1
|
Wu Q, Zeng Y, Geng K, Guo M, Teng FY, Yan PJ, Lei Y, Long Y, Jiang ZZ, Law BYK, Xu Y. The role of IL-1 family cytokines in diabetic cardiomyopathy. Metabolism 2024; 163:156083. [PMID: 39603339 DOI: 10.1016/j.metabol.2024.156083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Diabetic cardiomyopathy (DCM) is the primary cause of heart failure in patients with diabetes and is characterised by contractile dysfunction and left ventricular hypertrophy. The complex pathological and physiological mechanisms underlying DCM have contributed to a limited number of available treatment options. A substantial body of evidence has established that DCM is a low-grade inflammatory cardiovascular disorder, with the interleukin-1 (IL-1) family of cytokines playing crucial roles in initiating inflammatory responses and shaping innate and adaptive immunity. In this review, we aim to provide an overview of the underlying mechanisms of the IL-1 family and their relevance in DCM of various aetiologies. Furthermore, we highlighted potential therapeutic targets within the IL-1 family for the management of DCM.
Collapse
Affiliation(s)
- Qi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China; Department of Pathology, and Luzhou Key Laboratory of Precision Pathology Diagnosis for Serious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China; Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kang Geng
- Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Plastic and burns surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Man Guo
- Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fang-Yuan Teng
- Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pi-Jun Yan
- Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yi Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China; Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yang Long
- Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China.
| | - Yong Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China; Department of Endocrinology and Metabolism, and Metabolic Vascular Disease Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
2
|
Tatsuno R, Komohara Y, Pan C, Kawasaki T, Enomoto A, Jubashi T, Kono H, Wako M, Ashizawa T, Haro H, Ichikawa J. Surface Markers and Chemokines/Cytokines of Tumor-Associated Macrophages in Osteosarcoma and Other Carcinoma Microenviornments-Contradictions and Comparisons. Cancers (Basel) 2024; 16:2801. [PMID: 39199574 PMCID: PMC11353089 DOI: 10.3390/cancers16162801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. Prognosis is improving with advances in multidisciplinary treatment strategies, but the development of new anticancer agents has not, and improvement in prognosis for patients with pulmonary metastases has stalled. In recent years, the tumor microenvironment (TME) has gained attention as a therapeutic target for cancer. The immune component of OS TME consists mainly of tumor-associated macrophages (TAMs). They exhibit remarkable plasticity, and their phenotype is influenced by the TME. In general, surface markers such as CD68 and CD80 show anti-tumor effects, while CD163 and CD204 show tumor-promoting effects. Surface markers have potential value as diagnostic and prognostic biomarkers. The cytokines and chemokines produced by TAMs promote tumor growth and metastasis. However, the role of TAMs in OS remains unclear to date. In this review, we describe the role of TAMs in OS by focusing on TAM surface markers and the TAM-produced cytokines and chemokines in the TME, and by comparing their behaviors in other carcinomas. We found contrary results from different studies. These findings highlight the urgency for further research in this field to improve the stalled OS prognosis percentages.
Collapse
Affiliation(s)
- Rikito Tatsuno
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Tomonori Kawasaki
- Department of Pathology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan;
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan;
| | - Takahiro Jubashi
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hiroyuki Kono
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Masanori Wako
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Tomoyuki Ashizawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| |
Collapse
|
3
|
Rusiñol L, Puig L. A Narrative Review of the IL-18 and IL-37 Implications in the Pathogenesis of Atopic Dermatitis and Psoriasis: Prospective Treatment Targets. Int J Mol Sci 2024; 25:8437. [PMID: 39126010 PMCID: PMC11312859 DOI: 10.3390/ijms25158437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Atopic dermatitis and psoriasis are prevalent inflammatory skin conditions that significantly impact the quality of life of patients, with diverse treatment options available. Despite advances in understanding their underlying mechanisms, recent research highlights the significance of interleukins IL-18 and IL-37, in Th1, Th2, and Th17 inflammatory responses, closely associated with the pathogenesis of psoriasis and atopic dermatitis. Hence, IL-18 and IL-37 could potentially become therapeutic targets. This narrative review synthesizes knowledge on these interleukins, their roles in atopic dermatitis and psoriasis, and emerging treatment strategies. Findings of a literature search up to 30 May 2024, underscore a research gap in IL-37-targeted therapies. Conversely, IL-18-focused treatments have demonstrated promise in adult-onset Still's Disease, warranting further exploration for their potential efficacy in psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lluís Puig
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
4
|
Liu S, Wang H, Li J, Gao J, Yu L, Wei X, Cui M, Zhao Y, Liang Y, Wang H. Loss of Bcl-3 regulates macrophage polarization by promoting macrophage glycolysis. Immunol Cell Biol 2024; 102:605-617. [PMID: 38804132 DOI: 10.1111/imcb.12785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/27/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
M1/M2 macrophage polarization plays an important role in regulating the balance of the microenvironment within tissues. Moreover, macrophage polarization involves the reprogramming of metabolism, such as glucose and lipid metabolism. Transcriptional coactivator B-cell lymphoma-3 (Bcl-3) is an atypical member of the IκB family that controls inflammatory factor levels in macrophages by regulating nuclear factor kappa B pathway activation. However, the relationship between Bcl-3 and macrophage polarization and metabolism remains unclear. In this study, we show that the knockdown of Bcl-3 in macrophages can regulate glycolysis-related gene expression by promoting the activation of the nuclear factor kappa B pathway. Furthermore, the loss of Bcl-3 was able to promote the interferon gamma/lipopolysaccharide-induced M1 macrophage polarization by accelerating glycolysis. Taken together, these results suggest that Bcl-3 may be a candidate gene for regulating M1 polarization in macrophages.
