Scapharca broughtonii, were experimentally infected with OsHV-1, and serious hyperaemia in hepatopancreases and the erosion of gills were observed post OsHV-1 infection according to a histology assay. Meanwhile, based on quantification and Prussian blue staining, the process of iron efflux from ark clams was described post OsHV-1 infection. Secondly, ferritin, as an important iron storage protein, was characterized in ark clams and showed significant iron binding activity. According to the results of an immunohistochemistry assay, ferritin was supposed to be responsible for the iron translocation in ark clams post OsHV-1 infection. Its expression level was significantly fluctuant in response to OsHV-1 infection. Finally, oxidative stress was assessed by the analyses of H2O2 content, total antioxidant capacity and MDA level post OsHV-1 infection. Supplementary iron was found to promote ROS generation and death of hemocytes in vivo. These results highlighted that microenvironment changes in the essential nutrient iron should be an important aspect of the pathogenesis of OsHV-1 disease.
Collapse
Affiliation(s)
- Lusheng Xin
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China.
| | | | | | | | | | | |
Collapse
|
32
|
Martínez-García MF, Grijalva-Chon JM, Castro-Longoria R, Re-Vega ED, Varela-Romero A, Chávez-Villalba JE. Prevalence and genotypic diversity of ostreid herpesvirus type 1 in Crassostrea gigas cultured in the Gulf of California, Mexico. DISEASES OF AQUATIC ORGANISMS 2020; 138:185-194. [PMID: 32213666 DOI: 10.3354/dao03462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In bivalve mollusk aquaculture, massive disease outbreaks with high mortality and large economic losses can occur, as in northwest Mexico in the 1990s. A range of pathogens can affect bivalves; one of great concern is ostreid herpesvirus 1 (OsHV-1), of which there are several strains. This virus has been detected in the Gulf of California in occasional or sporadic samplings, but to date, there have been few systematic studies. Monthly samples of Crassostrea gigas, water, and sediment were taken in the La Cruz coastal lagoon and analyzed by PCR. The native mollusk, Dosinia ponderosa, which lives outside the lagoon, was sampled as a control. The virus was found throughout the year only in C. gigas, with prevalence up to 60%. In total, 9 genotype variants were detected, and genetic analysis suggests that linear genotypic evolution has occurred from strain JF894308, present in La Cruz in 2011. There has been no evidence of the entry of new viral genotypes in the recent past, thus confinement of the virus within the lagoons of the Gulf of California could promote a native genotypic diversity in the short term.
Collapse
|
33
|
Burge CA, Reece KS, Dhar AK, Kirkland P, Morga B, Dégremont L, Faury N, Wippel BJT, MacIntyre A, Friedman CS. First comparison of French and Australian OsHV-1 µvars by bath exposure. DISEASES OF AQUATIC ORGANISMS 2020; 138:137-144. [PMID: 32162612 DOI: 10.3354/dao03452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Economically devastating mortality events of farmed and wild shellfish due to infectious disease have been reported globally. Currently, one of the most significant disease threats to Pacific oyster Crassostrea gigas culture is the ostreid herpesvirus 1 (OsHV-1), in particular the emerging OsHV-1 microvariant genotypes. OsHV-1 microvariants (OsHV-1 µvars) are spreading globally, and concern is high among growers in areas unaffected by OsHV-1. No study to date has compared the relative virulence among variants. We provide the first challenge study comparing survival of naïve juvenile Pacific oysters exposed to OsHV-1 µvars from Australia (AUS µvar) and France (FRA µvar). Oysters challenged with OsHV-1 µvars had low survival (2.5% exposed to AUS µvar and 10% to FRA µvar), and high viral copy number as compared to control oysters (100% survival and no virus detected). As our study was conducted in a quarantine facility located ~320 km from the ocean, we also compared the virulence of OsHV-1 µvars using artificial seawater made from either facility tap water (3782 µmol kg-1 seawater total alkalinity) or purchased distilled water (2003 µmol kg-1). Although no differences in survival or viral copy number were detected in oysters exposed to seawater made using tap or distilled water, more OsHV-1 was detected in tanks containing the lower-alkalinity seawater, indicating that water quality may be important for virus transmission, as it may influence the duration of viral viability outside of the host.
