1
|
Scott NR, Kang S, Parekh SH. Mechanosensitive nuclear uptake of chemotherapy. SCIENCE ADVANCES 2024; 10:eadr5947. [PMID: 39693448 DOI: 10.1126/sciadv.adr5947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024]
Abstract
The nucleus is at the nexus of mechanotransduction and the final barrier for most first line chemotherapeutics. Here, we study the intersection between nuclear-cytoskeletal coupling and chemotherapy nuclear internalization. We find that chronic and acute modulation of intracellular filaments changes nuclear influx of doxorubicin (DOX). Rapid changes in cell strain by disruption of cytoskeletal and nuclear filaments sensitize nuclei to DOX, whereas chronic reduction of cell strain desensitize nuclei to DOX. Extracted nuclei from invasive cancer cells lines from different tissues have distinct nuclear permeability to DOX. Last, we show that mechano-priming of cells by paclitaxel markedly improves DOX nuclear internalization, rationalizing the observed drug synergies. Our findings reveal that nuclear uptake is a critical, previously unquantified aspect of drug resistance. With nuclear permeability to chemotherapy being tunable via modulation of nuclear mechanotransduction, mechano-priming may be useful to help overcome drug resistance in the future.
Collapse
Affiliation(s)
- Nicholas R Scott
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Sowon Kang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Filippidi E, Dhiman AK, Li B, Athanasiou T, Vlassopoulos D, Fytas G. Multiscale Elasticity of Epoxy Networks by Rheology and Brillouin Light Spectroscopy. J Phys Chem B 2024; 128:12628-12637. [PMID: 39630480 DOI: 10.1021/acs.jpcb.4c06492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The response of soft materials to an imposed oscillatory stress is typically frequency dependent, with the most utilized frequency range falling in the range of 10-2-102 rad/s. In contrast to most conventional contact techniques for measuring material elasticity, like tensile or shear rheology and atomic force microscopy, or invasive techniques using probes, such as microrheology, Brillouin light spectroscopy (BLS) offers an optical, noncontact, label-free, submicron resolution and three-dimensional (3D) mapping approach to access the mechanical moduli at GHz frequencies. Currently, the correlation between the experimental viscoelastic (at lower frequencies) and elastic (at higher frequencies) moduli has fundamental and practical relevance, but remains unclear. We utilize a series of solvent-free epoxy polymer networks with variable cross-link density as models to compare the storage modulus, G', (in the MPa range) obtained from shear rheology and the longitudinal modulus, M', (in the GPa range) extracted from BLS. Our results show that G' exhibits a much stronger increase with increasing cross-link density than M' (by a factor of about 3.5). This finding is discussed in the context of the phantom network model for G' and Wood's inverse rule of mixtures for M'. The epoxy polymer network displays an unexpectedly fast hypersonic dispersion compared to its uncross-linked precursor. These results testify the importance of obtaining reliable information about the elasticity of networks and will hopefully trigger further investigations in the direction of bridging the elasticity of soft materials at different scales.
Collapse
Affiliation(s)
- Emmanouela Filippidi
- Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece
- Institute of Electronic Structure and Laser, FORTH, Heraklion 70013, Greece
| | - Anuj K Dhiman
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan 61614, Poland
| | - Benke Li
- Institute of Electronic Structure and Laser, FORTH, Heraklion 70013, Greece
| | | | - Dimitris Vlassopoulos
- Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece
- Institute of Electronic Structure and Laser, FORTH, Heraklion 70013, Greece
| | - George Fytas
- Institute of Electronic Structure and Laser, FORTH, Heraklion 70013, Greece
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
3
|
Wang TC, Abolghasemzade S, McKee BP, Singh I, Pendyala K, Mohajeri M, Patel H, Shaji A, Kersey AL, Harsh K, Kaur S, Dollahon CR, Chukkapalli S, Lele PP, Conway DE, Gaharwar AK, Dickinson RB, Lele TP. Matrix stiffness drives drop like nuclear deformation and lamin A/C tension-dependent YAP nuclear localization. Nat Commun 2024; 15:10151. [PMID: 39578439 PMCID: PMC11584751 DOI: 10.1038/s41467-024-54577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Extracellular matrix (ECM) stiffness influences cancer cell fate by altering gene expression. Previous studies suggest that stiffness-induced nuclear deformation may regulate gene expression through YAP nuclear localization. We investigated the role of the nuclear lamina in this process. We show that the nuclear lamina exhibits mechanical threshold behavior: once unwrinkled, the nuclear lamina is inextensible. A computational model predicts that the unwrinkled lamina is under tension, which is confirmed using a lamin tension sensor. Laminar unwrinkling is caused by nuclear flattening during cell spreading on stiff ECM. Knockdown of lamin A/C eliminates nuclear surface tension and decreases nuclear YAP localization. These findings show that nuclear deformation in cells conforms to the nuclear drop model and reveal a role for lamin A/C tension in controlling YAP localization in cancer cells.
Collapse
Affiliation(s)
- Ting-Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Samere Abolghasemzade
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Brendan P McKee
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Ishita Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Kavya Pendyala
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Hailee Patel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Aakansha Shaji
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Anna L Kersey
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Kajol Harsh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Simran Kaur
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Christina R Dollahon
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Sasanka Chukkapalli
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Tanmay P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
4
|
de la Jara Ortiz F, Cimmino C, Ventre M, Cambi A. Understanding and measuring mechanical signals in the tumor stroma. FEBS Open Bio 2024. [PMID: 39523476 DOI: 10.1002/2211-5463.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The tumor microenvironment (TME) is well known for its immune suppressive role, especially in solid tumors which are characterized by a thick, dense stroma. Apart from cell-cell interactions and biochemical signals, the tumor stroma is also characterized by its distinct mechanical properties, which are dictated by the composition and architecture of its extracellular matrix (ECM). Cancer-associated fibroblasts (CAFs) are the main producers and remodelers of the stromal ECM, and their heterogeneity has recently become a focus of intense research. This review describes recent findings highlighting CAF subtypes and their specific functions, as well as the development of 3D models to study tumor stroma mechanics in vitro. Finally, we discuss the quantitative techniques used to measure tissue mechanical properties at different scales. Given the diagnostic and prognostic value of stroma stiffness and composition, and the recent development of anti-tumor therapeutic strategies targeting the stroma, understanding and measuring tumor stroma mechanical properties has never been more timely or relevant.
Collapse
Affiliation(s)
- Fàtima de la Jara Ortiz
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chiara Cimmino
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Shah A, Ganguly K, Rauth S, Sheree SS, Khan I, Ganti AK, Ponnusamy MP, Kumar S, Jain M, Batra SK. Unveiling the resistance to therapies in pancreatic ductal adenocarcinoma. Drug Resist Updat 2024; 77:101146. [PMID: 39243602 DOI: 10.1016/j.drup.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
Despite the ongoing advances in interventional strategies (surgery, chemotherapy, radiotherapy, and immunotherapy) for managing pancreatic ductal adenocarcinoma (PDAC), the development of therapy refractory phenotypes remains a significant challenge. Resistance to various therapeutic modalities in PDAC emanates from a combination of inherent and acquired factors and is attributable to cancer cell-intrinsic and -extrinsic mechanisms. The critical determinants of therapy resistance include oncogenic signaling and epigenetic modifications that drive cancer cell stemness and metabolic adaptations, CAF-mediated stromagenesis that results in ECM deposition altered mechanotransduction, and secretome and immune evasion. We reviewed the current understanding of these multifaceted mechanisms operating in the PDAC microenvironment, influencing the response to chemotherapy, radiotherapy, and immunotherapy regimens. We then describe how the lessons learned from these studies can guide us to discover novel therapeutic regimens to prevent, delay, or revert resistance and achieve durable clinical responses.
Collapse
Affiliation(s)
- Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Shamema S Sheree
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Apar K Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Division of Oncology-hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System and University of Nebraska Medical Center, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA.
| |
Collapse
|
6
|
Lai YW, Liu ZW, Lin MH, Yang CC, Chu CY, Chung CH, Lin CW. Melatonin increases Olaparib sensitivity and suppresses cancer-associated fibroblast infiltration via suppressing the LAMB3-CXCL2 axis in TNBC. Pharmacol Res 2024; 209:107429. [PMID: 39306019 DOI: 10.1016/j.phrs.2024.107429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most malignant breast cancer subtype, characterized with high aggressiveness and a high recurrence rate. Olaparib is the first US Food and Drug Administration-approved poly(ADP ribose) polymerase (PARP) inhibitor (PARPi) to treat breast cancer patients with a germline BRCA1 or BRCA2 mutation. However, resistance to Olaparib treatment restricts the therapeutic effects, and thus novel therapeutics are urgently required. In the present study, we identified that the combination of melatonin and Olaparib synergistically enhanced the sensitivity of TNBC cells. Moreover, melatonin exerted promising antitumor activities in Olaparib-resistant cells, implying the potential for its clinical application. An RNA-sequencing analysis revealed that melatonin treatment downregulated laminin subunit beta 3 (LAMB3) expression. Genetic ablation of LAMB3 significantly increased Olaparib sensitivity, and subsequently suppressed proliferation, epithelial-to-mesenchymal transition (EMT)-related gene expressions, and aggressiveness of breast cancer cells. Accordingly, LAMB3 expression was positively correlated with C-X-C motif chemokine ligand 2 (CXCL2), and they collaboratively promoted cancer-associated fibroblast (CAF) infiltration. An in vivo study demonstrated that combined treatment with melatonin and Olaparib showed enhanced inhibitory efficacy against tumor growth, LAMB3 expression, CXCL2 levels, and CAF infiltration compared to single treatment groups, and combined treatment with melatonin and Olaparib significantly ameliorated the immunosuppressive tumor microenvironment. These findings illustrate a promising therapeutic strategy using melatonin to overcome Olaparib resistance and activate antitumor immunity via attenuating the LAMB3-CXCL2 axis in breast cancer patients.
Collapse
Affiliation(s)
- Yi-Wen Lai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zei-Wei Liu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan; Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Cheng-Ying Chu
- CRISPR Gene Targeting Core Lab, Taipei Medical University, Taipei, Taiwan
| | - Chu-Hung Chung
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Zhao Y, Hou X, Wang Z, Peng S, Zheng C, Huang Q, Ma Y, Li Y, Liu Y, Liu Y, Shi L, Huang F. A Mechanical Immune Checkpoint Inhibitor Stiffens Tumor Cells to Potentiate Antitumor Immunity. Angew Chem Int Ed Engl 2024:e202417518. [PMID: 39400947 DOI: 10.1002/anie.202417518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Tumor progression is associated with tumor-cell softening. Improving the stiffness of the tumor cells can make them more vulnerable to lymphocyte-mediated attack. Tumor cell membranes typically exhibit higher cholesterol levels than normal cells, making tumor cells soft. Herein, we demonstrate a mechanical immune checkpoint inhibitor (MICI) formulated by cyclodextrin (CD) lipids and fusogenic lipids. Through fusing CD lipids into the tumor cell membrane using a fusogenic liposome formulation, the cholesterol in the plasma membrane is reduced due to the specific host-guest interactions between CD lipid and cholesterol. As a result, tumor cells are stiffened, and the activation of lymphocytes (including NK and cytotoxic effector T cells) is improved when contacting the stiffened tumor cells, characterized by robust degranulation and effector cytokine production. Notably, this treatment has negligible influence on the infiltration and proliferation of lymphocytes in tumor tissues, confirming that the enhanced antitumor efficacy should result from activating a specific number of lymphocytes caused by direct regulation of the tumor cell stiffness. The combination of MICIs and clinical immunotherapies enhances the lymphocyte-mediated antitumor effects in two tumor mouse models, including breast cancer and melanoma. Our research also reveals an unappreciated mechanical dimension to lymphocyte activation.