Collapse
Affiliation(s)
- Shengnan Liu
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hao Wang
- The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Jiaoyang Li
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jingtao Gao
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Li Yu
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiaofei Wei
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengchao Cui
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yuxin Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yinming Liang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
5
|
Shao B, Zhang JY, Ren SH, Qin YF, Wang HD, Gao YC, Kong DJ, Hu YH, Qin H, Li GM, Wang H. Recombinant human IL-37 attenuates acute cardiac allograft rejection in mice. Cytokine 2024; 179:156598. [PMID: 38583255 DOI: 10.1016/j.cyto.2024.156598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Allograft rejection remains a major obstacle to long-term graft survival. Although previous studies have demonstrated that IL-37 exhibited significant immunomodulatory effects in various diseases, research on its role in solid organ transplantation has not been fully elucidated. In this study, the therapeutic effect of recombinant human IL-37 (rhIL-37) was evaluated in a mouse cardiac allotransplantation model. METHODS The C57BL/6 recipients mouse receiving BALB/c donor hearts were treated with rhIL-37. Graft pathological and immunohistology changes, immune cell populations, and cytokine profiles were analyzed on postoperative day (POD) 7. The proliferative capacities of Th1, Th17, and Treg subpopulations were assessed in vitro. Furthermore, the role of the p-mTOR pathway in rhIL-37-induced CD4+ cell inhibition was also elucidated. RESULTS Compared to untreated groups, treatment of rhIL-37 achieved long-term cardiac allograft survival and effectively alleviated allograft rejection indicated by markedly reduced infiltration of CD4+ and CD11c+ cells and ameliorated graft pathological changes. rhIL-37 displayed significantly less splenic populations of Th1 and Th17 cells, as well as matured dendritic cells. The percentages of Tregs in splenocytes were significantly increased in the therapy group. Furthermore, rhIL-37 markedly decreased the levels of TNF-α and IFN-γ, but increased the level of IL-10 in the recipients. In addition, rhIL-37 inhibited the expression of p-mTOR in CD4+ cells of splenocytes. In vitro, similar to the in vivo experiments, rhIL-37 caused a decrease in the proportion of Th1 and Th17, as well as an increase in the proportion of Treg and a reduction in p-mTOR expression in CD4+ cells. CONCLUSIONS We demonstrated that rhIL-37 effectively suppress acute rejection and induce long-term allograft acceptance. The results highlight that IL-37 could be novel and promising candidate for prevention of allograft rejection.
Collapse
Affiliation(s)
- Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Jing-Yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Ya-Fei Qin
- Department of Vascular Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Yong-Chang Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - De-Jun Kong
- School of Medicine, Nankai University, Tianjin, China.
| | - Yong-Hao Hu
- Department of Lymphatic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Hong Qin
- Department of Breast and Thyroid Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China.
| | - Guang-Ming Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair.
| |
Collapse
|
6
|
Xu Y, Wang JY, Zou Y, Ma XW, Meng T. Role of IL-1 Family Cytokines IL-36, IL-37, IL-38 in Osteoarthritis and Rheumatoid Arthritis: A Comprehensive Review. J Inflamm Res 2024; 17:4001-4016. [PMID: 38915806 PMCID: PMC11195677 DOI: 10.2147/jir.s474879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
Inflammatory cytokines, interleukin-36 (IL-36), IL-37, IL-38 belong to IL-1 family. The IL-36 subfamily obtains pro- and anti-inflammatory effects on various immune responses. Cytokine IL-37, has anti-inflammatory functions in immunity, and the recently identified IL-38 negatively associated with disease pathogenesis. To date, expression of IL-36, IL-37, IL-38 is reported dysregulated in osteoarthritis (OA) and rheumatoid arthritis (RA), and may be disease markers for arthritis-related diseases. Interestingly, expression of IL-38 was different either in OA patients or animal models, and expression of IL-36Ra in synovium was different in OA and RA patients. Moreover, functional studies have demonstrated significant role of these cytokines in OA and RA progress. These processes were related to immune cells and non-immune cells, where the cytokines IL-36, IL-37, IL-38 may regulate downstream signalings in the cells, and then involve in OA, RA development. In this review, we comprehensively discuss recent advancements in cytokines and the development of OA, RA. We hope that targeting these cytokines will become a potential treatment option for OA and RA in the future.
