1
|
Rubio-Valles M, Amaro-Gahete FJ, Creasy SA, Ramos-Jiménez A, Pérez-León JA, Chávez-Guevara IA. Circadian Regulation of Fatty Acid Metabolism in Humans: Is There Evidence of an Optimal Time Window for Maximizing Fat Oxidation During Exercise? Sports Med 2024:10.1007/s40279-024-02154-6. [PMID: 39681771 DOI: 10.1007/s40279-024-02154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Exercise training performed at the intensity that elicits maximal fat oxidation improves cardiovascular function and metabolic health while simultaneously reducing visceral adipose tissue in patients with obesity and type 2 diabetes. Indeed, it is currently considered an efficient non-pharmacological approach for the prevention and treatment of cardiometabolic disorders. Over the last 5 years, several studies have reported a diurnal variation in both resting fat oxidation as well as maximal fat oxidation recorded during submaximal intensity exercise. Higher fat oxidation has been recorded during the evening in comparison with the early morning, although this has not been universally observed. If evening exercise increases fat oxidation, then this timing of exercise may be preferable for the reversal of cardiometabolic diseases. However, the physiological and molecular mechanisms behind the circadian regulation of fatty acid metabolism have not yet been fully elucidated. The present review thus aims to describe the circadian rhythmicity of several hormones, metabolites, and enzymes involved in fatty acid mobilization and oxidation. Furthermore, we discuss the relevance of circadian mitochondrial dynamics and oxidative phosphorylation to fatty acid metabolism. To conclude our discussion, we highlight those biological (e.g., age and sex) and lifestyle factors (e.g., sleep quality/disturbances or physical activity) that potentially influence the circadian regulation of fatty metabolism and which therefore should be considered for a tailored exercise prescription.
Collapse
Affiliation(s)
- Mariazel Rubio-Valles
- Department of Chemical Sciences, Institute of Biomedical Sciences, Autonomous University of Ciudad Juarez, Ciudad Juarez, Mexico
| | - Francisco J Amaro-Gahete
- Department of Physiology, Faculty of Medicine, University of Granada, 18071, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain
| | - Seth A Creasy
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, USA
| | - Arnulfo Ramos-Jiménez
- Department of Health Sciences, Institute of Biomedical Sciences, Autonomous University of Ciudad Juarez, Chihuahua, Mexico
| | - Jorge A Pérez-León
- Department of Chemical Sciences, Institute of Biomedical Sciences, Autonomous University of Ciudad Juarez, Ciudad Juarez, Mexico.
| | - Isaac A Chávez-Guevara
- Faculty of Sports Ensenada, Autonomous University of Baja California, Ensenada, Mexico.
- Laboratorio Nacional Conahcyt de Composición Corporal y Metabolismo Energético (LaNCoCoME), Tijuana, Mexico.
| |
Collapse
|
2
|
Wevers A, San Roman-Mata S, Navarro-Ledesma S, Pruimboom L. The Role of Insulin Within the Socio-Psycho-Biological Framework in Type 2 Diabetes-A Perspective from Psychoneuroimmunology. Biomedicines 2024; 12:2539. [PMID: 39595105 PMCID: PMC11591609 DOI: 10.3390/biomedicines12112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
The interplay between socio-psychological factors and biological systems is pivotal in defining human health and disease, particularly in chronic non-communicable diseases. Recent advancements in psychoneuroimmunology and mitochondrial psychobiology have emphasized the significance of psychological factors as critical determinants of disease onset, progression, recurrence, and severity. These insights align with evolutionary biology, psychology, and psychiatry, highlighting the inherent social nature of humans. This study proposes a theory that expands insulin's role beyond traditional metabolic functions, incorporating it into the Mitochondrial Information Processing System (MIPS) and exploring it from an evolutionary medicine perspective to explore its function in processing psychological and social factors into biological responses. This narrative review comprises data from preclinical animal studies, longitudinal cohort studies, cross-sectional studies, machine learning analyses, and randomized controlled trials, and investigates the role of insulin in health and disease. The result is a proposal for a theoretical framework of insulin as a social substance within the socio-psycho-biological framework, emphasizing its extensive roles in health and disease. Type 2 Diabetes Mellitus (T2DM) with musculoskeletal disorders and neurodegeneration exemplifies this narrative. We suggest further research towards a comprehensive treatment protocol meeting evolutionary expectations, where incorporating psychosocial interventions plays an essential role. By supporting the concept of 'insulin resilience' and suggesting the use of heart rate variability to assess insulin resilience, we aim to provide an integrative approach to managing insulin levels and monitoring the effectiveness of interventions. This integrative strategy addresses broader socio-psychological factors, ultimately improving health outcomes for individuals with T2DM and musculoskeletal complications and neurodegeneration while providing new insights into the interplay between socio-psychological factors and biological systems in chronic diseases.
Collapse
Affiliation(s)
- Anne Wevers
- Clinical Medicine and Public Health PhD Program, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain;
| | - Silvia San Roman-Mata
- Department of Nursing, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain;
| | - Santiago Navarro-Ledesma
- Department of Physical Therapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| | - Leo Pruimboom
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| |
Collapse
|
3
|
Kaur S, Khullar N, Navik U, Bali A, Bhatti GK, Bhatti JS. Multifaceted role of dynamin-related protein 1 in cardiovascular disease: From mitochondrial fission to therapeutic interventions. Mitochondrion 2024; 78:101904. [PMID: 38763184 DOI: 10.1016/j.mito.2024.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Mitochondria are central to cellular energy production and metabolic regulation, particularly in cardiomyocytes. These organelles constantly undergo cycles of fusion and fission, orchestrated by key proteins like Dynamin-related Protein 1 (Drp-1). This review focuses on the intricate roles of Drp-1 in regulating mitochondrial dynamics, its implications in cardiovascular health, and particularly in myocardial infarction. Drp-1 is not merely a mediator of mitochondrial fission; it also plays pivotal roles in autophagy, mitophagy, apoptosis, and necrosis in cardiac cells. This multifaceted functionality is often modulated through various post-translational alterations, and Drp-1's interaction with intracellular calcium (Ca2 + ) adds another layer of complexity. We also explore the pathological consequences of Drp-1 dysregulation, including increased reactive oxygen species (ROS) production and endothelial dysfunction. Furthermore, this review delves into the potential therapeutic interventions targeting Drp-1 to modulate mitochondrial dynamics and improve cardiovascular outcomes. We highlight recent findings on the interaction between Drp-1 and sirtuin-3 and suggest that understanding this interaction may open new avenues for therapeutically modulating endothelial cells, fibroblasts, and cardiomyocytes. As the cardiovascular system increasingly becomes the focal point of aging and chronic disease research, understanding the nuances of Drp-1's functionality can lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda India.
