1
|
Alizadeh M, Ghasemi H, Bazhan D, Bolbanabad NM, Rahdan F, Arianfar N, Vahedi F, Khatami SH, Taheri-Anganeh M, Aiiashi S, Armand N. MicroRNAs in disease States. Clin Chim Acta 2025; 569:120187. [PMID: 39938625 DOI: 10.1016/j.cca.2025.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
This review highlights the role of miRNAs in various diseases affecting major organ systems. miRNAs are small, non-coding RNA molecules that regulate numerous genes. Dysregulation of miRNAs is linked to many pathological conditions due to their involvement in gene silencing and cellular pathways. We discuss miRNA expression patterns, their physiological and pathological roles, and how changes in miRNA levels contribute to disease. Notably, miRNAs like miR-499 and miR-21 are implicated in heart failure and atherosclerosis. miRNA dysregulation is also associated with colorectal and gastric cancers, influencing tumorigenesis and chemoresistance. In neurological diseases, miRNAs exhibit diverse profiles that affect neurodevelopment and degeneration. Additionally, miRNAs modulate cell function in reproductive organs, impacting fertility and cancer progression. miRNAs such as miR-192 and miR-204 serve as biomarkers for nephropathy and acute kidney injury. These miRNAs are involved in skeletal muscle diseases, contributing to conditions like osteoporosis and sarcopenia. miRNAs function as oncogenes or tumor suppressors in cancer, highlighting their potential in diagnostics and therapy. Further research is needed to develop miRNA-based diagnostics and treatments.
Collapse
Affiliation(s)
- Mehdi Alizadeh
- Department of Clinical Biochemistry School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC) Abadan University of Medical Sciences Abadan Iran
| | - Donya Bazhan
- Department of Molecular Medicine Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | | | - Fereshteh Rahdan
- Department of Medical Biotechnology Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Narges Arianfar
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Farzaneh Vahedi
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Seyyed Hossein Khatami
- Student Research Committee Department of Clinical Biochemistry School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center Cellular and Molecular Medicine Research Institute Urmia University of Medical Sciences Urmia Iran.
| | | | - Nezam Armand
- Dietary Supplements and Probiotic Research Center Alborz University of Medical Sciences Karaj Iran
| |
Collapse
|
2
|
Zhakypbek Y, Belkozhayev AM, Kerimkulova A, Kossalbayev BD, Murat T, Tursbekov S, Turysbekova G, Tursunova A, Tastambek KT, Allakhverdiev SI. MicroRNAs in Plant Genetic Regulation of Drought Tolerance and Their Function in Enhancing Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2025; 14:410. [PMID: 39942972 PMCID: PMC11820447 DOI: 10.3390/plants14030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Adverse environmental conditions, including drought stress, pose a significant threat to plant survival and agricultural productivity, necessitating innovative and efficient approaches to enhance their resilience. MicroRNAs (miRNAs) are recognized as key elements in regulating plant adaptation to drought stress, with a notable ability to modulate various physiological and molecular mechanisms. This review provides an in-depth analysis of the role of miRNAs in drought response mechanisms, including abscisic acid (ABA) signaling, reactive oxygen species (ROS) detoxification, and the optimization of root system architecture. Additionally, it examines the effectiveness of bioinformatics tools, such as those employed in in silico analyses, for studying miRNA-mRNA interactions, as well as the potential for their integration with experimental methods. Advanced methods such as microarray analysis, high-throughput sequencing (HTS), and RACE-PCR are discussed for their contributions to miRNA target identification and validation. Moreover, new data and perspectives are presented on the role of miRNAs in plant responses to abiotic stresses, particularly drought adaptation. This review aims to deepen the understanding of genetic regulatory mechanisms in plants and to establish a robust scientific foundation for the development of drought-tolerant crop varieties.
Collapse
Affiliation(s)
- Yryszhan Zhakypbek
- Department of Surveying and Geodesy, Mining and Metallurgical Institute Named After O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (T.M.); (S.T.)
| | - Ayaz M. Belkozhayev
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan;
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Aygul Kerimkulova
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan;
| | - Bekzhan D. Kossalbayev
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan;
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh Turkish University, Turkistan 161200, Kazakhstan;
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan
| | - Toktar Murat
- Department of Surveying and Geodesy, Mining and Metallurgical Institute Named After O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (T.M.); (S.T.)
- Department of Agronomy and Forestry, Faculty of Agrotechnology, Kozybayev University, Petropavlovsk 150000, Kazakhstan
- Department of Soil Ecology, Kazakh Research Institute of Soil Science and Agrochemistry, Named After U.U. Uspanov, Al-Farabi Ave. 75, Almaty 050060, Kazakhstan
| | - Serik Tursbekov
- Department of Surveying and Geodesy, Mining and Metallurgical Institute Named After O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (T.M.); (S.T.)
| | - Gaukhar Turysbekova
- Department of Metallurgy and Mineral Processing, Satbayev University, Almaty 050000, Kazakhstan;
| | - Alnura Tursunova
- Kazakh Research Institute of Plant Protection and Quarantine Named After Zhazken Zhiembayev, Almaty 050070, Kazakhstan;
| | - Kuanysh T. Tastambek
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh Turkish University, Turkistan 161200, Kazakhstan;
- Sustainability of Ecology and Bioresources, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan
| | - Suleyman I. Allakhverdiev
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119991 Moscow, Russia;
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, 127276 Moscow, Russia
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul 34353, Turkey
| |
Collapse
|
3
|
Pillay R, Naidoo P, Mkhize-Kwitshana ZL. Exploring microRNA-Mediated Immune Responses to Soil-Transmitted Helminth and Herpes Simplex Virus Type 2 Co-Infections. Diseases 2025; 13:6. [PMID: 39851470 PMCID: PMC11765296 DOI: 10.3390/diseases13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Over the last two decades, the field of microRNA (miRNA) research has grown significantly. MiRNAs are a class of short, single-stranded, non-coding RNAs that regulate gene expression post-transcriptionally. Thereby, miRNAs regulate various essential biological processes including immunity. Dysregulated miRNAs are associated with various infectious and non-infectious diseases. Recently co-infection with soil-transmitted helminths (STHs) and herpes simplex virus type 2 (HSV-2) has become a focus of study. Both pathogens can profoundly influence host immunity, particularly in under-resourced and co-endemic regions. It is well known that STHs induce immunomodulatory responses that have bystander effects on unrelated conditions. Typically, STHs induce T-helper 2 (Th2) and immunomodulatory responses, which may dampen the proinflammatory T-helper 1 (Th1) immune responses triggered by HSV-2. However, the extent to which STH co-infection influences the host immune response to HSV-2 is not well understood. Moreover, little is known about how miRNAs shape the immune response to STH/HSV-2 co-infection. In this article, we explore the potential influence that STH co-infection may have on host immunity to HSV-2. Because STH and HSV-2 infections are widespread and disproportionately affect vulnerable and impoverished countries, it is important to consider how STHs may impact HSV-2 immunity. Specifically, we explore how miRNAs contribute to both helminth and HSV-2 infections and discuss how miRNAs may mediate STH/HSV-2 co-infections. Insight into miRNA-mediated immune responses may further improve our understanding of the potential impact of STH/HSV-2 co-infections.
Collapse
Affiliation(s)
- Roxanne Pillay
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Zilungile L. Mkhize-Kwitshana
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
- Biomedical Sciences Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1710, South Africa
| |
Collapse
|
4
|
Aspesi A, La Vecchia M, Sala G, Ghelardi E, Dianzani I. Study of Microbiota Associated to Early Tumors Can Shed Light on Colon Carcinogenesis. Int J Mol Sci 2024; 25:13308. [PMID: 39769073 PMCID: PMC11677268 DOI: 10.3390/ijms252413308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
An increasingly important role for gut microbiota in the initiation and progression of colorectal cancer (CRC) has been described. Even in the early stages of transformation, i.e., colorectal adenomas, changes in gut microbiota composition have been observed, and several bacterial species, such as pks+Escherichia coli and enterotoxigenic Bacteroides fragilis, have been proposed to drive colon tumorigenesis. In recent years, several strategies have been developed to study mucosa-associated microbiota (MAM), which is more closely associated with CRC development than lumen-associated microbiota (LAM) derived from fecal samples. This review summarizes the state of the art about the oncogenic actions of gut bacteria and compares the different sampling strategies to collect intestinal microbiota (feces, biopsies, swabs, brushes, and washing aspirates). In particular, this article recapitulates the current knowledge on MAM in colorectal adenomas and serrated polyps, since studying the intestinal microbiota associated with early-stage tumors can elucidate the molecular mechanisms underpinning CRC carcinogenesis.
Collapse
Affiliation(s)
- Anna Aspesi
- Department of Health Sciences, Università Del Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.L.V.); (G.S.)
| | - Marta La Vecchia
- Department of Health Sciences, Università Del Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.L.V.); (G.S.)
| | - Gloria Sala
- Department of Health Sciences, Università Del Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.L.V.); (G.S.)
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy;
| | - Irma Dianzani
- Department of Health Sciences, Università Del Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.L.V.); (G.S.)
| |
Collapse
|
5
|
Wang L, Xu W, Zhang S, Gundberg GC, Zheng CR, Wan Z, Mustafina K, Caliendo F, Sandt H, Kamm R, Weiss R. Sensing and guiding cell-state transitions by using genetically encoded endoribonuclease-mediated microRNA sensors. Nat Biomed Eng 2024; 8:1730-1743. [PMID: 38982158 DOI: 10.1038/s41551-024-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2024] [Indexed: 07/11/2024]
Abstract
Precisely sensing and guiding cell-state transitions via the conditional genetic activation of appropriate differentiation factors is challenging. Here we show that desired cell-state transitions can be guided via genetically encoded sensors, whereby endogenous cell-state-specific miRNAs regulate the translation of a constitutively transcribed endoribonuclease, which, in turn, controls the translation of a gene of interest. We used this approach to monitor several cell-state transitions, to enrich specific cell types and to automatically guide the multistep differentiation of human induced pluripotent stem cells towards a haematopoietic lineage via endothelial cells as an intermediate state. Such conditional activation of gene expression is durable and resistant to epigenetic silencing and could facilitate the monitoring of cell-state transitions in physiological and pathological conditions and eventually the 'rewiring' of cell-state transitions for applications in organoid-based disease modelling, cellular therapies and regenerative medicine.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Department of Biology, Northeastern University, Boston, MA, USA.
| | - Wenlong Xu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shun Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gregory C Gundberg
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christine R Zheng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kamila Mustafina
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fabio Caliendo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hayden Sandt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roger Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Meewes C, Gupta K, Geisler WM. Role of microRNAs in immune regulation and pathogenesis of Chlamydia trachomatis and Chlamydia muridarum infections: a rapid review. Microbes Infect 2024; 26:105397. [PMID: 39025257 PMCID: PMC11609027 DOI: 10.1016/j.micinf.2024.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
MicroRNAs in Chlamydia trachomatis (CT) and Chlamydia muridarum (CM) infections are an emerging topic of research that provide knowledge that could advance vaccine development and strategies for managing infection. This rapid review summarizes human and murine studies on miRNA expression in CT and CM infections in vivo and ex vivo.