Collapse
Affiliation(s)
- Yuan Xu
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Jing-Yan Wang
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Yang Zou
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Xue-Wei Ma
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| | - Tian Meng
- College of Health Industry, Sichuan Tourism University, Chengdu, Sichuan, 610100, People’s Republic of China
| |
Collapse
|
7
|
Gong S, Xiang K, Chen L, Zhuang H, Song Y, Chen J. Integrated bioinformatics analysis identified leucine rich repeat containing 15 and secreted phosphoprotein 1 as hub genes for calcific aortic valve disease and osteoarthritis. IET Syst Biol 2024; 18:77-91. [PMID: 38566328 PMCID: PMC11179158 DOI: 10.1049/syb2.12091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/05/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Calcific aortic valve disease (CAVD) and osteoarthritis (OA) are common diseases in the ageing population and share similar pathogenesis, especially in inflammation. This study aims to discover potential diagnostic and therapeutic targets in patients with CAVD and OA. Three CAVD datasets and one OA dataset were obtained from the Gene Expression Omnibus database. We used bioinformatics methods to search for key genes and immune infiltration, and established a ceRNA network. Immunohistochemical staining was performed to verify the expression of candidate genes in human and mice aortic valve tissues. Two key genes obtained, leucine rich repeat containing 15 (LRRC15) and secreted phosphoprotein 1 (SPP1), were further screened using machine learning and verified in human and mice aortic valve tissues. Compared to normal tissues, the infiltration of immune cells in CAVD tissues was significantly higher, and the expressions of LRRC15 and SPP1 were positively correlated with immune cells infiltration. Moreover, the ceRNA network showed extensive regulatory interactions based on LRRC15 and SPP1. The authors' findings identified LRRC15 and SPP1 as hub genes in immunological mechanisms during CAVD and OA initiation and progression, as well as potential targets for drug development.
Collapse
Affiliation(s)
- Shuji Gong
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Kun Xiang
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Le Chen
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Huanwei Zhuang
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yaning Song
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jinlan Chen
- Department of Cardiovascular SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
8
|
Lyu J, Sheng M, Cao Y, Jia L, Zhang C, Weng Y, Yu W. Ischemia and reperfusion-injured liver-derived exosomes elicit acute lung injury through miR-122-5p regulated alveolar macrophage polarization. Int Immunopharmacol 2024; 131:111853. [PMID: 38503014 DOI: 10.1016/j.intimp.2024.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Acute lung injury (ALI) is a common postoperative complication, particularly in pediatric patients after liver transplantation. Hepatic ischemia-reperfusion (HIR) increases the release of exosomes (IR-Exos) in peripheral circulation. However, the role of IR-Exos in the pathogenesis of ALI induced by HIR remains unclear. Here, we explored the role of exosomes derived from the HIR-injured liver in ALI development. Intravenous injection of IR-Exos caused lung inflammation in naive rats, whereas pretreatment with an inhibitor of exosomal secretion (GW4869) attenuated HIR-related lung injury. In vivo and in vitro results show that IR-Exos promoted proinflammatory responses and M1 macrophage polarization. Furthermore, miRNA profiling of serum identified miR-122-5p as the exosomal miRNA with the highest increase in young rats with HIR compared with controls. Additionally, IR-Exos transferred miR-122-5p to macrophages and promoted proinflammatory responses and M1 phenotype polarization by targeting suppressor of cytokine signaling protein 1(SOCS-1)/nuclear factor (NF)-κB. Importantly, the pathological role of exosomal miR-122-5p in initiating lung inflammation was reversed by inhibition of miR-122-5p. Clinically, high levels of miR-122-5p were found in serum and correlated to the severity of lung injury in pediatric living-donor liver transplant recipients with ALI. Taken together, our findings reveal that IR-Exos transfer liver-specific miR-122-5p to alveolar macrophages and elicit ALI by inducing M1 macrophage polarization via the SOCS-1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jingshu Lyu
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China; Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital, Henan University People's Hospital, Henan Provincial People's Hospital, 450000 Zhengzhou, China
| | - Mingwei Sheng
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Yingli Cao
- School of Medicine, Nankai University, 300071 Tianjin, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Chen Zhang