Collapse
Affiliation(s)
- Yu Zhao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, United States
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaoxue Hou
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Zeyu Wang
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, 75080, United States
| | - Shiyu Peng
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chunxiong Zheng
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Qingqing Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yufei Ma
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, United States
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fan Huang
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
8
|
Janas A, Jordan J, Bertalan G, Meyer T, Bukatz J, Sack I, Senger C, Nieminen-Kelhä M, Brandenburg S, Kremenskaia I, Krantchev K, Al-Rubaiey S, Mueller S, Koch SP, Boehm-Sturm P, Reiter R, Zips D, Vajkoczy P, Acker G. In vivo characterization of brain tumor biomechanics: magnetic resonance elastography in intracranial B16 melanoma and GL261 glioma mouse models. Front Oncol 2024; 14:1402578. [PMID: 39324003 PMCID: PMC11422132 DOI: 10.3389/fonc.2024.1402578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Magnetic Resonance Elastography (MRE) allows the non-invasive quantification of tumor biomechanical properties in vivo. With increasing incidence of brain metastases, there is a notable absence of appropriate preclinical models to investigate their biomechanical characteristics. Therefore, the purpose of this work was to assess the biomechanical characteristics of B16 melanoma brain metastases (MBM) and compare it to murine GL261 glioblastoma (GBM) model using multifrequency MRE with tomoelastography post processing. Methods Intracranial B16 MBM (n = 6) and GL261 GBM (n = 7) mouse models were used. Magnetic Resonance Imaging (MRI) was performed at set intervals after tumor implantation: 5, 7, 12, 14 days for MBM and 13 and 22 days for GBM. The investigations were performed using a 7T preclinical MRI with 20 mm head coil. The protocol consisted of single-shot spin echo-planar multifrequency MRE with tomoelastography post processing, contrast-enhanced T1- and T2-weighted imaging and diffusion-weighted imaging (DWI) with quantification of apparent diffusion coefficient of water (ADC). Elastography quantified shear wave speed (SWS), magnitude of complex MR signal (T2/T2*) and loss angle (φ). Immunohistological investigations were performed to assess vascularization, blood-brain-barrier integrity and extent of glucosaminoglucan coverage. Results Volumetric analyses displayed rapid growth of both tumor entities and softer tissue properties than healthy brain (healthy: 5.17 ± 0.48, MBM: 3.83 ± 0.55, GBM: 3.7 ± 0.23, [m/s]). SWS of MBM remained unchanged throughout tumor progression with decreased T2/T2* intensity and increased ADC on days 12 and 14 (p<0.0001 for both). Conversely, GBM presented reduced φ values on day 22 (p=0.0237), with no significant alterations in ADC. Histological analysis revealed substantial vascularization and elevated glycosaminoglycan content in both tumor types compared to healthy contralateral brain. Discussion Our results indicate that while both, MBM and GBM, exhibited softer properties compared to healthy brain, imaging and histological analysis revealed different underlying microstructural causes: hemorrhages in MBM and increased vascularization and glycosaminoglycan content in GBM, further corroborated by DWI and T2/T2* contrast. These findings underscore the complementary nature of MRE and its potential to enhance our understanding of tumor characteristics when used alongside established techniques. This comprehensive approach could lead to improved clinical outcomes and a deeper understanding of brain tumor pathophysiology.
Collapse
Affiliation(s)
- Anastasia Janas
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jakob Jordan
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Gergely Bertalan
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jan Bukatz
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Carolin Senger
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Susan Brandenburg
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Irina Kremenskaia
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kiril Krantchev
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Sanaria Al-Rubaiey
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Stefan Paul Koch
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Rolf Reiter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Gueliz Acker
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Huang SY, Yu TS, Lin JH, Liu WH, Chung CA, Cheng YC. Stable laminar shear stress induces G1 cell cycle arrest and autophagy in urothelial carcinoma by a torque sensor-coupled cone-and-plate device. Eur J Cell Biol 2024; 103:151451. [PMID: 39217678 DOI: 10.1016/j.ejcb.2024.151451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The microenvironments of urinary systems play crucial roles in the development and metastasis of cancers due to their generation of complex temporal and spatial fluidic profiles. Because of their versatility in creating desired biomimetic flow, cone-and-plate bioreactors offer great potential for bladder cancer research. In this study, we construct a biocompatible cone-and-plate device coupled with a torque sensor, enabling the application and real-time monitoring of stable shear stress up to 50 dyne/cm². Under a stable shear stress stimulation at 12 dyne/cm2, bladder cancer cell BFTC-905 is arrested at the G1 phase with decreased cell proliferation after 24-hour treatment. This effect is associated with increased cyclin-dependent kinase inhibitors p21 and p27, inhibiting cyclin D1/CDK4 complex with dephosphorylation of serine 608 on the retinoblastoma protein. Consequently, an increase in cyclin D3 and decreases in cyclin A2 and cyclin E2 are observed. Moreover, we demonstrate that the shear stress stimulation upregulates the expression of autophagy-related proteins Beclin-1, LC3B-I and LC3B-II, while caspase cleavages are not activated under the same condition. The design of this system and its application shed new light on flow-induced phenomena in the study of urothelial carcinomas.
Collapse
Affiliation(s)
- Sheng-Yuan Huang
- Proteomics Laboratory, Department of Medical Research, Cathay General Hospital, New Taipei City, Taiwan
| | - Tien-Ssu Yu
- Department of Mechanical Engineering, National Central University, Jhongli, Taiwan
| | - Jiun-Han Lin
- Department of Industrial Technology, Ministry of Economic Affairs, Taipei, Taiwan; Food Industry Research and Development Institute, Hsinchu City, Taiwan
| | - Wei-Hung Liu
- Department of Mechanical Engineering, National Central University, Jhongli, Taiwan
| | - Chih-Ang Chung
- Department of Mechanical Engineering, National Central University, Jhongli, Taiwan.
| | - Yu-Che Cheng
- Proteomics Laboratory, Department of Medical Research, Cathay General Hospital, New Taipei City, Taiwan; Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
10
|
Hernández-Hatibi S, Guerrero PE, García-Aznar JM, García-Gareta E. Polydopamine Interfacial Coating for Stable Tumor-on-a-Chip Models: Application for Pancreatic Ductal Adenocarcinoma. Biomacromolecules 2024; 25:5169-5180. [PMID: 39083627 PMCID: PMC11323005 DOI: 10.1021/acs.biomac.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Addressing current challenges in solid tumor research requires advanced in vitro three-dimensional (3D) cellular models that replicate the inherently 3D architecture and microenvironment of tumor tissue, including the extracellular matrix (ECM). However, tumor cells exert mechanical forces that can disrupt the physical integrity of the matrix in long-term 3D culture. Therefore, it is necessary to find the optimal balance between cellular forces and the preservation of matrix integrity. This work proposes using polydopamine (PDA) coating for 3D microfluidic cultures of pancreatic cancer cells to overcome matrix adhesion challenges to sustain representative tumor 3D cultures. Using PDA's distinctive adhesion and biocompatibility, our model uses type I collagen hydrogels seeded with different pancreatic cancer cell lines, prompting distinct levels of matrix deformation and contraction. Optimizing the PDA coating enhances the adhesion and stability of collagen hydrogels within microfluidic devices, achieving a balance between the disruptive forces of tumor cells on matrix integrity and the maintenance of long-term 3D cultures. The findings reveal how this tension appears to be a critical determinant in spheroid morphology and growth dynamics. Stable and prolonged 3D culture platforms are crucial for understanding solid tumor cell behavior, dynamics, and responses within a controlled microenvironment. This advancement ultimately offers a powerful tool for drug screening, personalized medicine, and wider cancer therapeutics strategies.
Collapse
Affiliation(s)
- Soraya Hernández-Hatibi
- Multiscale
in Mechanical & Biological Engineering Research Group, Aragon
Institute of Engineering Research (I3A), School of Engineering and
Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Department
of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Aragon, Spain
| | - Pedro Enrique Guerrero
- Multiscale
in Mechanical & Biological Engineering Research Group, Aragon
Institute of Engineering Research (I3A), School of Engineering and
Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Department
of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Aragon, Spain
| | - José Manuel García-Aznar
- Multiscale
in Mechanical & Biological Engineering Research Group, Aragon
Institute of Engineering Research (I3A), School of Engineering and
Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon
Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
| | - Elena García-Gareta
- Multiscale
in Mechanical & Biological Engineering Research Group, Aragon
Institute of Engineering Research (I3A), School of Engineering and
Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon
Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
- Division
of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London WC1E 6BT, U.K.
| |
Collapse
|
11
|
Pattoo TS, Khanday FA. Corelating the molecular structure of BAG3 to its oncogenic role. Cell Biol Int 2024; 48:1080-1096. [PMID: 38924608 DOI: 10.1002/cbin.12199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
BAG3 is a multifaceted protein characterised by having WW domain, PXXP motif and BAG domain. This protein gets upregulated during malignant transformation of cells and has been associated with poorer survival of patients. Procancerous activity of BAG domain of BAG3 is well documented. BAG domain interacts with ATPase domain of Hsp-70 preventing protein delivery to proteasome. This impediment results in enhanced cell survival, proliferation, resistance to apoptosis and chemoresistance. Besides BAG domain other two domains/motifs of BAG3 are under research vigilance to explore its further oncogenic role. This review summarises the role of different structural determinants of BAG3 in elevating oncogenesis. Based on the already existing findings, more interacting partners of BAG3 are anticipated. The anticipated partners of BAG3 can shed a wealth of information into the mechanistic insights of its proproliferative role. Proper insights into the mechanistic details adopted by BAG3 to curtail/elaborate activity of anticipated interacting partners can serve as a potent target for development of therapeutic interventions.