| |
Collapse
|
4
|
Koh YC, Yao CH, Lee PS, Nagabhushanam K, Ho CT, Pan MH. Hepatoprotective effect of dietary pterostilbene against high-fat-diet-induced lipid accumulation exacerbated by chronic jet lag via SIRT1 and SIRT3 activation. Phytother Res 2024; 38:4099-4113. [PMID: 38899498 DOI: 10.1002/ptr.8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Hepatic lipid metabolism is modulated by the circadian rhythm; therefore, circadian disruption may promote obesity and hepatic lipid accumulation. This study aims to investigate dietary pterostilbene (PSB) 's protective effect against high-fat-diet (HFD)-induced lipid accumulation exacerbated by chronic jet lag and the potential role of gut microbiota therein. Mice were treated with a HFD and chronic jet lag for 14 weeks. The experimental group was supplemented with 0.25% (w/w) PSB in its diet to evaluate whether PSB had a beneficial effect. Our study found that chronic jet lag exacerbates HFD-induced obesity and hepatic lipid accumulation, but these adverse effects were significantly mitigated by PSB supplementation. Specifically, PSB promoted hepatic lipolysis and β-oxidation by upregulating SIRT1 expression, which indirectly reduced oxidative stress caused by lipid accumulation. Additionally, the PSB-induced elevation of SIRT1 and SIRT3 expression helped prevent excessive autophagy and mitochondrial fission by activating Nrf2-mediated antioxidant enzymes. The result was evidenced by the use of SIRT1 and SIRT3 inhibitors in in vitro studies, which demonstrated that activation of SIRT1 and SIRT3 by PSB is crucial for the translocation of PGC-1α and Nrf2, respectively. Moreover, the analysis of gut microbiota suggested that PSB's beneficial effects were partly due to its positive modulation of gut microbial composition and functionality. The findings of this study suggest the potential of dietary PSB as a candidate to improve hepatic lipid metabolism via several mechanisms. It may be developed as a treatment adjuvant in the future.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan
| | - Ching-Hui Yao
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan
| | - Pei-Sheng Lee
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, Taiwan
| |
Collapse
|
5
|
Zachos KA, Gamboa JA, Dewji AS, Lee J, Brijbassi S, Andreazza AC. The interplay between mitochondria, the gut microbiome and metabolites and their therapeutic potential in primary mitochondrial disease. Front Pharmacol 2024; 15:1428242. [PMID: 39119601 PMCID: PMC11306032 DOI: 10.3389/fphar.2024.1428242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The various roles of the mitochondria and the microbiome in health and disease have been thoroughly investigated, though they are often examined independently and in the context of chronic disease. However, the mitochondria and microbiome are closely connected, namely, through their evolution, maternal inheritance patterns, overlapping role in many diseases and their importance in the maintenance of human health. The concept known as the "mitochondria-microbiome crosstalk" is the ongoing bidirectional crosstalk between these two entities and warrants further exploration and consideration, especially in the context of primary mitochondrial disease, where mitochondrial dysfunction can be detrimental for clinical manifestation of disease, and the role and composition of the microbiome is rarely investigated. A potential mechanism underlying this crosstalk is the role of metabolites from both the mitochondria and the microbiome. During digestion, gut microbes modulate compounds found in food, which can produce metabolites with various bioactive effects. Similarly, mitochondrial metabolites are produced from substrates that undergo biochemical processes during cellular respiration. This review aims to provide an overview of current literature examining the mitochondria-microbiome crosstalk, the role of commonly studied metabolites serve in signaling and mediating these biochemical pathways, and the impact diet has on both the mitochondria and the microbiome. As a final point, this review highlights the up-to-date implications of the mitochondria-microbiome crosstalk in mitochondrial disease and its potential as a therapeutic tool or target.
Collapse
Affiliation(s)
- Kassandra A. Zachos
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Jann Aldrin Gamboa
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Aleena S. Dewji
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jocelyn Lee
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Sonya Brijbassi
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Ana C. Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Bisle E, Varadarajan S, Kolassa IT. Vitamin-mediated interaction between the gut microbiome and mitochondria in depression: A systematic review-based integrated perspective. Brain Behav Immun Health 2024; 38:100790. [PMID: 38974216 PMCID: PMC11225645 DOI: 10.1016/j.bbih.2024.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 07/09/2024] Open
Abstract
Depression is one of the world's most prevalent mental disorders and its treatment remains suboptimal. Depression is a systemic disease with highly complex biological mechanisms. Emerging evidence points towards the involvement of mitochondria, microbiome and vitamins in its pathophysiology. Mitochondrial energy production was shown to be lowered in patients with depression. Mitochondrial energy production depends on vitamins, which are available from food, but are also synthesized by the gut microbiota. Several studies reported altered vitamin levels as well as changes in the gut microbiome composition and its vitamin metabolism in patients with depression. Therefore, the question of a connection between mitochondria and gut microbiome and vitamins influencing the mental health arises. This review aims to systematically investigate a combination of the topics - depression, mitochondria, microbiome, and vitamins - to generate an overview of a novel yet extremely complex and interconnected research field. A systematic literature search yielded 34 articles, and the results were summarized and bundled to develop this new integrative perspective on mitochondrial function mediated by the microbiome and microbiome-derived vitamins in depression. Furthermore, by discussing the research gaps this review aims to encourage innovative research approaches to better understand the biology of depression, which could result in optimized therapeutic approaches.
Collapse
Affiliation(s)
- Ellen Bisle
- Department of Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Suchithra Varadarajan
- Department of Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Iris-Tatjana Kolassa
- Department of Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| |
Collapse
|
7
|
Iverson ENK. Conservation Mitonuclear Replacement: Facilitated mitochondrial adaptation for a changing world. Evol Appl 2024; 17:e13642. [PMID: 38468713 PMCID: PMC10925831 DOI: 10.1111/eva.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/13/2024] Open
Abstract
Most species will not be able to migrate fast enough to cope with climate change, nor evolve quickly enough with current levels of genetic variation. Exacerbating the problem are anthropogenic influences on adaptive potential, including the prevention of gene flow through habitat fragmentation and the erosion of genetic diversity in small, bottlenecked populations. Facilitated adaptation, or assisted evolution, offers a way to augment adaptive genetic variation via artificial selection, induced hybridization, or genetic engineering. One key source of genetic variation, particularly for climatic adaptation, are the core metabolic genes encoded by the mitochondrial genome. These genes influence environmental tolerance to heat, drought, and hypoxia, but must interact intimately and co-evolve with a suite of important nuclear genes. These coadapted mitonuclear genes form some of the important reproductive barriers between species. Mitochondrial genomes can and do introgress between species in an adaptive manner, and they may co-introgress with nuclear genes important for maintaining mitonuclear compatibility. Managers should consider the relevance of mitonuclear genetic variability in conservation decision-making, including as a tool for facilitating adaptation. I propose a novel technique dubbed Conservation Mitonuclear Replacement (CmNR), which entails replacing the core metabolic machinery of a threatened species-the mitochondrial genome and key nuclear loci-with those from a closely related species or a divergent population, which may be better-adapted to climatic changes or carry a lower genetic load. The most feasible route to CmNR is to combine CRISPR-based nuclear genetic editing with mitochondrial replacement and assisted reproductive technologies. This method preserves much of an organism's phenotype and could allow populations to persist in the wild when no other suitable conservation options exist. The technique could be particularly important on mountaintops, where rising temperatures threaten an alarming number of species with almost certain extinction in the next century.