Collapse
Affiliation(s)
- Colleen A Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, 701 E Pratt Street, Baltimore, Maryland 21202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu O, Paul-Pont I, Rubio A, Dhand N, Whittington RJ. Detection of ostreid herpesvirus-1 in plankton and seawater samples at an estuary scale. DISEASES OF AQUATIC ORGANISMS 2020; 138:1-15. [PMID: 32132267 DOI: 10.3354/dao03445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ostreid herpesvirus-1 (OsHV-1) is known to associate with particles in seawater, leading to infection and disease in the Pacific oyster Crassostrea gigas. The estuarine environment is highly complex and changeable, and this needs to be considered when collecting environmental samples for pathogen detection. The aims of this study were to (1) compare different aspects of collecting natural seawater and plankton samples for detection of OsHV-1 DNA and (2) determine whether detection of OsHV-1 DNA in such environmental samples has merit for disease risk prediction. The results of one experiment suggest that sampling on the outgoing tide may improve the detection of OsHV-1 DNA in seawater and plankton tow samples (odds ratio 2.71). This statistical comparison was not possible in 2 other experiments. The method (plankton tow or beta bottle) and depth of collection (range: 250-1250 mm) had no effect on the likelihood of detection of OsHV-1. OsHV-1 DNA was found at low concentrations in plankton tow and seawater samples, and only when outbreaks of mortality associated with OsHV-1 were observed in nearby experimental or farmed populations of C. gigas. This suggests that single point in time environmental samples of seawater or plankton are not sufficient to rule out the presence of OsHV-1 in an estuary. The association of OsHV-1 with particles in seawater needs to be better understood in order to determine whether more selective and sensitive methods can be devised to detect it, before environmental samples can be reliably used in disease risk prediction.
Collapse
Affiliation(s)
- Olivia Liu
- School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | | | | | | | | |
Collapse
|
35
|
Detection of isothermally amplified ostreid herpesvirus 1 DNA in Pacific oyster (Crassostrea gigas) using a miniaturised electrochemical biosensor. Talanta 2020; 207:120308. [DOI: 10.1016/j.talanta.2019.120308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 01/10/2023]
|
36
|
Delisle L, Pauletto M, Vidal-Dupiol J, Petton B, Bargelloni L, Montagnani C, Pernet F, Corporeau C, Fleury E. High temperature induces transcriptomic changes in Crassostrea gigas that hinders progress of Ostreid herpesvirus (OsHV-1) and promotes survival. J Exp Biol 2020; 223:jeb.226233. [PMID: 34005719 PMCID: PMC7578350 DOI: 10.1242/jeb.226233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
Among all the environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to the pathogens in ectothermic animals. In France, massive mortality of Pacific oysters Crassostrea gigas caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA-sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to apoptotic process, synaptic signaling, and protein processes at 29°C. Concomitantly, the expression of genes associated to catabolism, metabolites transport, macromolecules synthesis and cell growth remained low since the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate the host-pathogen interactions.
