1
|
Hunt AC, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2024. [PMID: 39700225 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew C Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Jha K, Jaishwal P, Yadav TP, Singh SP. Self-assembling of coiled-coil peptides into virus-like particles: Basic principles, properties, design, and applications with special focus on vaccine design and delivery. Biophys Chem 2024; 318:107375. [PMID: 39674128 DOI: 10.1016/j.bpc.2024.107375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Self-assembling peptide nanoparticles (SAPN) based delivery systems, including virus-like particles (VLP), have shown great potential for becoming prominent in next-generation vaccine and drug development. The VLP can mimic properties of natural viral capsid in terms of size (20-200 nm), geometry (i.e., icosahedral structures), and the ability to generate a robust immune response (with multivalent epitopes) through activation of innate and/or adaptive immune signals. In this regard, coiled-coil (CC) domains are suitable building blocks for designing VLP because of their programmable interaction specificity, affinity, and well-established sequence-to-structure relationships. Generally, two CC domains with different oligomeric states (trimer and pentamer) are fused to form a monomeric protein through a short, flexible spacer sequence. By using combinations of symmetry axes (2-, 3- and 5- folds) that are unique to the geometry of the desired protein cage, it is possible, in principle, to assemble well-defined protein cages like VLP. In this review, we have discussed the crystallographic rules and the basic principles involved in the design of CC-based VLP. It also explored the functions of numerous noncovalent interactions in generating stable VLP structures, which play a crucial role in improving the properties of vaccine immunogenicity, drug delivery, and 3D cell culturing.
Collapse
Affiliation(s)
- Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari 845401, India
| | - Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari 845401, India
| | - Thakur Prasad Yadav
- Department of Physics, Faculty of Science, University of Allahabad, Prayagraj 211002, India.
| | | |
Collapse
|
3
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024; 124:11962-12005. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
4
|
Celitan E, Stanevičienė R, Servienė E, Serva S. Highly stable Saccharomyces cerevisiae L-BC capsids with versatile packing potential. Front Bioeng Biotechnol 2024; 12:1456453. [PMID: 39386045 PMCID: PMC11461329 DOI: 10.3389/fbioe.2024.1456453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Virus-like particles (VLPs) are promising nanoscaffolds in development of vaccines and nanodelivery systems. Along with efficient production in various expression systems, they also offer extensive functionalization options. Nevertheless, the ultimate integrity of VLPs is an important burden for the applicability in nanobiotechnology. In this study, we characterize the Saccharomyces cerevisiae L-BC VLPs synthesized and purified from Escherichia coli and Saccharomyces cerevisiae cells. The particles exhibited prominent size stability in buffers within a range of ionic strength conditions, pH environment and presence of magnesium ions during the long-term storage at temperatures up to 37°C. Bacteria-derived particles exhibited alleviated stability in acidic pH values, higher ionic strength and temperature compared to yeast-derived particles. Taking advantage of gene engineering, 120 copies of red fluorescent protein mCherry were successfully encapsulated into both preparations of L-BC VLPs, while passive diffusion enabled encapsulation of antimicrobial peptide nisin into the yeast-derived unmodified VLPs. Our findings indicate that L-BC VLPs generally exhibit high long-term stability under various conditions, while yeast-derived L-BC VLPs are more stable under the elevated temperatures than bacteria-derived particles. Stability studies and encapsulation of particles by different molecules involving alternative strategies delineate the L-BC VLP potential to be developed into versatile nanodelivery system.
Collapse
Affiliation(s)
- Enrika Celitan
- Laboratory of Nucleic Acid Biochemistry, Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, Vilnius, Lithuania
| | - Saulius Serva
- Laboratory of Nucleic Acid Biochemistry, Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Buckland B, Sanyal G, Ranheim T, Pollard D, Searles JA, Behrens S, Pluschkell S, Josefsberg J, Roberts CJ. Vaccine process technology-A decade of progress. Biotechnol Bioeng 2024; 121:2604-2635. [PMID: 38711222 DOI: 10.1002/bit.28703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024]
Abstract
In the past decade, new approaches to the discovery and development of vaccines have transformed the field. Advances during the COVID-19 pandemic allowed the production of billions of vaccine doses per year using novel platforms such as messenger RNA and viral vectors. Improvements in the analytical toolbox, equipment, and bioprocess technology have made it possible to achieve both unprecedented speed in vaccine development and scale of vaccine manufacturing. Macromolecular structure-function characterization technologies, combined with improved modeling and data analysis, enable quantitative evaluation of vaccine formulations at single-particle resolution and guided design of vaccine drug substances and drug products. These advances play a major role in precise assessment of critical quality attributes of vaccines delivered by newer platforms. Innovations in label-free and immunoassay technologies aid in the characterization of antigenic sites and the development of robust in vitro potency assays. These methods, along with molecular techniques such as next-generation sequencing, will accelerate characterization and release of vaccines delivered by all platforms. Process analytical technologies for real-time monitoring and optimization of process steps enable the implementation of quality-by-design principles and faster release of vaccine products. In the next decade, the field of vaccine discovery and development will continue to advance, bringing together new technologies, methods, and platforms to improve human health.
Collapse
Affiliation(s)
- Barry Buckland
- National Institute for Innovation in Manufacturing Biopharmaceuticals, University of Delaware, Newark, Delaware, USA
| | - Gautam Sanyal
- Vaccine Analytics, LLC, Kendall Park, New Jersey, USA
| | - Todd Ranheim
- Advanced Analytics Core, Resilience, Chapel Hill, North Carolina, USA
| | - David Pollard
- Sartorius, Corporate Research, Marlborough, Massachusetts, USA
| | | | - Sue Behrens
- Engineering and Biopharmaceutical Processing, Keck Graduate Institute, Claremont, California, USA
| | - Stefanie Pluschkell
- National Institute for Innovation in Manufacturing Biopharmaceuticals, University of Delaware, Newark, Delaware, USA
| | - Jessica Josefsberg
- Merck & Co., Inc., Process Research & Development, Rahway, New Jersey, USA
| | - Christopher J Roberts
- National Institute for Innovation in Manufacturing Biopharmaceuticals, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
6
|
de Moraes LMP, Marques HF, Reis VCB, Coelho CM, Leitão MDC, Galdino AS, Porto de Souza TP, Piva LC, Perez ALA, Trichez D, de Almeida JRM, De Marco JL, Torres FAG. Applications of the Methylotrophic Yeast Komagataella phaffii in the Context of Modern Biotechnology. J Fungi (Basel) 2024; 10:411. [PMID: 38921397 PMCID: PMC11205268 DOI: 10.3390/jof10060411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Komagataella phaffii (formerly Pichia pastoris) is a methylotrophic yeast widely used in laboratories around the world to produce recombinant proteins. Given its advantageous features, it has also gained much interest in the context of modern biotechnology. In this review, we present the utilization of K. phaffii as a platform to produce several products of economic interest such as biopharmaceuticals, renewable chemicals, fuels, biomaterials, and food/feed products. Finally, we present synthetic biology approaches currently used for strain engineering, aiming at the production of new bioproducts.