- Department of Anesthesiology, The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China; School of Medicine, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
9
|
Tucureanu MM, Ciortan L, Macarie RD, Mihaila AC, Droc I, Butoi E, Manduteanu I. The Specific Molecular Changes Induced by Diabetic Conditions in Valvular Endothelial Cells and upon Their Interactions with Monocytes Contribute to Endothelial Dysfunction. Int J Mol Sci 2024; 25:3048. [PMID: 38474293 DOI: 10.3390/ijms25053048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Aortic valve disease (AVD) represents a global public health challenge. Research indicates a higher prevalence of diabetes in AVD patients, accelerating disease advancement. Although the specific mechanisms linking diabetes to valve dysfunction remain unclear, alterations of valvular endothelial cells (VECs) homeostasis due to high glucose (HG) or their crosstalk with monocytes play pivotal roles. The aim of this study was to determine the molecular signatures of VECs in HG and upon their interaction with monocytes in normal (NG) or high glucose conditions and to propose novel mechanisms underlying valvular dysfunction in diabetes. VECs and THP-1 monocytes cultured in NG/HG conditions were used. The RNAseq analysis revealed transcriptomic changes in VECs, in processes related to cytoskeleton regulation, focal adhesions, cellular junctions, and cell adhesion. Key molecules were validated by qPCR, Western blot, and immunofluorescence assays. The alterations in cytoskeleton and intercellular junctions impacted VEC function, leading to changes in VECs adherence to extracellular matrix, endothelial permeability, monocyte adhesion, and transmigration. The findings uncover new molecular mechanisms of VEC dysfunction in HG conditions and upon their interaction with monocytes in NG/HG conditions and may help to understand mechanisms of valvular dysfunction in diabetes and to develop novel therapeutic strategies in AVD.
Collapse
Affiliation(s)
- Monica Madalina Tucureanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Letitia Ciortan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Razvan Daniel Macarie
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Andreea Cristina Mihaila
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Ionel Droc
- Cardiovascular Surgery Department, Central Military Hospital, 010825 Bucharest, Romania
| | - Elena Butoi
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Ileana Manduteanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| |
Collapse
|
10
|
Zhen Z, Wei S, Yunfei W, Jie X, Jienan X, Yiting S, Wen X, Shuyu G, Yue L, Xuanyu W, Yumei Z, Huafa Q. Astragalus polysaccharide improves diabetic ulcers by promoting M2-polarization of macrophages to reduce excessive inflammation via the β-catenin/ NF-κB axis at the late phase of wound-healing. Heliyon 2024; 10:e24644. [PMID: 38390059 PMCID: PMC10881534 DOI: 10.1016/j.heliyon.2024.e24644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Ethnopharmacological relevance Astragalus polysaccharide (APS), the most biologically active ingredient of Astragali Radix, is used to treat diabetes mellitus (DM)-related chronic wounds in traditional Chinese medicine for several decades. This herb possesses an anti-inflammatory effect. Our study proved that APS can reduce excessive inflammation at the late phase of wound-healing in diabetic ulcers. Aim of the study To clarify the molecular mechanism of APS in promoting wound-healing via reducing excessive inflammation in diabetic ulcers during the late stages of wound-healing. Methods and materials The rat model of the diabetic ulcers was established via intraperitoneal injection of streptozocin (60 mg/kg). We detected the regulation of APS on diabetic ulcers by measuring wound-healing rates. Bioinformatics was used to predict the target genes of APS, and autodocking was used to predict the combination of APS and target genes. Immunohistochemistry, Enzyme-linked immunosorbent assay, Western blot, immunofluorescence staining, flow cytometry, and flow cytometric sorting were investigated. Results The results demonstrated that APS promoted wound-healing and inhibited excessive inflammation at the late phase of wound-healing in diabetic rats. Mechanistic findings showed that APS promoted the expression of β-catenin and Rspo3 while inhibiting the expression of NF-KB and GSK-3β, which leads to the transformation of M1-type macrophages into M2-type macrophages and thus reducing excessive inflammation at the late phase of wound-healing in diabetic ulcers. Conclusion We found an interesting finding that APS promoted the polarization of macrophages towards M2-type through the β-catenin/NF-κB axis to reduce excessive inflammation at the late phase of wound-healing. Therefore, APS may be a promising drug for treating diabetic ulcers in clinic.