Collapse
Affiliation(s)
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
12
|
Ghoytasi I, Bavi O, Kaazempur Mofrad MR, Naghdabadi R. An in-silico study on the mechanical behavior of colorectal cancer cell lines in the micropipette aspiration process. Comput Biol Med 2024; 178:108744. [PMID: 38889631 DOI: 10.1016/j.compbiomed.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Cancer alters the structural integrity and morphology of cells. Consequently, the cell function is overshadowed. In this study, the micropipette aspiration process is computationally modeled to predict the mechanical behavior of the colorectal cancer cells. The intended cancer cells are modeled as an incompressible Neo-Hookean visco-hyperelastic material. Also, the micropipette is assumed to be rigid with no deformation. The proposed model is validated with an in-vitro study. To capture the equilibrium and time-dependent behaviors of cells, ramp, and creep tests are respectively performed using the finite element method. Through the simulations, the effects of the micropipette geometry and the aspiration pressure on the colorectal cancer cell lines are investigated. Our findings indicate that, as the inner radius of the micropipette increases, despite the increase in deformation rate and aspirated length, the time to reach the equilibrium state increases. Nevertheless, it is obvious that increasing the tip curvature radius has a small effect on the change of the aspirated length. But, due to the decrease in the stress concentration, it drastically reduces the equilibrium time and increases the deformation rate significantly. Interestingly, our results demonstrate that increasing the aspiration pressure somehow causes the cell stiffening, thereby reducing the upward trend of deformation rate, equilibrium time, and aspirated length. Our findings provide valuable insights for researchers in cell therapy and cancer treatment and can aid in developing more precise microfluidic.
Collapse
Affiliation(s)
- Ibrahim Ghoytasi
- Department of Mechanical Engineering, Sharif University of Technology, 89694-14588, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Mohammad Reza Kaazempur Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Reza Naghdabadi
- Department of Mechanical Engineering, Sharif University of Technology, 89694-14588, Tehran, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 89694-14588, Tehran, Iran.
| |
Collapse
|
13
|
Halabian M, Beigzadeh B, Siavashi M. Numerical simulation and mathematical modeling of biomechanical stress distribution in poroelastic tumor tissue via magnetic field and bio-ferro-fluid. Heliyon 2024; 10:e34651. [PMID: 39149009 PMCID: PMC11324941 DOI: 10.1016/j.heliyon.2024.e34651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/23/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024] Open
Abstract
Based on scientific evidence, it seems that bio-magnetic systems can change the process of cancer cell death by affecting the distribution of pressure and mechanical stress in the tumor tissue. Already most of the research has been done experimentally and few mathematical modeling and numerical simulations have been done to investigate the relationship between the magnetic parameters and the mechanical stress of the tumor tissue. This is despite the fact that in order to be able to make new equipment with the help of medical engineering methods, it is definitely necessary that the mathematics governing the problem and changes in the effective magnetic parameters (such as the shape of the magnetic source, magnetic flux density, magnetic source distance and ferro-fluid volume fraction) should be studied as much as possible. In this research, using numerical simulation and mathematical modeling, four common geometrical shapes (rectangular and circular) of the static magnetic field source were used to investigate the relationship between the change of the effective magnetic parameters and the mechanical stress created in the tumor tissue. The results of this research showed that when the magnetic flux density and ferro-fluid volume fraction and also the distance between the magnet and the tissue are kept constant, as well as without spending any extra energy, for a rectangular magnet, just by changing the way the source is placed on the tissue, the average biomechanical stress inside the tumor tissue causes a 25 % change. Also, for a circular magnet, just by doubling the radius of the magnet, the average biomechanical stress inside the tumor tissue causes a 73 % change.
Collapse
Affiliation(s)
- Mahdi Halabian
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Borhan Beigzadeh
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Majid Siavashi
- Applied Multi-phase Fluid Dynamics Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
14
|
Tadic S, Martínez A. Nucleic acid cancer vaccines targeting tumor related angiogenesis. Could mRNA vaccines constitute a game changer? Front Immunol 2024; 15:1433185. [PMID: 39081320 PMCID: PMC11286457 DOI: 10.3389/fimmu.2024.1433185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Tumor related angiogenesis is an attractive target in cancer therapeutic research due to its crucial role in tumor growth, invasion, and metastasis. Different agents were developed aiming to inhibit this process; however they had limited success. Cancer vaccines could be a promising tool in anti-cancer/anti-angiogenic therapy. Cancer vaccines aim to initiate an immune response against cancer cells upon presentation of tumor antigens which hopefully will result in the eradication of disease and prevention of its recurrence by inducing an efficient and long-lasting immune response. Different vaccine constructs have been developed to achieve this and they could include either protein-based or nucleic acid-based vaccines. Nucleic acid vaccines are simple and relatively easy to produce, with high efficiency and safety, thus prompting a high interest in the field. Different DNA vaccines have been developed to target crucial regulators of tumor angiogenesis. Most of them were successful in pre-clinical studies, mostly when used in combination with other therapeutics, but had limited success in the clinic. Apparently, different tumor evasion mechanisms and reduced immunogenicity still limit the potential of these vaccines and there is plenty of room for improvement. Nowadays, mRNA cancer vaccines are making remarkable progress due to improvements in the manufacturing technology and represent a powerful potential alternative. Apart from their efficiency, mRNA vaccines are simple and cheap to produce, can encompass multiple targets simultaneously, and can be quickly transferred from bench to bedside. mRNA vaccines have already accomplished amazing results in cancer clinical trials, thus ensuring a bright future in the field, although no anti-angiogenic mRNA vaccines have been described yet. This review aims to describe recent advances in anti-angiogenic DNA vaccine therapy and to provide perspectives for use of revolutionary approaches such are mRNA vaccines for anti-angiogenic treatments.
Collapse
Affiliation(s)
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
15
|
Zhu G, Wang Y, Wang Y, Huang H, Li B, Chen P, Chen C, Zhang H, Li Y, Liu H, Chen J. Myofibroblasts derived type V collagen promoting tissue mechanical stress and facilitating metastasis and therapy resistance of lung adenocarcinoma cells. Cell Death Dis 2024; 15:493. [PMID: 38987529 PMCID: PMC11237033 DOI: 10.1038/s41419-024-06873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Lung cancer is a leading cause of cancer-related mortality globally, with a dismal 5-year survival rate, particularly for Lung Adenocarcinoma (LUAD). Mechanical changes within the tumor microenvironment, such as extracellular matrix (ECM) remodeling and fibroblast activity, play pivotal roles in cancer progression and metastasis. However, the specific impact of the basement membrane (BM) on the mechanical characteristics of LUAD remains unclear. This study aims to identify BM genes influencing internal mechanical stress in tumors, elucidating their effects on LUAD metastasis and therapy resistance, and exploring strategies to counteract these effects. Using Matrigel overlay and Transwell assays, we found that mechanical stress, mimicked by matrix application, augmented LUAD cell migration and invasion, correlating with ECM alterations and activation of the epithelial-mesenchymal transition (EMT) pathway. Employing machine learning, we developed the SVM_Score model based on relevant BM genes, which accurately predicted LUAD patient prognosis and EMT propensity across multiple datasets. Lower SVM_Scores were associated with worse survival outcomes, elevated cancer-related pathways, increased Tumor Mutation Burden, and higher internal mechanical stress in LUAD tissues. Notably, the SVM_Score was closely linked to COL5A1 expression in myofibroblasts, a key marker of mechanical stress. High COL5A1 expression from myofibroblasts promoted tumor invasiveness and EMT pathway activation in LUAD cells. Additionally, treatment with Sorafenib, which targets COL5A1 secretion, attenuated the tumor-promoting effects of myofibroblast-derived COL5A1, inhibiting LUAD cell proliferation, migration, and enhancing chemosensitivity. In conclusion, this study elucidates the complex interplay between mechanical stress, ECM alterations, and LUAD progression. The SVM_Score emerges as a robust prognostic tool reflecting tumor mechanical characteristics, while Sorafenib intervention targeting COL5A1 secretion presents a promising therapeutic strategy to mitigate LUAD aggressiveness. These findings deepen our understanding of the biomechanical aspects of LUAD and offer insights for future research and clinical applications.
Collapse
Affiliation(s)
- Guangsheng Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yanan Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yingjie Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hua Huang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Boshi Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Peijie Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
| |
Collapse
|
16
|
Micalet A, Upadhyay A, Javanmardi Y, de Brito CG, Moeendarbary E, Cheema U. Patient-specific colorectal-cancer-associated fibroblasts modulate tumor microenvironment mechanics. iScience 2024; 27:110060. [PMID: 38883829 PMCID: PMC11179580 DOI: 10.1016/j.isci.2024.110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/19/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a major role in reorganizing the physical tumor micro-environment and changing tissue stiffness. Herein, using an engineered three-dimensional (3D) model that mimics the tumor's native biomechanical environment, we characterized the changes in matrix stiffness caused by six patient-specific colorectal CAF populations. After 21 days of culture, atomic force microscopy (AFM) was performed to precisely measure the local changes in tissue stiffness. Each CAF population exhibited heterogeneity in remodeling capabilities, with some patient-derived cells stiffening the matrix and others softening it. Tissue stiffening was mainly attributed to active contraction of the matrix by the cells, whereas the softening was due to enzymatic activity of matrix-cleaving proteins. This measured heterogeneity was lost when the CAFs were cocultured with colorectal cancer cells, as all samples significantly soften the tissue. The interplay between cancer cells and CAFs was critical as it altered any heterogeneity exhibited by CAFs alone.
Collapse
Affiliation(s)
- Auxtine Micalet
- UCL Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK
- Department of Mechanical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Anuja Upadhyay
- UCL Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, Gower Street, London WC1E 6BT, UK
- 199 Biotechnologies Ltd, Gloucester Road, London W2 6LD, UK
| | - Umber Cheema
- UCL Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London W1W 7TS, UK
| |
Collapse
|
17
|
Chapman M, Rajagopal V, Stewart A, Collins DJ. Critical review of single-cell mechanotyping approaches for biomedical applications. LAB ON A CHIP 2024; 24:3036-3063. [PMID: 38804123 DOI: 10.1039/d3lc00978e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Accurate mechanical measurements of cells has the potential to improve diagnostics, therapeutics and advance understanding of disease mechanisms, where high-resolution mechanical information can be measured by deforming individual cells. Here we evaluate recently developed techniques for measuring cell-scale stiffness properties; while many such techniques have been developed, much of the work examining single-cell stiffness is impacted by difficulties in standardization and comparability, giving rise to large variations in reported mechanical moduli. We highlight the role of underlying mechanical theories driving this variability, and note opportunities to develop novel mechanotyping devices and theoretical models that facilitate convenient and accurate mechanical characterisation. Moreover, many high-throughput approaches are confounded by factors including cell size, surface friction, natural population heterogeneity and convolution of elastic and viscous contributions to cell deformability. We nevertheless identify key approaches based on deformability cytometry as a promising direction for further development, where both high-throughput and accurate single-cell resolutions can be realized.