Collapse
Affiliation(s)
- Erik N. K. Iverson
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
8
|
Zhao X, Zhang J, Liu J, Chen Q, Cai C, Miao X, Wu T, Cheng X. Identification of mitochondrial-related signature and molecular subtype for the prognosis of osteosarcoma. Aging (Albany NY) 2023; 15:12794-12816. [PMID: 37976137 DOI: 10.18632/aging.205143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023]
Abstract
Mitochondria play a vital role in osteosarcoma. Therefore, the purpose of this study was to investigate the potential role of mitochondrial-related genes (MRGs) in osteosarcoma. Based on 92 differentially expressed MRGs, osteosarcoma samples were divided into two subtypes using the nonnegative matrix factorization (NMF). Ultimately, a univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox analysis were performed to construct a prognostic risk model. The single-sample gene set enrichment analysis assessed the immune infiltration characteristics of osteosarcoma patients. Finally, we identified an osteosarcoma biomarker, malonyl-CoA decarboxylase (MLYCD), which showed downregulation. Osteosarcoma cells proliferation, migration, and invasion were effectively inhibited by the overexpression of MLYCD. Our findings will help us to further understand the molecular mechanisms of osteosarcoma and contribute to the discovery of new diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xiaokun Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Jiahao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Changxiong Cai
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Xinxin Miao
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
9
|
Ghatak S, Hemann C, Boslett J, Singh K, Sharma A, El Masry MS, Abouhashem AS, Ghosh N, Mathew-Steiner SS, Roy S, Zweier JL, Sen CK. Bacterial Pyocyanin Inducible Keratin 6A Accelerates Closure of Epithelial Defect under Conditions of Mitochondrial Dysfunction. J Invest Dermatol 2023; 143:2052-2064.e5. [PMID: 37044260 PMCID: PMC10529774 DOI: 10.1016/j.jid.2023.03.1671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023]
Abstract
Repair of epithelial defect is complicated by infection and related metabolites. Pyocyanin (PYO) is one such metabolite that is secreted during Pseudomonas aeruginosa infection. Keratinocyte (KC) migration is required for the closure of skin epithelial defects. This work sought to understand PYO-KC interaction and its significance in tissue repair. Stable Isotope Labeling by Amino acids in Cell culture proteomics identified mitochondrial dysfunction as the top pathway responsive to PYO exposure in human KCs. Consistently, functional studies showed mitochondrial stress, depletion of reducing equivalents, and adenosine triphosphate. Strikingly, despite all stated earlier, PYO markedly accelerated KC migration. Investigation of underlying mechanisms revealed, to our knowledge, a previously unreported function of keratin 6A in KCs. Keratin 6A was PYO inducible and accelerated closure of epithelial defect. Acceleration of closure was associated with poor quality healing, including compromised expression of apical junction proteins. This work recognizes keratin 6A for its role in enhancing KC migration under conditions of threat posed by PYO. Qualitatively deficient junctional proteins under conditions of defensive acceleration of KC migration explain why an infected wound close with deficient skin barrier function as previously reported.
Collapse
Affiliation(s)
- Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Craig Hemann
- Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - James Boslett
- Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Anu Sharma
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Mohamed S El Masry
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Ahmed Safwat Abouhashem
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Nandini Ghosh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Shomita S Mathew-Steiner
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Jay L Zweier
- Division of Cardiovascular Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA.
| |
Collapse
|
10
|
Yang Q, Li H, Wang H, Chen W, Zeng X, Luo X, Xu J, Sun Y. Deletion of enzymes for de novo NAD + biosynthesis accelerated ovarian aging. Aging Cell 2023; 22:e13904. [PMID: 37332134 PMCID: PMC10497836 DOI: 10.1111/acel.13904] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023] Open
Abstract
Recent advances highlight the pivotal role of nicotinamide adenine dinucleotide (NAD+ ) in ovarian aging. However, the roles of de novo NAD+ biosynthesis on ovarian aging are still unknown. Here, we found that genetic ablation of Ido1 (indoleamine-2,3-dioxygenase 1) or Qprt (Quinolinate phosphoribosyl transferase), two critical genes in de novo NAD+ biosynthesis, resulted in decreased ovarian NAD+ levels in middle-aged mice, leading to subfertility, irregular estrous cycles, reduced ovarian reserve, and accelerated aging. Moreover, we observed impaired oocyte quality, characterized by increased reactive oxygen species and spindle anomalies, which ultimately led to reduced fertilization ability and impaired early embryonic development. A transcriptomic analysis of ovaries in both mutant and wild-type mice revealed alterations in gene expression related to mitochondrial metabolism. Our findings were further supported by the observation of impaired mitochondrial distribution and decreased mitochondrial membrane potential in the oocytes of knockout mice. Supplementation with nicotinamide riboside (NR), an NAD+ booster, in mutant mice increased ovarian reserve and improved oocyte quality. Our study highlights the importance of the NAD+ de novo pathway in middle-aged female fertility.
Collapse
Affiliation(s)
- Qingling Yang
- Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hui Li
- Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Huan Wang
- Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Wenhui Chen
- Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xinxin Zeng
- Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaoyan Luo
- Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jianmin Xu
- Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yingpu Sun
- Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
11
|
Caddye E, Pineau J, Reyniers J, Ronen I, Colasanti A. Lactate: A Theranostic Biomarker for Metabolic Psychiatry? Antioxidants (Basel) 2023; 12:1656. [PMID: 37759960 PMCID: PMC10526106 DOI: 10.3390/antiox12091656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Alterations in neurometabolism and mitochondria are implicated in the pathophysiology of psychiatric conditions such as mood disorders and schizophrenia. Thus, developing objective biomarkers related to brain mitochondrial function is crucial for the development of interventions, such as central nervous system penetrating agents that target brain health. Lactate, a major circulatory fuel source that can be produced and utilized by the brain and body, is presented as a theranostic biomarker for neurometabolic dysfunction in psychiatric conditions. This concept is based on three key properties of lactate that make it an intriguing metabolic intermediate with implications for this field: Firstly, the lactate response to various stimuli, including physiological or psychological stress, represents a quantifiable and dynamic marker that reflects metabolic and mitochondrial health. Second, lactate concentration in the brain is tightly regulated according to the sleep-wake cycle, the dysregulation of which is implicated in both metabolic and mood disorders. Third, lactate universally integrates arousal behaviours, pH, cellular metabolism, redox states, oxidative stress, and inflammation, and can signal and encode this information via intra- and extracellular pathways in the brain. In this review, we expand on the above properties of lactate and discuss the methodological developments and rationale for the use of functional magnetic resonance spectroscopy for in vivo monitoring of brain lactate. We conclude that accurate and dynamic assessment of brain lactate responses might contribute to the development of novel and personalized therapies that improve mitochondrial health in psychiatric disorders and other conditions associated with neurometabolic dysfunction.
Collapse
Affiliation(s)
- Edward Caddye
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Julien Pineau
- Independent Researcher, Florianópolis 88062-300, Brazil
| | - Joshua Reyniers
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- School of Life Sciences, University of Sussex, Falmer BN1 9RR, UK
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Alessandro Colasanti
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| |
Collapse
|
12
|
Huang D, Jing G, Zhu S. Regulation of Mitochondrial Respiration by Hydrogen Sulfide. Antioxidants (Basel) 2023; 12:1644. [PMID: 37627639 PMCID: PMC10451548 DOI: 10.3390/antiox12081644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Hydrogen sulfide (H2S), the third gasotransmitter, has positive roles in animals and plants. Mitochondria are the source and the target of H2S and the regulatory hub in metabolism, stress, and disease. Mitochondrial bioenergetics is a vital process that produces ATP and provides energy to support the physiological and biochemical processes. H2S regulates mitochondrial bioenergetic functions and mitochondrial oxidative phosphorylation. The article summarizes the recent knowledge of the chemical and biological characteristics, the mitochondrial biosynthesis of H2S, and the regulatory effects of H2S on the tricarboxylic acid cycle and the mitochondrial respiratory chain complexes. The roles of H2S on the tricarboxylic acid cycle and mitochondrial respiratory complexes in mammals have been widely studied. The biological function of H2S is now a hot topic in plants. Mitochondria are also vital organelles regulating plant processes. The regulation of H2S in plant mitochondrial functions is gaining more and more attention. This paper mainly summarizes the current knowledge on the regulatory effects of H2S on the tricarboxylic acid cycle (TCA) and the mitochondrial respiratory chain. A study of the roles of H2S in mitochondrial respiration in plants to elucidate the botanical function of H2S in plants would be highly desirable.