Collapse
Affiliation(s)
- Zhang Zhen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shan Wei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wang Yunfei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xing Jie
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xu Jienan
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shen Yiting
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiao Wen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guo Shuyu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Liang Yue
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wang Xuanyu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhong Yumei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Que Huafa
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
11
|
Yang L, Tao W, Xie C, Chen Q, Zhao Y, Zhang L, Xiao X, Wang S, Zheng X. Interleukin-37 ameliorates periodontitis development by inhibiting NLRP3 inflammasome activation and modulating M1/M2 macrophage polarization. J Periodontal Res 2024; 59:128-139. [PMID: 37947055 DOI: 10.1111/jre.13196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Our study was designed to explore the role of IL-37 in M1/M2 macrophage polarization imbalance in the pathogenesis of periodontitis. BACKGROUND Periodontitis is a chronic progressive inflammatory disease featured by gingival inflammation and alveolar bone resorption. Recent research has revealed that regulating macrophage polarization is a viable method to ameliorate periodontal inflammation. IL-37 is an anti-inflammatory cytokine, which has been reported to inhibit innate and adaptive immunity. METHODS For in vitro experiment, mouse macrophage RAW264.7 cells were pretreated with 0.1 ng/mL recombinant human IL-37. M1 and M2 polarizations of RAW264.7 cells were induced by 100 ng/mL LPS and 20 ng/mL IL-4, respectively. The expression of M1 (iNOS, TNF-α, and IL-6) and M2 (CD206, Arg1, and IL-10) phenotype markers in RAW264.7 cells was detected by RT-qPCR, western blotting, and immunofluorescence staining. For in vivo experiment, experimental periodontitis mouse models were established by sterile silk ligation (5-0) around the bilateral maxillary second molar of mice for 1 week. H&E staining of the maxillary alveolar bone was used to show the resorption of root cementum and dentin. Alveolar bone loss in mouse models was evaluated through micro-CT analysis. The expression of iNOS and CD206 in gingival tissues was assessed by immunohistochemistry staining. NLRP3 inflammasome activation was confirmed by western blotting. RESULTS IL-37 pretreatment reduced iNOS, TNF-α, and IL-6 expression in LPS-treated RAW264.7 cells but increased CD206, Arg1, and IL-10 in IL-4-treated RAW264.7 cells. LPS-induced upregulation in NLRP3, GSDMD, cleaved-IL-1β, and cleaved-caspase-1 expression was antagonized by IL-37 treatment. In addition, IL-37 administration ameliorated the resorption of root cementum and dentin in periodontitis mouse models. IL-37 prominently decreased iNOS+ cell population but increased CD206+ cell population in gingival tissues of periodontitis mice. The enhancement in NLRP3, GSDMD, cleaved-IL-1β, and cleaved-caspase-1 expression in the gingival tissues of periodontitis mice was offset by IL-37 administration. CONCLUSION IL-37 prevents the progression of periodontitis by suppressing NLRP3 inflammasome activation and mediating M1/M2 macrophage polarization.
Collapse
Affiliation(s)
- Liyan Yang
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Tao
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chen Xie
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Qiuye Chen
- Department of Stomatology, Hainan Cancer Hospital, Haikou, China
| | - Yunshan Zhao
- Integrated Department, Hainan Stomatological Hospital, Haikou, China
| | - Li Zhang
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Xu Xiao
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shilu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xu Zheng
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| |
Collapse
|
12
|
Cao J, Liu JH, Wise SG, Fan J, Bao S, Zheng GS. The role of IL-36 and 37 in hepatocellular carcinoma. Front Immunol 2024; 15:1281121. [PMID: 38312834 PMCID: PMC10834741 DOI: 10.3389/fimmu.2024.1281121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has garnered considerable attention due to its morbidity and mortality. Although the precise mechanisms underlying HCC tumorigenesis remain to be elucidated, evidence suggests that host immunity plays a pivotal role in its development. IL-36 and IL-37 are important immunoregulatory cytokines classified as pro-inflammatory and anti-inflammatory respectively. In the context of HCC, the downregulation of intrahepatic IL-36 is inversely correlated with cirrhosis, but positively correlated with 5-year survival rates, suggesting that IL-36 offers protection during HCC development. However, IL-36 may lose its hepatoprotective effects as the disease progresses to HCC in the context of dysregulated immunity in cirrhotic patients. Substantially increased circulating IL-36 in HCC patients is likely a systemic response to HCC stimulation, but is insufficient to suppress progression towards HCC. Intrahepatic IL-37 is suppressed in HCC patients, consistent with the inverse correlation between intrahepatic IL-37 and the level of AFP in HCC patients, suggesting IL-37 exerts hepatoprotection. There is no significant difference in IL-37 among differentiations of HCC or with respect to clinical BCLC stages or cirrhosis status in HCC patients. However, IL-37 protection is demonstrated in an IL-37 transfected HCC animal model, showing significantly reduced tumour size. IL-36/37 may inhibit HCC by enhancing M1 tumour-associated macrophages while not affecting M2 macrophages. The interplay between IL-36 (pro-inflammatory) and IL-37 (anti-inflammatory) is emerging as a crucial factor in host protection against the development of HCC. Further research is needed to investigate the complex mechanisms involved and the therapeutic potential of targeting these cytokines in HCC management.