Collapse
Affiliation(s)
- Chloe Meewes
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kanupriya Gupta
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William M Geisler
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
7
|
Na H, Koo BI, Park JC, Lim J, Kim Y, Chung HJ, Nam YS. Live-Cell Imaging of MicroRNA Expression via Photoinduced Electron Transfer Controlled by Catalytic Hairpin Assembly. Adv Healthc Mater 2024; 13:e2401483. [PMID: 38889395 DOI: 10.1002/adhm.202401483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Indexed: 06/20/2024]
Abstract
MicroRNAs (miRNAs) serve as emerging biomarkers for a range of diseases, and their quantitative analysis draws increasing attention. Yet, current invasive methods limit continuous tracking within living cells. To overcome this, a nonenzymatic DNA-based nanoprobe is developed for dynamic, noninvasive miRNA tracking via live-cell imaging. This probe features a unique hairpin DNA structure with five guanines that act as internal quenchers, suppressing fluorescence from an attached fluorophore via photoinduced electron transfer. Target miRNA initiates toehold-mediated strand displacement, restoring, and amplifying the fluorescence signal. Additionally, by introducing a single mismatch to the hairpin DNA, the nanoprobe's sensitivity is significantly enhanced, lowering the detection limit to about 60 pM without compromising specificity. To optimize intracellular delivery for prolonged monitoring, the nanoprobe is encapsulated within multilamellar lipid nanovesicles, fluorescently labeled for dual-wavelength ratiometric analysis. The proposed nanoprobe demonstrates a significant advance in live-cell miRNA detection, promising enhanced in situ analysis for a better understanding of miRNAs' pathophysiological function.
Collapse
Affiliation(s)
- Hyebin Na
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Bon Il Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Chul Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiwoo Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Genova C, Marconi S, Chiorino G, Guana F, Ostano P, Santamaria S, Rossi G, Vanni I, Longo L, Tagliamento M, Zullo L, Dal Bello MG, Dellepiane C, Alama A, Rijavec E, Ludovini V, Barletta G, Passiglia F, Metro G, Baglivo S, Chiari R, Rivoltini L, Biello F, Baraibar I, Gil-Bazo I, Novello S, Grossi F, Coco S. Extracellular vesicles miR-574-5p and miR-181a-5p as prognostic markers in NSCLC patients treated with nivolumab. Clin Exp Med 2024; 24:182. [PMID: 39105937 PMCID: PMC11303437 DOI: 10.1007/s10238-024-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the management of advanced non-small cell lung cancer (NSCLC), although patient survival is still unsatisfactory. Accurate predictive markers capable of personalizing the treatment of patients with NSCLC are still lacking. Circulating extracellular vesicles involved in cell-to-cell communications through miRNAs (EV-miRs) transfer are promising markers. Plasma from 245 patients with advanced NSCLC who received nivolumab as second-line therapy was collected and analyzed. EV-miRnome was profiled on 174/245 patients by microarray platform, and selected EV-miRs were validated by qPCR. A prognostic model combining EV-miR and clinical variables was built using stepwise Cox regression analysis and tested on an independent patient cohort (71/245). EV-PD-L1 gene copy number was assessed by digital PCR. For 54 patients with disease control, EV-miR changes at best response versus baseline were investigated by microarray and validated by qPCR. EV-miRNome profiling at baseline identified two EV-miRs (miR-181a-5p and miR-574-5p) that, combined with performance status, are capable of discriminating patients unlikely from those that are likely to benefit from immunotherapy (median overall survival of 4 months or higher than 9 months, respectively). EV-PD-L1 digital evaluation reported higher baseline copy number in patients at increased risk of mortality, without improving the prognostic score. Best response EV-miRNome profiling selected six deregulated EV-miRs (miR19a-3p, miR-20a-5p, miR-142-3p, miR-1260a, miR-1260b, and miR-5100) in responding patients. Their longitudinal monitoring highlighted a significant downmodulation already in the first treatment cycles, which lasted more than 6 months. Our results demonstrate that EV-miRs are promising prognostic markers for NSCLC patients treated with nivolumab.
Collapse
Affiliation(s)
- Carlo Genova
- UOC Clinica Di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
- Dipartimento Di Medicina Interna E Specialità Mediche (DiMI), Università Degli Studi Di Genova, Viale Benedetto XV, 6, 16132, Genoa, Italy
| | - Silvia Marconi
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo Ed Elvo Tempia, Via Malta, 3, 13900, Biella, Italy.
| | - Francesca Guana
- Laboratory of Cancer Genomics, Fondazione Edo Ed Elvo Tempia, Via Malta, 3, 13900, Biella, Italy
| | - Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo Ed Elvo Tempia, Via Malta, 3, 13900, Biella, Italy
| | - Sara Santamaria
- UOC Clinica Di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Giovanni Rossi
- UOC Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Irene Vanni
- Genetica Oncologica, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Luca Longo
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Marco Tagliamento
- Dipartimento Di Medicina Interna E Specialità Mediche (DiMI), Università Degli Studi Di Genova, Viale Benedetto XV, 6, 16132, Genoa, Italy
| | - Lodovica Zullo
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Maria Giovanna Dal Bello
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Chiara Dellepiane
- UOC Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Angela Alama
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Erika Rijavec
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122, Milan, Italy
| | - Vienna Ludovini
- Department of Medical Oncology, Santa Maria Della Misericordia Hospital, Piazzale Giorgio Menghini, 3, 06129, Perugia, Italy
| | - Giulia Barletta
- UOC Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Francesco Passiglia
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole, 10, 10043, Orbassano, TO, Italy
| | - Giulio Metro
- Department of Medical Oncology, Santa Maria Della Misericordia Hospital, Piazzale Giorgio Menghini, 3, 06129, Perugia, Italy
| | - Sara Baglivo
- Department of Medical Oncology, Santa Maria Della Misericordia Hospital, Piazzale Giorgio Menghini, 3, 06129, Perugia, Italy
| | - Rita Chiari
- Azienda Ospedaliera "Ospedali Riuniti Marche Nord", Piazzale Cinelli 4, 61126, Pesaro, PU, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Giacomo Venezian, 1, 20133, Milan, Italy
| | - Federica Biello
- Oncology Unit, Azienda Ospedaliera Universitaria Maggiore Della Carità, Largo Bellini, 28100, Novara, Italy
| | - Iosune Baraibar
- Department of Oncology, Clínica Universidad de Navarra, Av. de Pío XII, 36, 31008, Pamplona, Spain
- Program in Solid Tumors, Center for Applied Medical Research and Navarra Institute for Health Research, Av. de Pío XII, 55, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Ignacio Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, Av. de Pío XII, 36, 31008, Pamplona, Spain
- Program in Solid Tumors, Center for Applied Medical Research and Navarra Institute for Health Research, Av. de Pío XII, 55, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Silvia Novello
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole, 10, 10043, Orbassano, TO, Italy
| | - Francesco Grossi
- Division of Medical Oncology, Department of Medicine and Surgery, Ospedale Di Circolo E Fondazione Macchi, ASST Dei Sette Laghi, Via Lazio, 36, 21100, Varese, Italy
| | - Simona Coco
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
9
|
Conley J, Genenger B, Ashford B, Ranson M. Micro RNA Dysregulation in Keratinocyte Carcinomas: Clinical Evidence, Functional Impact, and Future Directions. Int J Mol Sci 2024; 25:8493. [PMID: 39126067 PMCID: PMC11313315 DOI: 10.3390/ijms25158493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The keratinocyte carcinomas, basal cell carcinoma (BCC), and cutaneous squamous cell carcinoma (cSCC), are the most common cancers in humans. Recently, an increasing body of literature has investigated the role of miRNAs in keratinocyte carcinoma pathogenesis, progression and their use as therapeutic agents and targets, or biomarkers. However, there is very little consistency in the literature regarding the identity of and/or role of individual miRNAs in cSCC (and to a lesser extent BCC) biology. miRNA analyses that combine clinical evidence with experimental elucidation of targets and functional impact provide far more compelling evidence than studies purely based on clinical findings or bioinformatic analyses. In this study, we review the clinical evidence associated with miRNA dysregulation in KCs, assessing the quality of validation evidence provided, identify gaps, and provide recommendations for future studies based on relevant studies that investigated miRNA levels in human cSCC and BCC. Furthermore, we demonstrate how miRNAs contribute to the regulation of a diverse network of cellular functions, and that large-scale changes in tumor cell biology can be attributed to miRNA dysregulation. We highlight the need for further studies investigating the role of miRNAs as communicators between different cell types in the tumor microenvironment. Finally, we explore the clinical benefits of miRNAs as biomarkers of keratinocyte carcinoma prognosis and treatment.
Collapse
Affiliation(s)
- Jessica Conley
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| | - Benjamin Genenger
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| | - Bruce Ashford
- Illawarra Shoalhaven Local Health District (ISLHD), NSW Health, Wollongong, NSW 2500, Australia;
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Marie Ranson
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| |
Collapse
|
10
|
Cimmino W, Raucci A, Grosso SP, Normanno N, Cinti S. Enhancing sensitivity towards electrochemical miRNA detection using an affordable paper-based strategy. Anal Bioanal Chem 2024; 416:4227-4236. [PMID: 38902346 PMCID: PMC11271339 DOI: 10.1007/s00216-024-05406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
In the era of liquid biopsy, microRNAs emerge as promising candidates for the early diagnosis and prognosis of cancer, offering valuable insights into the disease's development. Among all the existing analytical approaches, even if traditional approaches such as the nucleic acid amplification ones have the advantages to be highly sensitive, they cannot be used at the point-of-care, while sensors might be poorly sensitive despite their portability. In order to improve the analytical performance of existing electroanalytical systems, we demonstrate how a simple chromatographic paper-based disk might be useful to rationally improve the sensitivity, depending on the number of preconcentration cycles. A paper-based electrochemical platform for miRNA detection has been developed by modifying a paper-based electrode with a methylene blue (MB)-modified single-stranded sequence (ssDNA) complementary to the chosen miRNA, namely miR-224 that is associated with lung cancer. A detection limit of ca. 0.6 nM has been obtained in spiked human serum samples. To further enhance the sensitivity, an external chromatographic wax-patterned paper-based disk has been adopted to preconcentrate the sample, and this has been demonstrated both in standard and in serum solutions. For each solution, three miR-224 levels have been preconcentrated, obtaining a satisfactory lowering detection limit of ca. 50 pM using a simple and sustainable procedure. This approach opens wide possibilities in the field of analytical and bioanalytical chemistry, being useful not only for electrochemistry but also for other architectures of detection and transduction.