Collapse
Affiliation(s)
- Max Chapman
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Alastair Stewart
- ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
- Graeme Clarke Institute University of Melbourne Parkville, Victoria 3052, Australia
| |
Collapse
|
18
|
Gorlov IP, Gorlova OY, Tsavachidis S, Amos CI. Strength of selection in lung tumors correlates with clinical features better than tumor mutation burden. Sci Rep 2024; 14:12732. [PMID: 38831004 PMCID: PMC11148192 DOI: 10.1038/s41598-024-63468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
Single nucleotide substitutions are the most common type of somatic mutations in cancer genome. The goal of this study was to use publicly available somatic mutation data to quantify negative and positive selection in individual lung tumors and test how strength of directional and absolute selection is associated with clinical features. The analysis found a significant variation in strength of selection (both negative and positive) among tumors, with median selection tending to be negative even though tumors with strong positive selection also exist. Strength of selection estimated as the density of missense mutations relative to the density of silent mutations showed only a weak correlation with tumor mutation burden. In the "all histology together" analysis we found that absolute strength of selection was strongly correlated with all clinically relevant features analyzed. In histology-stratified analysis selection was strongest in small cell lung cancer. Selection in adenocarcinoma was somewhat higher compared to squamous cell carcinoma. The study suggests that somatic mutation- based quantifying of directional and absolute selection in individual tumors can be a useful biomarker of tumor aggressiveness.
Collapse
Affiliation(s)
- Ivan P Gorlov
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA.
| | - Olga Y Gorlova
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| | - Spyridon Tsavachidis
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| |
Collapse
|
19
|
Buruiană A, Gheban BA, Gheban-Roșca IA, Georgiu C, Crișan D, Crișan M. The Tumor Stroma of Squamous Cell Carcinoma: A Complex Environment That Fuels Cancer Progression. Cancers (Basel) 2024; 16:1727. [PMID: 38730679 PMCID: PMC11083853 DOI: 10.3390/cancers16091727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The tumor microenvironment (TME), a complex assembly of cellular and extracellular matrix (ECM) components, plays a crucial role in driving tumor progression, shaping treatment responses, and influencing metastasis. This narrative review focuses on the cutaneous squamous cell carcinoma (cSCC) tumor stroma, highlighting its key constituents and their dynamic contributions. We examine how significant changes within the cSCC ECM-specifically, alterations in fibronectin, hyaluronic acid, laminins, proteoglycans, and collagens-promote cancer progression, metastasis, and drug resistance. The cellular composition of the cSCC TME is also explored, detailing the intricate interplay of cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, pericytes, adipocytes, and various immune cell populations. These diverse players modulate tumor development, angiogenesis, and immune responses. Finally, we emphasize the TME's potential as a therapeutic target. Emerging strategies discussed in this review include harnessing the immune system (adoptive cell transfer, checkpoint blockade), hindering tumor angiogenesis, disrupting CAF activity, and manipulating ECM components. These approaches underscore the vital role that deciphering TME interactions plays in advancing cSCC therapy. Further research illuminating these complex relationships will uncover new avenues for developing more effective treatments for cSCC.
Collapse
Affiliation(s)
- Alexandra Buruiană
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Bogdan-Alexandru Gheban
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Emergency Clinical County Hospital, 400347 Cluj-Napoca, Romania
| | - Ioana-Andreea Gheban-Roșca
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400129 Cluj-Napoca, Romania;
| | - Carmen Georgiu
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Doința Crișan
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Maria Crișan
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
20
|
Cai G, Li X, Lin SS, Chen SJ, Rodgers NC, Koning KM, Bi D, Liu AP. Matrix confinement modulates 3D spheroid sorting and burst-like collective migration. Acta Biomater 2024; 179:192-206. [PMID: 38490482 PMCID: PMC11263001 DOI: 10.1016/j.actbio.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
While it is known that cells with differential adhesion tend to segregate and preferentially sort, the physical forces governing sorting and invasion in heterogeneous tumors remain poorly understood. To investigate this, we tune matrix confinement, mimicking changes in the stiffness and confinement of the tumor microenvironment, to explore how physical confinement influences individual and collective cell migration in 3D spheroids. High levels of confinement lead to cell sorting while reducing matrix confinement triggers the collective fluidization of cell motion. Cell sorting, which depends on cell-cell adhesion, is crucial to this phenomenon. Burst-like migration does not occur for spheroids that have not undergone sorting, regardless of the degree of matrix confinement. Using computational Self-Propelled Voronoi modeling, we show that spheroid sorting and invasion into the matrix depend on the balance between cell-generated forces and matrix resistance. The findings support a model where matrix confinement modulates 3D spheroid sorting and unjamming in an adhesion-dependent manner, providing insights into the mechanisms of cell sorting and migration in the primary tumor and toward distant metastatic sites. STATEMENT OF SIGNIFICANCE: The mechanical properties of the tumor microenvironment significantly influence cancer cell migration within the primary tumor, yet how these properties affect intercellular interactions in heterogeneous tumors is not well understood. By utilizing calcium and calcium chelators, we dynamically alter collagen-alginate hydrogel stiffness and investigate tumor cell behavior within co-culture spheroids in response to varying degrees of matrix confinement. High confinement is found to trigger cell sorting while reducing confinement for sorted spheroids facilitates collective cell invasion. Notably, without prior sorting, spheroids do not exhibit burst-like migration, regardless of confinement levels. This work establishes that matrix confinement and intercellular adhesion regulate 3D spheroid dynamics, offering insights into cellular organization and migration within the primary tumor.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Xinzhi Li
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Samuel J Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicole C Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katherine M Koning
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA.
| | - Allen P Liu
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Gayan S, Teli A, Sonawane A, Dey T. Impact of Chemotherapeutic Stress Depends on The Nature of Breast Cancer Spheroid and Induce Behavioral Plasticity to Resistant Population. Adv Biol (Weinh) 2024; 8:e2300271. [PMID: 38063815 DOI: 10.1002/adbi.202300271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/20/2023] [Indexed: 04/15/2024]
Abstract
Cellular or tumor dormancy, identified recently as one of the main reasons behind post-therapy recurrence, can be caused by diverse reasons. Chemotherapy has recently been recognized as one of such reasons. However, in-depth studies of chemotherapy-induced dormancy are lacking due to the absence of an in vitro human-relevant model tailor-made for such a scenario. This report utilized multicellular breast cancer spheroid to create a primary platform for establishing a chemotherapy-induced dormancy model. It is observed that extreme chemotherapeutic stress affects invasive and non-invasive spheroids differently. Non-invasive spheroids exhibit more resilience and maintain viability and migrational ability, while invasive spheroids display heightened susceptibility and improved tumorigenic capacity. Heterogenous spheroids exhibit increased tumorigenic capacity while show minimal survival ability. Further probing of chemotherapeutically dormant spheroids is needed to understand the molecular mechanism and identify dormancy-related markers to achieve therapeutic success in the future.
Collapse
Affiliation(s)
- Sukanya Gayan
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Abhishek Teli
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Akshay Sonawane
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Tuli Dey
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| |
Collapse
|
22
|
Massey A, Stewart J, Smith C, Parvini C, McCormick M, Do K, Cartagena-Rivera AX. Mechanical properties of human tumour tissues and their implications for cancer development. NATURE REVIEWS. PHYSICS 2024; 6:269-282. [PMID: 38706694 PMCID: PMC11066734 DOI: 10.1038/s42254-024-00707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 05/07/2024]
Abstract
The mechanical properties of cells and tissues help determine their architecture, composition and function. Alterations to these properties are associated with many diseases, including cancer. Tensional, compressive, adhesive, elastic and viscous properties of individual cells and multicellular tissues are mostly regulated by reorganization of the actomyosin and microtubule cytoskeletons and extracellular glycocalyx, which in turn drive many pathophysiological processes, including cancer progression. This Review provides an in-depth collection of quantitative data on diverse mechanical properties of living human cancer cells and tissues. Additionally, the implications of mechanical property changes for cancer development are discussed. An increased knowledge of the mechanical properties of the tumour microenvironment, as collected using biomechanical approaches capable of multi-timescale and multiparametric analyses, will provide a better understanding of the complex mechanical determinants of cancer organization and progression. This information can lead to a further understanding of resistance mechanisms to chemotherapies and immunotherapies and the metastatic cascade.