Collapse
Affiliation(s)
| | | | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China; (D.H.); (G.J.)
| |
Collapse
|
13
|
Pandey P, Wall PK, Lopez SR, Dubuisson OS, Zunica ER, Dantas WS, Kirwan JP, Axelrod CL, Johnson AE. A familial natural short sleep mutation promotes healthy aging and extends lifespan in Drosophila. RESEARCH SQUARE 2023:rs.3.rs-2882949. [PMID: 37398097 PMCID: PMC10312989 DOI: 10.21203/rs.3.rs-2882949/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Sleep loss typically imposes negative effects on animal health. However, humans with a rare genetic mutation in the dec2 gene (dec2P384R) present an exception; these individuals sleep less without the usual effects associated with sleep deprivation. Thus, it has been suggested that the dec2P384R mutation activates compensatory mechanisms that allows these individuals to thrive with less sleep. To test this directly, we used a Drosophila model to study the effects of the dec2P384R mutation on animal health. Expression of human dec2P384R in fly sleep neurons was sufficient to mimic the short sleep phenotype and, remarkably, dec2P384R mutants lived significantly longer with improved health despite sleeping less. The improved physiological effects were enabled, in part, by enhanced mitochondrial fitness and upregulation of multiple stress response pathways. Moreover, we provide evidence that upregulation of pro-health pathways also contributes to the short sleep phenotype, and this phenomenon may extend to other pro-longevity models.
Collapse
Affiliation(s)
- Pritika Pandey
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| | - P. Kerr Wall
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| | - Stephen R. Lopez
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| | - Olga S. Dubuisson
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| | - Elizabeth R.M. Zunica
- Pennington Biomedical Research Center, Integrated Physiology and Molecular Medicine Laboratory, Baton Rouge, LA, 70808
| | - Wagner S. Dantas
- Pennington Biomedical Research Center, Integrated Physiology and Molecular Medicine Laboratory, Baton Rouge, LA, 70808
| | - John P. Kirwan
- Pennington Biomedical Research Center, Integrated Physiology and Molecular Medicine Laboratory, Baton Rouge, LA, 70808
| | - Christopher L. Axelrod
- Pennington Biomedical Research Center, Integrated Physiology and Molecular Medicine Laboratory, Baton Rouge, LA, 70808
| | - Alyssa E. Johnson
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803
| |
Collapse
|
14
|
Pandey P, Wall PK, Lopez SR, Dubuisson OS, Zunica ERM, Dantas WS, Kirwan JP, Axelrod CL, Johnson AE. A familial natural short sleep mutation promotes healthy aging and extends lifespan in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538137. [PMID: 37163058 PMCID: PMC10168263 DOI: 10.1101/2023.04.25.538137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Sleep loss typically imposes negative effects on animal health. However, humans with a rare genetic mutation in the dec2 gene ( dec2 P384R ) present an exception; these individuals sleep less without the usual effects associated with sleep deprivation. Thus, it has been suggested that the dec2 P384R mutation activates compensatory mechanisms that allows these individuals to thrive with less sleep. To test this directly, we used a Drosophila model to study the effects of the dec2 P384R mutation on animal health. Expression of human dec2 P384R in fly sleep neurons was sufficient to mimic the short sleep phenotype and, remarkably, dec2 P384R mutants lived significantly longer with improved health despite sleeping less. The improved physiological effects were enabled, in part, by enhanced mitochondrial fitness and upregulation of multiple stress response pathways. Moreover, we provide evidence that upregulation of pro-health pathways also contributes to the short sleep phenotype, and this phenomenon may extend to other pro-longevity models.
Collapse
|
15
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
16
|
Richardson RB, Mailloux RJ. Mitochondria Need Their Sleep: Redox, Bioenergetics, and Temperature Regulation of Circadian Rhythms and the Role of Cysteine-Mediated Redox Signaling, Uncoupling Proteins, and Substrate Cycles. Antioxidants (Basel) 2023; 12:antiox12030674. [PMID: 36978924 PMCID: PMC10045244 DOI: 10.3390/antiox12030674] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Although circadian biorhythms of mitochondria and cells are highly conserved and crucial for the well-being of complex animals, there is a paucity of studies on the reciprocal interactions between oxidative stress, redox modifications, metabolism, thermoregulation, and other major oscillatory physiological processes. To address this limitation, we hypothesize that circadian/ultradian interaction of the redoxome, bioenergetics, and temperature signaling strongly determine the differential activities of the sleep–wake cycling of mammalians and birds. Posttranslational modifications of proteins by reversible cysteine oxoforms, S-glutathionylation and S-nitrosylation are shown to play a major role in regulating mitochondrial reactive oxygen species production, protein activity, respiration, and metabolomics. Nuclear DNA repair and cellular protein synthesis are maximized during the wake phase, whereas the redoxome is restored and mitochondrial remodeling is maximized during sleep. Hence, our analysis reveals that wakefulness is more protective and restorative to the nucleus (nucleorestorative), whereas sleep is more protective and restorative to mitochondria (mitorestorative). The “redox–bioenergetics–temperature and differential mitochondrial–nuclear regulatory hypothesis” adds to the understanding of mitochondrial respiratory uncoupling, substrate cycling control and hibernation. Similarly, this hypothesis explains how the oscillatory redox–bioenergetics–temperature–regulated sleep–wake states, when perturbed by mitochondrial interactome disturbances, influence the pathogenesis of aging, cancer, spaceflight health effects, sudden infant death syndrome, and diseases of the metabolism and nervous system.
Collapse
Affiliation(s)
- Richard B. Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- McGill Medical Physics Unit, Cedars Cancer Centre—Glen Site, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: or
| | - Ryan J. Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
17
|
Wang Y, Gao S, Xu Y, Tang Z, Liu S. A mitochondrial function-related LncRNA signature predicts prognosis and immune microenvironment for breast cancer. Sci Rep 2023; 13:3918. [PMID: 36890266 PMCID: PMC9995529 DOI: 10.1038/s41598-023-30927-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
Mitochondrial function, as the core of the cell's energy metabolism, is firmly connected to cancer metabolism and growth. However, the involvement of long noncoding RNAs (lncRNAs) related to mitochondrial function in breast cancer (BRCA) has not been thoroughly investigated. As a result, the objective of this research was to dissect the prognostic implication of mitochondrial function-related lncRNAs and their link to the immunological microenvironment in BRCA. The Cancer Genome Atlas (TCGA) database was used to acquire clinicopathological and transcriptome information for BRCA samples. Mitochondrial function-related lncRNAs were recognized by coexpression analysis of 944 mitochondrial function-related mRNAs obtained from the MitoMiner 4.0 database. A novel prognostic signature was built in the training cohort using integrated analysis of mitochondrial function-related lncRNA and the corresponding clinical information through univariate analysis, lasso regression, and stepwise multivariate Cox regression analysis. The prognostic worth was judged in the training cohort and validated in the test cohort. In addition, functional enrichment and immune microenvironment analyses were performed to explore the risk score on the basis of the prognostic signature. An 8-mitochondrial function-related lncRNA signature was generated by integrated analysis. Individuals within the higher-risk category had a worse overall survival rate (OS) (training cohort: P < 0.001; validation cohort: P < 0.001; whole cohort: P < 0.001). The risk score was identified as an independent risk factor by multivariate Cox regression analysis (training cohort: HR 1.441, 95% CI 1.229-1.689, P < 0.001; validation cohort: HR 1.343, 95% CI 1.166-1.548, P < 0.001; whole cohort: HR 1.241, 95% CI 1.156-1.333, P < 0.001). Following that, the predictive accuracy of the model was confirmed by the ROC curves. In addition, nomograms were generated, and the calibration curves revealed that the model had excellent prediction accuracy for 3- and 5-year OS. Besides, the higher-risk BRCA individuals have relatively decreased amounts of infiltration of tumor-killing immune cells, lower levels of immune checkpoint molecules, and immune function. We constructed and verified a novel mitochondrial function-related lncRNA signature that might accurately predict the outcome of BRCA, play an essential role in immunotherapy, and might be exploited as a therapeutic target for precise BRCA therapy.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shun Gao
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingkun Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenrong Tang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Chen L, Xia S, Wang F, Zhou Y, Wang S, Yang T, Li Y, Xu M, Zhou Y, Kong D, Zhang Z, Shao J, Xu X, Zhang F, Zheng S. m 6A methylation-induced NR1D1 ablation disrupts the HSC circadian clock and promotes hepatic fibrosis. Pharmacol Res 2023; 189:106704. [PMID: 36813093 DOI: 10.1016/j.phrs.2023.106704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
The roles of nuclear receptor subfamily 1 group d member 1 (NR1D1) and the circadian clock in liver fibrosis remain unclear. Here, we showed that liver clock genes, especially NR1D1, were dysregulated in mice with carbon tetrachloride (CCl4)-induced liver fibrosis. In turn, disruption of the circadian clock exacerbated experimental liver fibrosis. NR1D1-deficient mice were more sensitive to CCl4-induced liver fibrosis, supporting a critical role of NR1D1 in liver fibrosis development. Validation at the tissue and cellular levels showed that NR1D1 was primarily degraded by N6-methyladenosine (m6A) methylation in a CCl4-induced liver fibrosis model, and this result was also validated in rhythm-disordered mouse models. In addition, the degradation of NR1D1 further inhibited the phosphorylation of dynein-related protein 1-serine site 616 (DRP1S616), resulting in weakened mitochondrial fission function and increased mitochondrial DNA (mtDNA) release in hepatic stellate cell (HSC), which in turn activated the cGMP-AMP synthase (cGAS) pathway. Activation of the cGAS pathway induced a local inflammatory microenvironment that further stimulated liver fibrosis progression. Interestingly, in the NR1D1 overexpression model, we observed that DRP1S616 phosphorylation was restored, and cGAS pathway was also inhibited in HSCs, resulting in improved liver fibrosis. Taken together, our results suggest that targeting NR1D1 may be an effective approach to liver fibrosis prevention and management.