Collapse
Affiliation(s)
- Juan Cao
- Basic Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Public Health, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun-Hong Liu
- Department of Public Health, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial Integrated Traditional Chinese and Western Medicine Digestive Disease Clinical Research Centre, Lanzhou, China
| | - Steven G. Wise
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jingchun Fan
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shisan Bao
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gui-Sen Zheng
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
13
|
Valdes-Fernandez BN, Ruiz-Jimenez C, Armina-Rodriguez A, Mendez LB, Espino AM. Fasciola hepatica GST mu-class suppresses the cytokine storm induced by E. coli-lipopolysaccharide, whereas it modulates the dynamic of peritoneal macrophages in a mouse model and suppresses the classical activation of macrophages. Microbiol Spectr 2024; 12:e0347523. [PMID: 38018982 PMCID: PMC10782955 DOI: 10.1128/spectrum.03475-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Sepsis is the consequence of a systemic bacterial infection that exacerbates the immune cell's activation via bacterial products, resulting in the augmented release of inflammatory mediators. A critical factor in the pathogenesis of sepsis is the primary component of the outer membrane of Gram-negative bacteria known as lipopolysaccharide (LPS), which is sensed by TLR4. For this reason, scientists have aimed to develop antagonists able to block TLR4 and, thereby the cytokine storm. We report here that a mixture of mu-class isoforms from the F. hepatica GST protein family administered intraperitoneally 1 h prior to a lethal LPS injection can modulate the dynamics and abundance of large peritoneal macrophages in the peritoneal cavity of septic mice while significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock. These results suggest that native F. hepatica glutathione S-transferase is a promising candidate for drug development against endotoxemia and other inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Loyda B. Mendez
- School of Sciences and Technologies, University Ana G. Mendez, Carolina, Puerto Rico
| | - Ana M. Espino
- Department of Microbiology, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
14
|
Mesjasz A, Trzeciak M, Gleń J, Jaskulak M. Potential Role of IL-37 in Atopic Dermatitis. Cells 2023; 12:2766. [PMID: 38067193 PMCID: PMC10706414 DOI: 10.3390/cells12232766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Interleukin 37 (IL-37) is a recently discovered member of the IL-1 cytokine family that appears to have anti-inflammatory and immunosuppressive effects in various diseases. IL-37 acts as a dual-function cytokine, exerting its effect extracellularly by forming a complex with the receptors IL-18 α (IL-18Rα) and IL-1R8 and transmitting anti-inflammatory signals, as well as intracellularly by interacting with Smad3, entering the nucleus, and inhibiting the transcription of pro-inflammatory genes. Consequently, IL-37 is linked to IL-18, which plays a role in the pathogenesis of atopic dermatitis (AD), consistent with our studies. Some isoforms of IL-37 are expressed by keratinocytes, monocytes, and other skin immune cells. IL-37 has been found to modulate the skewed T helper 2 (Th2) inflammation that is fundamental to the pathogenesis of AD. This review provides an up-to-date summary of the function of IL-37 in modulating the immune system and analyses its potential role in the pathogenesis of AD. Moreover, it speculates on IL-37's hypothetical value as a therapeutic target in the treatment of AD.