Collapse
Affiliation(s)
- Lidia Maria Pepe de Moraes
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (L.M.P.d.M.); (H.F.M.); (L.C.P.); (A.L.A.P.); (J.L.D.M.)
| | - Henrique Fetzner Marques
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (L.M.P.d.M.); (H.F.M.); (L.C.P.); (A.L.A.P.); (J.L.D.M.)
| | - Viviane Castelo Branco Reis
- Laboratory of Genetics and Biotechnology, Embresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Agroenergy, Brasília 70770-901, DF, Brazil; (V.C.B.R.); (D.T.); (J.R.M.d.A.)
| | - Cintia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (C.M.C.); (M.d.C.L.)
| | - Matheus de Castro Leitão
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (C.M.C.); (M.d.C.L.)
| | - Alexsandro Sobreira Galdino
- Microbial Biotechnology Laboratory, Federal University of São João Del-Rei, Divinópolis 35501-296, MG, Brazil; (A.S.G.); (T.P.P.d.S.)
| | - Thais Paiva Porto de Souza
- Microbial Biotechnology Laboratory, Federal University of São João Del-Rei, Divinópolis 35501-296, MG, Brazil; (A.S.G.); (T.P.P.d.S.)
| | - Luiza Cesca Piva
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (L.M.P.d.M.); (H.F.M.); (L.C.P.); (A.L.A.P.); (J.L.D.M.)
| | - Ana Laura Alfonso Perez
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (L.M.P.d.M.); (H.F.M.); (L.C.P.); (A.L.A.P.); (J.L.D.M.)
| | - Débora Trichez
- Laboratory of Genetics and Biotechnology, Embresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Agroenergy, Brasília 70770-901, DF, Brazil; (V.C.B.R.); (D.T.); (J.R.M.d.A.)
| | - João Ricardo Moreira de Almeida
- Laboratory of Genetics and Biotechnology, Embresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Agroenergy, Brasília 70770-901, DF, Brazil; (V.C.B.R.); (D.T.); (J.R.M.d.A.)
| | - Janice Lisboa De Marco
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (L.M.P.d.M.); (H.F.M.); (L.C.P.); (A.L.A.P.); (J.L.D.M.)
| | - Fernando Araripe Gonçalves Torres
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (L.M.P.d.M.); (H.F.M.); (L.C.P.); (A.L.A.P.); (J.L.D.M.)
| |
Collapse
|
7
|
Du L, Deiter F, Bouzidi MS, Billaud JN, Simmons G, Dabral P, Selvarajah S, Lingappa AF, Michon M, Yu SF, Paulvannan K, Manicassamy B, Lingappa VR, Boushey H, Greenland JR, Pillai SK. A viral assembly inhibitor blocks SARS-CoV-2 replication in airway epithelial cells. Commun Biol 2024; 7:486. [PMID: 38649430 PMCID: PMC11035691 DOI: 10.1038/s42003-024-06130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
The ongoing evolution of SARS-CoV-2 to evade vaccines and therapeutics underlines the need for innovative therapies with high genetic barriers to resistance. Therefore, there is pronounced interest in identifying new pharmacological targets in the SARS-CoV-2 viral life cycle. The small molecule PAV-104, identified through a cell-free protein synthesis and assembly screen, was recently shown to target host protein assembly machinery in a manner specific to viral assembly. In this study, we investigate the capacity of PAV-104 to inhibit SARS-CoV-2 replication in human airway epithelial cells (AECs). We show that PAV-104 inhibits >99% of infection with diverse SARS-CoV-2 variants in immortalized AECs, and in primary human AECs cultured at the air-liquid interface (ALI) to represent the lung microenvironment in vivo. Our data demonstrate that PAV-104 inhibits SARS-CoV-2 production without affecting viral entry, mRNA transcription, or protein synthesis. PAV-104 interacts with SARS-CoV-2 nucleocapsid (N) and interferes with its oligomerization, blocking particle assembly. Transcriptomic analysis reveals that PAV-104 reverses SARS-CoV-2 induction of the type-I interferon response and the maturation of nucleoprotein signaling pathway known to support coronavirus replication. Our findings suggest that PAV-104 is a promising therapeutic candidate for COVID-19 with a mechanism of action that is distinct from existing clinical management approaches.
Collapse
Affiliation(s)
- Li Du
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA
- University of California, San Francisco, CA, 94143, USA
| | - Fred Deiter
- University of California, San Francisco, CA, 94143, USA
- Veterans Administration Health Care System, 4150 Clement St., San Francisco, CA, 94121, USA
| | - Mohamed S Bouzidi
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA
- University of California, San Francisco, CA, 94143, USA
| | | | - Graham Simmons
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA
- University of California, San Francisco, CA, 94143, USA
| | - Prerna Dabral
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA
- University of California, San Francisco, CA, 94143, USA
| | | | | | - Maya Michon
- Prosetta Biosciences Inc, 670 5th St., San Francisco, CA, 94107, USA
| | - Shao Feng Yu
- Prosetta Biosciences Inc, 670 5th St., San Francisco, CA, 94107, USA
| | - Kumar Paulvannan
- Prosetta Biosciences Inc, 670 5th St., San Francisco, CA, 94107, USA
| | | | | | - Homer Boushey
- University of California, San Francisco, CA, 94143, USA
| | - John R Greenland
- University of California, San Francisco, CA, 94143, USA
- Veterans Administration Health Care System, 4150 Clement St., San Francisco, CA, 94121, USA
| | - Satish K Pillai
- Vitalant Research Institute, 360 Spear St., San Francisco, CA, 94105, USA.