Collapse
Affiliation(s)
- Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Siwei Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Yuanyuan Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Shuqi Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Ting Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Min Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Ya Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Desong Kong
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Daming Road, Nanjing 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
19
|
Mitochondrial dynamics in macrophages: divide to conquer or unite to survive? Biochem Soc Trans 2023; 51:41-56. [PMID: 36815717 PMCID: PMC9988003 DOI: 10.1042/bst20220014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Mitochondria have long been appreciated as the metabolic hub of cells. Emerging evidence also posits these organelles as hubs for innate immune signalling and activation, particularly in macrophages. Macrophages are front-line cellular defenders against endogenous and exogenous threats in mammals. These cells use an array of receptors and downstream signalling molecules to respond to a diverse range of stimuli, with mitochondrial biology implicated in many of these responses. Mitochondria have the capacity to both divide through mitochondrial fission and coalesce through mitochondrial fusion. Mitochondrial dynamics, the balance between fission and fusion, regulate many cellular functions, including innate immune pathways in macrophages. In these cells, mitochondrial fission has primarily been associated with pro-inflammatory responses and metabolic adaptation, so can be considered as a combative strategy utilised by immune cells. In contrast, mitochondrial fusion has a more protective role in limiting cell death under conditions of nutrient starvation. Hence, fusion can be viewed as a cellular survival strategy. Here we broadly review the role of mitochondria in macrophage functions, with a focus on how regulated mitochondrial dynamics control different functional responses in these cells.
Collapse
|
20
|
Skubatz H. Nonsteroidal anti-inflammatory drugs as antipyretics and modulators of a molecular clock(s) in the appendix of Sauromatum venosum inflorescence. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:152-160. [PMID: 36074072 DOI: 10.1111/plb.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The appendix of the Sauromatum senosum inflorescence is a striking example of thermogenesis in plants. On the day of opening, the Sauromatum appendix becomes hot, reaching up to 32 °C. Aspirin, salicylic acid and 2,6-dihydroxybenzoic acid, a subclass of NSAIDs, induce a temperature rise from three mitochondrial sources: alternative oxidase, F1 FO -ATP synthase and adenine nucleotide translocator. This temperature rise is synchronized and compounded under various light/dark regimes. We studied the effect of different subgroups of NSAIDs on the temperature rise. Tissue slices of appendix of Sauromatum and Arum italicum inflorescences at a pre-mature stage were treated with the three inducers in combination with one NSAID under constant light or darkness and under different photoperiods. Temperature rise generated by the three heat sources in the presence of inducers and different non-selective NSAIDs were not compounded and occurred at three different times. Under constant light, DuP-697, ibuprofen, flurbiprofen, acetaminophen and diclofenac suppressed the temperature rise induced by the three salicylates. Desynchronization and delayed temperature rise were detected with 6/42-h light/ dark and 15/33-h light/dark regimes in the presence of celecoxib and ibuprofen. With a 24/24-h light/dark regime, temperature rise was suppressed in the presence of ibuprofen. There were differences in response to individual NSAIDs between appendix tissue of A. italicum and S. venosum. Mitochondrial energy balance is affected by NSAIDs. There is an interaction between light/dark regime and temperature rise and a relationship between timing mechanism and temperature rise.
Collapse
|
21
|
Föhse K, Taks EJM, Moorlag SJCFM, Bonten MJM, van Crevel R, Ten Oever J, van Werkhoven CH, Netea MG, van de Maat JS, Hoogerwerf JJ. The impact of circadian rhythm on Bacillus Calmette-Guérin vaccination effects on SARS-CoV-2 infections. Front Immunol 2023; 14:980711. [PMID: 36875134 PMCID: PMC9978461 DOI: 10.3389/fimmu.2023.980711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Background and objective A recent study has suggested that circadian rhythm has an important impact on the immunological effects induced by Bacillus Calmette-Guérin (BCG) vaccination. The objective of this study was to evaluate whether the timing of BCG vaccination (morning or afternoon) affects its impact on severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infections and clinically relevant respiratory tract infections (RTIs). Methods This is a post-hoc analysis of the BCG-CORONA-ELDERLY (NCT04417335) multicenter, placebo-controlled trial, in which participants aged 60 years and older were randomly assigned to vaccination with BCG or placebo, and followed for 12 months. The primary endpoint was the cumulative incidence of SARS-CoV-2 infection. To assess the impact of circadian rhythm on the BCG effects, participants were divided into four groups: vaccinated with either BCG or placebo in the morning (between 9:00h and 11:30h) or in the afternoon (between 14:30h and 18:00h). Results The subdistribution hazard ratio of SARS-CoV-2 infection in the first six months after vaccination was 2.394 (95% confidence interval [CI], 0.856-6.696) for the morning BCG group and 0.284 (95% CI, 0.055-1.480) for the afternoon BCG group. When comparing those two groups, the interaction hazard ratio was 8.966 (95% CI, 1.366-58.836). In the period from six months until 12 months after vaccination cumulative incidences of SARS-CoV-2 infection were comparable, as well as cumulative incidences of clinically relevant RTI in both periods. Conclusion Vaccination with BCG in the afternoon offered better protection against SARS-CoV-2 infections than BCG vaccination in the morning in the first six months after vaccination.