Collapse
Affiliation(s)
- Lizenn Delisle
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, F-34095 Montpellier, France
| | - Bruno Petton
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, F-34095 Montpellier, France
| | - Fabrice Pernet
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | - Elodie Fleury
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| |
Collapse
|
37
|
King WL, Siboni N, Kahlke T, Green TJ, Labbate M, Seymour JR. A New High Throughput Sequencing Assay for Characterizing the Diversity of Natural Vibrio Communities and Its Application to a Pacific Oyster Mortality Event. Front Microbiol 2019; 10:2907. [PMID: 31921078 PMCID: PMC6932961 DOI: 10.3389/fmicb.2019.02907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023] Open
Abstract
The Vibrio genus is notable for including several pathogens of marine animals and humans, yet characterization of Vibrio diversity using routine 16S rRNA sequencing methods is often constrained by poor resolution beyond the genus level. Here, a new high throughput sequencing approach targeting the heat shock protein (hsp60) as a phylogenetic marker was developed to more precisely discriminate members of the Vibrio genus in environmental samples. The utility of this new assay was tested using mock communities constructed from known dilutions of Vibrio isolates. Relative to standard and Vibrio-specific 16S rRNA sequencing assays, the hsp60 assay delivered high levels of fidelity with the mock community composition at the species level, including discrimination of species within the Vibrio harveyi clade. This assay was subsequently applied to characterize Vibrio community composition in seawater and delivered substantially improved taxonomic resolution of Vibrio species compared to 16S rRNA analysis. Finally, this assay was applied to examine patterns in the Vibrio community within oysters during a Pacific oyster mortality event. In these oysters, the hsp60 assay identified species-level Vibrio community shifts prior to disease onset, pinpointing V. harveyi as a putative pathogen. Given that shifts in the Vibrio community can precede, cause, and follow disease onset in numerous marine organisms, there is a need for an accurate high throughput assay for defining Vibrio community composition in natural samples. This Vibrio-centric hsp60 sequencing assay offers the potential for precise high throughput characterization of Vibrio diversity, providing an enhanced platform for dissecting Vibrio dynamics in the environment.
Collapse
Affiliation(s)
- William L. King
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy J. Green
- Centre for Shellfish Research, Vancouver Island University, Nanaimo, BC, Canada
| | - Maurizio Labbate
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Justin R. Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
38
|
Divilov K, Schoolfield B, Morga B, Dégremont L, Burge CA, Mancilla Cortez D, Friedman CS, Fleener GB, Dumbauld BR, Langdon C. First evaluation of resistance to both a California OsHV-1 variant and a French OsHV-1 microvariant in Pacific oysters. BMC Genet 2019; 20:96. [PMID: 31830898 PMCID: PMC6909534 DOI: 10.1186/s12863-019-0791-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Variants of the Ostreid herpesvirus 1 (OsHV-1) cause high losses of Pacific oysters globally, including in Tomales Bay, California, USA. A suite of new variants, the OsHV-1 microvariants (μvars), cause very high mortalities of Pacific oysters in major oyster-growing regions outside of the United States. There are currently no known Pacific oysters in the United States that are resistant to OsHV-1 as resistance has yet to be evaluated in these oysters. As part of an effort to begin genetic selection for resistance to OsHV-1, 71 families from the Molluscan Broodstock Program, a US West Coast Pacific oyster breeding program, were screened for survival after exposure to OsHV-1 in Tomales Bay. They were also tested in a quarantine laboratory in France where they were exposed to a French OsHV-1 microvariant using a plate assay, with survival recorded from three to seven days post-infection. RESULTS Significant heritability for survival were found for all time points in the plate assay and in the survival phenotype from a single mortality count in Tomales Bay. Genetic correlations between survival against the French OsHV-1 μvar in the plate assay and the Tomales Bay variant in the field trait were weak or non-significant. CONCLUSIONS Future breeding efforts will seek to validate the potential of genetic improvement for survival to OsHV-1 through selection using the Molluscan Broodstock Program oysters. The lack of a strong correlation in survival between OsHV-1 variants under this study's exposure conditions may require independent selection pressure for survival to each variant in order to make simultaneous genetic gains in resistance.