- University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
8
|
Schloßhauer JL, Dondapati SK, Kubick S, Zemella A. A Cost-Effective Pichia pastoris Cell-Free System Driven by Glycolytic Intermediates Enables the Production of Complex Eukaryotic Proteins. Bioengineering (Basel) 2024; 11:92. [PMID: 38247969 PMCID: PMC10813726 DOI: 10.3390/bioengineering11010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Cell-free systems are particularly attractive for screening applications and the production of difficult-to-express proteins. However, the production of cell lysates is difficult to implement on a larger scale due to large time requirements, cultivation costs, and the supplementation of cell-free reactions with energy regeneration systems. Consequently, the methylotrophic yeast Pichia pastoris, which is widely used in recombinant protein production, was utilized in the present study to realize cell-free synthesis in a cost-effective manner. Sensitive disruption conditions were evaluated, and appropriate signal sequences for translocation into ER vesicles were identified. An alternative energy regeneration system based on fructose-1,6-bisphosphate was developed and a ~2-fold increase in protein production was observed. Using a statistical experiment design, the optimal composition of the cell-free reaction milieu was determined. Moreover, functional ion channels could be produced, and a G-protein-coupled receptor was site-specifically modified using the novel cell-free system. Finally, the established P. pastoris cell-free protein production system can economically produce complex proteins for biotechnological applications in a short time.
Collapse
Affiliation(s)
- Jeffrey L. Schloßhauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, 14469 Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
| |
Collapse
|
9
|
Ullrich J, Haueis L, Ohlhoff C, Zemella A, Kubick S, Stech M. Solubilization of Oligomeric Cell-Free Synthesized Proteins Using SMA Copolymers. Methods Mol Biol 2024; 2762:293-308. [PMID: 38315373 DOI: 10.1007/978-1-0716-3666-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Although membrane proteins are abundant in nature, their investigation is limited due to bottlenecks in heterologous overexpression and consequently restricted accessibility for downstream applications. In this chapter, we address these challenges by presenting a fast and straightforward synthesis platform based on eukaryotic cell-free protein synthesis (CFPS) and an efficient solubilization strategy using styrene-maleic acid (SMA) copolymers. We demonstrate CFPS of TWIK-1, a dimeric ion channel, based on Sf21 (Spodoptera frugiperda) insect lysate showing homooligomerization and N-glycosylation enabled by endoplasmic reticulum-derived microsomes. Furthermore, we employ SMA copolymers for protein solubilization, which preserves the native-like microsomal environment. This approach not only retains the solubilized protein's suitability for downstream applications but also maintains the oligomerization and glycosylation of TWIK-1 post-solubilization. We validate the solubilization procedure using autoradiography, particle size analysis, and biomolecular fluorescence assay and confirm the very efficient, structurally intact solubilization of cell-free synthesized TWIK-1.
Collapse
Affiliation(s)
- Jessica Ullrich
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Lisa Haueis
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Carsten Ohlhoff
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany.
| |
Collapse
|
10
|
Gupta MD, Flaskamp Y, Roentgen R, Juergens H, Armero-Gimenez J, Albrecht F, Hemmerich J, Arfi ZA, Neuser J, Spiegel H, Schillberg S, Yeliseev A, Song L, Qiu J, Williams C, Finnern R. Scaling eukaryotic cell-free protein synthesis achieved with the versatile and high-yielding tobacco BY-2 cell lysate. Biotechnol Bioeng 2023; 120:2890-2906. [PMID: 37376851 DOI: 10.1002/bit.28461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Eukaryotic cell-free protein synthesis (CFPS) can accelerate expression and high-throughput analysis of complex proteins with functionally relevant post-translational modifications (PTMs). However, low yields and difficulties scaling such systems have prevented their widespread adoption in protein research and manufacturing. Here, we provide detailed demonstrations for the capabilities of a CFPS system derived from Nicotiana tabacum BY-2 cell culture (BY-2 lysate; BYL). BYL is able to express diverse, functional proteins at high yields in 48 h, complete with native disulfide bonds and N-glycosylation. An optimized version of the technology is commercialized as ALiCE® and advances in scaling of BYL production methodologies now allow scaling of eukaryotic CFPS reactions. We show linear, lossless scale-up of batch mode protein expression from 100 µL microtiter plates to 10 and 100 mL volumes in Erlenmeyer flasks, culminating in preliminary data from a litre-scale reaction in a rocking-type bioreactor. Together, scaling across a 20,000x range is achieved without impacting product yields. Production of multimeric virus-like particles from the BYL cytosolic fraction were then shown, followed by functional expression of multiple classes of complex, difficult-to-express proteins using the native microsomes of the BYL CFPS. Specifically: a dimeric enzyme; a monoclonal antibody; the SARS-CoV-2 receptor-binding domain; a human growth factor; and a G protein-coupled receptor membrane protein. Functional binding and activity are demonstrated, together with in-depth PTM characterization of purified proteins through disulfide bond and N-glycan analysis. Taken together, BYL is a promising end-to-end R&D to manufacturing platform with the potential to significantly reduce the time-to-market for high value proteins and biologics.
Collapse
Affiliation(s)
| | | | | | | | - Jorge Armero-Gimenez
- LenioBio GmbH, Technology Centre, Aachen, Germany
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | | | | | | | - Jakob Neuser
- LenioBio GmbH, Technology Centre, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- RWTH Aachen University, Institute for Molecular Biotechnology, Aachen, Germany
| | - Alexei Yeliseev
- National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Rockville, Maryland, USA
| | - Lusheng Song
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ji Qiu
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | | | | |
Collapse
|
11
|
Buonaguro L, Cavalluzzo B, Mauriello A, Ragone C, Tornesello AL, Buonaguro FM, Tornesello ML, Tagliamonte M. Microorganisms-derived antigens for preventive anti-cancer vaccines. Mol Aspects Med 2023; 92:101192. [PMID: 37295175 DOI: 10.1016/j.mam.2023.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Cancer prevention is one of the aim with the highest priority in order to reduce the burden of cancer diagnosis and treatment on individuals as well as on healthcare systems. To this aim, vaccines represent the most efficient primary cancer prevention strategy. Indeed, anti-cancer immunological memory elicited by preventive vaccines might promptly expand and prevent tumor from progressing. Antigens derived from microorganisms (MoAs), represent the obvious target for developing highly effective preventive vaccines for virus-induced cancers. In this respect, the drastic reduction in cancer incidence following HBV and HPV preventive vaccines are the paradigmatic example of such evidence. More recently, experimental evidences suggest that MoAs may represent a "natural" anti-cancer preventive vaccination or can be exploited for developing vaccines to prevent cancers presenting highly homologous tumor-associated antigens (TAAs) (e.g. molecular mimicry). The present review describes the different preventive anti-cancer vaccines based on antigens derived from pathogens at the different stages of development.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy.
| |
Collapse
|
12
|
Pillai S, Du L, Deiter F, Bouzidi M, Billaud JN, Graham S, Prerna D, Selvarajah S, Lingappa A, Michon M, Yu S, Paulvannan K, Lingappa V, Boushey H, Greenland J. A Novel Viral Assembly Inhibitor Blocks SARS-CoV-2 Replication in Airway Epithelial Cells. RESEARCH SQUARE 2023:rs.3.rs-2887435. [PMID: 37292622 PMCID: PMC10246244 DOI: 10.21203/rs.3.rs-2887435/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ongoing evolution of SARS-CoV-2 to evade vaccines and therapeutics underlines the need for novel therapies with high genetic barriers to resistance. The small molecule PAV-104, identified through a cell-free protein synthesis and assembly screen, was recently shown to target host protein assembly machinery in a manner specific to viral assembly. Here, we investigated the capacity of PAV-104 to inhibit SARS-CoV-2 replication in human airway epithelial cells (AECs). Our data demonstrate that PAV-104 inhibited > 99% of infection with diverse SARS-CoV-2 variants in primary and immortalized human AECs. PAV-104 suppressed SARS-CoV-2 production without affecting viral entry or protein synthesis. PAV-104 interacted with SARS-CoV-2 nucleocapsid (N) and interfered with its oligomerization, blocking particle assembly. Transcriptomic analysis revealed that PAV-104 reversed SARS-CoV-2 induction of the Type-I interferon response and the 'maturation of nucleoprotein' signaling pathway known to support coronavirus replication. Our findings suggest that PAV-104 is a promising therapeutic candidate for COVID-19.
Collapse
Affiliation(s)
| | - Li Du
- Vitalant Research Institute/UCSF
| | - Fred Deiter
- Veterans Administration Health Care System/UCSF
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Srivastava V, Nand KN, Ahmad A, Kumar R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines (Basel) 2023; 11:vaccines11020479. [PMID: 36851356 PMCID: PMC9965603 DOI: 10.3390/vaccines11020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Virus-like particles (VLPs) are empty, nanoscale structures morphologically resembling viruses. Internal cavity, noninfectious, and particulate nature with a high density of repeating epitopes, make them an ideal platform for vaccine development and drug delivery. Commercial use of Gardasil-9 and Cervarix showed the usefulness of VLPs in vaccine formulation. Further, chimeric VLPs allow the raising of an immune response against different immunogens and thereby can help reduce the generation of medical or clinical waste. The economically viable production of VLPs significantly impacts their usage, application, and availability. To this end, several hosts have been used and tested. The present review will discuss VLPs produced using different yeasts as fermentation hosts. We also compile a list of studies highlighting the expression and purification of VLPs using a yeast-based platform. We also discuss the advantages of using yeast to generate VLPs over other available systems. Further, the issues or limitations of yeasts for producing VLPs are also summarized. The review also compiles a list of yeast-derived VLP-based vaccines that are presently in public use or in different phases of clinical trials.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kripa N. Nand
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Ravinder Kumar
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence:
| |
Collapse
|
14
|
Cell-free protein synthesis systems for vaccine design and production. Curr Opin Biotechnol 2023; 79:102888. [PMID: 36641905 DOI: 10.1016/j.copbio.2022.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Vaccines are vital for protection against existing and emergent diseases. Current vaccine production strategies are limited by long production times, risky viral material, weak immunogenicity, and poor stability, ultimately restricting the safe or rapid production of vaccines for widespread utilization. Cell-free protein synthesis (CFPS) systems, which use extracted transcriptional and translational machinery from cells, are promising tools for vaccine production because they can rapidly produce proteins without the constraints of living cells, have a highly optimizable open system, and can be used for on-demand biomanufacturing. Here, we review how CFPS systems have been explored for the production of subunit, conjugate, virus-like particle (VLP), and membrane-augmented vaccines and as a tool in vaccine design. We also discuss efforts to address potential limitations with CFPS such as the presence of endotoxins, poor protein folding, reaction stability, and glycosylation to enable promising future vaccine design and production.
Collapse
|
15
|
Armero-Gimenez J, Wilbers R, Schots A, Williams C, Finnern R. Rapid screening and scaled manufacture of immunogenic virus-like particles in a tobacco BY-2 cell-free protein synthesis system. Front Immunol 2023; 14:1088852. [PMID: 36776898 PMCID: PMC9909599 DOI: 10.3389/fimmu.2023.1088852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Several vaccine platforms have been developed to fight pathogenic threats, with Virus-Like Particles (VLPs) representing a very promising alternative to traditional platforms. VLPs trigger strong and lasting humoral and cellular immune responses with fewer safety concerns and higher stability than other platforms. The use of extensively characterized carrier VLPs modified with heterologous antigens was proposed to circumvent the viral complexity of specific viruses that could lead to poor VLP assembly and yields. Although carrier VLPs have been successfully produced in a wide variety of cell-based systems, these are limited by low protein yields and protracted clone selection and optimization workflows that limit VLP screening approaches. In response, we have demonstrated the cell-free protein synthesis (CFPS) of several variants of the hepatitis B core (HBc) carrier VLP using a high-yielding tobacco BY-2 lysate (BYL). High VLP yields in the BYL system allowed in-depth characterization of HBc variants. Insertion of heterologous sequences at the spike region of the HBc monomer proved more structurally demanding than at the N-terminus but removal of the C-terminal domain allowed higher particle flexibility and insert acceptance, albeit at the expense of thermal and chemical stability. We also proved the possibility to scale the CFPS reaction up to 1L in batch mode to produce 0.45 grams of the native HBc VLP within a 48-hour reaction window. A maximum yield of 820 µg/ml of assembled VLP particles was observed at the 100µl scale and most remarkably the CFPS reaction was successfully scaled from 50µl to 1L without any reduction in protein yield across this 20,000-fold difference in reaction volumes. We subsequently proved the immunogenicity of BYL-derived VLPs, as flow cytometry and microscopy clearly showed prompt recognition and endocytosis of fluorescently labelled VLPs by human dendritic cells. Triggering of inflammatory cytokine production in human peripheral blood mononuclear cells was also quantitated using a multiplex assay. This research establishes BYL as a tool for rapid production and microscale screening of VLP variants with subsequent manufacturing possibilities across scales, thus accelerating discovery and implementation of new vaccine candidates using carrier VLPs.
Collapse
Affiliation(s)
- Jorge Armero-Gimenez
- Technology center, LenioBio GmbH, Dusseldorf, Germany.,Laboratory of Nematology, Wageningen University, Wageningen, Netherlands
| | - Ruud Wilbers
- Laboratory of Nematology, Wageningen University, Wageningen, Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Wageningen University, Wageningen, Netherlands
| | | | | |
Collapse
|
16
|
Singh VA, Kumar CS, Khare B, Kuhn RJ, Banerjee M, Tomar S. Surface decorated reporter-tagged chikungunya virus-like particles for clinical diagnostics and identification of virus entry inhibitors. Virology 2023; 578:92-102. [PMID: 36473281 DOI: 10.1016/j.virol.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
The ever-evolving and versatile VLP technology is becoming an increasingly popular area of science. This study presents surface decorated reporter-tagged VLPs of CHIKV, an enveloped RNA virus of the genus alphavirus and its applications. Western blot, IFA and live-cell imaging confirm the expression of reporter-tagged CHIK-VLPs from transfected HEK293Ts. CryoEM micrographs reveal particle diameter as ∼67nm and 56-70 nm, respectively, for NLuc CHIK-VLPs and mCherry CHIK-VLPs. Our study demonstrates that by exploiting NLuc CHIK-VLPs as a detector probe, robust ratiometric luminescence signal in CHIKV-positive sera compared to healthy controls can be achieved swiftly. Moreover, the potential activity of the Suramin drug as a CHIKV entry inhibitor has been validated through the reporter-tagged CHIK-VLPs. The results reported in this study open new avenues in the eVLPs domain and offer potential for large-scale screening of clinical samples and antiviral agents targeting entry of CHIKV and other alphaviruses.
Collapse
Affiliation(s)
- Vedita Anand Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Chandra Shekhar Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi, 110016, India
| | - Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
17
|
Yang Z, Chi Y, Bao J, Zhao X, Zhang J, Wang L. Virus-like Particles for TEM Regulation and Antitumor Therapy. J Funct Biomater 2022; 13:304. [PMID: 36547564 PMCID: PMC9788044 DOI: 10.3390/jfb13040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor development and metastasis are intimately associated with the tumor microenvironment (TME), and it is difficult for vector-restricted drugs to act on the TME for long-term cancer immunotherapy. Virus-like particles (VLPs) are nanocage structures self-assembled from nucleic acid free viral proteins. Most VLPs range from 20-200 nm in diameter and can naturally drain into lymph nodes to induce robust humoral immunity. As natural nucleic acid nanocarriers, their surfaces can also be genetically or chemically modified to achieve functions such as TME targeting. This review focuses on the design ideas of VLP as nanocarriers and the progress of their research in regulating TME.
Collapse
Affiliation(s)
- Zhu Yang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjie Chi
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Bao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Xin Zhao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Jing Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Ullrich J, Göhmann PJ, Zemella A, Kubick S. Oligomerization of the heteromeric γ-aminobutyric acid receptor GABA B in a eukaryotic cell-free system. Sci Rep 2022; 12:20742. [PMID: 36456667 PMCID: PMC9715706 DOI: 10.1038/s41598-022-24885-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Understanding the assembly mechanism and function of membrane proteins is a fundamental problem in biochemical research. Among the membrane proteins, G protein-coupled receptors (GPCRs) represent the largest class in the human body and have long been considered to function as monomers. Nowadays, the oligomeric assembly of GPCRs is widely accepted, although the functional importance and therapeutic intervention remain largely unexplored. This is partly due to difficulties in the heterologous production of membrane proteins. Cell-free protein synthesis (CFPS) with its endogenous endoplasmic reticulum-derived structures has proven as a technique to address this issue. In this study, we investigate for the first time the conceptual CFPS of a heteromeric GPCR, the γ-aminobutyric acid receptor type B (GABAB), from its protomers BR1 and BR2 using a eukaryotic cell-free lysate. Using a fluorescence-based proximity ligation assay, we provide evidence for colocalization and thus suggesting heterodimerization. We prove the heterodimeric assembly by a bioluminescence resonance energy transfer saturation assay providing the manufacturability of a heterodimeric GPCR by CFPS. Additionally, we show the binding of a fluorescent orthosteric antagonist, demonstrating the feasibility of combining the CFPS of GPCRs with pharmacological applications. These results provide a simple and powerful experimental platform for the synthesis of heteromeric GPCRs and open new perspectives for the modelling of protein-protein interactions. Accordingly, the presented technology enables the targeting of protein assemblies as a new interface for pharmacological intervention in disease-relevant dimers.
Collapse
Affiliation(s)
- Jessica Ullrich
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany
| | - Philip Jonas Göhmann
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
- Institute of Chemistry and Biochemistry-Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
- Faculty of Health Science, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
19
|
Das Gupta M, Flaskamp Y, Roentgen R, Juergens H, Gimenez JA, Albrecht F, Hemmerich J, Ahmad Arfi Z, Neuser J, Spiegel H, Yeliseev A, Song L, Qiu J, Williams C, Finnern R. ALiCE ® : A versatile, high yielding and scalable eukaryotic cell-free protein synthesis (CFPS) system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.10.515920. [PMID: 36380753 PMCID: PMC9665337 DOI: 10.1101/2022.11.10.515920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Eukaryotic cell-free protein synthesis (CFPS) systems have the potential to simplify and speed up the expression and high-throughput analysis of complex proteins with functionally relevant post-translational modifications (PTMs). However, low yields and the inability to scale such systems have so far prevented their widespread adoption in protein research and manufacturing. Here, we present a detailed demonstration for the capabilities of a CFPS system derived from Nicotiana tabacum BY-2 cell culture (BY-2 lysate; BYL). BYL is able to express diverse, functional proteins at high yields in under 48 hours, complete with native disulfide bonds and N-glycosylation. An optimised version of the technology is commercialised as 'ALiCE ® ', engineered for high yields of up to 3 mg/mL. Recent advances in the scaling of BYL production methodologies have allowed scaling of the CFPS reaction. We show simple, linear scale-up of batch mode reporter proten expression from a 100 μL microtiter plate format to 10 mL and 100 mL volumes in standard Erlenmeyer flasks, culminating in preliminary data from 1 L reactions in a CELL-tainer® CT20 rocking motion bioreactor. As such, these works represent the first published example of a eukaryotic CFPS reaction scaled past the 10 mL level by several orders of magnitude. We show the ability of BYL to produce the simple reporter protein eYFP and large, multimeric virus-like particles directly in the cytosolic fraction. Complex proteins are processed using the native microsomes of BYL and functional expression of multiple classes of complex, difficult-to-express proteins is demonstrated, specifically: a dimeric, glycoprotein enzyme, glucose oxidase; the monoclonal antibody adalimumab; the SARS-Cov-2 receptor-binding domain; human epidermal growth factor; and a G protein-coupled receptor membrane protein, cannabinoid receptor type 2. Functional binding and activity are shown using a combination of surface plasmon resonance techniques, a serology-based ELISA method and a G protein activation assay. Finally, in-depth post-translational modification (PTM) characterisation of purified proteins through disulfide bond and N-glycan analysis is also revealed - previously difficult in the eukaryotic CFPS space due to limitations in reaction volumes and yields. Taken together, BYL provides a real opportunity for screening of complex proteins at the microscale with subsequent amplification to manufacturing-ready levels using off-the-shelf protocols. This end-to-end platform suggests the potential to significantly reduce cost and the time-to-market for high value proteins and biologics.
Collapse
|
20
|
Ma XY, Hill BD, Hoang T, Wen F. Virus-inspired strategies for cancer therapy. Semin Cancer Biol 2022; 86:1143-1157. [PMID: 34182141 PMCID: PMC8710185 DOI: 10.1016/j.semcancer.2021.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/27/2023]
Abstract
The intentional use of viruses for cancer therapy dates back over a century. As viruses are inherently immunogenic and naturally optimized delivery vehicles, repurposing viruses for drug delivery, tumor antigen presentation, or selective replication in cancer cells represents a simple and elegant approach to cancer treatment. While early virotherapy was fraught with harsh side effects and low response rates, virus-based therapies have recently seen a resurgence due to newfound abilities to engineer and tune oncolytic viruses, virus-like particles, and virus-mimicking nanoparticles for improved safety and efficacy. However, despite their great potential, very few virus-based therapies have made it through clinical trials. In this review, we present an overview of virus-inspired approaches for cancer therapy, discuss engineering strategies to enhance their mechanisms of action, and highlight their application for overcoming the challenges of traditional cancer therapies.
Collapse
Affiliation(s)
- Xiao Yin Ma
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Brett D Hill
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Trang Hoang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
21
|
How CW, Ong YS, Low SS, Pandey A, Show PL, Foo JB. How far have we explored fungi to fight cancer? Semin Cancer Biol 2022; 86:976-989. [PMID: 33737109 DOI: 10.1016/j.semcancer.2021.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 03/13/2021] [Indexed: 01/01/2023]
Abstract
The use of fungal cultures have been well documented in human history. Although its used in healthcare, like penicillin and statins, have saved countless of lives, but there is still no fungal products that are specifically indicated for cancers. Research into fungal-derived materials to curb cancers in the recent decades have made a considerable progress in terms of drug delivery vehicles, anticancer active ingredients and cancer immunotherapy. Various parts of the organisms have successfully been exploited to achieve specific tasks. Apart from the identification of novel anticancer compound from fungi, its native capsular structure can also be used as drug cargo to achieve higher oral bioavailability. This review summarises the anticancer potential of fungal-derived materials, highlighting the role of capsular polysaccharides, proteins, and other structures in variety of innovative utilities to fit the current pharmaceutical technology. Many bioactive compounds isolated from fungi have also been formulated into nanoparticles to achieve greater anticancer activity. The progress of fungal compounds and their analogues in clinical trials is also highlighted. In addition, the potential of various fungal species to be developed for anticancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Chee Wun How
- School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Sze Shin Low
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
22
|
Spice AJ, Aw R, Polizzi KM. Cell-Free Protein Synthesis Using Pichia pastoris. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2433:75-88. [PMID: 34985738 DOI: 10.1007/978-1-0716-1998-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pichia pastoris (syn. Komagataella phaffii) is an industrially relevant recombinant protein platform that has been used to produce over 5000 proteins to date. Cell-free protein synthesis can be used as a screening tool before strain development or for the production of proteins that are difficult or toxic to make in vivo. Here we describe the methods for generating an active cell lysate from P. pastoris using high pressure homogenization and an improved reaction mix which results in high yields of reporter proteins such as luciferase, and complex proteins such as human serum albumin and virus-like particles.
Collapse
Affiliation(s)
- Alex J Spice
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
23
|
Development of Plant-Based Vaccines for Prevention of Avian Influenza and Newcastle Disease in Poultry. Vaccines (Basel) 2022; 10:vaccines10030478. [PMID: 35335110 PMCID: PMC8952014 DOI: 10.3390/vaccines10030478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Viral diseases, including avian influenza (AI) and Newcastle disease (ND), are an important cause of morbidity and mortality in poultry, resulting in significant economic losses. Despite the availability of commercial vaccines for the major viral diseases of poultry, these diseases continue to pose a significant risk to global food security. There are multiple factors for this: vaccine costs may be prohibitive, cold chain storage for attenuated live-virus vaccines may not be achievable, and commercial vaccines may protect poorly against local emerging strains. The development of transient gene expression systems in plants provides a versatile and robust tool to generate a high yield of recombinant proteins with superior speed while managing to achieve cost-efficient production. Plant-derived vaccines offer good stability and safety these include both subunit and virus-like particle (VLP) vaccines. VLPs offer potential benefits compared to currently available traditional vaccines, including significant reductions in virus shedding and the ability to differentiate between infected and vaccinated birds (DIVA). This review discusses the current state of plant-based vaccines for prevention of the AI and ND in poultry, challenges in their development, and potential for expanding their use in low- and middle-income countries.
Collapse
|
24
|
Lu W, Zhao Z, Huang YW, Wang B. Review: A systematic review of virus-like particles of coronavirus: Assembly, generation, chimerism and their application in basic research and in the clinic. Int J Biol Macromol 2022; 200:487-497. [PMID: 35065135 PMCID: PMC8769907 DOI: 10.1016/j.ijbiomac.2022.01.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Virus-like particles (VLPs) are nano-scale particles that are morphologically similar to a live virus but which lack a genetic component. Since the pandemic spread of COVID-19, much focus has been placed on coronavirus (CoV)-related VLPs. CoVs contain four structural proteins, though the minimum requirement for VLP formation differs among virus species. CoV VLPs are commonly produced in mammalian and insect cell systems, sometimes in the form of chimeric VLPs that enable surface display of CoV epitopes. VLPs are an ideal model for virological research and have been applied as vaccines and diagnostic reagents to aid in clinical disease control. This review summarizes and updates the research progress on the characteristics of VLPs from different known CoVs, mainly focusing on assembly, in vitro expression systems for VLP generation, VLP chimerism, protein-based nanoparticles and their applications in basic research and clinical settings, which may aid in development of novel VLP vaccines against emerging coronavirus diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Wan Lu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhuangzhuang Zhao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Bin Wang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Virus-Like Particles as Preventive and Therapeutic Cancer Vaccines. Vaccines (Basel) 2022; 10:vaccines10020227. [PMID: 35214685 PMCID: PMC8879290 DOI: 10.3390/vaccines10020227] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Virus-like particles (VLPs) are self-assembled viral protein complexes that mimic the native virus structure without being infectious. VLPs, similarly to wild type viruses, are able to efficiently target and activate dendritic cells (DCs) triggering the B and T cell immunities. Therefore, VLPs hold great promise for the development of effective and affordable vaccines in infectious diseases and cancers. Vaccine formulations based on VLPs, compared to other nanoparticles, have the advantage of incorporating multiple antigens derived from different proteins. Moreover, such antigens can be functionalized by chemical modifications without affecting the structural conformation or the antigenicity. This review summarizes the current status of preventive and therapeutic VLP-based vaccines developed against human oncoviruses as well as cancers.
Collapse
|
26
|
McFall-Boegeman H, Huang X. Mechanisms of cellular and humoral immunity through the lens of VLP-based vaccines. Expert Rev Vaccines 2022; 21:453-469. [PMID: 35023430 PMCID: PMC8960355 DOI: 10.1080/14760584.2022.2029415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vaccination can be effective defense against many infectious agents and the corresponding diseases. Discoveries elucidating the mechanisms of the immune system have given hopes to developing vaccines against diseases recalcitrant to current treatment/prevention strategies. One such finding is the ability of immunogenic biological nanoparticles to powerfully boost the immunogenicity of poorer antigens conjugated to them with virus-like particle (VLP)-based vaccines as a key example. VLPs take advantage of the well-defined molecular structures associated with sub-unit vaccines and the immunostimulatory nature of conjugate vaccines. AREAS COVERED In this review, we will discuss how advances in understanding the immune system can inform VLP-based vaccine design and how VLP-based vaccines have uncovered underlying mechanisms in the immune system. EXPERT OPINION As our understanding of mechanisms underlying the immune system increases, that knowledge should inform our vaccine design. Testing of proof-of-concept vaccines in the lab should seek to elucidate the underlying mechanisms of immune responses. The integration of these approaches will allow for VLP-based vaccines to live up to their promise as a powerful plug-and-play platform for next generation vaccine development.
Collapse
Affiliation(s)
- Hunter McFall-Boegeman
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA.,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
27
|
Tariq H, Batool S, Asif S, Ali M, Abbasi BH. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front Microbiol 2022; 12:790121. [PMID: 35046918 PMCID: PMC8761975 DOI: 10.3389/fmicb.2021.790121] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are nanostructures that possess diverse applications in therapeutics, immunization, and diagnostics. With the recent advancements in biomedical engineering technologies, commercially available VLP-based vaccines are being extensively used to combat infectious diseases, whereas many more are in different stages of development in clinical studies. Because of their desired characteristics in terms of efficacy, safety, and diversity, VLP-based approaches might become more recurrent in the years to come. However, some production and fabrication challenges must be addressed before VLP-based approaches can be widely used in therapeutics. This review offers insight into the recent VLP-based vaccines development, with an emphasis on their characteristics, expression systems, and potential applicability as ideal candidates to combat emerging virulent pathogens. Finally, the potential of VLP-based vaccine as viable and efficient immunizing agents to induce immunity against virulent infectious agents, including, SARS-CoV-2 and protein nanoparticle-based vaccines has been elaborated. Thus, VLP vaccines may serve as an effective alternative to conventional vaccine strategies in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sannia Batool
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | | |
Collapse
|
28
|
Markarian NM, Abrahamyan L. AMDV Vaccine: Challenges and Perspectives. Viruses 2021; 13:v13091833. [PMID: 34578415 PMCID: PMC8472842 DOI: 10.3390/v13091833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Aleutian mink disease virus (AMDV) is known to cause the most significant disease in the mink industry. It is globally widespread and manifested as a deadly plasmacytosis and hyperglobulinemia. So far, measures to control the viral spread have been limited to manual serological testing for AMDV-positive mink. Further, due to the persistent nature of this virus, attempts to eradicate Aleutian disease (AD) have largely failed. Therefore, effective strategies to control the viral spread are of crucial importance for wildlife protection. One potentially key tool in the fight against this disease is by the immunization of mink against AMDV. Throughout many years, several researchers have tried to develop AMDV vaccines and demonstrated varying degrees of protection in mink by those vaccines. Despite these attempts, there are currently no vaccines available against AMDV, allowing the continuation of the spread of Aleutian disease. Herein, we summarize previous AMDV immunization attempts in mink as well as other preventative measures with the purpose to shed light on future studies designing such a potentially crucial preventative tool against Aleutian disease.
Collapse
Affiliation(s)
- Nathan M. Markarian
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases of Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Correspondence:
| |
Collapse
|
29
|
Naseri G, Prause K, Hamdo HH, Arenz C. Artificial Transcription Factors for Tuneable Gene Expression in Pichia pastoris. Front Bioeng Biotechnol 2021; 9:676900. [PMID: 34434924 PMCID: PMC8381338 DOI: 10.3389/fbioe.2021.676900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has become a powerful eukaryotic expression platform for biopharmaceutical and biotechnological applications on both laboratory and industrial scales. Despite the fundamental role that artificial transcription factors (ATFs) play in the orthogonal control of gene expression in synthetic biology, a limited number of ATFs are available for P. pastoris. To establish orthogonal regulators for use in P. pastoris, we characterized ATFs derived from Arabidopsis TFs. The plant-derived ATFs contain the binding domain of TFs from the plant Arabidopsis thaliana, in combination with the activation domains of yeast GAL4 and plant EDLL and a synthetic promoter harboring the cognate cis-regulatory motifs. Chromosomally integrated ATFs and their binding sites (ATF/BSs) resulted in a wide spectrum of inducible transcriptional outputs in P. pastoris, ranging from as low as 1- to as high as ∼63-fold induction with only small growth defects. We demonstrated the application of ATF/BSs by generating P. pastoris cells that produce β-carotene. Notably, the productivity of β-carotene in P. pastoris was ∼4.8-fold higher than that in S. cerevisiae, reaching ∼59% of the β-carotene productivity obtained in a S. cerevisiae strain optimized for the production of the β-carotene precursor, farnesyl diphosphate, by rewiring the endogenous metabolic pathways using plant-derived ATF/BSs. Our data suggest that plant-derived regulators have a high degree of transferability from S. cerevisiae to P. pastoris. The plant-derived ATFs, together with their cognate binding sites, powerfully increase the repertoire of transcriptional regulatory modules for the tuning of protein expression levels required in metabolic engineering or synthetic biology in P. pastoris.
Collapse
Affiliation(s)
- Gita Naseri
- Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Kevin Prause
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Housam Haj Hamdo
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
30
|
Kumar M, Kumari N, Thakur N, Bhatia SK, Saratale GD, Ghodake G, Mistry BM, Alavilli H, Kishor DS, Du X, Chung SM. A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics. PLANTS (BASEL, SWITZERLAND) 2021; 10:1213. [PMID: 34203729 PMCID: PMC8232254 DOI: 10.3390/plants10061213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 12/23/2022]
Abstract
Many pathogenic viral pandemics have caused threats to global health; the COVID-19 pandemic is the latest. Its transmission is growing exponentially all around the globe, putting constraints on the health system worldwide. A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causes this pandemic. Many candidate vaccines are available at this time for COVID-19, and there is a massive international race underway to procure as many vaccines as possible for each country. However, due to heavy global demand, there are strains in global vaccine production. The use of a plant biotechnology-based expression system for vaccine production also represents one part of this international effort, which is to develop plant-based heterologous expression systems, virus-like particles (VLPs)-vaccines, antiviral drugs, and a rapid supply of antigen-antibodies for detecting kits and plant origin bioactive compounds that boost the immunity and provide tolerance to fight against the virus infection. This review will look at the plant biotechnology platform that can provide the best fight against this global pandemic.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Nisha Kumari
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Nishant Thakur
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea;
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea;
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (G.D.S.); (B.M.M.)
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, Dongguk University, Seoul 10326, Korea;
| | - Bhupendra M. Mistry
- Department of Food Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (G.D.S.); (B.M.M.)
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea;
| | - D. S. Kishor
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Xueshi Du
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| |
Collapse
|
31
|
Zhang B, Yin S, Wang Y, Su Z, Bi J. Cost-effective purification process development for chimeric hepatitis B core (HBc) virus-like particles assisted by molecular dynamic simulation. Eng Life Sci 2021; 21:438-452. [PMID: 34140854 PMCID: PMC8182290 DOI: 10.1002/elsc.202000104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
Inserting foreign epitopes to hepatitis B core (HBc) virus-like particles (VLPs) could influence the molecular conformation and therefore vary the purification process. In this study, a cost-effective purification process was developed for two chimeric HBc VLPs displaying Epstein-Barr nuclear antigens 1 (EBNA1), and hepatitis C virus (HCV) core. Both chimeric VLPs were expressed in soluble form with high production yields in Escherichia coli. Molecular dynamic (MD) simulation was employed to predict the stability of chimeric VLPs. HCV core-HBc was found to be less stable in water environment compared with EBNA1-HBc, indicating its higher hydrophobicity. Assisting with MD simulation, ammonium sulfate precipitation was optimized to remove host cell proteins with high target protein recovery yields. Moreover, 99% DNA impurities were removed using POROS 50 HQ chromatography. In characterization measurement, we found that inserting HCV core epitope would reduce the ratio of α-helix of HCV core-HBc. This could be another reason on the top of its higher hydrophobicity predicted by MD simulation, causing its less stability. Tertiary structure, transmission electron microscopy, and immunogenicity results indicate that two chimeric VLPs maintained correct VLP structure ensuring its bioactivity after being processed by the developed cost-effective purification approach.
Collapse
Affiliation(s)
- Bingyang Zhang
- School of Chemical Engineering & Advanced Materials, Faculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Shuang Yin
- School of Chemical Engineering & Advanced Materials, Faculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Yingli Wang
- School of Chinese Medicine and Food EngineeringShanxi University of Traditional Chinese MedicineJinzhongShanxi ProvinceP. R. China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Jingxiu Bi
- School of Chemical Engineering & Advanced Materials, Faculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideSAAustralia
| |
Collapse
|
32
|
Le DT, Müller KM. In Vitro Assembly of Virus-Like Particles and Their Applications. Life (Basel) 2021; 11:334. [PMID: 33920215 PMCID: PMC8069851 DOI: 10.3390/life11040334] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are increasingly used for vaccine development and drug delivery. Assembly of VLPs from purified monomers in a chemically defined reaction is advantageous compared to in vivo assembly, because it avoids encapsidation of host-derived components and enables loading with added cargoes. This review provides an overview of ex cella VLP production methods focusing on capsid protein production, factors that impact the in vitro assembly, and approaches to characterize in vitro VLPs. The uses of in vitro produced VLPs as vaccines and for therapeutic delivery are also reported.
Collapse
Affiliation(s)
| | - Kristian M. Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
| |
Collapse
|
33
|
Spice AJ, Aw R, Bracewell DG, Polizzi KM. Improving the reaction mix of a Pichia pastoris cell-free system using a design of experiments approach to minimise experimental effort. Synth Syst Biotechnol 2020; 5:137-144. [PMID: 32637667 PMCID: PMC7320237 DOI: 10.1016/j.synbio.2020.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
A renaissance in cell-free protein synthesis (CFPS) is underway, enabled by the acceleration and adoption of synthetic biology methods. CFPS has emerged as a powerful platform technology for synthetic gene network design, biosensing and on-demand biomanufacturing. Whilst primarily of bacterial origin, cell-free extracts derived from a variety of host organisms have been explored, aiming to capitalise on cellular diversity and the advantageous properties associated with those organisms. However, cell-free extracts produced from eukaryotes are often overlooked due to their relatively low yields, despite the potential for improved protein folding and posttranslational modifications. Here we describe further development of a Pichia pastoris cell-free platform, a widely used expression host in both academia and the biopharmaceutical industry. Using a minimised Design of Experiments (DOE) approach, we were able to increase the productivity of the system by improving the composition of the complex reaction mixture. This was achieved in a minimal number of experimental runs, within the constraints of the design and without the need for liquid-handling robots. In doing so, we were able to estimate the main effects impacting productivity in the system and increased the protein synthesis of firefly luciferase and the biopharmaceutical HSA by 4.8-fold and 3.5-fold, respectively. This study highlights the P. pastoris-based cell-free system as a highly productive eukaryotic platform and displays the value of minimised DOE designs.
Collapse
Key Words
- AB, Albumin Blue
- CFPS, cell-free protein synthesis
- CHO, Chinese hamster ovary cells
- Cell-free protein synthesis
- DOE, design of Experiments
- DSD, definitive screening design
- Design of experiments (DOE)
- HSA, human serum albumin
- IRES, internal ribosome entry site
- Pichia pastoris
- RRL, rabbit reticulocyte lysate
- Synthetic biology
- VLP, virus-like particles
- WGE, wheat-germ etract
Collapse
Affiliation(s)
- Alex J. Spice
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, UK
| | - Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, UK
| | - Daniel G. Bracewell
- Department of Biochemical Engineering, University College London, London, UK
| | - Karen M. Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, UK
| |
Collapse
|