Collapse
Affiliation(s)
- Konstantin Föhse
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Esther J M Taks
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marc J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jaap Ten Oever
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cornelis H van Werkhoven
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Josephine S van de Maat
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jacobien J Hoogerwerf
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
22
|
Nunn AVW, Guy GW, Brysch W, Bell JD. Understanding Long COVID; Mitochondrial Health and Adaptation-Old Pathways, New Problems. Biomedicines 2022; 10:3113. [PMID: 36551869 PMCID: PMC9775339 DOI: 10.3390/biomedicines10123113] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Many people infected with the SARS-CoV-2 suffer long-term symptoms, such as "brain fog", fatigue and clotting problems. Explanations for "long COVID" include immune imbalance, incomplete viral clearance and potentially, mitochondrial dysfunction. As conditions with sub-optimal mitochondrial function are associated with initial severity of the disease, their prior health could be key in resistance to long COVID and recovery. The SARs virus redirects host metabolism towards replication; in response, the host can metabolically react to control the virus. Resolution is normally achieved after viral clearance as the initial stress activates a hormetic negative feedback mechanism. It is therefore possible that, in some individuals with prior sub-optimal mitochondrial function, the virus can "tip" the host into a chronic inflammatory cycle. This might explain the main symptoms, including platelet dysfunction. Long COVID could thus be described as a virally induced chronic and self-perpetuating metabolically imbalanced non-resolving state characterised by mitochondrial dysfunction, where reactive oxygen species continually drive inflammation and a shift towards glycolysis. This would suggest that a sufferer's metabolism needs to be "tipped" back using a stimulus, such as physical activity, calorie restriction, or chemical compounds that mimic these by enhancing mitochondrial function, perhaps in combination with inhibitors that quell the inflammatory response.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Geoffrey W. Guy
- The Guy Foundation, Chedington Court, Beaminster, Dorset DT8 3HY, UK
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
23
|
Richardson RB, Mailloux RJ. WITHDRAWN: Mitochondria need their sleep: Sleep-wake cycling and the role of redox, bioenergetics, and temperature regulation, involving cysteine-mediated redox signaling, uncoupling proteins, and substrate cycles. Free Radic Biol Med 2022:S0891-5849(22)01013-9. [PMID: 36462628 DOI: 10.1016/j.freeradbiomed.2022.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Richard B Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River Laboratories, Chalk River, Ontario, K0J 1J0, Canada; McGill Medical Physics Unit, McGill University, Cedars Cancer Centre - Glen Site, Montreal, Quebec QC, H4A 3J1, Canada.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
24
|
Dao P, Hajny S, Mekis R, Orel L, Dinhopl N, Tessmar-Raible K, Nowikovsky K. The cation exchanger Letm1, circadian rhythms, and NAD(H) levels interconnect in diurnal zebrafish. Life Sci Alliance 2022; 5:e202101194. [PMID: 35697381 PMCID: PMC9191620 DOI: 10.26508/lsa.202101194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are fundamental for life and require balanced ion exchange to maintain proper functioning. The mitochondrial cation exchanger LETM1 sparks interest because of its pathophysiological role in seizures in the Wolf Hirschhorn Syndrome (WHS). Despite observation of sleep disorganization in epileptic WHS patients, and growing studies linking mitochondria and epilepsy to circadian rhythms, LETM1 has not been studied from the chronobiological perspective. Here we established a viable letm1 knock-out, using the diurnal vertebrate Danio rerio to study the metabolic and chronobiological consequences of letm1 deficiency. We report diurnal rhythms of Letm1 protein levels in wild-type fish. We show that mitochondrial nucleotide metabolism is deregulated in letm1-/- mutant fish, the rate-limiting enzyme of NAD+ production is up-regulated, while NAD+ and NADH pools are reduced. These changes were associated with increased expression amplitude of circadian core clock genes in letm1-/- compared with wild-type under light/dark conditions, suggesting decreased NAD(H) levels as a possible mechanism for circadian system perturbation in Letm1 deficiency. Replenishing NAD pool may ameliorate WHS-associated sleep and neurological disorders.
Collapse
Affiliation(s)
- Pauline Dao
- Max F Perutz Laboratories, Research Platform Rhythms of Life, University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Medical University Vienna, Vienna, Austria
- Department of Biomedical Sciences, Unit of Physiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stefan Hajny
- Max F Perutz Laboratories, Research Platform Rhythms of Life, University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Medical University Vienna, Vienna, Austria
| | - Ronald Mekis
- Department of Internal Medicine I, Medical University Vienna, Vienna, Austria
- Department of Biomedical Sciences, Unit of Physiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lukas Orel
- Max F Perutz Laboratories, Research Platform Rhythms of Life, University of Vienna, Vienna, Austria
| | - Nora Dinhopl
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max F Perutz Laboratories, Research Platform Rhythms of Life, University of Vienna, Vienna, Austria
| | - Karin Nowikovsky
- Department of Internal Medicine I, Medical University Vienna, Vienna, Austria
- Department of Biomedical Sciences, Unit of Physiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
25
|
Pérez-Hernández CA, Moreno-Altamirano MMB, López-Villegas EO, Butkeviciute E, Ali M, Kronsteiner B, Dunachie SJ, Dockrell HM, Smith SG, Sánchez-García FJ. Mitochondrial Ultrastructure and Activity Are Differentially Regulated by Glycolysis-, Krebs Cycle-, and Microbiota-Derived Metabolites in Monocytes. BIOLOGY 2022; 11:biology11081132. [PMID: 36009759 PMCID: PMC9404980 DOI: 10.3390/biology11081132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Several intermediate metabolites harbour cell-signalling properties, thus, it is likely that specific metabolites enable the communication between neighbouring cells, as well as between host cells with the microbiota, pathogens, and tumour cells. Mitochondria, a source of intermediate metabolites, participate in a wide array of biological processes beyond that of ATP production, such as intracellular calcium homeostasis, cell signalling, apoptosis, regulation of immune responses, and host cell-microbiota crosstalk. In this regard, mitochondria's plasticity allows them to adapt their bioenergetics status to intra- and extra-cellular cues, and the mechanisms driving such plasticity are currently a matter of intensive research. Here, we addressed whether mitochondrial ultrastructure and activity are differentially shaped when human monocytes are exposed to an exogenous source of lactate (derived from glycolysis), succinate, and fumarate (Krebs cycle metabolic intermediates), or butyrate and acetate (short-chain fatty acids produced by intestinal microbiota). It has previously been shown that fumarate induces mitochondrial fusion, increases the mitochondrial membrane potential (Δψm), and reshapes the mitochondrial cristae ultrastructure. Here, we provide evidence that, in contrast to fumarate, lactate, succinate, and butyrate induce mitochondrial fission, while acetate induces mitochondrial swelling. These traits, along with mitochondrial calcium influx kinetics and glycolytic vs. mitochondrial ATP-production rates, suggest that these metabolites differentially shape mitochondrial function, paving the way for the understanding of metabolite-induced metabolic reprogramming of monocytes and its possible use for immune-response intervention.
Collapse
Affiliation(s)
- C. Angélica Pérez-Hernández
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.A.P.-H.); (M.M.B.M.-A.)
| | - M. Maximina Bertha Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.A.P.-H.); (M.M.B.M.-A.)
| | - Edgar O. López-Villegas
- Unidad de Microscopía, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Egle Butkeviciute
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.B.); (H.M.D.)
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, UK; (M.A.); (B.K.); (S.J.D.)
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, UK; (M.A.); (B.K.); (S.J.D.)
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Susanna J. Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 3SY, UK; (M.A.); (B.K.); (S.J.D.)
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Hazel M. Dockrell
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.B.); (H.M.D.)
| | - Steven G. Smith
- Division of Biosciences, Brunel University London, London UB8 3PH, UK;
| | - F. Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.A.P.-H.); (M.M.B.M.-A.)