Collapse
Affiliation(s)
- Konstantin Divilov
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Hatfield Marine Science Center, Newport, Oregon USA
| | - Blaine Schoolfield
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Hatfield Marine Science Center, Newport, Oregon USA
| | - Benjamin Morga
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| | - Lionel Dégremont
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer, La Tremblade, France
| | - Colleen A. Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland USA
| | | | - Carolyn S. Friedman
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | | | - Brett R. Dumbauld
- United States Department of Agriculture-Agricultural Research Service, Hatfield Marine Science Center, Newport, Oregon USA
| | - Chris Langdon
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Hatfield Marine Science Center, Newport, Oregon USA
| |
Collapse
|
39
|
Different in vivo growth of ostreid herpesvirus 1 at 18 °C and 22 °C alters mortality of Pacific oysters (Crassostrea gigas). Arch Virol 2019; 164:3035-3043. [PMID: 31602543 DOI: 10.1007/s00705-019-04427-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/09/2019] [Indexed: 01/29/2023]
Abstract
Seasonally recurrent outbreaks of mass mortality in Pacific oysters (Crassostrea gigas) caused by microvariant genotypes of ostreid herpesvirus 1 (OsHV-1) occur in Europe, New Zealand and Australia. The incubation period for OsHV-1 under experimental conditions is 48-72 hours and depends on water temperature, as does the mortality. An in vivo growth curve for OsHV-1 was determined by quantifying OsHV-1 DNA at 10 time points between 2 and 72 hours after exposure to OsHV-1. The peak replication rate was the same at 18 °C and 22 °C; however, there was a longer period of amplification leading to a higher peak concentration at 22 °C (2.34 × 107 copies/mg at 18 hours) compared to 18 °C (1.38 × 105 copies/mg at 12 hours). The peak viral concentration preceded mortality by 72 hours and 20 hours at 18 °C and 22 °C, respectively. Cumulative mortality to day 14 was 45.9% at 22 °C compared to 0.3% at 18 °C. The prevalence of OsHV-1 infection after 14 days at 18 °C was 33.3%. No mortality from OsHV-1 occurred when the water temperature in tanks of oysters challenged at 18 °C was increased to 22 °C for 14 days. The influence of water temperature prior to exposure to OsHV-1 and during the initial virus replication is an important determinant of the outcome of infection in C. gigas.
Collapse
|
40
|
Barbieri ES, Medina CD, Vázquez N, Fiorito C, Martelli A, Wigdorovitz A, Schwindt E, Morga B, Renault T, Parreño V, Barón PJ. First detection of Ostreid herpesvirus 1 in wild Crassostrea gigas in Argentina. J Invertebr Pathol 2019; 166:107222. [DOI: 10.1016/j.jip.2019.107222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
|
41
|
Han Z, Wang W, Lv X, Zong Y, Liu S, Liu Z, Wang L, Song L. ATG10 (autophagy-related 10) regulates the formation of autophagosome in the anti-virus immune response of pacific oyster (Crassostrea gigas). FISH & SHELLFISH IMMUNOLOGY 2019; 91:325-332. [PMID: 31128297 DOI: 10.1016/j.fsi.2019.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Autophagy, a highly conserved intracellular degradation system, is involved in numerous processes in vertebrate and invertebrate, such as cell survival, ageing, and immune responses. However, the detailed molecular mechanism of autophagy and its immune regulatory role in bivalves are still not well understood. In the present study, an autophagy-related protein ATG10 (designated as CgATG10) was identified from Pacific oyster Crassostrea gigas. The open reading frame of CgATG10 cDNA was of 621 bp, encoding a polypeptide of 206 amino acid residues with an Autophagy_act_C domain (from 96 to 123 amino acid), which shared high homology with that from C. virginica and Octopus bimaculoides. The mRNA transcripts of CgATG10 were widely expressed in all the tested tissues including mantle, gonad, gills, hemocytes and hepatopancreas, with the highest expression level in mantle. After the stimulation with poly (I:C), the mRNA expression level of CgATG10 in the mantle of oysters was significantly up-regulated (4.92-fold of that in Blank group, p < 0.05), and the LC3-conversion from LC3-I to LC3-II (LC3-II/LC3-I) also increased. After an additional injection of dsRNA to knock-down the expression of CgATG10 (0.33-fold and 0.10-fold compared respectively with Blank group and dsGFP group, p < 0.05), the downstream conversion of CgLC3 was inhibited significantly compared with that of the control dsGFP group, while the expression level of autophagy-initiator CgBeclin1 did not change significantly. In addition, the mRNA transcripts of interferon regulatory factor CgIRF-1 increased significantly in CgATG10-knockdown oysters at 12 h post poly (I:C) stimulation. All the results indicated that CgATG10 might participate in the immune response against poly (I:C) by regulating autophagosome formation and interferon system in oysters.