Collapse
Affiliation(s)
- Alicja Mesjasz
- Dermatological Students Scientific Association, Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Jolanta Gleń
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Marta Jaskulak
- Department of Immunobiology and Environmental Microbiology, Faculty of Health Sciences, Medical University of Gdansk, 80-214 Gdansk, Poland;
| |
Collapse
|
15
|
Valdes-Fernandez BN, Ruiz-Jimenez C, Armina-Rodriguez A, Mendez LB, Espino AM. Fasciola hepatica GST mu-class suppresses the cytokine storm induced by E. coli -lipopolysaccharide whereas modulates the dynamic of peritoneal macrophages in a mouse model and suppresses the classical activation of macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552847. [PMID: 37609327 PMCID: PMC10441391 DOI: 10.1101/2023.08.10.552847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The helminth Fasciola hepatica is known as a master of immunomodulation. It suppresses antigen specific Th1 responses in concurrent bacterial infections while promoting the Th2/Treg regulatory responses, thus demonstrating its anti-inflammatory ability in vivo . We have recently demonstrated that a single intraperitoneal injection with native F. hepatica Glutathione S -Transferase (nFhGST), mostly comprised of mu-class isoforms, can suppresses the cytokine storm and increasing the survival rate in a mouse model of septic shock (1). Knowing that the peritoneal macrophages in response to microbial stimuli play essential roles in the defense, tissue repairment, and maintenance of homeostasis, the present study aimed to determine whether nFhGST could modulate the amount and dynamic of these cells concurrently to the suppression of pro-inflammatory cytokines. The remarkable findings described in this article are, (i) nFhGST suppresses serum IL-12, TNF-α, and IFN-γ in BALB/c mice challenged with a lethal dose of LPS, (ii) Although nFhGST does not elicit IL-10, it was able to significantly suppress the high levels of LPS-induced IL-10, which is considered a key cytokine in the pathophysiology of sepsis (2). iii) nFhGST prevent the disappearance of large peritoneal macrophages (LPM) whereas significantly increasing this population in the peritoneal cavity (PerC) of LPS treated animals, (iv) nFhGST promotes the alternative activation of macrophages whereas suppress the classical activation of macrophages in vitro by expressing high levels of Ym-1, a typical M2-type marker, secreting the production of IL-37, and preventing the production of TNF-α, iNOS2 and nitric oxide, which are typical markers of M1-type macrophages, (v) nFhGST suppress the bacterial phagocytosis of macrophages, a role that plays both, M1-and M2-macrophages, thus partially affecting the capacity of macrophages in destroying microbial pathogens. These findings present the first evidence that nFhGST is an excellent modulator of the PerC content in vivo, reinforcing the capacity of nFhGST as an anti-inflammatory drug against sepsis in animal models. Importance Sepsis is an infection that can lead to a life-threatening complication. Sepsis is the consequence of a systemic bacterial infection that exacerbates the immune cells' activation by bacterial products, resulting in the augmented release of inflammatory mediators. A critical factor in the pathogenesis of sepsis is the primary component of the outer membrane of Gram-negative bacteria known as lipopolysaccharide (LPS), which is sensed by toll-like receptor 4 (TLR4). For this reason, scientists aimed to develop antagonists able to block the cytokine storm by blocking TLR4. We report here that a mixture of mu-class isoforms from the F. hepatica glutathione S-transferase (nFhGST) protein family administered intraperitoneally 1 h after a lethal LPS injection, is capable of significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock whereas modulate the dynamic and abundance of large peritoneal macrophages in the peritoneal cavity of septic mice. These results suggest that nFhGST is a prominent candidate for drug development against endotoxemia and other inflammatory diseases.
Collapse
|
16
|
Li X, Liu J, Zeng M, Yang K, Zhang S, Liu Y, Yin X, Zhao C, Wang W, Xiao L. GBP2 promotes M1 macrophage polarization by activating the notch1 signaling pathway in diabetic nephropathy. Front Immunol 2023; 14:1127612. [PMID: 37622120 PMCID: PMC10445759 DOI: 10.3389/fimmu.2023.1127612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Background Diabetic nephropathy (DN) is one of the most common diabetic complications, which has become the primary cause of end-stage renal disease (ESRD) globally. Macrophage infiltration has been proven vital in the occurrence and development of DN. This study was designed to investigate the hub genes involved in macrophage-mediated inflammation of DN via bioinformatics analysis and experimental validation. Methods Gene microarray datasets were obtained from the Gene Expression Omnibus (GEO) public website. Integrating the CIBERSORT, weighted gene co-expression network analysis (WGCNA) and DEGs, we screened macrophage M1-associated key genes with the highest intramodular connectivity. Subsequently, the Least Absolute Shrinkage and Selection Operator (LASSO) regression was utilized to further mine hub genes. GSE104954 acted as an external validation to predict the expression levels and diagnostic performance of these hub genes. The Nephroseq online platform was employed to evaluate the clinical implications of these hub genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to elucidate the dominant biological functions and signal pathways. Finally, we conducted experiments to verify the role of GBP2 in M1 macrophage-mediated inflammatory response and the underlying mechanism of this role. Results Sixteen DEGs with the highest connectivity in M1 macrophages-associated