Collapse
Affiliation(s)
- Andrew Massey
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jamie Stewart
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally: Jamie Stewart, Chynna Smith
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally: Jamie Stewart, Chynna Smith
| | - Cameron Parvini
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Moira McCormick
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kun Do
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Alexander X. Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
24
|
Kalli M, Stylianopoulos T. Toward innovative approaches for exploring the mechanically regulated tumor-immune microenvironment. APL Bioeng 2024; 8:011501. [PMID: 38390314 PMCID: PMC10883717 DOI: 10.1063/5.0183302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Within the complex tumor microenvironment, cells experience mechanical cues-such as extracellular matrix stiffening and elevation of solid stress, interstitial fluid pressure, and fluid shear stress-that significantly impact cancer cell behavior and immune responses. Recognizing the significance of these mechanical cues not only sheds light on cancer progression but also holds promise for identifying potential biomarkers that would predict therapeutic outcomes. However, standardizing methods for studying how mechanical cues affect tumor progression is challenging. This challenge stems from the limitations of traditional in vitro cell culture systems, which fail to encompass the critical contextual cues present in vivo. To address this, 3D tumor spheroids have been established as a preferred model, more closely mimicking cancer progression, but they usually lack reproduction of the mechanical microenvironment encountered in actual solid tumors. Here, we review the role of mechanical forces in modulating tumor- and immune-cell responses and discuss how grasping the importance of these mechanical cues could revolutionize in vitro tumor tissue engineering. The creation of more physiologically relevant environments that better replicate in vivo conditions will eventually increase the efficacy of currently available treatments, including immunotherapies.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
25
|
Cai G, Li X, Lin SS, Chen SJ, Rodgers NC, Koning KM, Bi D, Liu AP. Matrix confinement modulates 3D spheroid sorting and burst-like collective migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.549940. [PMID: 37546827 PMCID: PMC10401934 DOI: 10.1101/2023.07.23.549940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
While it is known that cells with differential adhesion tend to segregate and preferentially sort, the physical forces governing sorting and invasion in heterogeneous tumors remain poorly understood. To investigate this, we tune matrix confinement, mimicking changes in the stiffness and confinement of the tumor microenvironment, to explore how physical confinement influences individual and collective cell migration in 3D spheroids. High levels of confinement lead to cell sorting while reducing matrix confinement triggers the collective fluidization of cell motion. Cell sorting, which depends on cell-cell adhesion, is crucial to this phenomenon. Burst-like migration does not occur for spheroids that have not undergone sorting, regardless of the degree of matrix confinement. Using computational Self-Propelled Voronoi modeling, we show that spheroid sorting and invasion into the matrix depend on the balance between cell-generated forces and matrix resistance. The findings support a model where matrix confinement modulates 3D spheroid sorting and unjamming in an adhesion-dependent manner, providing insights into the mechanisms of cell sorting and migration in the primary tumor and toward distant metastatic sites.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Xinzhi Li
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Samuel J. Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicole C. Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katherine M. Koning
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Allen P. Liu
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Mierke CT. Phenotypic Heterogeneity, Bidirectionality, Universal Cues, Plasticity, Mechanics, and the Tumor Microenvironment Drive Cancer Metastasis. Biomolecules 2024; 14:184. [PMID: 38397421 PMCID: PMC10887446 DOI: 10.3390/biom14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor diseases become a huge problem when they embark on a path that advances to malignancy, such as the process of metastasis. Cancer metastasis has been thoroughly investigated from a biological perspective in the past, whereas it has still been less explored from a physical perspective. Until now, the intraluminal pathway of cancer metastasis has received the most attention, while the interaction of cancer cells with macrophages has received little attention. Apart from the biochemical characteristics, tumor treatments also rely on the tumor microenvironment, which is recognized to be immunosuppressive and, as has recently been found, mechanically stimulates cancer cells and thus alters their functions. The review article highlights the interaction of cancer cells with other cells in the vascular metastatic route and discusses the impact of this intercellular interplay on the mechanical characteristics and subsequently on the functionality of cancer cells. For instance, macrophages can guide cancer cells on their intravascular route of cancer metastasis, whereby they can help to circumvent the adverse conditions within blood or lymphatic vessels. Macrophages induce microchannel tunneling that can possibly avoid mechanical forces during extra- and intravasation and reduce the forces within the vascular lumen due to vascular flow. The review article highlights the vascular route of cancer metastasis and discusses the key players in this traditional route. Moreover, the effects of flows during the process of metastasis are presented, and the effects of the microenvironment, such as mechanical influences, are characterized. Finally, the increased knowledge of cancer metastasis opens up new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
27
|
Van Stiphout CM, Kelly G, Pallegar NK, Elbakry E, Vilchis-Celis AV, Christian SL, Viloria-Petit AM. Identification of lysyl oxidase as an adipocyte-secreted mediator that promotes a partial mesenchymal-to-epithelial transition in MDA-MB-231 cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1-19. [PMID: 38468823 PMCID: PMC10927314 DOI: 10.37349/etat.2024.00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 03/13/2024] Open
Abstract
Aim Breast cancer (BC) is the most common cancer in women worldwide, where adiposity has been linked to BC morbidity. In general, obese premenopausal women diagnosed with triple-negative BC (TNBC) tend to have larger tumours with more metastases, particularly to the bone marrow, and worse prognosis. Previous work using a 3-dimensional (3D) co-culture system consisting of TNBC cells, adipocytes and the laminin-rich extracellular matrix (ECM) trademarked as Matrigel, demonstrated that adipocytes and adipocyte-derived conditioned media (CM) caused a partial mesenchymal-to-epithelial transition (MET). Given that MET has been associated with secondary tumour formation, this study sought to identify molecular mediators responsible for this phenotypic change. Methods Adipocytes were cultured with and without Matrigel, where semi-quantitative proteomics was used to identify proteins whose presence in the CM was induced or enhanced by Matrigel, which were referred to as adipocyte-secreted ECM-induced proteins (AEPs). The AEPs identified were assessed for association with prognosis in published proteomic datasets and prior literature. Of these, 4 were evaluated by the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), followed by a functional and MET marker analysis of 1 AEP on MDA-MB-231 cells grown on Matrigel or as monolayers. Results The 4 AEPs showed a positive correlation between protein expression and poor prognosis. RT-qPCR analysis reported no significant change in AEPs mRNA expression. However, lysyl oxidase (LOX) was increased in CM of ECM-exposed adipocytes. Recombinant LOX (rLOX) caused the mesenchymal MDA-MB-231 TNBC cells to form less branched 3D structures and reduced the expression of vimentin. Conclusions The data suggest that adipocyte-secreted LOX changes the mesenchymal phenotype of BC cells in a manner that could promote secondary tumour formation, particularly at sites high in adipocytes such as the bone marrow. Future efforts should focus on determining whether targeting LOX could reduce BC metastasis in obese individuals.
Collapse
Affiliation(s)
- Cassidy M. Van Stiphout
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Grant Kelly
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Nikitha K. Pallegar
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
| | - Eman Elbakry
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
| | - Ana Valeria Vilchis-Celis
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Morphology, National Polytechnic Institute, Mexico City, CDMX 07738, Mexico
| | - Sherri L. Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Alicia M. Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
28
|
Sun Y, Lu Z, Taylor JA, Au JLS. Quantitative image analysis of intracellular protein translocation in 3-dimensional tissues for pharmacodynamic studies of immunogenic cell death. J Control Release 2024; 365:89-100. [PMID: 37981052 PMCID: PMC11078532 DOI: 10.1016/j.jconrel.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
A recent development in cancer chemotherapy is to use cytotoxics to induce tumor-specific immune response through immunogenic cell death (ICD). In ICD, calreticulin is translocated from endoplasmic reticulum to cell membrane (ecto-CRT) which serves as the 'eat-me-signal' to antigen-presenting cells. Ecto-CRT measurements, e.g., by ecto-CRT immunostaining plus flow cytometry, can be used to study the pharmacodynamics of ICD in single cells, whereas ICD studies in intact 3-dimensional tissues such as human tumors require different approaches. The present study described a method that used (a) immunostaining with fluorescent antibodies followed by confocal microscopy to obtain the spatial locations of two molecules-of-interest (CRT and a marker protein WGA), and (b) machine-learning (trainable WEKA segmentation) and additional image processing tools to locate the target molecules, remove the interfering signals in the nucleus, cytosol and extracellular space, enable the distinction of the inner and outer edges of the cell membrane and thereby identify the cells with ecto-CRT. This method, when applied to 3-dimensional human bladder cancer cell spheroids, yielded drug-induced ecto-CRT measurements that were qualitatively comparable to the flow cytometry results obtained with single cells disaggregated from spheroids. This new method was applied to study drug-induced ICD in short-term cultures of surgical specimens of human patient bladder tumors.
Collapse
Affiliation(s)
- Yajing Sun
- Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, OK 73117, United States of America
| | - Ze Lu
- Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, United States of America; Optimum Therapeutics LLC, Carlsbad, CA 92008, United States of America
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Jessie L S Au
- Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, OK 73117, United States of America; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, United States of America; Optimum Therapeutics LLC, Carlsbad, CA 92008, United States of America; College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
29
|
Cassani M, Fernandes S, Oliver‐De La Cruz J, Durikova H, Vrbsky J, Patočka M, Hegrova V, Klimovic S, Pribyl J, Debellis D, Skladal P, Cavalieri F, Caruso F, Forte G. YAP Signaling Regulates the Cellular Uptake and Therapeutic Effect of Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302965. [PMID: 37946710 PMCID: PMC10787066 DOI: 10.1002/advs.202302965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Interactions between living cells and nanoparticles are extensively studied to enhance the delivery of therapeutics. Nanoparticles size, shape, stiffness, and surface charge are regarded as the main features able to control the fate of cell-nanoparticle interactions. However, the clinical translation of nanotherapies has so far been limited, and there is a need to better understand the biology of cell-nanoparticle interactions. This study investigates the role of cellular mechanosensitive components in cell-nanoparticle interactions. It is demonstrated that the genetic and pharmacologic inhibition of yes-associated protein (YAP), a key component of cancer cell mechanosensing apparatus and Hippo pathway effector, improves nanoparticle internalization in triple-negative breast cancer cells regardless of nanoparticle properties or substrate characteristics. This process occurs through YAP-dependent regulation of endocytic pathways, cell mechanics, and membrane organization. Hence, the study proposes targeting YAP may sensitize triple-negative breast cancer cells to chemotherapy and increase the selectivity of nanotherapy.
Collapse
Affiliation(s)
- Marco Cassani
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Soraia Fernandes
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Jorge Oliver‐De La Cruz
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute for Science and Technology (BIST)BarcelonaSpain
| | - Helena Durikova
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
| | - Jan Vrbsky
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
| | - Marek Patočka
- NenoVisionPurkynova 649/127Brno61200Czech Republic
- Faculty of Mechanical EngineeringBrno University of TechnologyTechnicka 2896/2Brno61669Czech Republic
| | | | - Simon Klimovic
- Department of Bioanalytical InstrumentationCEITEC Masaryk UniversityBrno60200Czech Republic
| | - Jan Pribyl
- Department of Bioanalytical InstrumentationCEITEC Masaryk UniversityBrno60200Czech Republic
| | - Doriana Debellis
- Electron Microscopy FacilityFondazione Istituto Italiano Di TecnologiaVia Morego 30Genoa16163Italy
| | - Petr Skladal
- Department of Bioanalytical InstrumentationCEITEC Masaryk UniversityBrno60200Czech Republic
| | - Francesca Cavalieri
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- School of ScienceRMIT UniversityMelbourne3000VictoriaAustralia
- Dipartimento di Scienze e Tecnologie ChimicheUniversità di Roma “Tor Vergata”Via Della Ricerca ScientificaRome00133Italy
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Giancarlo Forte
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| |
Collapse
|
30
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
31
|
Hertaeg MJ, Fielding SM, Bi D. Discontinuous Shear Thickening in Biological Tissue Rheology. PHYSICAL REVIEW. X 2024; 14:011027. [PMID: 38994232 PMCID: PMC11238743 DOI: 10.1103/physrevx.14.011027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
During embryonic morphogenesis, tissues undergo dramatic deformations in order to form functional organs. Similarly, in adult animals, living cells and tissues are continually subjected to forces and deformations. Therefore, the success of embryonic development and the proper maintenance of physiological functions rely on the ability of cells to withstand mechanical stresses as well as their ability to flow in a collective manner. During these events, mechanical perturbations can originate from active processes at the single-cell level, competing with external stresses exerted by surrounding tissues and organs. However, the study of tissue mechanics has been somewhat limited to either the response to external forces or to intrinsic ones. In this work, we use an active vertex model of a 2D confluent tissue to study the interplay of external deformations that are applied globally to a tissue with internal active stresses that arise locally at the cellular level due to cell motility. We elucidate, in particular, the way in which this interplay between globally external and locally internal active driving determines the emergent mechanical properties of the tissue as a whole. For a tissue in the vicinity of a solid-fluid jamming or unjamming transition, we uncover a host of fascinating rheological phenomena, including yielding, shear thinning, continuous shear thickening, and discontinuous shear thickening. These model predictions provide a framework for understanding the recently observed nonlinear rheological behaviors in vivo.
Collapse
Affiliation(s)
- Michael J Hertaeg
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Suzanne M Fielding
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Dapeng Bi
- Department of Physics, Northeastern University, Massachusetts 02115, USA
| |
Collapse
|
32
|
Crandell P, Stowers R. Spatial and Temporal Control of 3D Hydrogel Viscoelasticity through Phototuning. ACS Biomater Sci Eng 2023; 9:6860-6869. [PMID: 38019272 PMCID: PMC10716813 DOI: 10.1021/acsbiomaterials.3c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
The mechanical properties of the extracellular environment can regulate a variety of cellular functions, such as spreading, migration, proliferation, and even differentiation and phenotypic determination. Much effort has been directed at understanding the effects of the extracellular matrix (ECM) elastic modulus and, more recently, stress relaxation on cellular processes. In physiological contexts such as development, wound healing, and fibrotic disease progression, ECM mechanical properties change substantially over time or space. Dynamically tunable hydrogel platforms have been developed to spatiotemporally modulate a gel's elastic modulus. However, dynamically altering the stress relaxation rate of a hydrogel remains a challenge. Here, we present a strategy to tune hydrogel stress relaxation rates in time or space using a light-triggered tethering of poly(ethylene glycol) to alginate. We show that the stress relaxation rate can be tuned without altering the elastic modulus of the hydrogel. We found that cells are capable of sensing and responding to dynamic stress relaxation rate changes, both morphologically and through differences in proliferation rates. We also exploited the light-based technique to generate spatial patterns of stress relaxation rates in 3D hydrogels. We anticipate that user-directed control of the 3D hydrogel stress relaxation rate will be a powerful tool that enables studies that mimic dynamic ECM contexts or as a means to guide cell fate in space and time for tissue engineering applications.