Collapse
Affiliation(s)
- Zirong Han
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Xiaojing Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Shujing Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
42
|
Petton B, de Lorgeril J, Mitta G, Daigle G, Pernet F, Alunno-Bruscia M. Fine-scale temporal dynamics of herpes virus and vibrios in seawater during a polymicrobial infection in the Pacific oyster Crassostrea gigas. DISEASES OF AQUATIC ORGANISMS 2019; 135:97-106. [PMID: 31342911 DOI: 10.3354/dao03384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Pacific oyster Crassostrea gigas is currently being impacted by a polymicrobial disease that involves early viral infection by ostreid herpesvirus-1 (OsHV-1) followed by a secondary bacterial infection leading to death. A widely used method of inducing infection consists of placing specific pathogen-free oysters ('recipients') in cohabitation in the laboratory with diseased oysters that were naturally infected in the field ('donors'). With this method, we evaluated the temporal dynamics of pathogen release in seawater and the cohabitation time necessary for disease transmission and expression. We showed that OsHV-1 and Vibrio spp. in the seawater peaked concomitantly during the first 48 h and decreased thereafter. We found that 1.5 h of cohabitation with donors was enough time to transmit pathogens to recipients and to induce mortality later, reflecting the highly contagious nature of the disease. Finally, mortality of recipients was associated with increasing cohabitation time with donors until reaching a plateau at 20%. This reflects the cumulative effect of exposure to pathogens. The optimal cohabitation time was 5-6 d, the mortality of recipients occurring 1-2 d earlier.
Collapse
Affiliation(s)
- Bruno Petton
- Ifremer, LEMAR UMR 6539 (Université de Bretagne Occidentale, CNRS, IRD, Ifremer), 11 presqu'île du Vivier, 29840 Argenton-en-Landunvez, France
| | | | | | | | | | | |
Collapse
|
43
|
Pathirana E, Fuhrmann M, Whittington R, Hick P. Influence of environment on the pathogenesis of Ostreid herpesvirus-1 (OsHV-1) infections in Pacific oysters ( Crassostrea gigas) through differential microbiome responses. Heliyon 2019; 5:e02101. [PMID: 31372553 PMCID: PMC6656993 DOI: 10.1016/j.heliyon.2019.e02101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
The oyster microbiome is thought to contribute to the pathogenesis of mass mortality disease in Pacific oysters, associated with OsHV-1. As filter-feeders, oysters host a microbiota that can be influenced by the estuarine environment. This may alter susceptibility to OsHV-1 infections, causing variable mortality. This study aimed at: (1) differences in the microbiome of Pacific oysters with a common origin but grown in geographically distinct estuaries; (2) evaluating changes occurring in the microbiota, especially in Vibrio, and (3) differential responses of the oyster microbiome, in response to an OsHV-1 infection. Pacific oysters sourced from a single hatchery but raised separately in Patonga Creek, Shoalhaven River and Clyde River of NSW, Australia, were used and challenged with OsHV-1. The initial microbiome composition was different in the three batches and changed further, post-injection (p < 0.05). The Patonga oysters with the highest mortality also had higher OsHV-1 and Vibrio quantities compared to the other two batches (p < 0.05). The higher initial bacterial diversity in Patonga oysters decreased in moribund oysters which was not observed in the other two batches (p < 0.05). The microbiome of survivors of OsHV-1 infection and negative control oysters of two batches, did not show any changes with the relevant pre-challenged microbiome. A strong correlation was observed between the OsHV-1 and Vibrio quantities in OsHV-1 infected oysters (r = 0.6; p < 0.001). In conclusion, the Pacific oyster microbiome differed in different batches despite a common hatchery origin. Different microbiomes responded differently with a differential outcome of OsHV-1 challenge. The higher Vibrio load in oysters with higher OsHV-1 content and higher mortality, suggests a role in Vibrio in the pathogenesis of this mortality disease. This study provided insights of the potential of different estuarine environments to shape the Pacific oyster microbiome and how different microbiomes are associated with different outcomes of OsHV-1 infection.
Collapse
|
44
|
Martenot C, Faury N, Morga B, Degremont L, Lamy JB, Houssin M, Renault T. Exploring First Interactions Between Ostreid Herpesvirus 1 (OsHV-1) and Its Host, Crassostrea gigas: Effects of Specific Antiviral Antibodies and Dextran Sulfate. Front Microbiol 2019; 10:1128. [PMID: 31178841 PMCID: PMC6543491 DOI: 10.3389/fmicb.2019.01128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
Viral entry mechanisms of herpesviruses constitute a highly complex process which implicates several viral glycoproteins and different receptors on the host cell surfaces. This initial infection stage was currently undescribed for Ostreid herpes virus 1 (OsHV-1), a herpesvirus infecting bivalves including the Pacific oyster, Crassostrea gigas. To identify OsHV-1 glyproteins implicated in the attachment of the virus to oyster cells, three viral putative membrane proteins, encoded by ORF 25, 41, and 72, were selected and polyclonal antibodies against these targets were used to explore first interactions between the virus and host cells. In addition, effects of dextran sulfate, a negative charged sulfated polysaccharide, were investigated on OsHV-1 infection. Effects of antiviral antibodies and dextran sulfate were evaluated by combining viral DNA and RNA detection in spat (in vivo trials) and in oyster hemolymph (in vitro trials). Results showed that viral protein encoded by ORF 25 appeared to be involved in interaction between OsHV-1 and host cells even if other proteins are likely implicated, such as proteins encoded by ORF 72 and ORF 41. Dextran sulfate at 30 μg/mL significantly reduced the spat mortality rate in the experimental conditions. Taken together, these results contribute to better understanding the pathogenesis of the viral infection, especially during the first stage of OsHV-1 infection, and open the way toward new approaches to control OsHV-1 infection in confined facilities.
Collapse
Affiliation(s)
- Claire Martenot
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Nicole Faury
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Benjamin Morga
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Lionel Degremont
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Jean-Baptiste Lamy
- Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | | | - Tristan Renault
- Département Ressources Biologiques et Environnement, Institut Français de Recherche pour l'Exploitation de la Mer, Nantes, France
| |
Collapse
|
45
|
King WL, Siboni N, Williams NLR, Kahlke T, Nguyen KV, Jenkins C, Dove M, O'Connor W, Seymour JR, Labbate M. Variability in the Composition of Pacific Oyster Microbiomes Across Oyster Families Exhibiting Different Levels of Susceptibility to OsHV-1 μvar Disease. Front Microbiol 2019; 10:473. [PMID: 30915058 PMCID: PMC6421512 DOI: 10.3389/fmicb.2019.00473] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/22/2019] [Indexed: 11/13/2022] Open
Abstract
Oyster diseases are a major impediment to the profitability and growth of the oyster aquaculture industry. In recent years, geographically widespread outbreaks of disease caused by ostreid herpesvirus-1 microvariant (OsHV-1 μvar) have led to mass mortalities among Crassostrea gigas, the Pacific Oyster. Attempts to minimize the impact of this disease have been largely focused on breeding programs, and although these have shown some success in producing oyster families with reduced mortality, the mechanism(s) behind this protection is poorly understood. One possible factor is modification of the C. gigas microbiome. To explore how breeding for resistance to OsHV-1 μvar affects the oyster microbiome, we used 16S rRNA amplicon sequencing to characterize the bacterial communities associated with 35 C. gigas families, incorporating oysters with different levels of susceptibility to OsHV-1 μvar disease. The microbiomes of disease-susceptible families were significantly different to the microbiomes of disease-resistant families. OTUs assigned to the Photobacterium, Vibrio, Aliivibrio, Streptococcus, and Roseovarius genera were associated with low disease resistance. In partial support of this finding, qPCR identified a statistically significant increase of Vibrio-specific 16S rRNA gene copies in the low disease resistance families, possibly indicative of a reduced host immune response to these pathogens. In addition to these results, examination of the core microbiome revealed that each family possessed a small core community, with OTUs assigned to the Winogradskyella genus and the Bradyrhizobiaceae family consistent members across most disease-resistant families. This study examines patterns in the microbiome of oyster families exhibiting differing levels of OsHV-1 μvar disease resistance and reveals some key bacterial taxa that may provide a protective or detrimental role in OsHV-1 μvar disease outbreaks.
Collapse
Affiliation(s)
- William L King
- The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia.,Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Nathan L R Williams
- The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Khue Viet Nguyen
- The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia.,Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Michael Dove
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Port Stephens, NSW, Australia
| | - Wayne O'Connor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Port Stephens, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Maurizio Labbate
- The School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
46
|
Powell D, Subramanian S, Suwansa-Ard S, Zhao M, O'Connor W, Raftos D, Elizur A. The genome of the oyster Saccostrea offers insight into the environmental resilience of bivalves. DNA Res 2019; 25:655-665. [PMID: 30295708 PMCID: PMC6289776 DOI: 10.1093/dnares/dsy032] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/31/2018] [Indexed: 02/01/2023] Open
Abstract
Oysters are keystone species in estuarine ecosystems and are of substantial economic value to fisheries and aquaculture worldwide. Contending with disease and environmental stress are considerable challenges to oyster culture. Here we report a draft genome of the Sydney Rock Oyster, Saccostrea glomerata, an iconic and commercially important species of edible oyster in Australia known for its enhanced resilience to harsh environmental conditions. This is the second reference genome to be reported from the family Ostreidae enabling a genus-level study of lophotrochozoan genome evolution. Our analysis of the 784-megabase S. glomerata genome shows extensive expansions of gene families associated with immunological non-self-recognition. Transcriptomic analysis revealed highly tissue-specific patterns of expression among these genes, suggesting a complex assortment of immune receptors provide this oyster with a unique capacity to recognize invading microbes. Several gene families involved in stress response are notably expanded in Saccostrea compared with other oysters, and likely key to this species’ adaptations for improved survival higher in the intertidal zone. The Sydney Rock Oyster genome provides a valuable resource for future research in molluscan biology, evolution and environmental resilience. Its close relatedness to Crassostrea will further comparative studies, advancing the means for improved oyster agriculture and conservation.
Collapse
Affiliation(s)
- Daniel Powell
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Sankar Subramanian
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Saowaros Suwansa-Ard
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Min Zhao
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Wayne O'Connor
- NSW Department of Industry, Department of Primary Industries, DPI Fisheries, Port Stephens Fisheries Institute, Taylors Beach, NSW, Australia
| | - David Raftos
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Abigail Elizur
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| |
Collapse
|
47
|
King WL, Jenkins C, Go J, Siboni N, Seymour JR, Labbate M. Characterisation of the Pacific Oyster Microbiome During a Summer Mortality Event. MICROBIAL ECOLOGY 2019; 77:502-512. [PMID: 29987529 DOI: 10.1007/s00248-018-1226-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
The Pacific oyster, Crassostrea gigas, is a key commercial species that is cultivated globally. In recent years, disease outbreaks have heavily impacted C. gigas stocks worldwide, with many losses incurred during summer. A number of infectious agents have been associated with these summer mortality events, including viruses (particularly Ostreid herpesvirus 1, OsHV-1) and bacteria; however, cases where no known aetiological agent can be identified are common. In this study, we examined the microbiome of disease-affected and disease-unaffected C. gigas during a 2013-2014 summer mortality event in Port Stephens (Australia) where known oyster pathogens including OsHV-1 were not detected. The adductor muscle microbiomes of 70 C. gigas samples across 12 study sites in the Port Stephens estuary were characterised using 16S rRNA (V1-V3 region) amplicon sequencing, with the aim of comparing the influence of spatial location and disease state on the oyster microbiome. Spatial location was found to be a significant determinant of the disease-affected oyster microbiome. Furthermore, microbiome comparisons between disease states identified a significant increase in rare operational taxonomic units (OTUs) belonging to Vibrio harveyi and an unidentified member of the Vibrio genus in the disease-affected microbiome. This is indicative of a potential role of Vibrio species in oyster disease and supportive of previous culture-based examination of this mortality event.
Collapse
Affiliation(s)
- William L King
- The School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Jeffrey Go
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Maurizio Labbate
- The School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
48
|
Lafont M, Goncalves P, Guo X, Montagnani C, Raftos D, Green T. Transgenerational plasticity and antiviral immunity in the Pacific oyster (Crassostrea gigas) against Ostreid herpesvirus 1 (OsHV-1). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:17-25. [PMID: 30278186 DOI: 10.1016/j.dci.2018.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/03/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The oyster's immune system is capable of adapting upon exposure to a pathogen-associated molecular pattern (PAMP) to have an enhanced secondary response against the same type of pathogen. This has been demonstrated using poly(I:C) to elicit an antiviral response in the Pacific oyster (Crassostrea gigas) against Ostreid herpesvirus (OsHV-1). Improved survival following exposure to poly(I:C) has been found in later life stages (within-generational immune priming) and in the next generation (transgenerational immune priming). The mechanism that the oyster uses to transfer immunity to the next generation is unknown. Here we show that oyster larvae have higher survival to OsHV-1 when their mothers, but not their fathers, are exposed to poly(I:C) prior to spawning. RNA-seq provided no evidence to suggest that parental exposure to poly(I:C) reconfigures antiviral gene expression in unchallenged larvae. We conclude that the improved survival of larvae might occur via maternal provisioning of antiviral compounds in the eggs.
Collapse
Affiliation(s)
- Maxime Lafont
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, France
| | - Priscila Goncalves
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, NJ, USA
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, France
| | - David Raftos
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia
| | - Timothy Green
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia.
| |
Collapse
|
49
|
Long-range PCR and high-throughput sequencing of Ostreid herpesvirus 1 indicate high genetic diversity and complex evolution process. Virology 2019; 526:81-90. [DOI: 10.1016/j.virol.2018.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/29/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022]
|
50
|
King WL, Jenkins C, Seymour JR, Labbate M. Oyster disease in a changing environment: Decrypting the link between pathogen, microbiome and environment. MARINE ENVIRONMENTAL RESEARCH 2019; 143:124-140. [PMID: 30482397 DOI: 10.1016/j.marenvres.2018.11.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/20/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Shifting environmental conditions are known to be important triggers of oyster diseases. The mechanism(s) behind these synergistic effects (interplay between host, environment and pathogen/s) are often not clear, although there is evidence that shifts in environmental conditions can affect oyster immunity, and pathogen growth and virulence. However, the impact of shifting environmental parameters on the oyster microbiome and how this affects oyster health and susceptibility to infectious pathogens remains understudied. In this review, we summarise the major diseases afflicting oysters with a focus on the role of environmental factors that can catalyse or amplify disease outbreaks. We also consider the potential role of the oyster microbiome in buffering or augmenting oyster disease outbreaks and suggest that a deeper understanding of the oyster microbiome, its links to the environment and its effect on oyster health and disease susceptibility, is required to develop new frameworks for the prevention and management of oyster diseases.
Collapse
Affiliation(s)
- William L King
- The School of Life Sciences, University of Technology Sydney, NSW, Australia; Climate Change Cluster, University of Technology Sydney, NSW, Australia
| | - Cheryl Jenkins
- Elizabeth Macarthur Institute, New South Wales Department of Primary Industries, Menangle, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, NSW, Australia
| | - Maurizio Labbate
- The School of Life Sciences, University of Technology Sydney, NSW, Australia.
| |
Collapse
|