- Correspondence:
| |
Collapse
|
26
|
Kramer P. Mitochondria-Microbiota Interaction in Neurodegeneration. Front Aging Neurosci 2022; 13:776936. [PMID: 35002678 PMCID: PMC8733591 DOI: 10.3389/fnagi.2021.776936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s and Parkinson’s are the two best-known neurodegenerative diseases. Each is associated with the excessive aggregation in the brain and elsewhere of its own characteristic amyloid proteins. Yet the two afflictions have much in common and often the same amyloids play a role in both. These amyloids need not be toxic and can help regulate bile secretion, synaptic plasticity, and immune defense. Moreover, when they do form toxic aggregates, amyloids typically harm not just patients but their pathogens too. A major port of entry for pathogens is the gut. Keeping the gut’s microbe community (microbiota) healthy and under control requires that our cells’ main energy producers (mitochondria) support the gut-blood barrier and immune system. As we age, these mitochondria eventually succumb to the corrosive byproducts they themselves release, our defenses break down, pathogens or their toxins break through, and the side effects of inflammation and amyloid aggregation become problematic. Although it gets most of the attention, local amyloid aggregation in the brain merely points to a bigger problem: the systemic breakdown of the entire human superorganism, exemplified by an interaction turning bad between mitochondria and microbiota.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
27
|
Lehrer HM, Chu LE, Hall MH, Murdock KW. Self-reported sleep efficiency and duration are associated with bioenergetic function in peripheral blood mononuclear cells (PBMCs) of adults. Mitochondrion 2022; 62:122-127. [PMID: 34785262 PMCID: PMC8724413 DOI: 10.1016/j.mito.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
Poor sleep may impair systemic mitochondrial bioenergetics, but this relationship has not been examined in humans. This study examined associations of self-reported sleep with peripheral blood mononuclear cell (PBMC) bioenergetics in adults. Forty-three participants completed the Pittsburgh Sleep Quality Index from which sleep indices were calculated. PBMCs were analyzed for bioenergetics using extracellular flux analysis. Sleep efficiency was positively correlated with maximal respiration and spare capacity. Lower sleep efficiency and longer sleep duration were associated with lower Bioenergetic Health Index in age-, sex-, and body mass index-adjusted models. Findings indicate that sleep is related to systemic bioenergetic function in humans.
Collapse
Affiliation(s)
- H. Matthew Lehrer
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lauren E. Chu
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Martica H. Hall
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kyle W. Murdock
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
28
|
Wikramanayake TC, Nicu C, Chéret J, Czyzyk TA, Paus R. Mitochondrially localized MPZL3 emerges as a signaling hub of mammalian physiology. Bioessays 2021; 43:e2100126. [PMID: 34486148 DOI: 10.1002/bies.202100126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022]
Abstract
MPZL3 is a nuclear-encoded, mitochondrially localized, immunoglobulin-like V-type protein that functions as a key regulator of epithelial cell differentiation, lipid metabolism, ROS production, glycemic control, and energy expenditure. Recently, MPZL3 has surfaced as an important modulator of sebaceous gland function and of hair follicle cycling, an organ transformation process that is also governed by peripheral clock gene activity and PPARγ. Given the phenotype similarities and differences between Mpzl3 and Pparγ knockout mice, we propose that MPZL3 serves as a signaling hub that is regulated by core clock gene products and/or PPARγ to translate signals from these nuclear transcription factors to the mitochondria to modulate circadian and metabolic regulation. Conservation between murine and human MPZL3 suggests that human MPZL3 may have similarly complex functions in health and disease. We summarize current knowledge and discuss future directions to elucidate the full spectrum of MPZL3 functions in mammalian physiology.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carina Nicu
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Jérémy Chéret
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Traci A Czyzyk
- Department of Anesthesiology & Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Metabolic Health Program, Mayo Clinic in Arizona, Scottsdale, Arizona, USA.,Discovery Biology-CMD, Merck & Co., Inc., South San Francisco, California, USA
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
29
|
Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G. Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 2021; 95:1161-1178. [DOI: 10.1007/s00204-021-02974-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
|
30
|
Nicu C, Wikramanayake TC, Paus R. Clues that mitochondria are involved in the hair cycle clock: MPZL3 regulates entry into and progression of murine hair follicle cycling. Exp Dermatol 2020; 29:1243-1249. [PMID: 33040410 DOI: 10.1111/exd.14213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
Abstract
The molecular nature of the hair cycle clock (HCC), the intrinsic oscillator system that drives hair follicle (HF) cycling, remains incompletely understood; therefore, all relevant key players need to be identified. Here, we present evidence that implicates myelin protein zero-like 3 (MPZL3), a multifunctional nuclear-encoded mitochondrial protein known to be involved in epidermal differentiation, in HCC regulation. By analysing global Mpzl3 knockout (-/-) mice, we show that in the absence of functional MPZL3, mice commence HF cycling with retarded first catagen-telogen transition after normal postnatal HF morphogenesis. However, Mpzl3 -/- mice subsequently display strikingly accelerated HF cycling, i.e. a precocious telogen-to-anagen transition during the second hair cycle, compared to controls, suggesting that MPZL3 inhibits anagen entry. We also show that intrafollicular MPZL3 protein expression fluctuates in a hair cycle-dependent manner. In telogen HFs, MPZL3 is localized to the secondary hair germ, an epicentre of hair cycle regulation, where it partially co-localizes with P-cadherin. In early anagen HF, MPZL3 is localized immediately distal to the proximal hair matrix. These findings introduce the novel concept that mitochondria are more actively involved in hair cycle control than previously recognized and that MPZL3 plays a central role in the HCC.
Collapse
Affiliation(s)
- Carina Nicu
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tongyu C Wikramanayake
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
31
|
Frazier K, Frith M, Harris D, Leone VA. Mediators of Host–Microbe Circadian Rhythms in Immunity and Metabolism. BIOLOGY 2020; 9:biology9120417. [PMID: 33255707 PMCID: PMC7761326 DOI: 10.3390/biology9120417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Abstract
Simple Summary Circadian rhythms serve as the body’s internal metronome, driving responses to environmental cues over a 24-h period. Essential to nearly all life forms, the core circadian clock gene network drives physiological outputs associated with metabolic and immune responses. Modern-day disruptions to host circadian rhythms, such as shift work and jet lag, result in aberrant metabolic responses and development of complex diseases, including obesity and Type 2 Diabetes. These complex diseases are also impacted by interactions between gut microbes and the host immune system, driving a chronic low-grade inflammatory response. Gut microbes exhibit circadian dynamics that are closely tied to host circadian networks and disrupting microbial rhythmicity contributes to metabolic diseases. The underlying mediators that drive communication between host metabolism, the immune system, gut microbes, and circadian networks remain unknown, particularly in humans. Here, we explore the current state of knowledge regarding the transkingdom control of circadian networks and discuss gaps and challenges to overcome to push the field forward from the preclinical to clinical setting. Abstract Circadian rhythms are essential for nearly all life forms, mediated by a core molecular gene network that drives downstream molecular processes involved in immune function and metabolic regulation. These biological rhythms serve as the body’s metronome in response to the 24-h light:dark cycle and other timed stimuli. Disrupted circadian rhythms due to drastic lifestyle and environmental shifts appear to contribute to the pathogenesis of metabolic diseases, although the mechanisms remain elusive. Gut microbiota membership and function are also key mediators of metabolism and are highly sensitive to environmental perturbations. Recent evidence suggests rhythmicity of gut microbes is essential for host metabolic health. The key molecular mediators that transmit rhythmic signals between microbes and host metabolic networks remain unclear, but studies suggest the host immune system may serve as a conduit between these two systems, providing homeostatic signals to maintain overall metabolic health. Despite this knowledge, the precise mechanism and communication modalities that drive these rhythms remain unclear, especially in humans. Here, we review the current literature examining circadian dynamics of gut microbes, the immune system, and metabolism in the context of metabolic dysregulation and provide insights into gaps and challenges that remain.
Collapse
Affiliation(s)
- Katya Frazier
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (K.F.); (M.F.); (D.H.)
| | - Mary Frith
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (K.F.); (M.F.); (D.H.)
- Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Dylan Harris
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (K.F.); (M.F.); (D.H.)
| | - Vanessa A. Leone
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (K.F.); (M.F.); (D.H.)