Collapse
Affiliation(s)
- Wanda Cimmino
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Ada Raucci
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Sara Pia Grosso
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Nicola Normanno
- IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
11
|
Yu HP, Liu FC, Chung YK, Alalaiwe A, Sung CT, Fang JY. Nucleic acid-based nanotherapeutics for treating sepsis and associated organ injuries. Theranostics 2024; 14:4411-4437. [PMID: 39113804 PMCID: PMC11303080 DOI: 10.7150/thno.98487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
In recent years, gene therapy has been made possible with the success of nucleic acid drugs against sepsis and its related organ dysfunction. Therapeutics based on nucleic acids such as small interfering RNAs (siRNAs), microRNAs (miRNAs), messenger RNAs (mRNAs), and plasmid DNAs (pDNAs) guarantee to treat previously undruggable diseases. The advantage of nucleic acid-based therapy against sepsis lies in the development of nanocarriers, achieving targeted and controlled gene delivery for improved efficacy with minimal adverse effects. Entrapment into nanocarriers also ameliorates the poor cellular uptake of naked nucleic acids. In this study, we discuss the current state of the art in nanoparticles for nucleic acid delivery to treat hyperinflammation and apoptosis associated with sepsis. The optimized design of the nanoparticles through physicochemical property modification and ligand conjugation can target specific organs-such as lung, heart, kidney, and liver-to mitigate multiple sepsis-associated organ injuries. This review highlights the nanomaterials designed for fabricating the anti-sepsis nanosystems, their physicochemical characterization, the mechanisms of nucleic acid-based therapy in working against sepsis, and the potential for promoting the therapeutic efficiency of the nucleic acids. The current investigations associated with nanoparticulate nucleic acid application in sepsis management are summarized in this paper. Noteworthily, the potential application of nanotherapeutic nucleic acids allows for a novel strategy to treat sepsis. Further clinical studies are required to confirm the findings in cell- and animal-based experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for commercialization. It is expected that numerous anti-sepsis possibilities will be investigated for nucleic acid-based nanotherapeutics in the future.
Collapse
Affiliation(s)
- Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Kuo Chung
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Calvin T. Sung
- Department of Dermatology, University of California, Irvine, United States
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
12
|
Cui J, Piao J, Han H, Peng W, Lin M, Zhou D, Zhu C, Gong X. Semiarbitrary qPCR for Sensitive Detection of Circulating miRNA via Terminal Deoxynucleotidyl Transferase-Assisted RNA-Primed DNA Polymerization. Anal Chem 2024; 96:10496-10505. [PMID: 38896549 DOI: 10.1021/acs.analchem.3c05723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Circulating microRNAs (miRNAs) have recently emerged as noninvasive disease biomarkers. Quantitative detection of circulating miRNAs could offer significant information for clinical diagnosis due to its significance in the development of biological processes. In response to the current challenges of circulating miRNA detection, we introduce a sensitive, selective, and versatile circulating miRNA detection strategy using terminal deoxynucleotidyl transferase (TdT)-catalyzed RNA-primed DNA polymerization (TCRDP) coupled with semiarbitrary qPCR (SAPCR). Semiarbitrary qPCR was first developed here to detect long fragment targets with only a short-known sequence or to detect a short fragment target after extension with terminal transferase. Besides, the subsequent results show that TdT has a preference for RNA, particularly for extending RNAs with purine-rich and unstructured ends. Consequently, utilizing this assay, we have successfully applied it to the quantitative analysis of circulating miR-122 in animal models, a sensitive and informative biomarker for drug-induced liver injury, and as low as 200 zmol of the target is detected with desirable specificity and sensitivity, indicating that the TCRDP-SAPCR can offer a promising platform for nucleic acids analysis.
Collapse
Affiliation(s)
- Jingyu Cui
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jiafang Piao
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Houyu Han
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Weipan Peng
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Mengyao Lin
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Dianming Zhou
- Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiaoqun Gong
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Alexandre D, Fernandes AR, Baptista PV, Cruz C. Evaluation of miR-155 silencing using a molecular beacon in human lung adenocarcinoma cell line. Talanta 2024; 274:126052. [PMID: 38608633 DOI: 10.1016/j.talanta.2024.126052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Lung cancer (LC) is a leading cause of global cancer-related deaths, highlighting the development of innovative methods for biomarker detection improving the early diagnostics. microRNAs (miRs) alterations are known to be involved in the initiation and progression of human cancers and can act as biomarkers for diagnostics and treatment. Herein, we develop the application of molecular beacon (MB) technology to monitor miR-155-3p expression in human lung adenocarcinoma A549 cells without complementary DNA synthesis, amplification, or expensive reagents. Furthermore, we produced gold nanoparticles (AuNPs) for delivering antisense oligonucleotides into A549 cells to reduce miR-155-3p expression, which was subsequently detectable using the MB. The MB was designed and structural characterized by Förster Resonance Energy Transfer (FRET)-melting, Circular Dichroism (CD), Nuclear magnetic resonance (NMR), and fluorometric experiments, and then the hybridization conditions were optimized for an in vitro approach involving the detection of miR-155-3p in total RNA extracted from A549 cell line. The expression profile of miR-155-3p was obtained by RT-qPCR. The results demonstrated that MB was properly designed and showed efficacy in targeting miR-155-3p. Furthermore, a limit of detection down to nanomolar concentration was achieved and the specificity of the biosensor was proved. Moreover, the self-assembly of ASOs with AuNPs exhibited exceptional target specificity, effectively silencing miR-155-3p. Notably, compared to lipid-based transfection agent, AuNPs displayed superior silencing efficiency. We highlighted the ability of MB to detect changes in the target gene expression after gene silencing. Overall, this innovative approach represents a promising tool for detecting various biomarkers at the same time, with potential applications in clinical settings.
Collapse
Affiliation(s)
- Daniela Alexandre
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; i4HB, Associate Laboratory - Institute for Health and Bioeconomy, FCT-NOVA, Portugal
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; i4HB, Associate Laboratory - Institute for Health and Bioeconomy, FCT-NOVA, Portugal.
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; Departamento de Química, Faculdade de Ciências da Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
| |
Collapse
|
14
|
He J, Xiong J, Huang Y. miR-29 as diagnostic biomarkers for tuberculosis: a systematic review and meta-analysis. Front Public Health 2024; 12:1384510. [PMID: 38807999 PMCID: PMC11130415 DOI: 10.3389/fpubh.2024.1384510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Background The timely diagnosis of tuberculosis through innovative biomarkers that do not rely on sputum samples is a primary focus for strategies aimed at eradicating tuberculosis. miR-29 is an important regulator of tuberculosis pathogenesis. Its differential expression pattern in healthy, latent, and active people who develop tuberculosis has revealed its potential as a biomarker in recent studies. Therefore, a systematic review and meta-analysis were performed for the role of miR-29 in the diagnosis of tuberculosis. Methods EMBASE, PubMed, CNKI, Web of Science, and Cochrane Library databases were searched utilizing predefined keywords for literature published from 2000 to February 2024.Included in the analysis were studies reporting on the accuracy of miR-29 in the diagnosis of tuberculosis, while articles assessing other small RNAs were not considered. All types of study designs, including case-control, cross-sectional, and cohort studies, were included, whether prospectively or retrospectively sampled, and the quality of included studies was determined utilizing the QUADAS-2 tool. Publication bias was analyzed via the construction of funnel plots. Heterogeneity among studies and summary results for specificity, sensitivity, and diagnostic odds ratio (DOR) are depicted in forest plots. Results A total of 227 studies were acquired from the various databases, and 18 articles were selected for quantitative analysis. These articles encompassed a total of 2,825 subjects, primarily sourced from the Asian region. Patient specimens, including sputum, peripheral blood mononuclear cells, cerebrospinal fluid and serum/plasma samples, were collected upon admission and during hospitalization for tuberculosis testing. miR-29a had an overall sensitivity of 82% (95% CI 77, 85%) and an overall specificity of 82% (95% CI 78, 86%) for detecting tuberculosis. DOR was 21 (95% CI 16-28), and the area under the curve was 0.89 (95% CI 0.86, 0.91). miR-29a had slightly different diagnostic efficacy in different specimens. miR-29a showed good performance in both the diagnosis of pulmonary tuberculosis and extrapulmonary tuberculosis. miR-29b and miR-29c also had a good performance in diagnosis of tuberculosis. Conclusion As can be seen from the diagnostic performance of miR-29, miR-29 can be used as a potential biomarker for the rapid detection of tuberculosis. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=461107.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Juan Xiong
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Emergency Department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yuanyuan Huang
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Omer MH, Shafqat A, Ahmad O, Nadri J, AlKattan K, Yaqinuddin A. Urinary Biomarkers for Lupus Nephritis: A Systems Biology Approach. J Clin Med 2024; 13:2339. [PMID: 38673612 PMCID: PMC11051403 DOI: 10.3390/jcm13082339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disorder. Kidney involvement, termed lupus nephritis (LN), is seen in 40-60% of patients with systemic lupus erythematosus (SLE). After the diagnosis, serial measurement of proteinuria is the most common method of monitoring treatment response and progression. However, present treatments for LN-corticosteroids and immunosuppressants-target inflammation, not proteinuria. Furthermore, subclinical renal inflammation can persist despite improving proteinuria. Serial kidney biopsies-the gold standard for disease monitoring-are also not feasible due to their inherent risk of complications. Biomarkers that reflect the underlying renal inflammatory process and better predict LN progression and treatment response are urgently needed. Urinary biomarkers are particularly relevant as they can be measured non-invasively and may better reflect the compartmentalized renal response in LN, unlike serum studies that are non-specific to the kidney. The past decade has overseen a boom in applying cutting-edge technologies to dissect the pathogenesis of diseases at the molecular and cellular levels. Using these technologies in LN is beginning to reveal novel disease biomarkers and therapeutic targets for LN, potentially improving patient outcomes if successfully translated to clinical practice.
Collapse
Affiliation(s)
- Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff CF14 4YS, UK;
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.A.); (J.N.); (K.A.); (A.Y.)