Collapse
Affiliation(s)
- Philip Crandell
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93016, United States
| | - Ryan Stowers
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93016, United States
- Biological
Engineering Program, University of California,
Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
33
|
Jadav N, Velamoor S, Huang D, Cassin L, Hazelton N, Eruera AR, Burga LN, Bostina M. Beyond the surface: Investigation of tumorsphere morphology using volume electron microscopy. J Struct Biol 2023; 215:108035. [PMID: 37805154 DOI: 10.1016/j.jsb.2023.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The advent of volume electron microscopy (vEM) has provided unprecedented insights into cellular and subcellular organization, revolutionizing our understanding of cancer biology. This study presents a previously unexplored comparative analysis of the ultrastructural disparities between cancer cells cultured as monolayers and tumorspheres. By integrating a robust workflow that incorporates high-pressure freezing followed by freeze substitution (HPF/FS), serial block face scanning electron microscopy (SBF-SEM), manual and deep learning-based segmentation, and statistical analysis, we have successfully generated three-dimensional (3D) reconstructions of monolayer and tumorsphere cells, including their subcellular organelles. Our findings reveal a significant degree of variation in cellular morphology in tumorspheres. We observed the increased prevalence of nuclear envelope invaginations in tumorsphere cells compared to monolayers. Furthermore, we detected a diverse range of mitochondrial morphologies exclusively in tumorsphere cells, as well as intricate cellular interconnectivity within the tumorsphere architecture. These remarkable ultrastructural differences emphasize the use of tumorspheres as a superior model for cancer research due to their relevance to in vivo conditions. Our results strongly advocate for the utilization of tumorsphere cells in cancer research studies, enhancing the precision and relevance of experimental outcomes, and ultimately accelerating therapeutic advancements.
Collapse
Affiliation(s)
- Nickhil Jadav
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sailakshmi Velamoor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Daniel Huang
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Léna Cassin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Niki Hazelton
- Otago Micro and Nano Imaging (OMNI) Electron Microscopy Suite, University of Otago, Dunedin, New Zealand
| | - Alice-Roza Eruera
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; Otago Micro and Nano Imaging (OMNI) Electron Microscopy Suite, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
34
|
Nan J, Roychowdhury S, Randles A. Investigating the Influence of Heterogeneity Within Cell Types on Microvessel Network Transport. Cell Mol Bioeng 2023; 16:497-507. [PMID: 38099216 PMCID: PMC10716099 DOI: 10.1007/s12195-023-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Background Current research on the biophysics of circulating tumor cells often overlooks the heterogeneity of cell populations, focusing instead on average cellular properties. This study aims to address the gap by considering the diversity of cell biophysical characteristics and their implications on cancer spread. Methods We utilized computer simulations to assess the influence of variations in cell size and membrane elasticity on the behavior of cells within fluid environments. The study controlled cell and fluid properties to systematically investigate the transport of tumor cells through a simulated network of branching channels. Results The simulations revealed that even minor differences in cellular properties, such as slight changes in cell radius or shear elastic modulus, lead to significant changes in the fluid conditions that cells experience, including velocity and wall shear stress (p < 0.001). Conclusion The findings underscore the importance of considering cell heterogeneity in biophysical studies and suggest that small variations in cellular characteristics can profoundly impact the dynamics of tumor cell circulation. This has potential implications for understanding the mechanisms of cancer metastasis and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Junyu Nan
- Department of Biomedical Engineering, Duke University, Durham, USA
| | | | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, USA
| |
Collapse
|
35
|
Faviana P, Boldrini L, Gronchi L, Galli L, Erba P, Gentile C, Lippolis PV, Marchetti E, Di Stefano I, Sammarco E, Chapman AD, Bardi M. Steroid Hormones as Modulators of Emotional Regulation in Male Urogenital Cancers. Int J Behav Med 2023; 30:836-848. [PMID: 36459332 PMCID: PMC10713796 DOI: 10.1007/s12529-022-10139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Tumors develop within an organism operating in a specific social and physical environment. Cortisol and dehydroepiandrosterone (DHEA), two of the most abundant steroid hormones in humans, are involved in both emotional regulation and the tumor progression. Several studies reported preclinical findings that DHEA can have preventive and therapeutic efficacy in treating major age-associated diseases, including cancer, although the mechanisms of action are not yet defined. The main aim of current study was to investigate the relationship between psychological and physiological emotional regulation and cancer development. METHOD This study assessed the quality of life of urogenital cancer male patients using several validated tools, including the Functional Assessment of Cancer Therapy-General and the Profile of Mood States. Saliva samples were collected to monitor peripheral activity of both cortisol and DHEA. It was hypothesized that patients with a better quality of life would have higher levels of the DHEA/cortisol ratios. RESULTS We found that the quality of life was positively related to DHEA, but not cortisol levels. Negative mood increases were related to lower levels of DHEA. Logistic regression of the predictors of metastases indicated three main independent factors involved: DHEA, age, and cortisol. In other words, the higher the DHEA levels in comparison to cortisol levels, controlling for age, the lower the probability of metastases. CONCLUSION Our results appear to support the hypothesis that emotional dysregulation mediated by DHEA/cortisol activity is a key factor in the probability of metastasis in urogenital cancers.
Collapse
Affiliation(s)
- Pinuccia Faviana
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Roma, 57, Pisa, Italy.
| | - Laura Boldrini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Roma, 57, Pisa, Italy
| | - Lisa Gronchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 57, Pisa, Italy
| | - Luca Galli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 57, Pisa, Italy
| | - Paola Erba
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 57, Pisa, Italy
| | - Carlo Gentile
- Istituto Europeo Di Oncologia, Via Ripamonti 435, I-20132, Milan, Italy
| | | | - Elio Marchetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Roma, 57, Pisa, Italy
| | - Iosè Di Stefano
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Roma, 57, Pisa, Italy
| | - Enrico Sammarco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 57, Pisa, Italy
| | - Alex D Chapman
- Department of Psychology and Neuroscience, Randolph-Macon College, Ashland, VA, 23005, USA
| | - Massimo Bardi
- Department of Psychology and Neuroscience, Randolph-Macon College, Ashland, VA, 23005, USA
| |
Collapse
|
36
|
Pruchniewski M, Sawosz E, Sosnowska-Ławnicka M, Ostrowska A, Łojkowski M, Koczoń P, Nakielski P, Kutwin M, Jaworski S, Strojny-Cieślak B. Nanostructured graphene oxide enriched with metallic nanoparticles as a biointerface to enhance cell adhesion through mechanosensory modifications. NANOSCALE 2023; 15:18639-18659. [PMID: 37975795 DOI: 10.1039/d3nr03581f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nanostructuring is a process involving surface manipulation at the nanometric level, which improves the mechanical and biological properties of biomaterials. Specifically, it affects the mechanotransductive perception of the microenvironment of cells. Mechanical force conversion into an electrical or chemical signal contributes to the induction of a specific cellular response. The relationship between the cells and growth surface induces a biointerface-modifying cytophysiology and consequently a therapeutic effect. In this study, we present the fabrication of graphene oxide (GO)-based nanofilms decorated with metallic nanoparticles (NPs) as potential coatings for biomaterials. Our investigation showed the effect of decorating GO with metallic NPs for the modification of the physicochemical properties of nanostructures in the form of nanoflakes and nanofilms. A comprehensive biocompatibility screening panel revealed no disturbance in the metabolic activity of human fibroblasts (HFFF2) and bone marrow stroma cells (HS-5) cultivated on the GO nanofilms decorated with gold and copper NPs, whereas a significant cytotoxic effect of the GO nanocomplex decorated with silver NPs was demonstrated. The GO nanofilm decorated with gold NPs beneficially managed early cell adhesion as a result of the transient upregulation of α1β5 integrin expression, acceleration of cellspreading, and formation of elongated filopodia. Additionally, the cells, sensing the substrate derived from the nanocomplex enriched with gold NPs, showed reduced elasticity and altered levels of vimentin expression. In the future, GO nanocomplexes decorated with gold NPs can be incorporated in the structure of architecturally designed biomimetic biomaterials as biocompatible nanostructuring agents with proadhesive properties.
Collapse
Affiliation(s)
- Michał Pruchniewski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Malwina Sosnowska-Ławnicka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Maciej Łojkowski
- Faculty of Material Sciences and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Barbara Strojny-Cieślak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
37
|
Kumari A, Veena SM, Luha R, Tijore A. Mechanobiological Strategies to Augment Cancer Treatment. ACS OMEGA 2023; 8:42072-42085. [PMID: 38024751 PMCID: PMC10652740 DOI: 10.1021/acsomega.3c06451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Cancer cells exhibit aberrant extracellular matrix mechanosensing due to the altered expression of mechanosensory cytoskeletal proteins. Such aberrant mechanosensing of the tumor microenvironment (TME) by cancer cells is associated with disease development and progression. In addition, recent studies show that such mechanosensing changes the mechanobiological properties of cells, and in turn cells become susceptible to mechanical perturbations. Due to an increasing understanding of cell biomechanics and cellular machinery, several approaches have emerged to target the mechanobiological properties of cancer cells and cancer-associated cells to inhibit cancer growth and progression. In this Perspective, we summarize the progress in developing mechano-based approaches to target cancer by interfering with the cellular mechanosensing machinery and overall TME.
Collapse
Affiliation(s)
| | | | | | - Ajay Tijore
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
38
|
Yu TY, Zhang G, Chai XX, Ren L, Yin DC, Zhang CY. Recent progress on the effect of extracellular matrix on occurrence and progression of breast cancer. Life Sci 2023; 332:122084. [PMID: 37716504 DOI: 10.1016/j.lfs.2023.122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer (BC) metastasis is an enormous challenge targeting BC therapy. The extracellular matrix (ECM), the principal component of the BC metastasis niche, is the pivotal driver of breast tumor development, whose biochemical and biophysical characteristics have attracted widespread attention. Here, we review the biological effects of ECM constituents and the influence of ECM stiffness on BC metastasis and drug resistance. We provide an overview of the relative signal transduction mechanisms, existing metastasis models, and targeted drug strategies centered around ECM stiffness. It will shed light on exploring more underlying targets and developing specific drugs aimed at ECM utilizing biomimetic platforms, which are promising for breast cancer treatment.