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: ; Tel.: +1-608-262-5551
| |
Collapse
|
32
|
Gueven N, Ravishankar P, Eri R, Rybalka E. Idebenone: When an antioxidant is not an antioxidant. Redox Biol 2020; 38:101812. [PMID: 33254077 PMCID: PMC7708875 DOI: 10.1016/j.redox.2020.101812] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Idebenone is a well described drug that was initially developed against dementia. The current literature widely portrays this molecule as a potent antioxidant and CoQ10 analogue. While numerous papers seem to support this view, a closer look indicates that the pharmacokinetics of idebenone do not support these claims. A major discrepancy between achievable tissue levels, especially in target tissues such as the brain, and doses required to show the proposed effects, significantly questions our current understanding. This review explains how this has happened and highlights the discrepancies in the current literature. More importantly, based on some recent discoveries, a new framework is presented that can explain the mode of action of this molecule and can align formerly contradictory results. Finally, this new appreciation of the molecular activities of idebenone provides a rational approach to test idebenone in novel indications that might have not been considered previously for this drug.
Collapse
Affiliation(s)
- Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| | - Pranathi Ravishankar
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rajaraman Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Emma Rybalka
- Victoria University, Institute for Health and Sport, Melbourne, Victoria, Australia
| |
Collapse
|
33
|
The cytokine MIF controls daily rhythms of symbiont nutrition in an animal-bacterial association. Proc Natl Acad Sci U S A 2020; 117:27578-27586. [PMID: 33067391 DOI: 10.1073/pnas.2016864117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The recent recognition that many symbioses exhibit daily rhythms has encouraged research into the partner dialogue that drives these biological oscillations. Here we characterized the pivotal role of the versatile cytokine macrophage migration inhibitory factor (MIF) in regulating a metabolic rhythm in the model light-organ symbiosis between Euprymna scolopes and Vibrio fischeri As the juvenile host matures, it develops complex daily rhythms characterized by profound changes in the association, from gene expression to behavior. One such rhythm is a diurnal shift in symbiont metabolism triggered by the periodic provision of a specific nutrient by the mature host: each night the symbionts catabolize chitin released from hemocytes (phagocytic immune cells) that traffic into the light-organ crypts, where the population of V. fischeri cells resides. Nocturnal migration of these macrophage-like cells, together with identification of an E. scolopes MIF (EsMIF) in the light-organ transcriptome, led us to ask whether EsMIF might be the gatekeeper controlling the periodic movement of the hemocytes. Western blots, ELISAs, and confocal immunocytochemistry showed EsMIF was at highest abundance in the light organ. Its concentration there was lowest at night, when hemocytes entered the crypts. EsMIF inhibited migration of isolated hemocytes, whereas exported bacterial products, including peptidoglycan derivatives and secreted chitin catabolites, induced migration. These results provide evidence that the nocturnal decrease in EsMIF concentration permits the hemocytes to be drawn into the crypts, delivering chitin. This nutritional function for a cytokine offers the basis for the diurnal rhythms underlying a dynamic symbiotic conversation.
Collapse
|
34
|
Prentice S, Dockrell H. Antituberculosis BCG vaccination: more reasons for varying innate and adaptive immune responses. J Clin Invest 2020; 130:5121-5123. [PMID: 32813681 PMCID: PMC7524457 DOI: 10.1172/jci141317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) vaccination induces variable protection against pulmonary tuberculosis (TB), and a more effective TB vaccine is needed. The potential for BCG to provide protection against heterologous infections, by induction of innate immune memory, is increasingly recognized. These nonspecific responses may substantially benefit public health, but are also variable. In this issue of the JCI, Koeken and de Bree et al. report that BCG reduces circulating inflammatory markers in males but not in females, while de Bree and Mouritis et al. describe how diurnal rhythms affect the degree of BCG-induced innate memory. These studies further delineate factors that influence the magnitude of responses to BCG and may be crucial to harnessing its potential benefits.
Collapse
Affiliation(s)
- S. Prentice
- Department of Paediatrics, East and North Hertfordshire NHS Trust, Stevenage, United Kingdom
| | - H.M. Dockrell
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
35
|
Pérez-Hernández CA, Kern CC, Butkeviciute E, McCarthy E, Dockrell HM, Moreno-Altamirano MMB, Aguilar-López BA, Bhosale G, Wang H, Gems D, Duchen MR, Smith SG, Sánchez-García FJ. Mitochondrial Signature in Human Monocytes and Resistance to Infection in C. elegans During Fumarate-Induced Innate Immune Training. Front Immunol 2020; 11:1715. [PMID: 32849605 PMCID: PMC7419614 DOI: 10.3389/fimmu.2020.01715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Monocytes can develop immunological memory, a functional characteristic widely recognized as innate immune training, to distinguish it from memory in adaptive immune cells. Upon a secondary immune challenge, either homologous or heterologous, trained monocytes/macrophages exhibit a more robust production of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, than untrained monocytes. Candida albicans, β-glucan, and BCG are all inducers of monocyte training and recent metabolic profiling analyses have revealed that training induction is dependent on glycolysis, glutaminolysis, and the cholesterol synthesis pathway, along with fumarate accumulation; interestingly, fumarate itself can induce training. Since fumarate is produced by the tricarboxylic acid (TCA) cycle within mitochondria, we asked whether extra-mitochondrial fumarate has an effect on mitochondrial function. Results showed that the addition of fumarate to monocytes induces mitochondrial Ca2+ uptake, fusion, and increased membrane potential (Δψm), while mitochondrial cristae became closer to each other, suggesting that immediate (from minutes to hours) mitochondrial activation plays a role in the induction phase of innate immune training of monocytes. To establish whether fumarate induces similar mitochondrial changes in vivo in a multicellular organism, effects of fumarate supplementation were tested in the nematode worm Caenorhabditis elegans. This induced mitochondrial fusion in both muscle and intestinal cells and also increased resistance to infection of the pharynx with E. coli. Together, these findings contribute to defining a mitochondrial signature associated with the induction of innate immune training by fumarate treatment, and to the understanding of whole organism infection resistance.
Collapse
Affiliation(s)
- C Angélica Pérez-Hernández
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Carina C Kern
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Egle Butkeviciute
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elizabeth McCarthy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hazel M Dockrell
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Bruno A Aguilar-López
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gauri Bhosale
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Hongyuan Wang
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - David Gems
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Steven G Smith
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
36
|
Scrima R, Cela O, Agriesti F, Piccoli C, Tataranni T, Pacelli C, Mazzoccoli G, Capitanio N. Mitochondrial calcium drives clock gene-dependent activation of pyruvate dehydrogenase and of oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118815. [PMID: 32763264 DOI: 10.1016/j.bbamcr.2020.118815] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
Regulation of metabolism is emerging as a major output of circadian clock circuitry in mammals. Accordingly, mitochondrial oxidative metabolism undergoes both in vivo and in vitro daily oscillatory activities. In a previous study we showed that both glycolysis and mitochondrial oxygen consumption display a similar time-resolved rhythmic activity in synchronized HepG2 cell cultures, which translates in overall bioenergetic changes as here documented by measurement of the ATP level. Treatment of synchronized cells with specific metabolic inhibitors unveiled pyruvate as a major source of reducing equivalents to the respiratory chain with its oxidation driven by the rhythmic (de)phosphorylation of pyruvate dehydrogenase. Further investigation enabled to causally link the autonomous cadenced mitochondrial respiration to a synchronous increase of the mitochondrial Ca2+. The rhythmic change of the mitochondrial respiration was dampened by inhibitors of the mitochondrial Ca2+ uniporter as well as of the ryanodine receptor Ca2+ channel or the ADPR cyclase, indicating that the mitochondrial Ca2+ influx originated from the ER store, likely at contact sites with the mitochondrial compartment. Notably, blockage of the mitochondrial Ca2+ influx resulted in deregulation of the expression of canonical clock genes such as BMALl1, CLOCK, NR1D1. All together our findings unveil a hitherto unexplored function of Ca2+-mediated signaling in time keeping the mitochondrial metabolism and in its feed-back modulation of the circadian clockwork.
Collapse
Affiliation(s)
- Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Francesca Agriesti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy.
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Tiziana Tataranni
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy.
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, (FG), Italy.
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|