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.A.); (J.N.); (K.A.); (A.Y.)
| | - Juzer Nadri
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.A.); (J.N.); (K.A.); (A.Y.)
| | - Khaled AlKattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.A.); (J.N.); (K.A.); (A.Y.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.A.); (J.N.); (K.A.); (A.Y.)
| |
Collapse
|
16
|
Chen Y, Wang X, Na X, Zhang Y, Li Z, Chen X, Cai L, Song J, Xu R, Yang C. Highly Multiplexed, Efficient, and Automated Single-Cell MicroRNA Sequencing with Digital Microfluidics. SMALL METHODS 2024; 8:e2301250. [PMID: 38016072 DOI: 10.1002/smtd.202301250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Single-cell microRNA (miRNA) sequencing has allowed for comprehensively studying the abundance and complex networks of miRNAs, which provides insights beyond single-cell heterogeneity into the dynamic regulation of cellular events. Current benchtop-based technologies for single-cell miRNA sequencing are low throughput, limited reaction efficiency, tedious manual operations, and high reagent costs. Here, a highly multiplexed, efficient, integrated, and automated sample preparation platform is introduced for single-cell miRNA sequencing based on digital microfluidics (DMF), named Hiper-seq. The platform integrates major steps and automates the iterative operations of miRNA sequencing library construction by digital control of addressable droplets on the DMF chip. Based on the design of hydrophilic micro-structures and the capability of handling droplets of DMF, multiple single cells can be selectively isolated and subject to sample processing in a highly parallel way, thus increasing the throughput and efficiency for single-cell miRNA measurement. The nanoliter reaction volume of this platform enables a much higher miRNA detection ability and lower reagent cost compared to benchtop methods. It is further applied Hiper-seq to explore miRNAs involved in the ossification of mouse skeletal stem cells after bone fracture and discovered unreported miRNAs that regulate bone repairing.
Collapse
Affiliation(s)
- Yingwen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuanqun Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xing Na
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yingkun Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaohui Chen
- State Key Laboratory of Cellular Stress Biology, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361100, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Linfeng Cai
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361100, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Chaoyong Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
17
|
Yamamoto K, Chiba M. Examination and comparison of the RNA extraction methods using mouse serum. Biomed Rep 2024; 20:51. [PMID: 38357232 PMCID: PMC10865168 DOI: 10.3892/br.2024.1739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Serum microRNAs (miRNAs) are considered useful as non-invasive biomarkers for different diseases. However, the optimal method for extracting RNAs from serum is currently unknown. In the present study, several RNA extraction kits were used to examine the optimal kit. RNAs were extracted from the serum of 8-week-old C57BL/6NJcl male mice following the protocol of each RNA extraction kit. The yield of the extracted RNA samples was calculated, and an Agilent Bioanalyzer was used to assess the electrophoretic patterns. An Agilent mouse miRNA microarray was utilized to confirm the expression patterns of the extracted RNA samples. The results revealed significant differences in RNA yields from the miRNeasy Serum/Plasma Advanced kit and mirVana™ PARIS™ RNA and Native Protein Purification Kit compared with almost all other samples. Further, two peaks were determined in the miRNeasy Serum/Plasma Advanced kit using a small RNAs kit of Agilent Bioanalyzer, including one at 20-40 nucleotides (nt) and another at ~40-100 nt, whereas the other reagents had a single peak. This revealed that the extracted RNAs may differ in composition based on the RNA extraction method. Some types of miRNAs were only detected with certain RNA extraction reagents. This suggested that different RNA extraction reagents may cause differences in the types of miRNAs detected. On the other hand, the miRNAs commonly expressed by the three RNA extraction reagents are highly correlated in expression levels.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
- Research Center for Biomedical Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
18
|
de Oliveira Cabral SK, de Freitas MB, Stadnik MJ, Kulcheski FR. Emerging roles of plant microRNAs during Colletotrichum spp. infection. PLANTA 2024; 259:48. [PMID: 38285194 DOI: 10.1007/s00425-023-04318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/23/2023] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION This review provides valuable insights into plant molecular regulatory mechanisms during fungus attacks, highlighting potential miRNA candidates for future disease management. Plant defense responses to biotic stress involve intricate regulatory mechanisms, including post-transcriptional regulation of genes mediated by microRNAs (miRNAs). These small RNAs play a vital role in the plant's innate immune system, defending against viral, bacterial, and fungal attacks. Among the plant pathogenic fungi, Colletotrichum spp. are notorious for causing anthracnose, a devastating disease affecting economically important crops worldwide. Understanding the molecular machinery underlying the plant immune response to Colletotrichum spp. is crucial for developing tools to reduce production losses. In this comprehensive review, we examine the current understanding of miRNAs associated with plant defense against Colletotrichum spp. We summarize the modulation patterns of miRNAs and their respective target genes. Depending on the function of their targets, miRNAs can either contribute to host resistance or susceptibility. We explore the multifaceted roles of miRNAs during Colletotrichum infection, including their involvement in R-gene-dependent immune system responses, hormone-dependent defense mechanisms, secondary metabolic pathways, methylation regulation, and biosynthesis of other classes of small RNAs. Furthermore, we employ an integrative approach to correlate the identified miRNAs with various strategies and distinct phases of fungal infection. This study provides valuable insights into the current understanding of plant miRNAs and their regulatory mechanisms during fungus attacks.
Collapse
Affiliation(s)
- Sarah Kirchhofer de Oliveira Cabral
- Group of Plant Molecular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Post-Graduation Program in Cell and Developmental Biology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Mateus Brusco de Freitas
- Laboratory of Plant Pathology, Center of Agricultural Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marciel João Stadnik
- Laboratory of Plant Pathology, Center of Agricultural Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Franceli Rodrigues Kulcheski
- Group of Plant Molecular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.
- Post-Graduation Program in Cell and Developmental Biology, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
19
|
Raveendran S, Al Massih A, Al Hashmi M, Saeed A, Al-Azwani I, Mathew R, Tomei S. Urinary miRNAs: Technical Updates. Microrna 2024; 13:110-123. [PMID: 38778602 DOI: 10.2174/0122115366305985240502094814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
Due to its non-invasive nature and easy accessibility, urine serves as a convenient biological fluid for research purposes. Furthermore, urine samples are uncomplicated to preserve and relatively inexpensive. MicroRNAs (miRNAs), small molecules that regulate gene expression post-transcriptionally, play vital roles in numerous cellular processes, including apoptosis, cell differentiation, development, and proliferation. Their dysregulated expression in urine has been proposed as a potential biomarker for various human diseases, including bladder cancer. To draw reliable conclusions about the roles of urinary miRNAs in human diseases, it is essential to have dependable and reproducible methods for miRNA extraction and profiling. In this review, we address the technical challenges associated with studying urinary miRNAs and provide an update on the current technologies used for urinary miRNA isolation, quality control assessment, and miRNA profiling, highlighting both their advantages and limitations.
Collapse
Affiliation(s)
- Santhi Raveendran
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Alia Al Massih
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Muna Al Hashmi
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Asma Saeed
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Iman Al-Azwani
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Rebecca Mathew
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Sara Tomei
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
20
|
Lee J, Lee H, Sherbini AE, Baghaie L, Leroy F, Abdel-Qadir H, Szewczuk MR, El-Diasty M. Epigenetic MicroRNAs as Prognostic Markers of Postoperative Atrial Fibrillation: A Systematic Review. Curr Probl Cardiol 2024; 49:102106. [PMID: 37741599 DOI: 10.1016/j.cpcardiol.2023.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Postoperative atrial fibrillation (POAF) is a common complication after cardiac surgery, increasing the risk for adverse outcomes such as perioperative and long-term mortality, stroke, myocardial infarction, and other thromboembolic events. Epigenetic biomarkers show promise as prognostic tools for POAF. Epigenetic changes, such as DNA methylation, histone modification, and microRNAs (miRNA), can result in altered gene expression and the development of various pathological conditions. This systematic review aims to present the current literature on the association between various epigenetic markers and the development of POAF following cardiac surgery. Here, an electronic literature search was performed using MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, and Google Scholar to identify studies that reported the role of epigenetic markers in the development of POAF. Five of the 6 studies focused on miRNAs and their association with POAF. In POAF patients, the expression of miR-1 and miR-483-5p were upregulated in the right atrial appendage (RAA), while the levels of miR-133A, miR-208a, miR-23a, miR-26a, miR-29a, miR-29b, and miR-29c were decreased in the RAA and venous blood. One study examined cytosines followed by guanines (CpGs) as DNA methylation markers. Across all studies, 488 human subjects who had undergone cardiac surgery were investigated, and 195 subjects (39.9%) developed new-onset POAF. The current literature suggests that miRNAs may play a role in predicting the development of atrial fibrillation after cardiac surgery. However, more robust clinical data are required to justify their role in routine clinical practice.
Collapse
Affiliation(s)
- Junsu Lee
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Hyunmin Lee
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Adham El Sherbini
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Fleur Leroy
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada; Faculté de Médecine, Maïeutique et Sciences de la Santé, Université de Strasbourg, Strasbourg, France
| | - Husam Abdel-Qadir
- Women's College Hospital, Peter Munk Cardiac Center, Toronto, ON, Canada
| | - Myron R Szewczuk
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mohammad El-Diasty
- Department of Cardiac Surgery, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH.
| |
Collapse
|
21
|
Yadavalli HC, Park S, Kim Y, Nagda R, Kim TH, Han MK, Jung IL, Bhang YJ, Yang WH, Dalgaard LT, Yang SW, Shah P. Tailed-Hoogsteen Triplex DNA Silver Nanoclusters Emit Red Fluorescence upon Target miRNA Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306793. [PMID: 37967352 DOI: 10.1002/smll.202306793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Indexed: 11/17/2023]
Abstract
MicroRNAs (miRNAs) are small RNA molecules, typically 21-22 nucleotides in size, which play a crucial role in regulating gene expression in most eukaryotes. Their significance in various biological processes and disease pathogenesis has led to considerable interest in their potential as biomarkers for diagnosis and therapeutic applications. In this study, a novel method for sensing target miRNAs using Tailed-Hoogsteen triplex DNA-encapsulated Silver Nanoclusters (DNA/AgNCs) is introduced. Upon hybridization of a miRNA with the tail, the Tailed-Hoogsteen triplex DNA/AgNCs exhibit a pronounced red fluorescence, effectively turning on the signal. It is successfully demonstrated that this miRNA sensor not only recognized target miRNAs in total RNA extracted from cells but also visualized target miRNAs when introduced into live cells, highlighting the advantages of the turn-on mechanism. Furthermore, through gel-fluorescence assays and small-angle X-ray scattering (SAXS) analysis, the turn-on mechanism is elucidated, revealing that the Tailed-Hoogsteen triplex DNA/AgNCs undergo a structural transition from a monomer to a dimer upon sensing the target miRNA. Overall, the findings suggest that Tailed-Hoogsteen triplex DNA/AgNCs hold great promise as practical sensors for small RNAs in both in vitro and cell imaging applications.
Collapse
Affiliation(s)
- Hari Chandana Yadavalli
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sooyeon Park
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeolhoe Kim
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Riddhi Nagda
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Hwan Kim
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Min Kyun Han
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Il Lae Jung
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Yong Joo Bhang
- Xenohelix Research Institute, BT Centre 305, 56 Songdogwahak-ro Yeonsugu, Incheon, 21984, Republic of Korea
| | - Won Ho Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, 4000, Denmark
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Pratik Shah
- Department of Science and Environment, Roskilde University, Roskilde, 4000, Denmark
| |
Collapse
|
22
|
Tariq M, Richard V, Kerin MJ. MicroRNAs as Molecular Biomarkers for the Characterization of Basal-like Breast Tumor Subtype. Biomedicines 2023; 11:3007. [PMID: 38002007 PMCID: PMC10669494 DOI: 10.3390/biomedicines11113007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is a heterogeneous disease highlighted by the presence of multiple tumor variants and the basal-like breast cancer (BLBC) is considered to be the most aggressive variant with limited therapeutics and a poor prognosis. Though the absence of detectable protein and hormonal receptors as biomarkers hinders early detection, the integration of genomic and transcriptomic profiling led to the identification of additional variants in BLBC. The high-throughput analysis of tissue-specific micro-ribonucleic acids (microRNAs/miRNAs) that are deemed to have a significant role in the development of breast cancer also displayed distinct expression profiles in each subtype of breast cancer and thus emerged to be a robust approach for the precise characterization of the BLBC subtypes. The classification schematic of breast cancer is still a fluid entity that continues to evolve alongside technological advancement, and the transcriptomic profiling of tissue-specific microRNAs is projected to aid in the substratification and diagnosis of the BLBC tumor subtype. In this review, we summarize the current knowledge on breast tumor classification, aim to collect comprehensive evidence based on the microRNA expression profiles, and explore their potential as prospective biomarkers of BLBC.
Collapse
Affiliation(s)
| | - Vinitha Richard
- Discipline of Surgery, Lambe Institute for Translational Research, H91 TK33 Galway, Ireland;
| | - Michael J. Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, H91 TK33 Galway, Ireland;
| |
Collapse
|
23
|
Dobrzycka M, Sulewska A, Biecek P, Charkiewicz R, Karabowicz P, Charkiewicz A, Golaszewska K, Milewska P, Michalska-Falkowska A, Nowak K, Niklinski J, Konopińska J. miRNA Studies in Glaucoma: A Comprehensive Review of Current Knowledge and Future Perspectives. Int J Mol Sci 2023; 24:14699. [PMID: 37834147 PMCID: PMC10572595 DOI: 10.3390/ijms241914699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Glaucoma, a neurodegenerative disorder that leads to irreversible blindness, remains a challenge because of its complex nature. MicroRNAs (miRNAs) are crucial regulators of gene expression and are associated with glaucoma and other diseases. We aimed to review and discuss the advantages and disadvantages of miRNA-focused molecular studies in glaucoma through discussing their potential as biomarkers for early detection and diagnosis; offering insights into molecular pathways and mechanisms; and discussing their potential utility with respect to personalized medicine, their therapeutic potential, and non-invasive monitoring. Limitations, such as variability, small sample sizes, sample specificity, and limited accessibility to ocular tissues, are also addressed, underscoring the need for robust protocols and collaboration. Reproducibility and validation are crucial to establish the credibility of miRNA research findings, and the integration of bioinformatics tools for miRNA database creation is a valuable component of a comprehensive approach to investigate miRNA aberrations in patients with glaucoma. Overall, miRNA research in glaucoma has provided significant insights into the molecular mechanisms of the disease, offering potential biomarkers, diagnostic tools, and therapeutic targets. However, addressing challenges such as variability and limited tissue accessibility is essential, and further investigations and validation will contribute to a deeper understanding of the functional significance of miRNAs in glaucoma.
Collapse
Affiliation(s)
- Margarita Dobrzycka
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland;
| | - Radoslaw Charkiewicz
- Center of Experimental Medicine, Medical University of Bialystok, 15-369 Bialystok, Poland;
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Piotr Karabowicz
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Angelika Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Kinga Golaszewska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Patrycja Milewska
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | | | - Karolina Nowak
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| |
Collapse
|
24
|
Ponomaryova AA, Rykova EY, Solovyova AI, Tarasova AS, Kostromitsky DN, Dobrodeev AY, Afanasiev SA, Cherdyntseva NV. Genomic and Transcriptomic Research in the Discovery and Application of Colorectal Cancer Circulating Markers. Int J Mol Sci 2023; 24:12407. [PMID: 37569782 PMCID: PMC10419249 DOI: 10.3390/ijms241512407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) is the most frequently occurring malignancy in the world. However, the mortality from CRC can be reduced through early diagnostics, selection of the most effective treatment, observation of the therapy success, and the earliest possible diagnosis of recurrences. A comprehensive analysis of genetic and epigenetic factors contributing to the CRC development is needed to refine diagnostic, therapeutic, and preventive strategies and to ensure appropriate decision making in managing specific CRC cases. The liquid biopsy approach utilizing circulating markers has demonstrated its good performance as a tool to detect the changes in the molecular pathways associated with various cancers. In this review, we attempted to brief the main tendencies in the development of circulating DNA and RNA-based markers in CRC such as cancer-associated DNA mutations, DNA methylation changes, and non-coding RNA expression shifts. Attention is devoted to the existing circulating nucleic acid-based CRC markers, the possibility of their application in clinical practice today, and their future improvement. Approaches to the discovery and verification of new markers are described, and the existing problems and potential solutions for them are highlighted.
Collapse
Affiliation(s)
- Anastasia A. Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Elena Yu. Rykova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Engineering Problems of Ecology, Novosibirsk State Technical University, 630087 Novosibirsk, Russia
| | - Anastasia I. Solovyova
- Department of Biochemistry, Medico-Biological Faculty, Siberian State Medical University, 634050 Tomsk, Russia
| | - Anna S. Tarasova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Dmitry N. Kostromitsky
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Alexey Yu. Dobrodeev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Sergey A. Afanasiev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Nadezhda V. Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
- Faculty of Chemistry, National Research Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
25
|
Pelassa S, Raggi F, Rossi C, Bosco MC. MicroRNAs in Juvenile Idiopathic Arthritis: State of the Art and Future Perspectives. BIOLOGY 2023; 12:991. [PMID: 37508421 PMCID: PMC10376583 DOI: 10.3390/biology12070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Juvenile Idiopathic Arthritis (JIA) represents the most common chronic pediatric arthritis in Western countries and a leading cause of disability in children. Despite recent clinical achievements, patient management is still hindered by a lack of diagnostic/prognostic biomarkers and targeted treatment protocols. MicroRNAs (miRNAs) are short non-coding RNAs playing a key role in gene regulation, and their involvement in many pathologies has been widely reported in the literature. In recent decades, miRNA's contribution to the regulation of the immune system and the pathogenesis of autoimmune diseases has been demonstrated. Furthermore, miRNAs isolated from patients' biological samples are currently under investigation for their potential as novel biomarkers. This review aims to provide an overview of the state of the art on miRNA investigation in JIA. The literature addressing the expression of miRNAs in different types of biological samples isolated from JIA patients was reviewed, focusing in particular on their potential application as diagnostic/prognostic biomarkers. The role of miRNAs in the regulation of immune responses in affected joints will also be discussed along with their potential utility as markers of patients' responses to therapeutic approaches. This information will be of value to investigators in the field of pediatric rheumatology, encouraging further research to increase our knowledge of miRNAs' potential for future clinical applications in JIA.
Collapse
Affiliation(s)
- Simone Pelassa
- UOC Rheumatology and Autoinflammatory Diseases, Department of Pediatric Sciences, Istituto Giannina Gaslini, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 16147 Genova, Italy
| | - Federica Raggi
- UOC Rheumatology and Autoinflammatory Diseases, Department of Pediatric Sciences, Istituto Giannina Gaslini, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 16147 Genova, Italy
| | - Chiara Rossi
- UOC Rheumatology and Autoinflammatory Diseases, Department of Pediatric Sciences, Istituto Giannina Gaslini, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 16147 Genova, Italy
| | - Maria Carla Bosco
- UOC Rheumatology and Autoinflammatory Diseases, Department of Pediatric Sciences, Istituto Giannina Gaslini, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 16147 Genova, Italy
| |
Collapse
|
26
|
Santos DAR, Gaiteiro C, Santos M, Santos L, Dinis-Ribeiro M, Lima L. MicroRNA Biomarkers as Promising Tools for Early Colorectal Cancer Screening-A Comprehensive Review. Int J Mol Sci 2023; 24:11023. [PMID: 37446201 DOI: 10.3390/ijms241311023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer worldwide. Early detection of this neoplasia has proven to improve prognosis, resulting in a 90% increase in survival. However, available CRC screening methods have limitations, requiring the development of new tools. MicroRNA biomarkers have emerged as a powerful screening tool, as they are highly expressed in CRC patients and easily detectable in several biological samples. While microRNAs are extensively studied in blood samples, recent interest has now arisen in other samples, such as stool samples, where they can be combined with existing screening methods. Among the microRNAs described in the literature, microRNA-21-5p and microRNA-92a-3p and their cluster have demonstrated high potential for early CRC screening. Furthermore, the combination of multiple microRNAs has shown improved performance in CRC detection compared to individual microRNAs. This review aims to assess the available data in the literature on microRNAs as promising biomarkers for early CRC screening, explore their advantages and disadvantages, and discuss the optimal study characteristics for analyzing these biomarkers.
Collapse
Affiliation(s)
- Daniela A R Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- School of Health, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Marlene Santos
- School of Health, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
- Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPO), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
| | - Lúcio Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Department of Surgical Oncology, Portuguese Institute of Oncology (IPO-Porto), 4200-072 Porto, Portugal
| | - Mário Dinis-Ribeiro
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP), Rise@CI-IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Department of Gastroenterology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| |
Collapse
|
27
|
Minz R, Sharma PK, Negi A, Kesari KK. MicroRNAs-Based Theranostics against Anesthetic-Induced Neurotoxicity. Pharmaceutics 2023; 15:1833. [PMID: 37514018 PMCID: PMC10385075 DOI: 10.3390/pharmaceutics15071833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Various clinical reports indicate prolonged exposure to general anesthetic-induced neurotoxicity (in vitro and in vivo). Behavior changes (memory and cognition) are compilations commonly cited with general anesthetics. The ability of miRNAs to modulate gene expression, thereby selectively altering cellular functions, remains one of the emerging techniques in the recent decade. Importantly, engineered miRNAs (which are of the two categories, i.e., agomir and antagomir) to an extent found to mitigate neurotoxicity. Utilizing pre-designed synthetic miRNA oligos would be an ideal analeptic approach for intervention based on indicative parameters. This review demonstrates engineered miRNA's potential as prophylactics and/or therapeutics minimizing the general anesthetics-induced neurotoxicity. Furthermore, we share our thoughts regarding the current challenges and feasibility of using miRNAs as therapeutic agents to counteract the adverse neurological effects. Moreover, we discuss the scientific status and updates on the novel neuro-miRNAs related to therapy against neurotoxicity induced by amyloid beta (Aβ) and Parkinson's disease (PD).
Collapse
Affiliation(s)
- Roseleena Minz
- Department of Life Sciences, Central University of Jharkhand, Brambe, Ranchi 853205, Jharkhand, India
| | - Praveen Kumar Sharma
- Department of Life Sciences, Central University of Jharkhand, Brambe, Ranchi 853205, Jharkhand, India
| | - Arvind Negi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
28
|
Yu R, Xiong Z, Zhu X, Feng P, Hu Z, Fang R, Zhang Y, Liu Q. RcSPL1-RcTAF15b regulates the flowering time of rose ( Rosa chinensis). HORTICULTURE RESEARCH 2023; 10:uhad083. [PMID: 37323236 PMCID: PMC10266950 DOI: 10.1093/hr/uhad083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
Rose (Rosa chinensis), which is an economically valuable floral species worldwide, has three types, namely once-flowering (OF), occasional or re-blooming (OR), and recurrent or continuous flowering (CF). However, the mechanism underlying the effect of the age pathway on the duration of the CF or OF juvenile phase is largely unknown. In this study, we observed that the RcSPL1 transcript levels were substantially upregulated during the floral development period in CF and OF plants. Additionally, accumulation of RcSPL1 protein was controlled by rch-miR156. The ectopic expression of RcSPL1 in Arabidopsis thaliana accelerated the vegetative phase transition and flowering. Furthermore, the transient overexpression of RcSPL1 in rose plants accelerated flowering, whereas silencing of RcSPL1 had the opposite phenotype. Accordingly, the transcription levels of floral meristem identity genes (APETALA1, FRUITFULL, and LEAFY) were significantly affected by the changes in RcSPL1 expression. RcTAF15b protein, which is an autonomous pathway protein, was revealed to interact with RcSPL1. The silencing and overexpression of RcTAF15b in rose plants led to delayed and accelerated flowering, respectively. Collectively, the study findings imply that RcSPL1-RcTAF15b modulates the flowering time of rose plants.
Collapse
Affiliation(s)
- Rui Yu
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhiying Xiong
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xinhui Zhu
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Panpan Feng
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ziyi Hu
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Rongxiang Fang
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research Center, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | | | | |
Collapse
|
29
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
30
|
Ali HM, Ellakwa DES, Elaraby NM, Zaher AM, Amr KS. Study the association of microRNA polymorphisms (miR-146a, miR-4513) with the risk of coronary heart diseases in Egyptian population. J Biochem Mol Toxicol 2023; 37:e23284. [PMID: 36541377 DOI: 10.1002/jbt.23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/02/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Coronary heart disease (CHD) is the most prevalent cause of cardiovascular mortality in the world. It is well established that microRNAs (miRNAs) and their variants have an essential role in regulating the development of cardiovascular physiology, thus impacting the pathophysiology of heart diseases. This study was designed to determine the possible association of miRNA polymorphisms (miRNA-146a rs2910164C/G and miR-4513 rs2168518G/A) with susceptibility to CHD in Egyptian patients and their correlation with different biochemical parameters. The study comprised 300 participants, including 200 unrelated patients with CHD and 100 healthy controls. Anthropometric and blood biochemical parameters were measured as well genetic analysis for rs2910164C/G and rs2168518G/A polymorphisms were performed for all subjects using TaqMan real-time PCR assay. Our results revealed that the biomedical parameters have a significant correlation between CHD patients and healthy controls with a p < 0.05. Analyses of genotype distribution for (rs2910164 and rs2168518) revealed a significant association with CHD [odd ratio = 4.54, confidence interval (CI 95%) = (2.41-8.53)] and [odd ratio = 0.88, (CI 95%) = (0.83-0.92)], respectively. Furthermore, a statistically significant difference was detected between lipid profile levels and both rs2910164 and rs2168518 polymorphisms. The present study's findings indicated that the selected polymorphisms, miR-146a rs2910164 and miR-4513 rs2168518 could represent a useful biomarker for susceptibility to CHD in the Egyptian population. These genetic characteristics and personal habits and environmental factors may contribute to the development of CHD.
Collapse
Affiliation(s)
- Heba Mohamed Ali
- Department of Registration of Biological Products, Egyptian Drug Authority (EDA), Egypt
| | - Doha El-Sayed Ellakwa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo.,Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, Egypt
| | - Nesma Mohamed Elaraby
- Department of Medical Molecular Genetics, National Research Center (NRC), Dokki, Giza, Egypt
| | - Amr Mohamed Zaher
- Department of Cardiac Surgery, National Heart Institute (NHI), Giza, Egypt
| | - Khalda Sayed Amr
- Department of Medical Molecular Genetics, National Research Center (NRC), Dokki, Giza, Egypt
| |
Collapse
|
31
|
Jaganathan D, Rajakani R, Doddamani D, Saravanan D, Pulipati S, Hari Sundar G V, Sellamuthu G, Jayabalan S, Kumari K, Parthasarathy P, S P, Ramalingam S, Shivaprasad PV, Venkataraman G. A conserved SNP variation in the pre-miR396c flanking region in Oryza sativa indica landraces correlates with mature miRNA abundance. Sci Rep 2023; 13:2195. [PMID: 36750679 PMCID: PMC9905475 DOI: 10.1038/s41598-023-28836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant precursor miRNAs (pre-miRNA) have conserved evolutionary footprints that correlate with mode of miRNA biogenesis. In plants, base to loop and loop to base modes of biogenesis have been reported. Conserved structural element(s) in pre-miRNA play a major role in turn over and abundance of mature miRNA. Pre-miR396c sequences and secondary structural characteristics across Oryza species are presented. Based on secondary structure, twelve Oryza pre-miR396c sequences are divided into three groups, with the precursor from halophytic Oryza coarctata forming a distinct group. The miRNA-miRNA* duplex region is completely conserved across eleven Oryza species as are other structural elements in the pre-miRNA, suggestive of an evolutionarily conserved base-to-loop mode of miRNA biogenesis. SNPs within O. coarctata mature miR396c sequence and miRNA* region have the potential to alter target specificity and association with the RNA-induced silencing complex. A conserved SNP variation, rs10234287911 (G/A), identified in O. sativa pre-miR396c sequences alters base pairing above the miRNA-miRNA* duplex. The more stable structure conferred by the 'A10234287911' allele may promote better processing vis-à-vis the structure conferred by 'G10234287911' allele. We also examine pri- and pre-miR396c expression in cultivated rice under heat and salinity and their correlation with miR396c expression.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India.,Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, 641003, India
| | - Raja Rajakani
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | | | - Divya Saravanan
- Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, 641003, India
| | - Shalini Pulipati
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | - Vivek Hari Sundar G
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India.,Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Shilpha Jayabalan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | - Pavithra Parthasarathy
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | - Punitha S
- GIS and Remote Sensing Laboratory, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | | | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India.
| |
Collapse
|
32
|
Ghamlouche F, Yehya A, Zeid Y, Fakhereddine H, Fawaz J, Liu YN, Al-Sayegh M, Abou-Kheir W. MicroRNAs as clinical tools for diagnosis, prognosis, and therapy in prostate cancer. Transl Oncol 2023; 28:101613. [PMID: 36608541 PMCID: PMC9827391 DOI: 10.1016/j.tranon.2022.101613] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed cancers among men worldwide. Despite the presence of accumulated clinical strategies for PCa management, limited prognostic/sensitive biomarkers are available to follow up on disease occurrence and progression. MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression through post-transcriptional regulation of their complementary target messenger RNA (mRNA). MiRNAs modulate fundamental biological processes and play crucial roles in the pathology of various diseases, including PCa. Multiple evidence proved an aberrant miRNA expression profile in PCa, which is actively involved in the carcinogenic process. The robust and pleiotropic impact of miRNAs on PCa suggests them as potential candidates to help more understand the molecular landscape of the disease, which is likely to provide tools for early diagnosis and prognosis as well as additional therapeutic strategies to manage prostate tumors. Here, we emphasize the most consistently reported dysregulated miRNAs and highlight the contribution of their altered downstream targets with PCa hallmarks. Also, we report the potential effectiveness of using miRNAs as diagnostic/prognostic biomarkers in PCa and the high-throughput profiling technologies that are being used in their detection. Another key aspect to be discussed in this review is the promising implication of miRNAs molecules as therapeutic tools and targets for fighting PCa.
Collapse
Affiliation(s)
- Fatima Ghamlouche
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Amani Yehya
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Yousef Zeid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hiam Fakhereddine
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jhonny Fawaz
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Yen-Nien Liu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
33
|
Rana M, Saini M, Das R, Gupta S, Joshi T, Mehta DK. Circulating MicroRNAs: Diagnostic Value as Biomarkers in the Detection of Non-alcoholic Fatty Liver Diseases and Hepatocellular Carcinoma. Microrna 2023; 12:99-113. [PMID: 37005546 DOI: 10.2174/2211536612666230330083146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 04/04/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a metabolic-related disorder, is the most common cause of chronic liver disease which, if left untreated, can progress from simple steatosis to advanced fibrosis and eventually cirrhosis or hepatocellular carcinoma, which is the leading cause of hepatic damage globally. Currently available diagnostic modalities for NAFLD and hepatocellular carcinoma are mostly invasive and of limited precision. A liver biopsy is the most widely used diagnostic tool for hepatic disease. But due to its invasive procedure, it is not practicable for mass screening. Thus, noninvasive biomarkers are needed to diagnose NAFLD and HCC, monitor disease progression, and determine treatment response. Various studies indicated that serum miRNAs could serve as noninvasive biomarkers for both NAFLD and HCC diagnosis because of their association with different histological features of the disease. Although microRNAs are promising and clinically useful biomarkers for hepatic diseases, larger standardization procedures and studies are still required.
Collapse
Affiliation(s)
- Minakshi Rana
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Manisha Saini
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Rina Das
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Sumeet Gupta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Tanishq Joshi
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| |
Collapse
|
34
|
Matulić M, Gršković P, Petrović A, Begić V, Harabajsa S, Korać P. miRNA in Molecular Diagnostics. Bioengineering (Basel) 2022; 9:bioengineering9090459. [PMID: 36135005 PMCID: PMC9495386 DOI: 10.3390/bioengineering9090459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA molecules that regulate gene expression on post-transcriptional level. Their biogenesis consists of a complex series of sequential processes, and they regulate expression of many genes involved in all cellular processes. Their function is essential for maintaining the homeostasis of a single cell; therefore, their aberrant expression contributes to development and progression of many diseases, especially malignant tumors and viral infections. Moreover, they can be associated with certain states of a specific disease, obtained in the least invasive manner for patients and analyzed with basic molecular methods used in clinical laboratories. Because of this, they have a promising potential to become very useful biomarkers and potential tools in personalized medicine approaches. In this review, miRNAs biogenesis, significance in cancer and infectious diseases, and current available test and methods for their detection are summarized.
Collapse
Affiliation(s)
- Maja Matulić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Paula Gršković
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Petrović
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Valerija Begić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Primary School “Sesvetski Kraljevec”, 10361 Sesvetski Kraljevec, Croatia
| | - Suzana Harabajsa
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology and Cytology, Division of Pulmonary Cytology Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606-278
| |
Collapse
|
35
|
Takasu T. The Role of SGLT2 Inhibitor Ipragliflozin on Cardiac Hypertrophy and microRNA Expression Profiles in a Non-diabetic Rat Model of Cardiomyopathy. Biol Pharm Bull 2022; 45:1321-1331. [DOI: 10.1248/bpb.b22-00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Anti-Inflammatory microRNAs for Treating Inflammatory Skin Diseases. Biomolecules 2022; 12:biom12081072. [PMID: 36008966 PMCID: PMC9405611 DOI: 10.3390/biom12081072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023] Open
Abstract
Skin inflammation occurs due to immune dysregulation because of internal disorders, infections, and allergic reactions. The inflammation of the skin is a major sign of chronic autoimmune inflammatory diseases, such as psoriasis, atopic dermatitis (AD), and lupus erythematosus. Although there are many therapies for treating these cutaneous inflammation diseases, their recurrence rates are high due to incomplete resolution. MicroRNA (miRNA) plays a critical role in skin inflammation by regulating the expression of protein-coding genes at the posttranscriptional level during pathogenesis and homeostasis maintenance. Some miRNAs possess anti-inflammatory features, which are beneficial for mitigating the inflammatory response. miRNAs that are reduced in inflammatory skin diseases can be supplied transiently using miRNA mimics and agomir. miRNA-based therapies that can target multiple genes in a given pathway are potential candidates for the treatment of skin inflammation. This review article offers an overview of the function of miRNA in skin inflammation regulation, with a focus on psoriasis, AD, and cutaneous wounds. Some bioactive molecules can target and modulate miRNAs to achieve the objective of inflammation suppression. This review also reports the anti-inflammatory efficacy of these molecules through modulating miRNA expression. The main limitations of miRNA-based therapies are rapid biodegradation and poor skin and cell penetration. Consideration was given to improving these drawbacks using the approaches of cell-penetrating peptides (CPPs), nanocarriers, exosomes, and low-frequency ultrasound. A formulation design for successful miRNA delivery into skin and target cells is also described in this review. The possible use of miRNAs as biomarkers and therapeutic modalities could open a novel opportunity for the diagnosis and treatment of inflammation-associated skin diseases.
Collapse
|
37
|
Rafiyan M, Abadi MHJN, Zadeh SST, Hamblin MR, Mousavi M, Mirzaei H. Lysophosphatidic Acid Signaling and microRNAs: New Roles in Various Cancers. Front Oncol 2022; 12:917471. [PMID: 35814375 PMCID: PMC9259992 DOI: 10.3389/fonc.2022.917471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
A wide range of microRNAs (miRNAs) are coded for in the human genome and contribute to the regulation of gene expression. MiRNAs are able to degrade mRNAs and/or prevent the RNA transcript from being translated through complementary binding of the miRNA seed region (nucleotide 2-8) to the 3'-untranslated regions of many mRNAs. Although miRNAs are involved in almost all processes of normal human cells, they are also involved in the abnormal functions of cancer cells. MiRNAs can play dual regulatory roles in cancer, acting either as tumor suppressors or as tumor promoters, depending on the target, tumor type, and stage. In the current review, we discuss the present status of miRNA modulation in the setting of lysophosphatidic acid (LPA) signaling. LPA is produced from lysophosphatidylcholine by the enzyme autotaxin and signals via a range of G protein-coupled receptors to affect cellular processes, which ultimately causes changes in cell morphology, survival, proliferation, differentiation, migration, and adhesion. Several studies have identified miRNAs that are over-expressed in response to stimulation by LPA, but their functional roles have not yet been fully clarified. Since RNA-based treatments hold tremendous promise in the area of personalized medicne, many efforts have been made to bring miRNAs into clinical trials, and this field is evolving at an increasing pace.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mahboubeh Mousavi
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamed Mirzaei
- Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
38
|
Hamidi AA, Taghehchian N, Basirat Z, Zangouei AS, Moghbeli M. MicroRNAs as the critical regulators of cell migration and invasion in thyroid cancer. Biomark Res 2022; 10:40. [PMID: 35659780 PMCID: PMC9167543 DOI: 10.1186/s40364-022-00382-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/07/2022] [Indexed: 12/14/2022] Open
Abstract
Thyroid cancer (TC) is one of the most frequent endocrine malignancies that is more common among females. Tumor recurrence is one of the most important clinical manifestations in differentiated TC which is associated with different factors including age, tumor size, and histological features. Various molecular processes such as genetic or epigenetic modifications and non-coding RNAs are also involved in TC progression and metastasis. The epithelial-to-mesenchymal transition (EMT) is an important biological process during tumor invasion and migration that affects the initiation and transformation of early-stage tumors into invasive malignancies. A combination of transcription factors, growth factors, signaling pathways, and epigenetic regulations affect the thyroid cell migration and EMT process. MicroRNAs (miRNAs) are important molecular factors involved in tumor metastasis by regulation of EMT-activating signaling pathways. Various miRNAs are involved in the signaling pathways associated with TC metastasis which can be used as diagnostic and therapeutic biomarkers. Since, the miRNAs are sensitive, specific, and non-invasive, they can be suggested as efficient and optimal biomarkers of tumor invasion and metastasis. In the present review, we have summarized all of the miRNAs which have been significantly involved in thyroid tumor cells migration and invasion. We also categorized all of the reported miRNAs based on their cellular processes to clarify the molecular role of miRNAs during thyroid tumor cell migration and invasion. This review paves the way of introducing a non-invasive diagnostic and prognostic panel of miRNAs in aggressive and metastatic TC patients.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Basirat
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Diagnostic Test to Identify Parkinson's Disease from the Blood Sera of Chinese Population: A Cross-Sectional Study. PARKINSON'S DISEASE 2022; 2022:8683877. [PMID: 35432916 PMCID: PMC9007633 DOI: 10.1155/2022/8683877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022]
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disease, a hallmark by the formation of misfolded and aggregated α-synuclein proteins. The expression of potential microRNA (miRNA) candidates isolated from serum and cerebrospinal fluid (CSF) exosomes of PD patients was assessed for their diagnostic value and their potential role as biomarkers for PD was explored. In this study, we characterize the expression level of miRNAs in the exosomes of blood sera and cerebrospinal fluid and explore their potential role as biomarkers for PD. Materials and Methods A total of 209 patients having an onset of PD, along with 60 neurodegenerative (ND) disorders and 50 healthy controls were enrolled. Blood samples and CSF samples were collected and exosomes were isolated. The isolated exosomes were characterized using CD63 detection and exosomal RNA was extracted. Serum miRNA profiling was carried out by synthesizing cDNA from the purified RNA and miRNA transcripts were determined by qRT-PCR using SYBR Green PremixScript. microRNA profiling strategy was employed for extracting the exosomal miRNAs from the exosomes. Results Five common miRNAs viz. miR-151a-5p, miR-24, mir-485-5p, mir-331-5p, and mir-214 were found to be upregulated with statistical significance in both the serum exosome and CSF exosomes. The investigation revealed that serum and CSF exosomal miRNA molecules are definitive biomarkers for PD with proper specificity and sensitivity. Conclusions The significant level of miR-151a-5p, miR-24, mir-485-5p, mir-331-5p, and mir-214 was observed in the serum and CSF which may be established as a biomarker for the diagnosis of PD.
Collapse
|
40
|
Cai S, Ma J, Wang Y, Cai Y, Xie L, Chen X, Yang Y, Peng Q. Biomarker Value of miR-221 and miR-222 as Potential Substrates in the Differential Diagnosis of Papillary Thyroid Cancer Based on Data Synthesis and Bioinformatics Approach. Front Endocrinol (Lausanne) 2022; 12:794490. [PMID: 35197926 PMCID: PMC8859251 DOI: 10.3389/fendo.2021.794490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNA (miRNA) has been reported to play a critical regulatory role in papillary thyroid carcinomas (PTC). However, the role of miR-221/222 in PTC remains unclear. Here, we performed this study to explore the diagnostic potentials and mechanisms of miR-221/222 in PTC. Methods First, we systematically analyzed the diagnostic value of miR-221/222 in the diagnosis PTC by pooling the published studies. Afterwards, we performed comprehensive bioinformatics analysis including gene ontology analysis, pathway enrichment analysis and protein-protein interaction analysis to explore the potential mechanisms of miR-221/222 involved in PTC. Results The overall sensitivity and specificity of miR-221/222 for PTC were 0.75 (95% CI: 0.70-0.80) and 0.80 (95% CI: 0.76-0.84) respectively with the AUC of 0.85 (95% CI: 0.81-0.88). The diagnostic performance varied among different subgroups including geographical locations, sample sources and sample sizes. Meanwhile, we found that a combination of miR-221/222 and other miRNAs when used in a diagnostic panel could improve the diagnostic accuracy than individual miR-221/222. Moreover, through the bioinformatics analysis, we confirmed that miR-221/222 targets were highly related to the molecular pathogenesis of PTC. The results revealed that miR-221/222 may exert important functions in PTC through thyroid hormone signaling pathway and some other key pathways by regulating some key genes. Conclusion These findings indicated that miR-221/222 have the potential to serve as auxiliary tools for diagnosing PTC. Further prospective clinical trials should be performed to assess the accuracy of these findings in a larger cohort and determine the clinical uses.
Collapse
Affiliation(s)
- Shang Cai
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Jiayan Ma
- Department of Experimental Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yong Wang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Yuxing Cai
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Liwei Xie
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Xiangying Chen
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Yingying Yang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Qiliang Peng
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| |
Collapse
|
41
|
Schönberg J, Borlak J. Reliable miRNA biomarker quantification in clinical practice - are we there yet? Anal Biochem 2021; 634:114431. [PMID: 34695390 DOI: 10.1016/j.ab.2021.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Blood-borne miRNAs serve as disease diagnostic biomarkers and await clinical validation. Here, we evaluated Cel-miR-39-3p and miRNA16-5p as calibrator for the quantification of 15 miRNAs linked to hepatic impairment. We added defined copy numbers of Cel-miR-39-3p to plasma of healthy controls (N = 5) and patient samples undergoing liver resection (N = 51). The miRNAs were isolated according to SOPs and quantified by RT-qPCR using the 2-(ΔΔ-CT)-method. Although miRNA16-5p and the spike-in control behaved similar in qPCR assays (R2 = 0.8591) the spike-in control suffered from high inter-patient variability (median 7.6-fold) and low recoveries (median 5.6%, 95% CI 1.5-11.8%). Adding Cel-miR-39-3p to blood samples prior to RNA-isolation improved the recoveries (median 105.7%; 95% CI 29.9-219.9%), yet the inter-patient variability remained high (median 7.2-fold). Alike, we observed significant variability in CT-values for miRNA16-5p (range 14.7-fold) thus rendering this internal, blood-borne reference gene unacceptable as comparator. Specifically, 10 out of 15 diagnostic miRNAs failed the criteria R2 ≥ 0.8 even though we added a defined copy number of Cel-miR-39-3p. This suggests interference of the spike-in control with individual miRNAs in the assay. Our study highlights current limitations in the quantification of blood-borne miRNAs that is of particularly importance when used for disease diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Juliette Schönberg
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
42
|
Kuo MC, Liu SCH, Hsu YF, Wu RM. The role of noncoding RNAs in Parkinson's disease: biomarkers and associations with pathogenic pathways. J Biomed Sci 2021; 28:78. [PMID: 34794432 PMCID: PMC8603508 DOI: 10.1186/s12929-021-00775-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
The discovery of various noncoding RNAs (ncRNAs) and their biological implications is a growing area in cell biology. Increasing evidence has revealed canonical and noncanonical functions of long and small ncRNAs, including microRNAs, long ncRNAs (lncRNAs), circular RNAs, PIWI-interacting RNAs, and tRNA-derived fragments. These ncRNAs have the ability to regulate gene expression and modify metabolic pathways. Thus, they may have important roles as diagnostic biomarkers or therapeutic targets in various diseases, including neurodegenerative disorders, especially Parkinson's disease. Recently, through diverse sequencing technologies and a wide variety of bioinformatic analytical tools, such as reverse transcriptase quantitative PCR, microarrays, next-generation sequencing and long-read sequencing, numerous ncRNAs have been shown to be associated with neurodegenerative disorders, including Parkinson's disease. In this review article, we will first introduce the biogenesis of different ncRNAs, including microRNAs, PIWI-interacting RNAs, circular RNAs, long noncoding RNAs, and tRNA-derived fragments. The pros and cons of the detection platforms of ncRNAs and the reproducibility of bioinformatic analytical tools will be discussed in the second part. Finally, the recent discovery of numerous PD-associated ncRNAs and their association with the diagnosis and pathophysiology of PD are reviewed, and microRNAs and long ncRNAs that are transported by exosomes in biofluids are particularly emphasized.
Collapse
Affiliation(s)
- Ming-Che Kuo
- Department of Medicine, Section of Neurology, Cancer Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sam Chi-Hao Liu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Fang Hsu
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
43
|
The Role of miR-23b in Cancer and Autoimmune Disease. JOURNAL OF ONCOLOGY 2021; 2021:6473038. [PMID: 34777498 PMCID: PMC8580694 DOI: 10.1155/2021/6473038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Short-stranded miRNAs are single-stranded RNA molecules involved in the regulation of gene expression. miRNAs are involved in a variety of cellular physiological processes, including cell proliferation, differentiation, and apoptosis. miR-23b have been identified to act both as oncogenes and as tumor suppressors. In addition, miR-23b is related to inflammation resistance to various autoimmune diseases and restrained inflammatory cell migration. The characterization of the specific alterations in the patterns of miR-23b expression in cancer and autoimmune disease has great potential for identifying biomarkers for early disease diagnosis, as well as for potential therapeutic intervention in various diseases. In this review, we summarize the ever-expanding role of miR-23b and its target genes in different models and offer insight into how this multifunctional miRNA modulates tumor cell proliferation and apoptosis or inflammatory cell activation, differentiation, and migration.
Collapse
|
44
|
TÜNCEL Ö, KARA M, YAYLAK B, ERDOĞAN İ, AKGÜL B. Noncoding RNAs in apoptosis: identification and function. Turk J Biol 2021; 46:1-40. [PMID: 37533667 PMCID: PMC10393110 DOI: 10.3906/biy-2109-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/08/2022] [Accepted: 11/14/2021] [Indexed: 08/04/2023] Open
Abstract
Apoptosis is a vital cellular process that is critical for the maintenance of homeostasis in health and disease. The derailment of apoptotic mechanisms has severe consequences such as abnormal development, cancer, and neurodegenerative diseases. Thus, there exist complex regulatory mechanisms in eukaryotes to preserve the balance between cell growth and cell death. Initially, protein-coding genes were prioritized in the search for such regulatory macromolecules involved in the regulation of apoptosis. However, recent genome annotations and transcriptomics studies have uncovered a plethora of regulatory noncoding RNAs that have the ability to modulate not only apoptosis but also many other biochemical processes in eukaryotes. In this review article, we will cover a brief summary of apoptosis and detection methods followed by an extensive discussion on microRNAs, circular RNAs, and long noncoding RNAs in apoptosis.
Collapse
Affiliation(s)
- Özge TÜNCEL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Merve KARA
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bilge YAYLAK
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - İpek ERDOĞAN
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bünyamin AKGÜL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| |
Collapse
|
45
|
Sałówka A, Martinez-Sanchez A. Molecular Mechanisms of Nutrient-Mediated Regulation of MicroRNAs in Pancreatic β-cells. Front Endocrinol (Lausanne) 2021; 12:704824. [PMID: 34803905 PMCID: PMC8600252 DOI: 10.3389/fendo.2021.704824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cells within the islets of Langerhans respond to rising blood glucose levels by secreting insulin that stimulates glucose uptake by peripheral tissues to maintain whole body energy homeostasis. To different extents, failure of β-cell function and/or β-cell loss contribute to the development of Type 1 and Type 2 diabetes. Chronically elevated glycaemia and high circulating free fatty acids, as often seen in obese diabetics, accelerate β-cell failure and the development of the disease. MiRNAs are essential for endocrine development and for mature pancreatic β-cell function and are dysregulated in diabetes. In this review, we summarize the different molecular mechanisms that control miRNA expression and function, including transcription, stability, posttranscriptional modifications, and interaction with RNA binding proteins and other non-coding RNAs. We also discuss which of these mechanisms are responsible for the nutrient-mediated regulation of the activity of β-cell miRNAs and identify some of the more important knowledge gaps in the field.
Collapse
Affiliation(s)
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
46
|
Supadmanaba IGP, Mantini G, Randazzo O, Capula M, Muller IB, Cascioferro S, Diana P, Peters GJ, Giovannetti E. Interrelationship between miRNA and splicing factors in pancreatic ductal adenocarcinoma. Epigenetics 2021; 17:381-404. [PMID: 34057028 PMCID: PMC8993068 DOI: 10.1080/15592294.2021.1916697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of diagnosis at late stage and inherent/acquired chemoresistance. Recent advances in genomic profiling and biology of this disease have not yet been translated to a relevant improvement in terms of disease management and patient’s survival. However, new possibilities for treatment may emerge from studies on key epigenetic factors. Deregulation of microRNA (miRNA) dependent gene expression and mRNA splicing are epigenetic processes that modulate the protein repertoire at the transcriptional level. These processes affect all aspects of PDAC pathogenesis and have great potential to unravel new therapeutic targets and/or biomarkers. Remarkably, several studies showed that they actually interact with each other in influencing PDAC progression. Some splicing factors directly interact with specific miRNAs and either facilitate or inhibit their expression, such as Rbfox2, which cleaves the well-known oncogenic miRNA miR-21. Conversely, miR-15a-5p and miR-25-3p significantly downregulate the splicing factor hnRNPA1 which acts also as a tumour suppressor gene and is involved in processing of miR-18a, which in turn, is a negative regulator of KRAS expression. Therefore, this review describes the interaction between splicing and miRNA, as well as bioinformatic tools to explore the effect of splicing modulation towards miRNA profiles, in order to exploit this interplay for the development of innovative treatments. Targeting aberrant splicing and deregulated miRNA, alone or in combination, may hopefully provide novel therapeutic approaches to fight the complex biology and the common treatment recalcitrance of PDAC.
Collapse
Affiliation(s)
- I Gede Putu Supadmanaba
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Biochemistry Department, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Ornella Randazzo
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Mjriam Capula
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy.,Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Ittai B Muller
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
| | - Stella Cascioferro
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Patrizia Diana
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Department of Biochemistry, Medical University of Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| |
Collapse
|
47
|
Al Mazid MF, Shkel O, Kharkivska Y, Lee JS. Application of fluorescent turn-on aptamers in RNA studies. Mol Omics 2021; 17:483-491. [PMID: 34137415 DOI: 10.1039/d1mo00085c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA is an intermediate player between DNA transcription and protein translation. RNAs also interact with other macromolecules and metabolites and regulate their fate. The emerging number of RNA identifications expanded new areas of study to determine their applicability and functional analysis. Recently, extensive research has been focused on visualizing RNA in living biological samples and a method has been developed by the evolution of specific fluorophore-binding aptamers through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) method. Several promising fluorescent turn-on aptamers are currently available, and they can detect RNA-RNA, RNA-protein, ligand binding, small molecule, and metabolite interactions in vitro and under live-cell conditions. Here we review the currently available fluorescent turn-on aptamers and discuss their applicability for analyzing the fate of targeted RNAs in in vitro and in vivo systems.
Collapse
Affiliation(s)
| | - Olha Shkel
- Bio-Med Program KIST-School UST, Seoul, 02792, Republic of Korea
| | | | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| |
Collapse
|