Collapse
Affiliation(s)
- Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Li Ren
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| |
Collapse
|
39
|
Kalli M, Poskus MD, Stylianopoulos T, Zervantonakis IK. Beyond matrix stiffness: targeting force-induced cancer drug resistance. Trends Cancer 2023; 9:937-954. [PMID: 37558577 PMCID: PMC10592424 DOI: 10.1016/j.trecan.2023.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
During tumor progression, mechanical abnormalities in the tumor microenvironment (TME) trigger signaling pathways in cells that activate cellular programs, resulting in tumor growth and drug resistance. In this review, we describe mechanisms of action for anti-cancer therapies and mechanotransduction programs that regulate cellular processes, including cell proliferation, apoptosis, survival and phenotype switching. We discuss how the therapeutic response is impacted by the three main mechanical TME abnormalities: high extracellular matrix (ECM) composition and stiffness; interstitial fluid pressure (IFP); and elevated mechanical forces. We also review drugs that normalize these abnormalities or block mechanosensors and mechanotransduction pathways. Finally, we discuss current challenges and perspectives for the development of new strategies targeting mechanically induced drug resistance in the clinic.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Matthew D Poskus
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | | |
Collapse
|
40
|
Cleri F, Giordano S, Blossey R. Nucleosome Array Deformation in Chromatin is Sustained by Bending, Twisting and Kinking of Linker DNA. J Mol Biol 2023; 435:168263. [PMID: 37678705 DOI: 10.1016/j.jmb.2023.168263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Chromatin in the nucleus undergoes mechanical stresses from different sources during the various stages of cell life. Here a trinucleosome array is used as the minimal model to study the mechanical response to applied stress at the molecular level. By using large-scale, all-atom steered-molecular dynamics simulations, we show that the largest part of mechanical stress in compression is accommodated by the DNA linkers joining pairs of nucleosomes, which store the elastic energy accumulated by the applied force. Different mechanical instabilities (Euler bending, Brazier kinking, twist-bending) can deform the DNA canonical structure, as a function of the increasing force load. An important role of the histone tails in assisting the DNA deformation is highlighted. The overall response of the smallest chromatin fragment to compressive stress leaves the nucleosome assembly with a substantial plastic deformation and localised defects, which can have a potential impact on DNA transcription, downstream signaling pathways, the regulation of gene expression, and DNA repair.
Collapse
Affiliation(s)
- Fabrizio Cleri
- Université de Lille, Institut d'Electronique Microelectronique et Nanotechnologie (IEMN CNRS UMR8520) and Département de Physique, 59652 Villeneuve d'Ascq, France.
| | - Stefano Giordano
- University of Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Électronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France
| | - Ralf Blossey
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
41
|
Tajaldini M, Poorkhani A, Amiriani T, Amiriani A, Javid H, Aref P, Ahmadi F, Sadani S, Khori V. Strategy of targeting the tumor microenvironment via inhibition of fibroblast/fibrosis remodeling new era to cancer chemo-immunotherapy resistance. Eur J Pharmacol 2023; 957:175991. [PMID: 37619785 DOI: 10.1016/j.ejphar.2023.175991] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The use of repurposing drugs that may have neoplastic and anticancer effects increases the efficiency and decrease resistance to chemotherapy drugs through a biochemical and mechanical transduction mechanisms through modulation of fibroblast/fibrosis remodeling in tumor microenvironment (TME). Interestingly, fibroblast/fibrosis remodeling plays a vital role in mediating cancer metastasis and drug resistance after immune chemotherapy. The most essential hypothesis for induction of chemo-immunotherapy resistance is via activation of fibroblast/fibrosis remodeling and preventing the infiltration of T cells after is mainly due to the interference between cytoskeleton, mechanical, biochemical, metabolic, vascular, and remodeling signaling pathways in TME. The structural components of the tumor that can be targeted in the fibroblast/fibrosis remodeling include the depletion of the TME components, targeting the cancer-associated fibroblasts and tumor associated macrophages, alleviating the mechanical stress within the ECM, and normalizing the blood vessels. It has also been found that during immune-chemotherapy, TME injury and fibroblast/fibrosis remodeling causes the up-regulation of inhibitory signals and down-regulation of activated signals, which results in immune escape or chemo-resistance of the tumor. In this regard, repurposing or neo-adjuvant drugs with various transduction signaling mechanisms, including anti-fibrotic effects, are used to target the TME and fibroblast/fibrosis signaling pathway such as angiotensin 2, transforming growth factor-beta, physical barriers of the TME, cytokines and metabolic factors which finally led to the reverse of the chemo-resistance. Consistent to many repurposing drugs such as pirfenidone, metformin, losartan, tranilast, dexamethasone and pentoxifylline are used to decrease immune-suppression by abrogation of TME inhibitory signal that stimulates the immune system and increases efficiency and reduces resistance to chemotherapy drugs. To overcome immunosuppression based on fibroblast/fibrosis remodeling, in this review, we focus on inhibitory signal transduction, which is the physical barrier, alleviates mechanical stress and prevents mechano-metabolic activation.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciencess, Catastega Institue of Medical Sciences, Mashhad, Iran
| | - Parham Aref
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farahnazsadat Ahmadi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Sadani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
42
|
Strelez C, Perez R, Chlystek JS, Cherry C, Yoon AY, Haliday B, Shah C, Ghaffarian K, Sun RX, Jiang H, Lau R, Schatz A, Lenz HJ, Katz JE, Mumenthaler SM. Integration of Patient-Derived Organoids and Organ-on-Chip Systems: Investigating Colorectal Cancer Invasion within the Mechanical and GABAergic Tumor Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557797. [PMID: 37745376 PMCID: PMC10515884 DOI: 10.1101/2023.09.14.557797] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Three-dimensional (3D) in vitro models are essential in cancer research, but they often neglect physical forces. In our study, we combined patient-derived tumor organoids with a microfluidic organ-on-chip system to investigate colorectal cancer (CRC) invasion in the tumor microenvironment (TME). This allowed us to create patient-specific tumor models and assess the impact of physical forces on cancer biology. Our findings showed that the organoid-on-chip models more closely resembled patient tumors at the transcriptional level, surpassing organoids alone. Using 'omics' methods and live-cell imaging, we observed heightened responsiveness of KRAS mutant tumors to TME mechanical forces. These tumors also utilized the γ-aminobutyric acid (GABA) neurotransmitter as an energy source, increasing their invasiveness. This bioengineered model holds promise for advancing our understanding of cancer progression and improving CRC treatments.
Collapse
Affiliation(s)
- Carly Strelez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Rachel Perez
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - John S Chlystek
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | | | - Ah Young Yoon
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Bethany Haliday
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Curran Shah
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kimya Ghaffarian
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Ren X Sun
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Hannah Jiang
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Roy Lau
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Aaron Schatz
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonathan E Katz
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, USA
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Wientjes MG, Lu Z, Chan CHF, Turaga K, Au JLS. Surgical management of peritoneal metastasis: Opportunities for pharmaceutical research. J Control Release 2023; 361:717-726. [PMID: 37574051 PMCID: PMC10560040 DOI: 10.1016/j.jconrel.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Cytoreductive surgery (CRS) has emerged as a survival-extending treatment of peritoneal metastasis (PM); recent advances include using intraperitoneal chemotherapy (IPC) at normothermic or hyperthermic temperatures, or under pressure (CRS + IPC). Clinical CRS + IPC research has established its highly variable efficacy and suggested tumor size, tumor locations and presence of ascites as potential determinants. On the other hand, there is limited knowledge on the effects of pharmaceutical properties on treatment outcomes. The present study investigated the inter-subject variability of paclitaxel binding to proteins in patient ascites because some PM patients show accumulation of ascites and because activity and transport of highly protein-bound drugs such as paclitaxel are affected by protein binding. Ascites samples were collected from 26 patients and investigated for their protein contents using LC/MS/MS proteomics analysis and for the concentrations of total proteins and two major paclitaxel-binding proteins (human serum albumin or HSA and α-1-acid glycoprotein or AAG). The association constants of paclitaxel to HSA and AAG and the extent of protein binding of paclitaxel in patient ascites were studied using equilibrium dialysis. Proteomic analysis of four randomly selected samples revealed 288 proteins, >90% of which are also present in human plasma. Between 72% - 94% of paclitaxel was bound to proteins in patient ascites. The concentrations of HSA and AAG in ascites showed substantial inter-subject variations, ranging from 14.7 - 46.3 mg/mL and 0.13-2.56 mg/mL, respectively. The respective paclitaxel association constants to commercially available HSA and AAG were ∼ 3.5 and ∼ 120 mM. Calculation using these constants and the HSA and AAG concentrations in individual patient ascites indicated that these two proteins accounted for >85% of the total protein-binding of paclitaxel in ascites. The extensive drug binding to ascites proteins, by reducing the pharmacologically active free fraction, may lead to the diminished CRS efficacy in PM patients with ascites. Clinical advances in CRS + IPC have outpaced current knowledge of pharmaceutical properties in this setting. IPC, as a locally acting therapy, is subjected to processes different from those governing systemic treatments. This study, to our knowledge, is the first to illustrate the implications of drug properties in the CRS + IPC efficacy against PM. While drugs are now an integral part of PM patient management, there is limited pharmaceutical research in this treatment setting (e.g., effects of hyperthermia or pressure on drug transport or release from delivery systems, pharmacokinetics, pharmacodynamics). Hence, CRS + IPC of PM represents an area where additional pharmaceutical research can assist further development and optimization.
Collapse
Affiliation(s)
| | - Ze Lu
- Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA
| | - Carlos H F Chan
- Department of Surgery and Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Kiran Turaga
- School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Jessie L S Au
- Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
44
|
Gil JF, Moura CS, Silverio V, Gonçalves G, Santos HA. Cancer Models on Chip: Paving the Way to Large-Scale Trial Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300692. [PMID: 37103886 DOI: 10.1002/adma.202300692] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Cancer kills millions of individuals every year all over the world (Global Cancer Observatory). The physiological and biomechanical processes underlying the tumor are still poorly understood, hindering researchers from creating new, effective therapies. Inconsistent results of preclinical research, in vivo testing, and clinical trials decrease drug approval rates. 3D tumor-on-a-chip (ToC) models integrate biomaterials, tissue engineering, fabrication of microarchitectures, and sensory and actuation systems in a single device, enabling reliable studies in fundamental oncology and pharmacology. This review includes a critical discussion about their ability to reproduce the tumor microenvironment (TME), the advantages and drawbacks of existing tumor models and architectures, major components and fabrication techniques. The focus is on current materials and micro/nanofabrication techniques used to manufacture reliable and reproducible microfluidic ToC models for large-scale trial applications.
Collapse
Affiliation(s)
- João Ferreira Gil
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
- INESC Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Carla Sofia Moura
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
- Polytechnic Institute of Coimbra, Applied Research Institute, Coimbra, 3045-093, Portugal
| | - Vania Silverio
- INESC Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- Department of Physics, Instituto Superior Técnico, Lisbon, 1049-001, Portugal
- Associate Laboratory Institute for Health and Bioeconomy - i4HB, Lisbon, Portugal
| | - Gil Gonçalves
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Aveiro, 3810-193, Portugal
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
- W.J. Korf Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
45
|
Schmitter C, Di-Luoffo M, Guillermet-Guibert J. Transducing compressive forces into cellular outputs in cancer and beyond. Life Sci Alliance 2023; 6:e202201862. [PMID: 37364915 PMCID: PMC10292664 DOI: 10.26508/lsa.202201862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
In living organisms, cells sense mechanical forces (shearing, tensile, and compressive) and respond to those physical cues through a process called mechanotransduction. This process includes the simultaneous activation of biochemical signaling pathways. Recent studies mostly on human cells revealed that compressive forces selectively modulate a wide range of cell behavior, both in compressed and in neighboring less compressed cells. Besides participating in tissue homeostasis such as bone healing, compression is also involved in pathologies, including intervertebral disc degeneration or solid cancers. In this review, we will summarize the current scattered knowledge of compression-induced cell signaling pathways and their subsequent cellular outputs, both in physiological and pathological conditions, such as solid cancers.
Collapse
Affiliation(s)
- Céline Schmitter
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse-III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Labex Toucan, Toulouse, France
- Master de Biologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Mickaël Di-Luoffo
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse-III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Labex Toucan, Toulouse, France
| | - Julie Guillermet-Guibert
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse-III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Labex Toucan, Toulouse, France
| |
Collapse
|
46
|
Pospelov AD, Kutova OM, Efremov YM, Nekrasova AA, Trushina DB, Gefter SD, Cherkasova EI, Timofeeva LB, Timashev PS, Zvyagin AV, Balalaeva IV. Breast Cancer Cell Type and Biomechanical Properties of Decellularized Mouse Organs Drives Tumor Cell Colonization. Cells 2023; 12:2030. [PMID: 37626840 PMCID: PMC10453279 DOI: 10.3390/cells12162030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tissue engineering has emerged as an indispensable tool for the reconstruction of organ-specific environments. Organ-derived extracellular matrices (ECM) and, especially, decellularized tissues (DCL) are recognized as the most successful biomaterials in regenerative medicine, as DCL preserves the most essential organ-specific ECM properties such as composition alongside biomechanics characterized by stiffness and porosity. Expansion of the DCL technology to cancer biology research, drug development, and nanomedicine is pending refinement of the existing DCL protocols whose reproducibility remains sub-optimal varying from organ to organ. We introduce a facile decellularization protocol universally applicable to murine organs, including liver, lungs, spleen, kidneys, and ovaries, with demonstrated robustness, reproducibility, high purification from cell debris, and architecture preservation, as confirmed by the histological and SEM analysis. The biomechanical properties of as-produced DCL organs expressed in terms of the local and total stiffness were measured using our facile methodology and were found well preserved in comparison with the intact organs. To demonstrate the utility of the developed DCL model to cancer research, we engineered three-dimensional tissue constructs by recellularization representative decellularized organs and collagenous hydrogel with human breast cancer cells of pronounced mesenchymal (MDA-MB-231) or epithelial (SKBR-3) phenotypes. The biomechanical properties of the DCL organs were found pivotal to determining the cancer cell fate and progression. Our histological and scanning electron microscopy (SEM) study revealed that the larger the ECM mean pore size and the smaller the total stiffness (as in lung and ovary), the more proliferative and invasive the mesenchymal cells became. At the same time, the low local stiffness ECMs (ranged 2.8-3.6 kPa) did support the epithelial-like SKBR-3 cells' viability (as in lung and spleen), while stiff ECMs did not. The total and local stiffness of the collagenous hydrogel was measured too low to sustain the proliferative potential of both cell lines. The observed cell proliferation patterns were easily interpretable in terms of the ECM biomechanical properties, such as binding sites, embedment facilities, and migration space. As such, our three-dimensional tissue engineering model is scalable and adaptable for pharmacological testing and cancer biology research of metastatic and primary tumors, including early metastatic colonization in native organ-specific ECM.
Collapse
Affiliation(s)
- Anton D. Pospelov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow 117997, Russia;
| | - Olga M. Kutova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
| | - Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov University, Moscow 117418, Russia; (Y.M.E.); (A.A.N.)
| | - Albina A. Nekrasova
- Institute for Regenerative Medicine, Sechenov University, Moscow 117418, Russia; (Y.M.E.); (A.A.N.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Daria B. Trushina
- Federal Research Center Crystallography and Photonics, Russian Academy of Sciences, Moscow 119991, Russia;
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Sofia D. Gefter
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
| | - Elena I. Cherkasova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
| | - Lidia B. Timofeeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
- Privolzhsky Research Medical University, 10/1, Minin and Pozharsky Sq., Nizhny Novgorod 603950, Russia
| | - Peter S. Timashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow 117997, Russia;
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1–3, Moscow 119991, Russia
- Laboratory of Clinical Smart Nanotechnology, Sechenov University, Moscow 117418, Russia
| | - Andrei V. Zvyagin
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119435, Russia
- Laboratory of Clinical Smart Nanotechnology, Sechenov University, Moscow 117418, Russia
| | - Irina V. Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
| |
Collapse
|
47
|
Cheng C, Deneke N, Moon HR, Choi SR, Ospina-Muñoz N, Elzey BD, Davis CS, Chiu GTC, Han B. Inkjet-printed morphogenesis of tumor-stroma interface using bi-cellular bioinks of collagen-poly(N-isopropyl acrylamide-co-methyl methacrylate) mixture. MATERIALS TODAY. ADVANCES 2023; 19:100408. [PMID: 37691883 PMCID: PMC10486313 DOI: 10.1016/j.mtadv.2023.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Recent advances in biomaterials and 3D printing/culture methods enable various tissue-engineered tumor models. However, it is still challenging to achieve native tumor-like characteristics due to lower cell density than native tissues and prolonged culture duration for maturation. Here, we report a new method to create tumoroids with a mechanically active tumor-stroma interface at extremely high cell density. This method, named "inkjet-printed morphogenesis" (iPM) of the tumor-stroma interface, is based on a hypothesis that cellular contractile force can significantly remodel the cell-laden polymer matrix to form densely-packed tissue-like constructs. Thus, differential cell-derived compaction of tumor cells and cancer-associated fibroblasts (CAFs) can be used to build a mechanically active tumor-stroma interface. In this methods, two kinds of bioinks are prepared, in which tumor cells and CAFs are suspended respectively in the mixture of collagen and poly (N-isopropyl acrylamide-co-methyl methacrylate) solution. These two cellular inks are inkjet-printed in multi-line or multi-layer patterns. As a result of cell-derived compaction, the resulting structure forms tumoroids with mechanically active tumor-stroma interface at extremely high cell density. We further test our working hypothesis that the morphogenesis can be controlled by manipulating the force balance between cellular contractile force and matrix stiffness. Furthermore, this new concept of "morphogenetic printing" is demonstrated to create more complex structures beyond current 3D bioprinting techniques.
Collapse
Affiliation(s)
- Cih Cheng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Naomi Deneke
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Hye-ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sae Rome Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Bennett D. Elzey
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Chelsea S. Davis
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - George T.-C Chiu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
48
|
Bates ME, Libring S, Reinhart-King CA. Forces exerted and transduced by cancer-associated fibroblasts during cancer progression. Biol Cell 2023; 115:e2200104. [PMID: 37224184 PMCID: PMC10757454 DOI: 10.1111/boc.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Although it is well-known that cancer-associated fibroblasts (CAFs) play a key role in regulating tumor progression, the effects of mechanical tissue changes on CAFs are understudied. Myofibroblastic CAFs (myCAFs), in particular, are known to alter tumor matrix architecture and composition, heavily influencing the mechanical forces in the tumor microenvironment (TME), but much less is known about how these mechanical changes initiate and maintain the myCAF phenotype. Additionally, recent studies have pointed to the existence of CAFs in circulating tumor cell clusters, indicating that CAFs may be subject to mechanical forces beyond the primary TME. Due to their pivotal role in cancer progression, targeting CAF mechanical regulation may provide therapeutic benefit. Here, we will discuss current knowledge and summarize existing gaps in how CAFs regulate and are regulated by matrix mechanics, including through stiffness, solid and fluid stresses, and fluid shear stress.
Collapse
Affiliation(s)
- Madison E Bates
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Sarah Libring
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
49
|
Zbiral B, Weber A, Vivanco MDM, Toca-Herrera JL. Characterization of Breast Cancer Aggressiveness by Cell Mechanics. Int J Mol Sci 2023; 24:12208. [PMID: 37569585 PMCID: PMC10418463 DOI: 10.3390/ijms241512208] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
In healthy tissues, cells are in mechanical homeostasis. During cancer progression, this equilibrium is disrupted. Cancer cells alter their mechanical phenotype to a softer and more fluid-like one than that of healthy cells. This is connected to cytoskeletal remodeling, changed adhesion properties, faster cell proliferation and increased cell motility. In this work, we investigated the mechanical properties of breast cancer cells representative of different breast cancer subtypes, using MCF-7, tamoxifen-resistant MCF-7, MCF10A and MDA-MB-231 cells. We derived viscoelastic properties from atomic force microscopy force spectroscopy measurements and showed that the mechanical properties of the cells are associated with cancer cell malignancy. MCF10A are the stiffest and least fluid-like cells, while tamoxifen-resistant MCF-7 cells are the softest ones. MCF-7 and MDA-MB-231 show an intermediate mechanical phenotype. Confocal fluorescence microscopy on cytoskeletal elements shows differences in actin network organization, as well as changes in focal adhesion localization. These findings provide further evidence of distinct changes in the mechanical properties of cancer cells compared to healthy cells and add to the present understanding of the complex alterations involved in tumorigenesis.
Collapse
Affiliation(s)
- Barbara Zbiral
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| | - Andreas Weber
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| | - Maria dM. Vivanco
- Cancer Heterogeneity Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain;
| | - José L. Toca-Herrera
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| |
Collapse
|
50
|
Lichtenberg JY, Tran S, Hwang PY. Mechanical factors driving cancer progression. Adv Cancer Res 2023; 160:61-81. [PMID: 37704291 DOI: 10.1016/bs.acr.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
A fundamental step of tumor metastasis is tumor cell migration away from the primary tumor site. One mode of migration that is essential but still understudied is collective invasion, the process by which clusters of cells move in a coordinated fashion. In recent years, there has been growing interest to understand factors regulating collective invasion, with increasing number of studies investigating the biomechanical regulation of collective invasion. In this review we discuss the dynamic relationship between tumor microenvironment cues and cell response by first covering mechanical factors in the microenvironment and second, discussing the mechanosensing pathways utilized by cells in collective clusters to dynamically respond to mechanical matrix cues. Finally, we discuss model systems that have been developed which have increased our understanding of the mechanical factors contributing to tumor progression.
Collapse
Affiliation(s)
- Jessanne Y Lichtenberg
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Sydnie Tran
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Priscilla Y Hwang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|