module (paleturquoise module) were determined. Subsequently, we identified four hub genes through LASSO regression analysis, including CASP1, MS4A4A, CD53, and GBP2. Consistent with the training set, expression levels of these four hub genes manifested memorably elevated and the ROC curves indicated a good diagnostic accuracy with an area under the curve of greater than 0.8. Clinically, enhanced expression of these four hub genes predicted worse outcomes of DN patients. Given the known correlation between the first three hub genes and macrophage-mediated inflammation, experiments were performed to demonstrate the effect of GBP2, which proved that GBP2 contributed to M1 polarization of macrophages by activating the notch1 signaling pathway. Conclusion Our findings detected four hub genes, namely CASP1, MS4A4A, CD53, and GBP2, may involve in the progression of DN via pro-inflammatory M1 macrophage phenotype. GBP2 could be a promising prognostic biomarker and intervention target for DN by regulating M1 polarization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Li Xiao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Wang Y, Zheng Y, Qi B, Liu Y, Cheng X, Feng J, Gao W, Li T. α-Lipoic acid alleviates myocardial injury and induces M2b macrophage polarization after myocardial infarction via HMGB1/NF-kB signaling pathway. Int Immunopharmacol 2023; 121:110435. [PMID: 37320869 DOI: 10.1016/j.intimp.2023.110435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Myocardial infarction (MI) is a serious cardiovascular disease with a poor prognosis. Macrophages are the predominant immune cells in patients with MI and macrophage regulation during the different phases of MI has important consequences for cardiac recovery. Alpha-lipoic acid (ALA) plays a critical role in MI by modulating the number of cardiomyocytes and macrophages. METHODS MI mice were generated by ligating the left anterior descending coronary artery. Macrophages were exposed to hypoxia to establish a hypoxia model and M1 polarization was induced by LPS and IFN-γ. Different groups of macrophages and MI mice were treated with ALA. The cardiomyocytes were treated with various macrophage supernatants and the cardiac function, cytokine levels, and pathology were also analyzed. Factors related to apoptosis, autophagy, reactive oxygen species (ROS), and the mitochondrial membrane potential (MMP) were assessed. Finally, the HMGB1/NF-κB pathway was identified. RESULTS ALA promoted M2b polarization in normal cells and suppressed inflammatory cytokines during hypoxia. ALA inhibited ROS and MMP production in vitro. Supernatants containing ALA inhibited apoptosis and autophagy in hypoxic cardiomyocytes. Moreover, ALA suppressed the HMGB1/NF-κB pathway in macrophages, which may be a potential mechanism for attenuating MI. CONCLUSION ALA alleviates MI and induces M2b polarization via the HMGB1/NF-κB pathway, impeding inflammation, oxidation, apoptosis, and autophagy, and might be a potential strategy for MI treatment.
Collapse
Affiliation(s)
- Yuchao Wang
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China.
| | - Yue Zheng
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Bingcai Qi
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yanwu Liu
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Xuan Cheng
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Jianyu Feng
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Wenqing Gao
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China.
| | - Tong Li
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China.
| |
Collapse
|
18
|
Mikolajczyk-Martinez A, Ugorski M. Unraveling the role of type 1 fimbriae in Salmonella pathogenesis: insights from a comparative analysis of Salmonella Enteritidis and Salmonella Gallinarum. Poult Sci 2023; 102:102833. [PMID: 37356296 PMCID: PMC10404763 DOI: 10.1016/j.psj.2023.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
Significant differences in pathogenicity between Salmonella Enteritidis and Salmonella Gallinarum exist despite the fact that S. Gallinarum is a direct descendant of S. Enteritidis. It was hypothesized that such various properties may be in part the result of differences in structure and functions of type 1 fimbriae (T1Fs). In S. Enteritidis, T1Fs bind to oligomannosidic structures carried by host cell glycoproteins and are called mannose-sensitive T1Fs (MST1F). In S. Gallinarum, T1Fs lost ability to bind such carbohydrate chains, and were named mannose-resistant MRT1Fs (MRT1F). Therefore, the present study was undertaken to evaluate the role of MST1Fs and MRT1Fs in the adhesion, invasion, intracellular survival and cytotoxicity of S. Enteritidis and S. Gallinarum toward chicken intestinal CHIC8-E11cells and macrophage-like HD11 cells. Using mutant strains: S. Enteritidis fimH::kan and S. Gallinarum fimH::kan devoid of T1Fs and in vitro assays the following observations were made. MST1Fs have a significant impact on the chicken cell invasion by S. Enteritidis as MST1F-mediated adhesion facilitates direct and stable contact of bacteria with host cells, in contrast to MRT1Fs expressed by S. Gallinarum. MST1Fs as well as MRT1Fs did not affected intracellular viability of S. Enteritidis and S. Gallinarum. However, absolute numbers of intracellular viable wild-type S. Enteritidis were significantly higher than S. Enteritidis fimH::kan mutant and wild-type S. Gallinarum and S. Gallinarum fimH::kan mutant. These differences, reflecting the numbers of adherent and invading bacteria, underline the importance of MST1Fs in the pathogenicity of S. Enteritidis infections. The cytotoxicity of wild-type S. Enteritidis and its mutant devoid of MST1Fs to HD11 cells was essentially the same, despite the fact that the number of viable intracellular bacteria was significantly lower in the mutated strain. