1
|
Ceylan N, Bortoluzzi C, Gunturkun O, Perez-Calvo E. Comparative effects of dietary muramidase and phytogenics on the growth performance and gastrointestinal functionality of broiler chickens. Poult Sci 2024; 103:104147. [PMID: 39127005 PMCID: PMC11367120 DOI: 10.1016/j.psj.2024.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The objective of the present study was to compare the effectiveness of dietary supplementation of muramidase (MUR) and 2 phytogenic additives on the growth performance, intestinal morphology, bacteria load, and production of short-chain fatty acids (SCFA) of broiler chickens raised under field-like conditions. A total of 6,400 day-old Ross 308 broiler chicks were randomly selected and distributed into 32 floor pens, with 200 chicks (100 males and 100 females)/pen. The treatment groups were an unsupplemented control, and the experimental groups supplemented with MUR at 35,000 LSU(F)/kg of feed, phytogenic 1 (Phyto 1, based on thymol) at 100g/ton feed, or phytogenic 2 (Phyto 2, based on alkaloids) at 60g/ton feed, for a total period of 41 d. A 4-phase feeding program was applied (starter, grower, finisher and withdrawal). The paramenters evaluated were: growth performance, carcass yield, concentration of muranic acid in the jejunum content and excreta, liver enzyme concentration, intestinal morphology, and bacteria enumeration and short and branch chain fatty acids (SCFA and BCFA) in the cecal content. Data were analyzed by ANOVA and Tukey's test was used to separate the means. Soluble muramic acid (MurN) in the jejunum increased with the supplementation of MUR and Phyto 2 when compared to the other groups (P = 0.0001), but only the supplementation of MUR increased the concentration of MurN in the excreta. The supplementation of all feed additives improved the body weight gain and the body weight corrected feed conversion ratio when compared to the control group (P = 0.0001). MUR increased villus heigh (VH) when compared to the control or the other supplemented groups (P = 0.0001), and led to the highest concentration of most SCFA, total BCFA, and total SCFA (P < 0.05). In conclusion, the supplementation of MUR and phytogenics to the diets of broiler chickens improved the growth performance, but MUR, only, was capable of effectively degrading peptidoglycans (PGNs) in both intestinal segments, as well as to increase the abundance of beneficial bacteria and SCFA production.
Collapse
Affiliation(s)
- Necmettin Ceylan
- Department of Animal Science, Faculty of Agriculture, Ankara University, Ankara, Türkiye.
| | | | - Oguz Gunturkun
- dsm-firmenich, Animal Nutrition and Health, İstanbul, Türkiye
| | | |
Collapse
|
2
|
Chen Y, Liu L, Yu L, Li S, Zhu N, You J. Curcumin Supplementation Improves Growth Performance and Anticoccidial Index by Improving the Antioxidant Capacity, Inhibiting Inflammatory Responses, and Maintaining Intestinal Barrier Function in Eimeria tenella-Infected Broilers. Animals (Basel) 2024; 14:1223. [PMID: 38672370 PMCID: PMC11047685 DOI: 10.3390/ani14081223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This study was conducted to investigate the effects of dietary curcumin supplementation on growth performance, anticoccidial index, antioxidant capacity, intestinal inflammation, and cecum microbiota in broilers infected with Eimeria tenella. A total of 234 one-day-old broilers were categorized into three treatments, with six replicates per treatment containing 13 broilers each. The three treatments included the control group, Eimeria tenella group, and Eimeria tenella + curcumin (200 mg/kg) group. The feeding trial lasted for 42 days, during which the broilers were orally administered with 0.9% saline or 5 × 104Eimeria tenella oocysts on day 14 of the study. On day 17 and day 21, one bird per replicate was selected for slaughtering. Results indicated an increased survival rate and anticoccidial index and improved productive performance in coccidia-infected broilers with curcumin supplementation. Furthermore, curcumin enhanced the serum antioxidant capacity in Eimeria tenella-infected broilers, evidenced by increased serum catalase activity (3d, 7d), as well as decreased malondialdehyde level (3d, 7d) and nitric oxide synthase activity (7d) (p < 0.05). Curcumin also improved intestinal inflammation and barrier function, evidenced by the downregulation of interleukin (IL)-1β (3d, 7d), TNF-alpha (TNF-α) (3d, 7d), and IL-2 (7d) and the up-regulated mRNA levels of claudin-1 (7d), zonula occludens (ZO-1; 3d, 7d), and occludin (3d, 7d) in the ceca of infected broilers (p < 0.05). Eimeria tenella infection significantly disrupted cecum microbial balance, but curcumin did not alleviate cecum microbial disorder in broilers infected with Eimeria tenella. Collectively, curcumin supplementation enhanced growth performance and anticoccidial index in Eimeria tenella-infected broilers via improving antioxidant ability and cecum inflammation without affecting cecum microbiota.
Collapse
Affiliation(s)
- Yan Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Liheng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Longfei Yu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Shuo Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Nianhua Zhu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (L.Y.); (S.L.)
| |
Collapse
|
3
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
4
|
Hassan SMH, Zayeda R, Elakany H, Badr S, Abou-Rawash A, Abd-Ellatieff H. Anticoccidial activity of Aloe Vera Leafs' aqueous extract and vaccination against Eimeria tenella: pathological study in broilers. Vet Res Commun 2024; 48:403-416. [PMID: 37736869 PMCID: PMC10811142 DOI: 10.1007/s11259-023-10222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
This study aimed to assess the efficacy of an anticoccidial vaccine and the anticoccidial activity of Aloe vera in broiler chickens infected with Eimeria tenella (E. tenella). A total of 225 healthy, sexless, one-day-old broiler chicks (avian48) from a commercial broiler company were randomized into nine experimental groups of 25 chicks. The groups were as follows: Group 1 (control, vaccinated, non-infected), Group 2 (vaccinated and infected with 5 × 104 sporulated oocysts), Group 3 (vaccinated, infected with 5 × 104 sporulated oocysts, and treated with Aloe vera), Group 4 (infected with 5 × 104 sporulated oocysts and treated with Aloe vera), Group 5 (positive control, infected with 5 × 104 sporulated oocysts), Group 6 (challenged with 5 × 104 sporulated oocysts and then treated with amprolium), Group 7 (treated with amprolium), Group 8 (blank control negative group), and Group 9 (treated with Aloe vera gel).Various parameters were evaluated, including clinical signs, growth performance, oocyst shedding, hematological and immunological parameters, and pathological lesion scoring. The results demonstrated that Aloe vera improved growth performance, reduced oocyst shedding, and decreased caecal lesion scores in E. Tenella-infected broiler chicks. The use of Aloe vera in combination with either amprolium or anticoccidial vaccines provided a potential solution to the issues of drug resistance and drug residues.In conclusion, this study provides valuable insights regarding the control of coccidiosis in broilers. Supplementing the chicken diet with Aloe vera had beneficial effects on the pathogenicity and infectivity of E. tenella, making it a cost-effective alternative as an herbal extract with no adverse side effects for coccidiosis control. These findings suggest that Aloe vera can be considered a potential candidate for inclusion in broiler diets for effective coccidiosis control.
Collapse
Affiliation(s)
- Shahenaz M H Hassan
- Alexandria Regional Laboratory, Animal Health Research Institute, Agriculture Research Center, Alexandria City, Egypt
| | - Rasha Zayeda
- Animal Health Research Institute, Tanta Regional Laboratory, Tanta City, Egypt
| | - H Elakany
- Department of Poultry and Fish diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour City, Egypt
| | - Sohair Badr
- Pathology Department, Animal Health Research Institute Agriculture Research Center, Cairo City, Egypt
| | - A Abou-Rawash
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour Cty, 25511, Egypt.
| | - Hoda Abd-Ellatieff
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour Cty, 25511, Egypt
| |
Collapse
|
5
|
Aderemi FA, Alabi OM. Turmeric ( Curcuma longa): an alternative to antibiotics in poultry nutrition. Transl Anim Sci 2023; 7:txad133. [PMID: 38111601 PMCID: PMC10727472 DOI: 10.1093/tas/txad133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
Turmeric, a common spice in many countries has been used for centuries in traditional medicine for its antimicrobial properties. Recent research has shown that turmeric can be a viable alternative to antibiotics in poultry production. Antibiotic overuse in poultry has led to the development of antibiotic-resistant bacteria, which poses a threat to both animal and human health. Turmeric contains curcumin, a compound that has been shown to have antimicrobial activity against a wide range of bacteria, including those resistant to antibiotics. In addition, turmeric has anti-inflammatory and immunomodulatory properties, which can help boost the immune system of poultry and reduce the need for antibiotics. Studies have shown that turmeric can improve growth performance, and gut health, and reduce the incidence of disease in poultry. Therefore, the use of turmeric as an alternative to antibiotics in poultry production has the potential to not only improve animal health and welfare but also contribute to the fight against antibiotic resistance. This review aims to provide an overview of the recent knowledge on the use of these plant extracts in poultry feeds as feed additives and their effects on poultry performance.
Collapse
Affiliation(s)
- Foluke Abimbola Aderemi
- Animal Science and Fisheries Management Unit, Agriculture Programme, Bowen University, Iwo, Nigeria
| | - Olufemi Mobolaji Alabi
- Animal Science and Fisheries Management Unit, Agriculture Programme, Bowen University, Iwo, Nigeria
| |
Collapse
|
6
|
Ashraf A, Shahardar RA, Wani ZA, Bulbul KH, Allaie IM. Comparative efficacy of allopathic and herbal drugs in sheep naturally infected with coccidiosis. Res Vet Sci 2023; 164:105001. [PMID: 37690328 DOI: 10.1016/j.rvsc.2023.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/14/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Development of anticoccidial resistance and concerns of drug residues have prompted the evaluation of alternatives to allopathic drugs. In current study, anticoccidial effect of amprolium was compared with that of Curcuma longa and Zingiber officinale. Ninety (90) sheep, naturally infected with Eimeria spp. and having a minimum oocyst per gram (OPG) count of faeces above 5000 were randomly selected and divided into six groups of 15 animals each. Animals were supplemented with amprolium @ 62.50 mg/kg body weight (bw) (GI), turmeric @ 200 and 300 mg/kg bw (GII and GIII) and ginger @ 200 and 300 mg/kg bw (GIV and GV), orally for 7 days and GVI animals were kept as untreated infected control. Faecal samples were collected on '0' day before treatment and on 8th, 14th, 21st and 28th day after starting treatment and evaluated using Faecal oocyst count reduction test (FOCRT). The efficacy of amprolium was 93.18%, 96.82%, 95.56% and 95.80% on 8th, 14th, 21st and 28th day, after starting treatment. Turmeric @200 mg/kg b.w. showed efficacy of 41.49%, 52.37%, 61.47% and 60.08% and turmeric @ 300 mg/kg bw was 44.92%, 54.32%, 64.21% and 61.95% effective on 8th, 14th, 21st and 28th day, respectively. Ginger @200 mg/kg bw showed efficacy of 38.51%, 53.48%, 55.38% and 55.53% and ginger @ 300 mg/kg bw was 39.65%, 54.81%, 57.18% and 58.22% effective on 8th,14th, 21st and 28th day, respectively. The results justify use of amprolium for clinical coccidiosis while Curcuma longa and Gingiber officinale could be used as natural prophylactic alternatives.
Collapse
Affiliation(s)
- Aiman Ashraf
- Division of Veterinary Parasitology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190006, India.
| | - Rafiq Ahmad Shahardar
- Division of Veterinary Parasitology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190006, India
| | - Zahoor Ahmad Wani
- Division of Veterinary Parasitology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190006, India
| | - Kamal Hashan Bulbul
- Division of Veterinary Parasitology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190006, India
| | - Idrees Mehraj Allaie
- Division of Veterinary Parasitology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190006, India
| |
Collapse
|
7
|
Hassan SM, Zayeda R, Ellakany HF, Badr S, A AA, Abd-ellatieff HA. Anticoccidial Activity of Aloe Vera Leafs’ Aqueous Extract and vaccination Against Eimeria tenella: Pathological Study in Broilers.. [DOI: 10.21203/rs.3.rs-3158113/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
This study aimed to assess the efficacy of an anticoccidial vaccine and the anticoccidial activity of Aloe vera in broiler chickens infected with Eimeria tenella. A total of 225 healthy one-day-old, unsexed broiler chicks (avian48) from a commercial broiler company were randomly divided into nine experimental groups, with 25 chicks in each group. The groups included: Group 1 (control, vaccinated, non-infected), Group 2 (vaccinated and infected with 5×104 sporulated oocysts), Group 3 (vaccinated, infected with 5×104 sporulated oocysts, and treated with Aloe vera), Group 4 (infected with 5×104 sporulated oocysts and treated with Aloe vera), Group 5 (positive control, infected with 5×104 sporulated oocysts), Group 6 (challenged with 5×104 sporulated oocysts and then treated with amprolium), Group 7 (treated with amprolium), Group 8 (blank control negative group), and Group 9 (treated with Aloe vera gel). Various parameters including clinical signs, growth performance, oocyst shedding, hematological and immunological parameters, and pathological lesion scoring were evaluated. The results showed that Aloe vera improved growth performance, reduced oocyst shedding, and decreased caecal lesion scores in broiler chicks infected with Eimeria tenella. The use of Aloe vera in combination with either amprolium or anticoccidial vaccines provided a potential solution to the issues of drug resistance and drug residues. In conclusion, this study provides valuable insights into the control of coccidiosis in broilers. Supplementing the chicken diet with Aloe vera had beneficial effects on the pathogenicity and infectivity of Eimeria tenella, making it a cost-effective alternative as an herbal extract with no adverse side effects for coccidiosis control. These findings suggest that Aloe vera can be considered as a potential candidate for inclusion in broiler diets to effectively control coccidiosis.
Collapse
|
8
|
Park I, Nam H, Wickramasuriya SS, Lee Y, Wall EH, Ravichandran S, Lillehoj HS. Host-mediated beneficial effects of phytochemicals for prevention of avian coccidiosis. Front Immunol 2023; 14:1145367. [PMID: 37334385 PMCID: PMC10272459 DOI: 10.3389/fimmu.2023.1145367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Both in vitro and in vivo studies were conducted to evaluate the beneficial effects of green tea extract (GT), cinnamon oil (CO), and pomegranate extract (PO) on avian coccidiosis. In experiment (EXP) 1, an in vitro culture system was used to investigate the individual effects of GT, CO, and PO on the proinflammatory cytokine response and integrity of tight junction (TJ) in chicken intestinal epithelial cells (IEC), on the differentiation of quail muscle cells and primary chicken embryonic muscle cells, and anticoccidial and antibacterial activities against Eimeria tenella sporozoites and Clostridium perfringens bacteria, respectively. In EXP 2 and 3, in vivo trials were carried out to study the dose-dependent effect of blended phytochemicals (GT, CO, PO) on coccidiosis in broiler chickens infected with E. maxima. For EXP 2, one hundred male broiler chickens (0-day-old) were allocated into the following five treatment groups: Control group for non-infected chickens (NC), Basal diet group for E. maxima-infected chickens (PC), PC group supplemented with phytochemicals at 50 (Phy 50), 100 (Phy 100), and 200 (Phy 200) mg/kg feed diets for E. maxima-infected chickens. For EXP 3, one hundred twenty male broiler chickens (0-day-old) were allocated into the following six treatment groups: NC, PC, PC supplemented with phytochemicals at 10 (Phy 10), 20 (Phy 20), 30 (Phy 30), and 100 (Phy 100) mg/kg feed for E. maxima-infected chickens. Body weights (BW) were measured on days 0, 7, 14, 20, and 22, and jejunum samples were used to measure cytokine, TJ protein, and antioxidant enzyme responses at 8 days post-infection (dpi). Fecal samples for oocyst enumeration were collected from 6 to 8 dpi. In vitro, CO and PO reduced LPS-induced IL-1β and IL-8 in IEC, respectively, and GT enhanced the gene expression of occludin in IEC. PO at 1.0 and 5.0 mg/mL exerted antimicrobial effect against E. tenella sporozoites and C. perfringens bacteria, respectively. In vivo, chickens fed a diet supplemented with phytochemicals showed enhanced BW, reduced oocyst shedding, and decreased proinflammatory cytokines following E. maxima challenge. In conclusion, the combination of GT, CO, and PO in the diet of broiler chickens infected with E. maxima induced enhanced host disease resistance including innate immunity and gut health, which contributed to improved growth and reduced disease responses. These findings provide scientific support for the development of a novel phytogenic feed additive formula that enhances the growth and intestinal health of broiler chickens infected with coccidiosis.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Samiru S. Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Emma H. Wall
- AVT Natural North America, Santa Clara, CA, United States
| | | | - Hyun S. Lillehoj
- Animal Bioscience and Biotechnology Laboratory, United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD, United States
| |
Collapse
|
9
|
Almuzaini AM. Phytochemicals: potential alternative strategy to fight Salmonella enterica serovar Typhimurium. Front Vet Sci 2023; 10:1188752. [PMID: 37261108 PMCID: PMC10228746 DOI: 10.3389/fvets.2023.1188752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 06/02/2023] Open
Abstract
The rise of multidrug resistant (MDR) microorganisms is a great hazard worldwide and has made it difficult to treat many infectious diseases adequately. One of the most prevalent causes of outbreaks of foodborne illness worldwide is Salmonella. The ability of this and other harmful bacteria to withstand antibiotics has recently proven crucial to their effective control. Since the beginning of time, herbal medicines and phytochemicals have been employed for their potent antibacterial action and there is a growing trend toward the production of plant based natural products for the prevention and treatment of pathogenic infections. Numerous phytochemicals have been proven effective against the molecular determinants responsible for attaining drug resistance in pathogens like efflux pumps, membrane proteins, bacterial cell communications and biofilms. The medicinal plants having antibacterial activity and antibiotics combination with phytochemicals have shown synergetic activity against Salmonella enterica serovar Typhimurium. The inhibitory effects of tannins on rumen proteolytic bacteria can be exploited in ruminant nutrition. Improved control of the rumen ecology and practical use of this feed additive technology in livestock production will be made possible by a better knowledge of the modulatory effects of phytochemicals on the rumen microbial populations in combination with fermentation. This review focuses on the development of antibacterial resistance in Salmonella, the mechanism of action of phytochemicals and the use of phytochemicals against S. enterica serovar Typhimurium. The advances and potential future applications of phytochemicals in the fight against resistant are also discussed.
Collapse
|
10
|
García-García J, Gracián C, Baños A, Guillamón E, Gálvez J, Rodriguez-Nogales A, Fonollá J. Beneficial Effects of Daily Consumption of Garlic and Onion Extract Concentrate on Infectious Respiratory Diseases in Elderly Resident Volunteers. Nutrients 2023; 15:nu15102308. [PMID: 37242191 DOI: 10.3390/nu15102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Aging is a biological process with high susceptibility to several infections. This risk increases in older patients in residential care facilities (RCF). Thus, there is a clear demand for developing preventive interventions with new therapeutic compounds that combine efficacy and safety. This could be the case of compounds derived from plants of the genus Allium spp. The purpose of this study was to evaluate the impact of a combination of a garlic and onion extract concentrate standardized in organosulfur compounds derived from propiin on the incidence of respiratory tract infections in elderly patients of RCF. Sixty-five volunteers were selected at random to receive a placebo or a single daily dose of the extract for thirty-six weeks. Different clinical visits were performed to evaluate the main respiratory diseases with an infectious origin, as well as the associated symptoms and their duration. The extract showed a clinical safety profile and significantly reduced the incidence of respiratory infections. Moreover, the treatment decreased the number and duration of the associated symptoms compared with the placebo group. For the first time, we demonstrated the protective effect of Alliaceae extract in respiratory infectious diseases in elderly healthy volunteers, which could be used prophylactically against the most common infectious respiratory diseases.
Collapse
Affiliation(s)
- Jorge García-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Carlos Gracián
- Nursing Home "Residencia de Mayores Claret", 18011 Granada, Spain
| | | | | | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBER-EHD), 28029 Madrid, Spain
| | - Alba Rodriguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), 18012 Granada, Spain
| | | |
Collapse
|
11
|
Emam MA, Farouk SM, Aljazzar A, Abdelhameed AA, Eldeeb AA, Gad FAM. Curcumin and cinnamon mitigates lead acetate-induced oxidative damage in the spleen of rats. Front Pharmacol 2023; 13:1072760. [PMID: 36726787 PMCID: PMC9885216 DOI: 10.3389/fphar.2022.1072760] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Lead toxicity is a common occupational and environmental health hazard that exerts many toxic effects on animals and humans, including immunotoxicity. Curcumin (CUR) and cinnamon (CIN) are common medicinal herbs with immunostimulatory and antioxidant properties. Therefore, this study investigated the protective effect of curcumin and cinnamon against lead acetate (LA)-induced splenotoxicity in rats via hemato-biochemical, immunological, oxidative stress marker, CYP-2E1 expression, histological, and immunohistological evaluations. Four groups of seven rats each were used: the control group received corn oil as a vehicle; the lead acetate group received (100 mg/kg), the CUR + LA group received curcumin (400 mg/kg) plus lead acetate, and the CIN + LA group received cinnamon (200 mg/kg) plus lead acetate orally for 1 month. LA exposure induced macrocytic hypochromic anemia, leukocytosis, neutrophilia, monocytosis, and lymphopenia. Additionally, significant elevations in serum iron, ferritin levels, and transferrin saturation percentage with significant decline of total and unsaturated iron binding capacities (TIBC and UIBC), transferrin, and immunoglobulin G and M levels were recorded. In addition, lead acetate significantly upregulated splenic CYP-2E1 expression, that was evident by significant depletion of reduced glutathione (GSH) activity and elevation of malondihyde (MDA), nitric oxide (NO), and protein carbonyl (PC) concentrations in the spleen. Histologically, hyperplasia of lymphoid follicles, hemosiderin deposition, and disturbance of CD3 and CD68 immuno-expressions were evident in the spleen from the lead acetate group. However, curcumin and cinnamon administration restored the hemato-biochemical, immunological, and oxidative stress parameters as well as histological and immunohistological pictures toward normalcy. In conclusion, curcumin and cinnamon can partially ameliorate LA-induced oxidative damage in the spleen, possibly through their antioxidant, immunomodulatory, and gene-regulating activities.
Collapse
Affiliation(s)
- Mahmoud Abdelghaffar Emam
- Histology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt,*Correspondence: Mahmoud Abdelghaffar Emam,
| | - Sameh Mohamed Farouk
- Cytology and Histology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed Aljazzar
- Pathology Department, Collage of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Abeer A. Abdelhameed
- Clinical Pharmacology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Abeer A. Eldeeb
- Clinical Pharmacology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Fatma Abdel-monem Gad
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| |
Collapse
|
12
|
Potential Probiotics Role in Excluding Antibiotic Resistance. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5590004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. Antibiotic supplementation in feed has been continued for the previous 60 years as therapeutic use. They can improve the growth performance and feed efficiency in the chicken flock. A favorable production scenario could favor intestinal microbiota interacting with antibiotic growth promoters and alter the gut bacterial composition. Antibiotic growth promoters did not show any beneficial effect on intestinal microbes. Scope and Approach. Suitable and direct influence of growth promoters are owed to antimicrobial activities that reduce the conflict between host and intestinal microbes. Unnecessary use of antibiotics leads to resistance in microbes, and moreover, the genes can relocate to microbes including Campylobacter and Salmonella, resulting in a great risk of food poisoning. Key Findings and Conclusions. This is a reason to find alternative dietary supplements that can facilitate production, growth performance, favorable pH, and modulate gut microbial function. Therefore, this review focus on different nutritional components and immune genes used in the poultry industry to replace antibiotics, their influence on the intestinal microbiota, and how to facilitate intestinal immunity to overcome antibiotic resistance in chicken.
Collapse
|
13
|
Hotea I, Dragomirescu M, Berbecea A, Radulov I. Phytochemicals as Alternatives to Antibiotics in Animal Production. Vet Med Sci 2022. [DOI: 10.5772/intechopen.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Despite the continuous improvement of feed diets and recipes, animal health problems persist. For their treatment, antibiotics and chemotherapy have been shown to have side effects hard to control. The antibiotic residues in animal products may endanger human health. Since the antibiotics were restricted in animals’ diets, which were previously used to keep under control digestive and respiratory pathologies, as well as allergies, so the researchers began to search for natural alternatives. Thus, it was developed the concept of phytoadditives, and these natural plant extracts are gaining ground in animal farming. Since then, more and more animal breeders and farms are willing to use various types of phytoadditives. This chapter aims to present the most widely used phytochemicals in animal nutrition, their effects on animal production and health, and to make some recommendations on the use of phytochemicals in farm animals’ diets.
Collapse
|
14
|
Rafeeq M, Bilal RM, Alagawany M, Batool F, Yameen K, Farag MR, Ali S, Elnesr SS, El-Shall NA. The use of some herbal plants as effective alternatives to antibiotic growth enhancers in poultry nutrition. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Majid Rafeeq
- Center for Advanced Studies in Vaccinology and Biotechnology University of Balochistan, Quetta, Pakistan
| | - Rana Muhammad Bilal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Fiza Batool
- Faculty of Agriculture, Department of Forestry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kashif Yameen
- Department of Poultry, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Sher Ali
- Faculty of Animal Production & Technology, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfna, Egypt
| |
Collapse
|
15
|
Nutritional interventions to support broiler chickens during Eimeria infection. Poult Sci 2022; 101:101853. [PMID: 35413594 PMCID: PMC9018146 DOI: 10.1016/j.psj.2022.101853] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Different combinations of gut health-promoting dietary interventions were tested to support broilers during different stages of Eimeria infection. One-day-old male Ross 308 broilers (n = 720) were randomly assigned to one of 6 dietary treatments, with 6 pens per treatment and 20 birds per pen, for 35 d. At 7 d of age (d7), all birds were inoculated with 1000, 100, and 500 sporulated oocysts of E. acervulina, E. maxima, and E. tenella, respectively. A 4-phase feeding schedule was provided. The dietary treatments (TRT) 1 to 4 included the basal diet supplemented with multispecies probiotics from d0 to 9 and coated butyrate and threonine from d28 to 35 but received four different combinations of prebiotics and phytochemicals from d9 to 18 and d18 to 28. The basal diet for the positive control (PC, TRT5) included diclazuril as a anticoccidial. The negative control (NC, TRT6) contained no anticoccidial. Performance was assessed for each feeding phase, and oocyst output, Eimeria lesion scores, cecal weight, litter quality, and footpad lesions were assessed at d14, d22, d28, and d35. Body weight gain (BWG) and feed intake (FI) were not affected by dietary treatment. PC broilers had the best feed conversion ratio (FCR) of all treatments from d0 to 35 (P < 0.001). None of the dietary treatments resulted in better litter quality or reduced footpad lesions compared to the PC. Moreover, the PC was most effective in reducing oocyst output and lesion scores compared to all other treatments. However, broilers that received the multispecies probiotics (d0 to 9), saponins (d9 to 18), saponins, artemisin, and curcumin (d18 to 28), and coated butyrate and threonine (d28 to 35) had the best FCR (P < 0.001) and lowest oocyst output and lesion scores compared to other dietary treatments. This study suggests that although the tested compounds did not perform as well as the anticoccidial, when applied in the proper feeding period, they may support bird resilience during coccidiosis infection.
Collapse
|
16
|
Taylor J, Sakkas P, Kyriazakis I. Starving for nutrients: anorexia during infection with parasites in broilers is affected by diet composition. Poult Sci 2022; 101:101535. [PMID: 34794080 PMCID: PMC8605289 DOI: 10.1016/j.psj.2021.101535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
In 2 experiments, we investigated whether diet composition plays a role in pathogen-induced anorexia, the voluntary reduction in ADFI during infection in broilers. We hypothesized that either energy or CP dietary content could influence the extent of anorexia in Ross 308 broilers and infection outcomes with Eimeria maxima. From d 13 of age, half of the birds were infected, and half were uninfected. ADFI was measured daily, and BW every 3 d until d 29. Oocyst excretion was measured daily from d 17 to 23. The impact of parasitism on the small intestine was assessed on d 19 and 25. In Experiment 1, 336 birds were offered diets progressively diluted with lignocellulose, starting from a diet with 3,105 (kcal ME/kg) and 20% CP. There was a significant interaction between infection and diet on ADFI during the acute stage of infection (d 17 to 21): for control birds diet dilution decreased ADFI and consequently reduced energy and CP intake. For infected birds, diet dilution increased ADFI, leading to the same energy and CP intake across diets. Oocyst excretion and villi length to crypt depth ratio (VCR) were constant across infected treatments. In Experiment 2, 432 birds were offered diets with constant ME (3,105 kcal/kg), but different CP contents (24, 20, 26, and 12%). Infection significantly reduced ADFI. Although there was no interaction between infection and diet on ADFI, there was an interaction on CP intake during the acute stage of infection. Infected birds on the 20% CP diet achieved the same CP intake as uninfected birds. There were no differences in the VCR and ADG of the infected birds on 24, 20 and 16% CP treatments, but birds on 12% had the lowest ADG and excreted more oocysts. We suggest that during infection, birds target a nutrient resource intake, which appears to be beneficial for infection outcomes, while at the same time they avoid excess protein intake. We conclude that different mechanisms regulate ADFI in infected and uninfected birds.
Collapse
Affiliation(s)
- James Taylor
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle on Tyne NE1 7RU, United Kingdom.
| | | | - Ilias Kyriazakis
- Institute for Global Food Security, Queen's University, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
17
|
Mousavinasab SS, Bozorgmehrifard MH, Kiaei SMM, Rahbari S, Charkhkar S. Comparison of the effects of herbal compounds and chemical drugs for control of coccidiosis in broiler chickens. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2020-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coccidiosis is the most important intestinal parasitic disease of broiler chickens in poultry industry. Because of the increasing resistance to anticoccidial agents and presence of their residues in meat and eggs, it is necessary to find safe and new anticoccidial compounds. This study was conducted to compare the effects of two herbal compounds, including Artemisia sieberi and Curcuma longa, and their mix with a chemical anticoccidial drug on broilers’ performance during a mixed coccidian challenge. A total of 216, one-day-old Ross 308 broilers were randomly divided into six groups. Different herbal extracts and one chemical anticoccidial agent were used in each group. Five groups were infected with a mixture of Eimeria sporulated oocysts at the age of 21 days with crop gavage. Body weight and feed intake were measured then feed conversion ratio was calculated on a weekly basis. Mortality was recorded when occurred throughout the experimental period. Oocysts excretions and lesion scores were investigated weekly up to three weeks after infection. Eimeria-challenged birds had a reduction in growth parameters compared to the uninfected birds (P<0.001); the best performance values were recorded for the groups treated with a mix of two herbal extracts and amprolium ethopabate (P<0.05). The groups treated with herbal extracts had a significantly reduced oocyst excretion per gram of faeces compared to the positive control group. Lesion score of the amprolium ethopabate group was better than those of the other groups. As a conclusion, herbal extracts, especially a mix of them, could be effective in controlling coccidiosis and its complications.
Collapse
|
18
|
El-Shall NA, Abd El-Hack ME, Albaqami NM, Khafaga AF, Taha AE, Swelum AA, El-Saadony MT, Salem HM, El-Tahan AM, AbuQamar SF, El-Tarabily KA, Elbestawy AR. Phytochemical control of poultry coccidiosis: a review. Poult Sci 2022; 101:101542. [PMID: 34871985 PMCID: PMC8649401 DOI: 10.1016/j.psj.2021.101542] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/20/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022] Open
Abstract
Avian coccidiosis is a major parasitic disorder in chickens resulting from the intracellular apicomplexan protozoa Eimeria that target the intestinal tract leading to a devastating disease. Eimeria life cycle is complex and consists of intra- and extracellular stages inducing a potent inflammatory response that results in tissue damage associated with oxidative stress and lipid peroxidation, diarrheal hemorrhage, poor growth, increased susceptibility to other disease agents, and in severe cases, mortality. Various anticoccidial drugs and vaccines have been used to prevent and control this disorder; however, many drawbacks have been reported. Drug residues concerning the consumers have directed research toward natural, safe, and effective alternative compounds. Phytochemical/herbal medicine is one of these natural alternatives to anticoccidial drugs, which is considered an attractive way to combat coccidiosis in compliance with the "anticoccidial chemical-free" regulations. The anticoccidial properties of several natural herbal products (or their extracts) have been reported. The effect of herbal additives on avian coccidiosis is based on diminishing the oocyst output through inhibition or impairment of the invasion, replication, and development of Eimeria species in the gut tissues of chickens; lowering oocyst counts due to the presence of phenolic compounds in herbal extracts which reacts with cytoplasmic membranes causing coccidial cell death; ameliorating the degree of intestinal lipid peroxidation; facilitating the repair of epithelial injuries; and decreasing the intestinal permeability induced by Eimeria species through the upregulation of epithelial turnover. This current review highlights the anticoccidial activity of several herbal products, and their other beneficial effects.
Collapse
Affiliation(s)
- Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Elbehira 22758, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Najah M Albaqami
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511 , Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211 , Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain,15551, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain,15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia.
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
19
|
Jin S, Yang H, Liu F, Pang Q, Shan A, Feng X. Effect of Dietary Curcumin Supplementation on Duck Growth Performance, Antioxidant Capacity and Breast Meat Quality. Foods 2021; 10:foods10122981. [PMID: 34945532 PMCID: PMC8701154 DOI: 10.3390/foods10122981] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
This study aimed at examining the effects of curcumin supplementation on growth performance, antioxidant capacity, and meat quality of ducks. To investigate these effects, 600 healthy ducks were randomly assigned to four treatment groups with 10 replicates pens, and each pen contained 15 ducks. Ducks were fed a diet containing curcumin at levels of 0, 300, 400, and 500 mg kg-1 in different groups. The results demonstrated that curcumin supplementation is beneficial to the growth performance (p < 0.05) of ducks and antioxidant capacity (p < 0.05) of duck meat. In addition, dietary curcumin raised the meat quality of ducks, improving the meat color, increasing water-holding capacity, and inhibiting lipid and protein oxidation. In conclusion, the present study provides important insights into both the nutrient and qualities of ducks, finding that a dietary inclusion of 400-500 mg/kg of curcumin (kg-1) has the greatest effect.
Collapse
Affiliation(s)
- Sanjun Jin
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (S.J.); (H.Y.); (F.L.); (Q.P.); (A.S.)
- Centre of Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (S.J.); (H.Y.); (F.L.); (Q.P.); (A.S.)
| | - Fangju Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (S.J.); (H.Y.); (F.L.); (Q.P.); (A.S.)
| | - Qian Pang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (S.J.); (H.Y.); (F.L.); (Q.P.); (A.S.)
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (S.J.); (H.Y.); (F.L.); (Q.P.); (A.S.)
| | - Xingjun Feng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (S.J.); (H.Y.); (F.L.); (Q.P.); (A.S.)
- Correspondence: or ; Tel.: +86-0451-5519-1395
| |
Collapse
|
20
|
Potential Replacements for Antibiotic Growth Promoters in Poultry: Interactions at the Gut Level and Their Impact on Host Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:145-159. [PMID: 34807441 DOI: 10.1007/978-3-030-85686-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chicken gastrointestinal tract (GIT) has a complex, biodiverse microbial community of ~ 9 million bacterial genes plus archaea and fungi that links the host diet to its health. This microbial population contributes to host physiology through metabolite signaling while also providing local and systemic nutrients to multiple organ systems. In a homeostatic state, the host-microbial interaction is symbiotic; however, physiological issues are associated with dysregulated microbiota. Manipulating the microbiota is a therapeutic option, and the concept of adding beneficial bacteria to the intestine has led to probiotic and prebiotic development. The gut microbiome is readily changeable by diet, antibiotics, pathogenic infections, and host- and environmental-dependent events. The intestine performs key roles of nutrient absorption, tolerance of beneficial microbiota, yet responding to undesirable microbes or microbial products and preventing translocation to sterile body compartments. During homeostasis, the immune system is actively preventing or modulating the response to known or innocuous antigens. Manipulating the microbiota through nutrition, modulating host immunity, preventing pathogen colonization, or improving intestinal barrier function has led to novel methods to prevent disease, but also resulted in improved body weight, feed conversion, and carcass yield in poultry. This review highlights the importance of adding different feed additives to the diets of poultry in order to manipulate and enhance health and productivity of flocks.
Collapse
|
21
|
Albalawi AE, Alanazi AD, Sharifi I, Ezzatkhah F. A Systematic Review of Curcumin and its Derivatives as Valuable Sources of Antileishmanial Agents. Acta Parasitol 2021; 66:797-811. [PMID: 33770343 DOI: 10.1007/s11686-021-00351-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND In recent years, antimonial agents and other synthetic antileishmanial drugs, such as amphotericin B, paromomycin, and many other drugs, have restrictions in use due to the toxicity risk, high cost, and emerging resistance to these drugs. The present study aimed to review the antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations on leishmaniasis. METHODS The present study was carried out according to the 06-preferred reporting items for systematic reviews and meta-analyses (PRISMA) guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. Some English-language databases including PubMed, Google Scholar, Web of Science, EBSCO, Science Direct, and Scopus were searched for publications worldwide related to antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations, without date limitation, to identify all the published articles (in vitro, in vivo, and clinical studies). Keywords included "curcumin", "Curcuma longa", "antileishmanial", "Leishmania", "leishmaniasis", "cutaneous leishmaniasis", "visceral leishmaniasis", "in vitro", and "in vivo". RESULTS Out of 5492 papers, 29 papers including 20 in vitro (69.0%), 1 in vivo (3.4%), and 8 in vitro/in vivo (27.6%) studies conducted up to 2020, met the inclusion criteria for discussion in this systematic review. The most common species of the Leishmania parasite used in these studies were L. donovani (n = 13, 44.8%), L. major (n = 10, 34.5%), and L. amazonensis (n = 6, 20.7%), respectively. The most used derivatives in these studies were curcumin (n = 15, 33.3%) and curcuminoids (n = 5, 16.7%), respectively. CONCLUSION In the present review, according to the studies in the literature, various forms of drugs based on curcumin and their derivatives exhibited significant in vitro and in vivo antileishmanial activity against different Leishmania spp. The results revealed that curcumin and its derivatives could be considered as an alternative and complementary source of valuable antileishmanial components against leishmaniasis, which had no significant toxicity. However, further studies are required to elucidate this concluding remark, especially in clinical settings.
Collapse
Affiliation(s)
| | - Abdullah D Alanazi
- Department of Biological Science, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi 11911, Saudi Arabia
- Alghad International Colleges for Applied Medical Science, Tabuk 47913, Saudi Arabia
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Ezzatkhah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
22
|
Growth performance, ascites sensitivity, and ileal microbiota as affected by licorice essential oil in broiler chicken diets. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Rehman MSU, Rehman SU, Yousaf W, Hassan FU, Ahmad W, Liu Q, Pan H. The Potential of Toll-Like Receptors to Modulate Avian Immune System: Exploring the Effects of Genetic Variants and Phytonutrients. Front Genet 2021; 12:671235. [PMID: 34512716 PMCID: PMC8427530 DOI: 10.3389/fgene.2021.671235] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) are pathogen recognition receptors, and primitive sources of innate immune response that also play key roles in the defense mechanism against infectious diseases. About 10 different TLRs have been discovered in chicken that recognize ligands and participate in TLR signaling pathways. Research findings related to TLRs revealed new approaches to understand the fundamental mechanisms of the immune system, patterns of resistance against diseases, and the role of TLR-specific pathways in nutrient metabolism in chicken. In particular, the uses of specific feed ingredients encourage molecular biologists to exploit the relationship between nutrients (including different phytochemicals) and TLRs to modulate immunity in chicken. Phytonutrients and prebiotics are noteworthy dietary components to promote immunity and the production of disease-resistant chicken. Supplementations of yeast-derived products have also been extensively studied to enhance innate immunity during the last decade. Such interventions pave the way to explore nutrigenomic approaches for healthy and profitable chicken production. Additionally, single-nucleotide polymorphisms in TLRs have shown potential association with few disease outbreaks in chickens. This review aimed to provide insights into the key roles of TLRs in the immune response and discuss the potential applications of these TLRs for genomic and nutritional interventions to improve health, and resistance against different fatal diseases in chicken.
Collapse
Affiliation(s)
- Muhammad Saif-ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Wasim Yousaf
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Faiz-ul Hassan
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Waqas Ahmad
- Department of Clinical Sciences, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Hongping Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
24
|
Kikusato M. Phytobiotics to improve health and production of broiler chickens: functions beyond the antioxidant activity. Anim Biosci 2021; 34:345-353. [PMID: 33705621 PMCID: PMC7961201 DOI: 10.5713/ab.20.0842] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 12/17/2022] Open
Abstract
Phytobiotics, also known as phytochemicals or phytogenics, have a wide variety of biological activities and have recently emerged as alternatives to synthetic antibiotic growth promoters. Numerous studies have reported the growth-promoting effects of phytobiotics in chickens, but their precise mechanism of action is yet to be elucidated. Phytobiotics are traditionally known for their antioxidant activity. However, extensive investigations have shown that these compounds also have anti-inflammatory, antimicrobial, and transcription-modulating effects. Phytobiotics are non-nutritive constituents, and their bioavailability is low. Nonetheless, their beneficial effects have been observed in several tissues or organs. The health benefits of the ingestion of phytobiotics are attributed to their antioxidant activity. However, several studies have revealed that not all these benefits could be explained by the antioxidant effects alone. In this review, I focused on the bioavailability of phytobiotics and the possible mechanisms underlying their overall effects on intestinal barrier functions, inflammatory status, gut microbiota, systemic inflammation, and metabolism, rather than the specific effects of each compound. I also discuss the possible mechanisms by which phytobiotics contribute to growth promotion in chickens.
Collapse
Affiliation(s)
- Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
25
|
Anti-Coccidial Effect of Rumex Nervosus Leaf Powder on Broiler Chickens Infected with Eimeria Tenella Oocyst. Animals (Basel) 2021; 11:ani11010167. [PMID: 33445749 PMCID: PMC7828199 DOI: 10.3390/ani11010167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/15/2020] [Accepted: 01/09/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Eimeria tenella pathogens belong to the Eimeriidae family and the Apicomplexa phylum, which invades the cecal epithelium of birds, resulting in massive injury and economic loss. We evaluated the ameliorative effect of Rumex nervosus (RN) leaf powder against E. tenella-induced coccidiosis in broiler chickens. Chickens infected with E. tenella were treated with 1, 3, and 5 g/kg RN, respectively. Salinomycin sodium (Sacox®), an anti-coccidial agent, was used as a reference drug. Results have shown that RN contains Gallic acid and 13 phytochemicals, which require further investigation in vitro or in vivo to ascertain whether the anti-coccidial activity, if there, is a direct or indirect link to reduce the number of fecal oocysts in the bird. The lesion score and bloody diarrhea were also decreased after infection. Moreover, the coccidial challenge adversely affected (p < 0.05) the performance measurements in the RN- and Sacox-treated groups compared with the uninfected–unmedicated control (NC) group. Interestingly, these parameters were positively affected by natural and synthetic treatments compared with infected–unmedicated control (PC); however, the values were not significant. In conclusion, RN at the highest dose is a promising shrub with a moderate anti-coccidial activity when used to cure avian coccidiosis. Abstract Coccidiosis a huge economic burden in poultry farms where the pathogen Eimeria harms animal well-being and survival. Besides synthetic anti-coccidial drugs, natural herbs appear to be an alternative way to prevent avian coccidiosis. Rumex nervosus (RN), a phytogenic shrub, has received considerable attention in recent years due to its significant anti-microbial effects; however, limited knowledge exists about its potential anti-coccidial functions. This study was conducted to evaluate the prophylactic and therapeutic activities of RN leaf powder in broilers infected with Eimeria tenella. Infected chickens received a commercial diet containing 1, 3, or 5 g RN powder/kg diet compared to infected broilers that treated with Sacox (PC) or compared to uninfected broilers that received a commercial diet alone (NC). Results showed that RN powder significantly (p < 0.05) reduced the lesion scores and suppressed the output of oocysts per gram (OPG) in chickens’ feces. Although RN was unable to minimize the weight gain loss due to emeriosis, RN at level 1 g improved the feed conversion ratio. Therefore, RN powder, at 5 g, possesses moderate anti-coccidial effects and hence could be used to treat avian coccidiosis in field conditions; however, further studies are required to investigate, in vitro or in vivo, the anti-coccidial potential of active ingredients.
Collapse
|
26
|
Sigolo S, Milis C, Dousti M, Jahandideh E, Jalali A, Mirzaei N, Rasouli B, Seidavi A, Gallo A, Ferronato G, Prandini A. Effects of different plant extracts at various dietary levels on growth performance, carcass traits, blood serum parameters, immune response and ileal microflora of Ross broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1883485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Samantha Sigolo
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Università Cattolica Sacro Cuore, Piacenza, Italy
| | | | - Mahmoud Dousti
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ebrahim Jahandideh
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ali Jalali
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Noorouddin Mirzaei
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Behrouz Rasouli
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Antonio Gallo
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Università Cattolica Sacro Cuore, Piacenza, Italy
| | - Giulia Ferronato
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Università Cattolica Sacro Cuore, Piacenza, Italy
| | - Aldo Prandini
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Università Cattolica Sacro Cuore, Piacenza, Italy
| |
Collapse
|
27
|
Patra AK. Influence of Plant Bioactive Compounds on Intestinal Epithelial Barrier in Poultry. Mini Rev Med Chem 2020; 20:566-577. [PMID: 31878854 DOI: 10.2174/1389557520666191226111405] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/14/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
Natural plant bioactive compounds (PBC) have recently been explored as feed additives to improve productivity, health and welfare of poultry following ban or restriction of in-feed antibiotic use. Depending upon the types of PBC, they possess antimicrobial, digestive enzyme secretion stimulation, antioxidant and many pharmacological properties, which are responsible for beneficial effects in poultry production. Moreover, they may also improve the intestinal barrier function and nutrient transport. In this review, the effects of different PBC on the barrier function, permeability of intestinal epithelia and their mechanism of actions are discussed, focusing on poultry feeding. Dietary PBC may regulate intestinal barrier function through several molecular mechanisms by interacting with different metabolic cascades and cellular transcription signals, which may then modulate expressions of genes and their proteins in the tight junction (e.g., claudins, occludin and junctional adhesion molecules), adherens junction (e.g., E-cadherin), other intercellular junctional proteins (e.g., zonula occludens and catenins), and regulatory proteins (e.g., kinases). Interactive effects of PBC on immunomodulation via expressions of several cytokines, chemokines, complement components, pattern recognition receptors and their transcription factors and cellular immune system, and alteration of mucin gene expressions and goblet cell abundances in the intestine may change barrier functions. The effects of PBC are not consistent among the studies depending upon the type and dose of PBC, physiological conditions and parts of the intestine in chickens. An effective concentration in diets and specific molecular mechanisms of PBC need to be elucidated to understand intestinal barrier functionality in a better way in poultry feeding.
Collapse
Affiliation(s)
- Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, India
| |
Collapse
|
28
|
Phytogenic blend protective effects against microbes but affects health and production in broilers. Microb Pathog 2020; 152:104590. [PMID: 33127536 DOI: 10.1016/j.micpath.2020.104590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 02/04/2023]
Abstract
The aim of this study was to determine whether addition of a phytogenic blend in the feed of broilers to replace conventional antimicrobials as a performance enhancer would improve or maintain productive efficiency. The phytogenic blend was based on curcuminoids, cinnamaldehyde and glycerol monolaurate. We used 480 birds divided into three groups with eight repetitions per group and 20 birds per repetition. The groups were identified as antimicrobial-treated: basal feed with antibiotics and coccidiostatic agents; phytogenic blend: basal feed with blend; and control, only basal feed. Zootechnical performance was measured on days from 1 to 42, with body weight measured at days 1, 7, 21 and 42. We collected excreta for parasitological analysis and total bacterial counts to determine if the phytogenic blend had kept the bacteria and coccidia in counts smaller or similar to that resulting from use of conventional performance enhancer. Other variables were also measured to complement our research, i.e., if the consumption of bend is good for the health of the birds (without causing toxicity and negatively altering the metabolism and intestinal morphometry) and does not interfere in the quality of the meat. Because the bacteria are often opportunistic, we challenged all birds at 23 days of age with high doses of oral oocysts (28,000 oocysts). Birds supplemented with the blend showed inferior performance compared to birds in the control and antimicrobial treated group (P < 0.05). We found a smaller number of oocysts of Eimeria spp. in the excreta at 42 days in the treatment with blend and antimicrobial treated group (P < 0.05). In terms of total bacterial counts, there were lower counts in the birds of the blend group than in the control group (P < 0.05). The blend increased the yellow intensity and the luminosity of the meat (P < 0.05), as well as cooking weight losses (P < 0.05) compared those of the control. We observed higher total levels of saturated fatty acids in meat from the blend and antimicrobial treated group (P < 0.05), as well as lower levels of monounsaturated fatty acids in the blend group (P < 0.05). The inclusion of a phytogenic blend to replace conventional antimicrobials and anticoccidial agents in the diet of chickens was able to control bacteria as well as coccidia; however, it ends up harming health and production.
Collapse
|
29
|
Zanu HK, Kheravii SK, Morgan NK, Bedford MR, Swick RA. Over-processed meat and bone meal and phytase effects on broilers challenged with subclinical necrotic enteritis: Part 1. Performance, intestinal lesions and pH, bacterial counts and apparent ileal digestibility. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:313-324. [PMID: 33005765 PMCID: PMC7503067 DOI: 10.1016/j.aninu.2020.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/17/2020] [Accepted: 03/08/2020] [Indexed: 01/02/2023]
Abstract
This feeding study investigated the hypothesis that over-processing of meat and bone meal (MBM) would impair the performance, gut health and ileal digestibility of nutrients in birds challenged with necrotic enteritis (NE). The effect of phytase (500 vs. 5,000 FTU/kg) was also examined using manufacturers recommended matrix values for 500 FTU for both levels. Ross 308 male broilers (n = 768) were assigned to 8 diets, with 6 replicate pens per diet and 16 birds per replicate pen using a randomized design with a factorial arrangement of treatments. Factors were NE challenge (no or yes), MBM (as received or over-processed), and phytase level (500 or 5,000 FTU/kg). Half of the birds were challenged with 5,000 oocysts of field strains of Eimeria acervulina and Eimeria brunetti, and 2,500 oocysts of Eimeria maxima on d 9 and 108 CFU/mL of Clostridium perfringens strain EHE-NE18 on d 14 and 15 post-hatch. Challenge × MBM interactions were detected for weight gain (WG), feed conversion ratio (FCR) and feed intake (FI) at d 14, 21 and 28, showing that challenged birds fed over-processed MBM had decreased WG (P < 0.05) and FI (P < 0.05) at d 14, increased FCR (P < 0.05) at d 21 and decreased WG (P < 0.05) and FI (P > 0.05) at d 28. Birds fed low phytase had increased livability (P < 0.05) at d 42. The challenge increased the prevalence and severity of NE induced lesions in the jejunum (P < 0.05) and ileum (P < 0.05). The birds fed over-processed MBM had decreased pH in the jejunum (P < 0.05) and ileum (P < 0.05) at d 16. High phytase increased apparent ileal digestibility (AID) of Ca (P < 0.05) and P (P < 0.05), and over-processed MBM increased AID of carbon (C; P < 0.05) and Ca (P < 0.05) at d 29. The challenge increased the caecal counts of Lactobacillus spp. (P < 0.05) and C. perfringens (P < 0.05) at d 16. The results indicated that supplementation of diets with high phytase reduces the negative impact on performance from over-processed MBM during NE as a result of increased nutrient digestibility.
Collapse
Affiliation(s)
- Holy K. Zanu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Sarbast K. Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Natalie K. Morgan
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | | | - Robert A. Swick
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
30
|
Moniruzzaman M, Min T. Curcumin, Curcumin Nanoparticles and Curcumin Nanospheres: A Review on Their Pharmacodynamics Based on Monogastric Farm Animal, Poultry and Fish Nutrition. Pharmaceutics 2020; 12:E447. [PMID: 32403458 PMCID: PMC7284824 DOI: 10.3390/pharmaceutics12050447] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is an emerging field of science that is widely used in medical sciences. However, it has limited uses in monogastric farm animal as well as fish and poultry nutrition. There are some works that have been done on curcumin and curcumin nanoparticles as pharmaceutics in animal nutrition. However, studies have shown that ingestion of curcumin or curcumin nanoparticles does not benefit the animal health much due to their lower bioavailability, which may result because of low absorption, quick metabolism and speedy elimination of curcumin from the animal body. For these reasons, advanced formulations of curcumin are needed. Curcumin nanospheres is a newly evolved field of nanobiotechnology which may have beneficial effects in terms of growth increment, anti-microbial, anti-inflammatory and neuroprotective effects on animal and fish health by means of nanosphere forms that are biodegradable and biocompatible. Thus, this review aims to highlight the potential application of curcumin, curcumin nanoparticles and curcumin nanospheres in the field of monogastric farm animal, poultry and fish nutrition. We do believe that the review provides the perceptual vision for the future development of curcumin, curcumin nanoparticles and curcumin nanospheres and their applications in monogastric farm animal, poultry and fish nutrition.
Collapse
Affiliation(s)
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea;
| |
Collapse
|
31
|
Zhang S, Shen YR, Wu S, Xiao YQ, He Q, Shi SR. The dietary combination of essential oils and organic acids reduces Salmonella enteritidis in challenged chicks. Poult Sci 2020; 98:6349-6355. [PMID: 31393588 PMCID: PMC8913765 DOI: 10.3382/ps/pez457] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/29/2019] [Indexed: 01/09/2023] Open
Abstract
This study was conducted to determine the effects of essential oils and organic acids (EOA) on Salmonella Enteritidis (S. Enteritidis) challenged chickens. One-day-old specific pathogen-free (SPF) chicks (250) were randomly assigned to 5 groups, with 50 birds in each group. The treatment groups were as follows: 1) basal diet, negative control group (NC); 2) basal diet + S. Enteritidis, positive control group (PC); 3) PC + 4,000 g/t of enrofloxacin (5%), antibiotic group (ENR); 4) PC + 800 g/t of EOA1, thymol-benzoic acid group (TBA); and 5) PC + 800 g/t of EOA2, cinnamylaldehyde-caproic acid group (CCA). At 7 D of age, each bird, except those in NC, was orally gavaged with 0.4 mL of a suspension of 4.4 × 109 cfu S. Enteritidis/mL. Results revealed that ENR reduced bacterial counts in the liver and spleen on days 3, 5, and 7 post-challenge more (P < 0.05) than any other treatments. However, bacterial counts in cecal contents among ENR, TBA, and CCA were similar at 5 and 7 D post-challenge but lower than those of PC. Additionally, the bacterial counts in liver, spleen, and cecum contents in TBA were lower (P < 0.05) than in PC at 3, 5, and 7 D post-challenge; the bacterial counts in spleen contents in TBA were lower (P < 0.05) than in CCA at 7 D post-challenge. Tumor necrosis factor-α contents in TBA and CCA were lower (P < 0.05) than those in PC. Also, the ratio of villus height to crypt depth in the ileum of CCA was higher (P < 0.05) than that of PC and ENR; however, there was no difference in the secretory IgA content of the jejunum among the groups. In conclusion, EOA had a bacteriostatic effect on S. Enteritidis, and the effect of the thymol-benzoic acid complex surpassed that of the cinnamaldehyde-caproic acid complex. Therefore, EOA may act as an effective antibiotic substitute for animals in the prevention and treatment of Salmonella.
Collapse
Affiliation(s)
- S Zhang
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Y R Shen
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - S Wu
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Y Q Xiao
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Q He
- Shanghai Menon Animal Nutrition Technology Co., LTD, Shanghai 201800, China
| | - S R Shi
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu 225125, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225000, China
| |
Collapse
|
32
|
Lee SH, Bang S, Jang HH, Lee EB, Kim BS, Kim SH, Kang SH, Lee KW, Kim DW, Kim JB, Choe JS, Park SY, Lillehoj HS. Effects of Allium hookeri on gut microbiome related to growth performance in young broiler chickens. PLoS One 2020; 15:e0226833. [PMID: 31923247 PMCID: PMC6953852 DOI: 10.1371/journal.pone.0226833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023] Open
Abstract
Healthy food promotes beneficial bacteria in the gut microbiome. A few prebiotics act as food supplements to increase fermentation by beneficial bacteria, which enhance the host immune system and health. Allium hookeri is a healthy food with antioxidant and anti-inflammatory activities. A. hookeri is used as a feed supplement for broiler chickens to improve growth performance. Although the underlying mechanism is unknown, A. hookeri may alter the gut microbiome. In the current study, 16S rRNA sequencing has been carried out using samples obtained from the cecum of broiler chickens exposed to diets comprising different tissue types (leaf and root) and varying amounts (0.3% and 0.5%) of A. hookeri to investigate their impact on gut microbiome. The microbiome composition in the groups supplemented with A. hookeri leaf varied from that of the control group. Especially, exposure to 0.5% amounts of leaf resulted in differences in the abundance of genera compared with diets comprising 0.3% leaf. Exposure to a diet containing 0.5% A. hookeri leaf decreased the abundance of the following bacteria: Eubacterium nodatum, Marvinbryantia, Oscillospira, and Gelria. The modulation of gut microbiome by leaf supplement correlated with growth traits including body weight, bone strength, and infectious bursal disease antibody. The results demonstrate that A. hookeri may improve the health benefits of broiler chickens by altering the gut microbiome.
Collapse
Affiliation(s)
- Sung-Hyen Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Isoe-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Sohyun Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak Gu, Seoul, Republic of Korea
| | - Hwan-Hee Jang
- National Institute of Agricultural Sciences, Rural Development Administration, Isoe-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Eun-Byeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Isoe-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Bong-Sang Kim
- Department of Agricultural and Life Sciences and Research Institute of Population Genomics, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hwan Kim
- KYOCHON F&B CO, Osan city, Kyounggido, Republic of Korea
| | - Sang-Hyun Kang
- KYOCHON F&B CO, Osan city, Kyounggido, Republic of Korea
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, Konkuk University, Gawngjin-gu, Seoul, Republic of Korea
| | - Dong-Wook Kim
- Department of Poultry Science, Korean National College of Agriculture and Fisheries, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Jung-Bong Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Isoe-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Jeong-Sook Choe
- National Institute of Agricultural Sciences, Rural Development Administration, Isoe-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Shin-Young Park
- National Institute of Agricultural Sciences, Rural Development Administration, Isoe-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Hyun S. Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Department of Agriculture, Beltsville, MD, United States of America
| |
Collapse
|
33
|
Nowacka-Woszuk J. Nutrigenomics in livestock-recent advances. J Appl Genet 2019; 61:93-103. [PMID: 31673964 PMCID: PMC6968980 DOI: 10.1007/s13353-019-00522-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/13/2023]
Abstract
The study of the effects of nutrients on genome functioning, in terms of gene transcription, protein levels, and epigenetic mechanisms, is referred to as nutrigenomics. Nutrigenomic studies in farm animals, as distinct from rodents, are limited by the high cost of keeping livestock, their long generational distance, and ethical aspects. Yet farm animals, and particularly pigs, can serve as valuable animal models for human gastrological diseases, since they possess similar size, physiology, and nutritional habits and can develop similar pathological states. In livestock, the effects of dietary modifications have mostly been studied with reference to effective breeding and their influence on production traits and animal health. The majority of such studies have looked at the impact of various sources and quantities of fat and protein, supplementation with microelements, and plant-derived additives. The period of life of the animal—whether prenatal, neonatal, or mature—is typically considered when a modified diet is used. This review presents a summary of recent nutrigenomic studies in livestock.
Collapse
Affiliation(s)
- Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|
34
|
SAHOO N, MISHRA SK, SWAIN RK, ACHARYA AP, PATTNAIK S, SETHY K, SAHOO L. Effect of turmeric and ginger supplementation on immunity, antioxidant, liver enzyme activity, gut bacterial load and histopathology of broilers. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i7.92046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Day-old broiler chicks (182) were distributed randomly to 7 treatments with 2 replicates. Treatments were T1 (control), basal diet; T2, basal diet + turmeric powder (TP) (0.5% of basal diet); T3, basal diet + TP (1% of basal diet); T4, basal diet + ginger powder (GP) (0.5% of basal diet); T5, basal diet + GP (1% of basal diet); T6, basal diet + TP + GP (0.5% TP + 0.5% GP); T7, basal diet + TP + GP (1% TP + 1.0% GP). The experiment was continued for 35 days. Immunity, antioxidant, liver enzyme activity, gut bacterial load and histopathology of broilers were conducted at fifth week of age. Higher cellular response against PHA-P was recorded in T3 and T7. Higher antibody titre against SRBC was recorded in T3. The weight of lymphoid organs did not differ significantly. Significantly higher erythrocyte malondialdehyde (MDA) level was recorded in T1. Significantly higher alanine amino transferase (ALT) levels were found in T1 and T7. Significantly higher aspartate amino transferase (AST) level was found in T1. Higher total bacterial count and lower E. coli count were recorded in group T3 and lower total bacterial count was recorded in T7. In group T1, liver showed mild congestion to mild cellular swelling and varying degree of vacuolar degeneration. From this study, it may be concluded that supplementation of 1% turmeric in ration either alone or in combination with 1% ginger improved the immunity, antioxidant status and gut health of broilers.
Collapse
|
35
|
Efficacy of a commercial herbal formula in chicken experimental coccidiosis. Parasit Vectors 2019; 12:343. [PMID: 31300024 PMCID: PMC6624883 DOI: 10.1186/s13071-019-3595-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/03/2019] [Indexed: 01/24/2023] Open
Abstract
Background Coccidiosis represents a serious threat to the poultry industry, affecting production and causing high morbidity, mortality and significant costs resulting from treatment and prophylaxis. In-feed anticoccidials have been used for decades for managing avian coccidiosis and were very effective until drug resistance emerged. The use of natural remedies has become a promising alternative in combating coccidiosis in chickens. Therefore, the purpose of the present study was to assess the efficiency of a commercial herbal formula (H), as oral liquid preparations, in experimental chicken coccidiosis. Methods Two independent controlled battery experiments (BE1 and BE2) were designed and the product was tested in 3 different formulas (H1, H2 and H3): H1 contained a propylene glycol extract of Allium sativum and Thymus serpyllum; H2 contained Origanum vulgare, Satureja hortensis and Chelidonium majus; and H3 contained Allium sativum, Urtica dioica, Inula helenium, Glycyrrhiza glabra, Rosmarinus officinalis, Chelidonium majus, Thymus serpyllum, Tanacetum vulgare and Coriandrum sativum. Chickens were divided into five groups for each BE as follows: (i) uninfected untreated control (UU1, UU2); (ii) infected untreated control (IU1, IU2); (iii) infected treated with amprolium (ITA1, ITA2); and (iv, v) two experimental groups infected treated with H1 (ITH1) and H2 (ITH2) formulas in the BE1 and with H3 (ITH3-5 and ITH3-10) formula in the BE2. The chickens from infected groups were challenged with 5000 (BE1) and 50,000 (BE2) sporulated oocysts of Eimeria spp. (E. acervulina, E. tenella and E. maxima), respectively. The anticoccidial efficacy was assessed by recording the following: oocysts output (OPG), lesion score (LS), weight gain (WG), feed conversion ratio (FCR) and anticoccidial index (ACI). Additionally, polyphenolics and flavonoids (caffeic-chlorogenic acid, apigenin, kaempferol, luteolin, quercitin, quercitrin) from herb extracts found in H3 formula were determined by the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Results H1 and H2 reduced the WG, and increased the FCR and OPG compared with controls. H1 reduced the duodenal lesions, whilst H2 reduced the caecal lesions, compared with control. H3 decreased the OPG of Eimeria spp., reduced the total lesion score and improved the zootechnical performance (weight gain and feed conversion ratio). According to ACI value, H1 and H2 had no efficacy on Eimeria spp. infection, but H3 had good to marked anticoccidial effect, the ACI being slightly greater in the group ITH3-5. According to the results of LC-MS/MS, the concentration of polyphenols in H3 formula was the highest, the sum of chlorogenic acid and caffeic acid being 914.9 µg/ml. Conclusions H3 formula is a promising natural anticoccidial and field trials are recommended in order to validate the obtained data. Electronic supplementary material The online version of this article (10.1186/s13071-019-3595-4) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Hernandez-Patlan D, Solís-Cruz B, Patrin Pontin K, Latorre JD, Baxter MFA, Hernandez-Velasco X, Merino-Guzman R, Méndez-Albores A, Hargis BM, Lopez-Arellano R, Tellez-Isaias G. Evaluation of the Dietary Supplementation of a Formulation Containing Ascorbic Acid and a Solid Dispersion of Curcumin with Boric Acid against Salmonella Enteritidis and Necrotic Enteritis in Broiler Chickens. Animals (Basel) 2019; 9:E184. [PMID: 31013587 PMCID: PMC6524164 DOI: 10.3390/ani9040184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Two experiments were conducted to evaluate the effect of the prophylactic or therapeutic administration of a 0.1% mixture containing ascorbic acid and a solid dispersion of curcumin with polyvinylpyrrolidone and boric acid (AA-CUR/PVP-BA) against Salmonella Enteritidis (S. Enteritidis) in broiler chickens. A third experiment was conducted to evaluate the impact of the dietary administration of 0.1% AA-CUR/PVP-BA in a necrotic enteritis (NE) model in broiler chickens. The prophylactic administration of 0.1% AA-CUR/PVP-BA significantly decreased S. Enteritidis colonization in cecal tonsils (CT) when compared to the positive control group (PC, p < 0.05). The therapeutic administration of 0.1% AA-CUR/PVP-BA significantly reduced the concentration of S. Enteritidis by 2.05 and 2.71 log in crop and CT, respectively, when compared with the PC on day 10 post-S. Enteritidis challenge. Furthermore, the serum FITC-d concentration and total intestinal IgA levels were also significantly lower in chickens that received 0.1% AA-CUR/PVP-BA. Contrary, the PC group showed significantly higher total intestinal IgA levels compared to the negative control or AA-CUR/PVP-BA groups in the NE model. However, 0.1% AA-CUR/PVP-BA showed a better effect in reducing the concentration of S. Enteritidis when compared to the NE model. Further studies with higher concentration of AA-CUR/PVP-BA into the feed to extend these preliminary results are currently being evaluated.
Collapse
Affiliation(s)
- Daniel Hernandez-Patlan
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de México, Cuautitlan Izcalli 54714, Mexico.
| | - Bruno Solís-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de México, Cuautitlan Izcalli 54714, Mexico.
| | - Karine Patrin Pontin
- Departamento de Medicina Veterinária Preventiva, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Universidade Federal do Rio Grande do Sul, Porto Alegre RS 97105-900, Brazil.
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA.
| | - Mikayla F A Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA.
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Ruben Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Abraham Méndez-Albores
- Laboratorio 14: Alimentos, Micotoxinas y Micotoxicosis, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlan Izcalli 54714, Mexico.
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA.
| | - Raquel Lopez-Arellano
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de México, Cuautitlan Izcalli 54714, Mexico.
| | | |
Collapse
|
37
|
Hepato-protective effect of curcumin and silymarin against Eimeria stiedae in experimentally infected rabbits. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Cervantes-Valencia ME, Hermosilla C, Alcalá-Canto Y, Tapia G, Taubert A, Silva LMR. Antiparasitic Efficacy of Curcumin Against Besnoitia besnoiti Tachyzoites in vitro. Front Vet Sci 2019; 5:333. [PMID: 30687723 PMCID: PMC6336690 DOI: 10.3389/fvets.2018.00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/14/2018] [Indexed: 01/29/2023] Open
Abstract
Besnoitia besnoiti is the causative agent of bovine besnoitiosis. B. besnoiti infections lead to reduced fertility and productivity in cattle causing high economic losses, not only in Europe, but also in Asia and Africa. Mild to severe clinical signs, such as anasarca, oedema, orchitis, hyperkeratosis, and characteristic skin and mucosal cysts, are due to B. besnoiti tachyzoite and bradyzoite replication in intermediate host tissues. So far, there are no commercially available effective drugs against this parasite. Curcumin, a polyphenolic compound from Curcuma longa rhizome is well-known for its antioxidant, anti-inflammatory, immunomodulatory and also anti-protozoan effects. Hence, the objective of this study was to evaluate the effects of curcumin on viability, motility, invasive capacity, and proliferation of B. besnoiti tachyzoites replicating in primary bovine umbilical vein endothelial cells (BUVEC) in vitro. Functional inhibition assays revealed that curcumin treatments reduce tachyzoite viability and induce lethal effects in up to 57% of tachyzoites (IC50 in 5.93 μM). Referring to general motility, significant dose-dependent effects of curcumin treatments were observed. Interestingly, curcumin treatments only dampened helical gliding and twirling activities whilst longitudinal gliding motility was not significantly affected. In addition, curcumin pretreatments of tachyzoites resulted in a dose-dependent reduction of host cell invasion as detected by infections rates at 1 day p. i. These findings demonstrate feeding cattle with Curcuma longa rhizomes may represent a new strategy for besnoitiosis treatment.
Collapse
Affiliation(s)
- María Eugenia Cervantes-Valencia
- Graduate Program of Animal Health and Production, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Yazmín Alcalá-Canto
- Department of Parasitology, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Graciela Tapia
- Department of Genetics and Biostatistics, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Liliana M. R. Silva
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
39
|
Catanzaro M, Corsini E, Rosini M, Racchi M, Lanni C. Immunomodulators Inspired by Nature: A Review on Curcumin and Echinacea. Molecules 2018; 23:molecules23112778. [PMID: 30373170 PMCID: PMC6278270 DOI: 10.3390/molecules23112778] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system is an efficient integrated network of cellular elements and chemicals developed to preserve the integrity of the organism against external insults and its correct functioning and balance are essential to avoid the occurrence of a great variety of disorders. To date, evidence from literature highlights an increase in immunological diseases and a great attention has been focused on the development of molecules able to modulate the immune response. There is an enormous global demand for new effective therapies and researchers are investigating new fields. One promising strategy is the use of herbal medicines as integrative, complementary and preventive therapy. The active components in medical plants have always been an important source of clinical therapeutics and the study of their molecular pharmacology is an enormous challenge since they offer a great chemical diversity with often multi-pharmacological activity. In this review, we mainly analysed the immunomodulatory/antinflammatory activity of Echinacea spp. and Curcuma longa, focusing on some issues of the phytochemical research and on new possible strategies to obtain novel agents to supplement the present therapies.
Collapse
Affiliation(s)
- Michele Catanzaro
- Department of Drug Sciences-Pharmacology Section, University of Pavia, 27100 Pavia, Italy.
| | - Emanuela Corsini
- Department of Environmental Science and Policy, University of Milano, 20133 Milano, Italy.
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Marco Racchi
- Department of Drug Sciences-Pharmacology Section, University of Pavia, 27100 Pavia, Italy.
| | - Cristina Lanni
- Department of Drug Sciences-Pharmacology Section, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
40
|
Lee YS, Lee SH, Gadde UD, Oh ST, Lee SJ, Lillehoj HS. Allium hookeri supplementation improves intestinal immune response against necrotic enteritis in young broiler chickens. Poult Sci 2018. [PMID: 29538713 DOI: 10.3382/ps/pey031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Three hundred birds (1 day old) were randomly assigned to 6 groups (n = 50 birds/treatment) and fed a basal diet (control) or basal diet supplemented with Allium hookeri (AH) root (1 or 3%). At day 14, half of the birds in each group were orally challenged with E. maxima 41A (1 × 104 cells/chicken), followed by C. perfringens infection (1 × 109 cfu/chicken) on day 18. Necrotic enteritis (NE)-associated infections and intestinal immune response were assessed by average body weight gain, lesion score, and oocyst shedding. The effect of dietary supplementation, AH, on transcript levels of pro-inflammatory cytokines, and tight junction proteins and mucin protein in the jejunum, were quantified by quantitative real-time (qRT)-PCR. At day 20, birds fed with diet supplementation (3% of AH) significantly weighted more than the control group. Although the NE-challenged had significantly reduced average body weight gain, there was no significance in the effect between diet × NE-challenge interactions on the average body weight gain. Among the NE-challenged groups, gut lesion score and oocyst shedding were significantly decreased in birds given AH (1 or 3%) compared to the control group. There was a correlation between diet and NE infection with regards to interleukin (IL)-17A, and inducible nitric oxide synthase (iNOS). The up-regulated transcript levels of cytokines IL-8, IL-17A, iNOS, and LITAF by NE challenged groups were significantly reduced by AH (1 or 3%) supplementation. Down-regulated expression levels of tight junction (TJ) proteins: junctional adhesion molecule 2 (JAM2), occluding, and intestinal mucin 2 (MUC2) by NE challenge, was up-regulated by the addition of AH (1 or 3%) supplementation. All TJ proteins (JAM2, ZO1, Ocluddin and MUC2) in the jejunum had a significant diet × NE-challenge interaction. These findings demonstrate that dietary supplementation of AH in chicken feed could be beneficially used to improve chicken health against NE.
Collapse
Affiliation(s)
- Y S Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA.,College of Animal Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - S H Lee
- National Institute of Agricultural Sciences, Rural Department Administration, 166, Nongsaengmyeong-ro, Isoe-Myeon, Wanju-Gun, Jeollabuk-do, South Korea
| | - U D Gadde
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - S T Oh
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - S J Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - H S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| |
Collapse
|
41
|
Zampiga M, Flees J, Meluzzi A, Dridi S, Sirri F. Application of omics technologies for a deeper insight into quali-quantitative production traits in broiler chickens: A review. J Anim Sci Biotechnol 2018; 9:61. [PMID: 30214720 PMCID: PMC6130060 DOI: 10.1186/s40104-018-0278-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
The poultry industry is continuously facing substantial and different challenges such as the increasing cost of feed ingredients, the European Union's ban of antibiotic as growth promoters, the antimicrobial resistance and the high incidence of muscle myopathies and breast meat abnormalities. In the last decade, there has been an extraordinary development of many genomic techniques able to describe global variation of genes, proteins and metabolites expression level. Proper application of these cutting-edge omics technologies (mainly transcriptomics, proteomics and metabolomics) paves the possibility to understand much useful information about the biological processes and pathways behind different complex traits of chickens. The current review aimed to highlight some important knowledge achieved through the application of omics technologies and proteo-genomics data in the field of feed efficiency, nutrition, meat quality and disease resistance in broiler chickens.
Collapse
Affiliation(s)
- Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell’Emilia, Italy
| | - Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell’Emilia, Italy
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell’Emilia, Italy
| |
Collapse
|
42
|
Lillehoj H, Liu Y, Calsamiglia S, Fernandez-Miyakawa ME, Chi F, Cravens RL, Oh S, Gay CG. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet Res 2018; 49:76. [PMID: 30060764 PMCID: PMC6066919 DOI: 10.1186/s13567-018-0562-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/02/2018] [Indexed: 01/14/2023] Open
Abstract
There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.
Collapse
Affiliation(s)
- Hyun Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 USA
| | - Yanhong Liu
- University of California, Davis, CA 95616 USA
| | - Sergio Calsamiglia
- Animal Nutrition and Welfare Service, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mariano E. Fernandez-Miyakawa
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, Castelar, 1712 Buenos Aires, Argentina
| | - Fang Chi
- Amlan International, Chicago, IL 60611 USA
| | | | - Sungtaek Oh
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 USA
| | - Cyril G. Gay
- National Program Staff-Animal Health, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 USA
| |
Collapse
|
43
|
Patra AK, Amasheh S, Aschenbach JR. Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds – A comprehensive review. Crit Rev Food Sci Nutr 2018; 59:3237-3266. [DOI: 10.1080/10408398.2018.1486284] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amlan Kumar Patra
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, Berlin, Germany
- Institute of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K. B. Sarani, Belgachia, Kolkata, India
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, Berlin, Germany
| | - Jörg Rudolf Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, Berlin, Germany
| |
Collapse
|
44
|
Feed addition of curcumin to laying hens showed anticoccidial effect, and improved egg quality and animal health. Res Vet Sci 2018; 118:101-106. [DOI: 10.1016/j.rvsc.2018.01.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/14/2018] [Accepted: 01/21/2018] [Indexed: 12/22/2022]
|
45
|
Huang CM, Lee TT. Immunomodulatory effects of phytogenics in chickens and pigs - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:617-627. [PMID: 29268586 PMCID: PMC5930271 DOI: 10.5713/ajas.17.0657] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/17/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022]
Abstract
Environmental stressors like pathogens and toxins may depress the animal immune system through invasion of the gastrointestinal tract (GIT) tract, where they may impair performance and production, as well as lead to increased mortality rates. Therefore, protection of the GIT tract and improving animal health are top priorities in animal production. Being natural-sourced materials, phytochemicals are potential feed additives possessing multiple functions, including: anti-inflammatory, anti-fungal, anti-viral and antioxidative properties. This paper focuses on immunity-related physiological parameters regulated by phytochemicals, such as carvacrol, cinnamaldehyde, curcumin, and thymol; many studies have proven that these phytochemicals can improve animal performance and production. On the molecular level, the impact of inflammatory gene expression on underlying mechanisms was also examined, as were the effects of environmental stimuli and phytochemicals in initiating nuclear factor kappa B and mitogen-activated protein kinases signaling pathways and improving health conditions.
Collapse
Affiliation(s)
- C. M. Huang
- Department of Animal Science, National Chung Hsing University, Taichung 402,
Taiwan
| | - T. T. Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402,
Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402,
Taiwan
| |
Collapse
|
46
|
Abo-El-Sooud K. Ethnoveterinary perspectives and promising future. Int J Vet Sci Med 2018; 6:1-7. [PMID: 30255071 PMCID: PMC6145062 DOI: 10.1016/j.ijvsm.2018.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
In this review, we have discussed the recent potential effects of plants and their derivatives in treating diseases of veterinary importance in livestock. The therapeutic value of these natural products depends upon their bioactive metabolites that are developed and isolated from crude plants, thus produced a selective action on the body. The crises of drug resistance in most pathogenic bacteria and parasites that cause economic loss in animals necessitate developing new sources for drugs to overcome therapeutic failure. We summarized the different antibacterial and antiparasitic plants with their bioactive compounds that have widely used in animals. Finally, the environmental friendly feed additives that may be used as alternatives to an antibiotic growth promoter for broiler chickens were illustrated.
Collapse
Affiliation(s)
- Khaled Abo-El-Sooud
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, B.O. Box 12211, Giza, Egypt
| |
Collapse
|
47
|
Oh S, Gadde UD, Bravo D, Lillehoj EP, Lillehoj HS. Growth-Promoting and Antioxidant Effects of Magnolia Bark Extract in Chickens Uninfected or Co-Infected with Clostridium perfringens and Eimeria maxima as an Experimental Model of Necrotic Enteritis. Curr Dev Nutr 2018; 2:nzy009. [PMID: 30019032 PMCID: PMC6041942 DOI: 10.1093/cdn/nzy009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Magnolia tree bark has been widely used in traditional Asian medicine. However, to our knowledge, no studies have been reported investigating the effects of dietary supplementation with magnolia bark extract in chickens. OBJECTIVE We tested the hypothesis that dietary supplementation of chickens with a Magnolia officinalis bark extract would increase growth performance in uninfected and Eimeria maxima/Clostridium perfringens co-infected chickens. METHODS A total of 168 chickens were fed from hatch either a standard diet or a diet supplemented with 0.33 mg or 0.56 mg M. officinalis bark extract/kg (M/H low or M/H high, respectively) from days 1 to 35. At day 14, half of the chickens were orally infected with E. maxima, followed by C. perfringens infection at day 18 to induce experimental avian necrotic enteritis. Daily feed intake, feed conversion ratio, body weight gain, and final body weight were measured as indicators of growth performance. Serum α1-acid glycoprotein (AGP) concentrations were measured as an indicator of systemic inflammation, and intestinal lesion scores were determined as a marker of disease progression. Transcript levels for catalase, heme oxygenase 1, and superoxide dismutase in the intestine, liver, spleen, and skeletal muscle were measured as indicators of antioxidant status. RESULTS Growth performance increased between days 1 and 35 in uninfected and E. maxima/C. perfringens co-infected chickens fed M/H-low or M/H-high diets compared with unsupplemented controls. Gut lesion scores were decreased, whereas AGP concentrations were unchanged, in co-infected chickens fed magnolia-supplemented diets compared with unsupplemented controls. In general, transcripts for antioxidant enzymes increased in chickens fed magnolia-supplemented diets compared with unsupplemented controls, and significant interactions between dietary supplementation and co-infection were observed for all antioxidant enzyme transcript levels. CONCLUSION Magnolia bark extract might be useful for future development of dietary strategies to improve poultry health, disease resistance, and productivity without the use of antibiotic growth promoters.
Collapse
Affiliation(s)
- Sungtaek Oh
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Ujvala Deepthi Gadde
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | | | - Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD
| | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD
| |
Collapse
|
48
|
Bortoluzzi C, Paras KL, Applegate TJ, Verocai GG. Comparison between McMaster and Mini-FLOTAC methods for the enumeration of Eimeria maxima oocysts in poultry excreta. Vet Parasitol 2018; 254:21-25. [PMID: 29657006 DOI: 10.1016/j.vetpar.2018.02.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
Abstract
Monitoring Eimeria shedding has become more important due to the recent restrictions to the use of antibiotics within the poultry industry. Therefore, there is a need for the implementation of more precise and accurate quantitative diagnostic techniques. The objective of this study was to compare the precision and accuracy between the Mini-FLOTAC and the McMaster techniques for quantitative diagnosis of Eimeria maxima oocyst in poultry. Twelve pools of excreta samples of broiler chickens experimentally infected with E. maxima were analyzed for the comparison between Mini-FLOTAC and McMaster technique using, the detection limits (dl) of 23 and 25, respectively. Additionally, six excreta samples were used to compare the precision of different dl (5, 10, 23, and 46) using the Mini-FLOTAC technique. For precision comparisons, five technical replicates of each sample (five replicate slides on one excreta slurry) were read for calculating the mean oocyst per gram of excreta (OPG) count, standard deviation (SD), coefficient of variation (CV), and precision of both aforementioned comparisons. To compare accuracy between the methods (McMaster, and Mini-FLOTAC dl 5 and 23), excreta from uninfected chickens was spiked with 100, 500, 1,000, 5,000, or 10,000 OPG; additional samples remained unspiked (negative control). For each spiking level, three samples were read in triplicate, totaling nine reads per spiking level per technique. Data were transformed using log10 to obtain normality and homogeneity of variances. A significant correlation (R = 0.74; p = 0.006) was observed between the mean OPG of the McMaster dl 25 and the Mini-FLOTAC dl 23. Mean OPG, CV, SD, and precision were not statistically different between the McMaster dl 25 and Mini-FLOTAC dl 23. Despite the absence of statistical difference (p > 0.05), Mini-FLOTAC dl 5 showed a numerically lower SD and CV than Mini-FLOTAC dl 23. The Pearson correlation coefficient revealed significant and positive correlation among the four dl (p ≤ 0.05). In the accuracy study, it was observed that the Mini-FLOTAC dl 5 and 23 were more accurate than the McMaster for 100 OPG, and the Mini-FLOTAC dl 23 had the highest accuracy for 500 OPG. The McMaster and Mini-FLOTAC dl 23 techniques were more accurate than the Mini-FLOTAC dl 5 for 5,000 OPG, and both dl of the Mini-FLOTAC were less accurate for 10,000 OPG counts than the McMaster technique. However, the overall accuracy of the Mini-FLOTAC dl 23 was higher than the McMaster and Mini-FLOTAC dl 5 techniques.
Collapse
Affiliation(s)
- C Bortoluzzi
- Department of Poultry Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - K L Paras
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - T J Applegate
- Department of Poultry Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, 30602, USA
| | - G G Verocai
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
49
|
Salim HMD, Huque KS, Kamaruddin KM, Haque Beg A. Global restriction of using antibiotic growth promoters and alternative strategies in poultry production. Sci Prog 2018; 101:52-75. [PMID: 29467062 PMCID: PMC10365203 DOI: 10.3184/003685018x15173975498947] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A growing global concern of antibiotic use in poultry diets due to its potential adverse effects on birds and human health, food safety and the environment has led to a complete ban or restricted use in some countries, and, at the same time, expanding options for the use of alternative feed additives. Multiple, rather than a single additive may replace antibiotic growth promoters (AGPs) in poultry. Blending of feeding additives and hygienic farm management, vaccination and biosecurity may help achieve good intestinal health, stabilise enteric ecosystems and result in sustainable and cost effective production performance of birds. Moreover, controlling unsolicited ingredients at the production level must have the support of different markets responsible for the supply of safe and quality poultry products for consumers. This requires the further increase and diversification of value added poultry products and the expansion of their markets through strategic planning and gradual limitation of live bird markets. More research is warranted in order to explore suitable, reliable and cost effective alternatives to AGPs for commercial use, and strategic poultry value chain development.
Collapse
Affiliation(s)
| | - Khan Shahidul Huque
- Animal nutrition and feeding, and environment and improved livestock manure (ILM)
| | | | | |
Collapse
|
50
|
DNA Microarray-Based Screening and Characterization of Traditional Chinese Medicine. MICROARRAYS 2017; 6:microarrays6010004. [PMID: 28146102 PMCID: PMC5374364 DOI: 10.3390/microarrays6010004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
The application of DNA microarray assay (DMA) has entered a new era owing to recent innovations in omics technologies. This review summarizes recent applications of DMA-based gene expression profiling by focusing on the screening and characterizationof traditional Chinese medicine. First, herbs, mushrooms, and dietary plants analyzed by DMA along with their effective components and their biological/physiological effects are summarized and discussed by examining their comprehensive list and a list of representative effective chemicals. Second, the mechanisms of action of traditional Chinese medicine are summarized by examining the genes and pathways responsible for the action, the cell functions involved in the action, and the activities found by DMA (silent estrogens). Third, applications of DMA for traditional Chinese medicine are discussed by examining reported examples and new protocols for its use in quality control. Further innovations in the signaling pathway based evaluation of beneficial effects and the assessment of potential risks of traditional Chinese medicine are expected, just as are observed in other closely related fields, such as the therapeutic, environmental, nutritional, and pharmacological fields.
Collapse
|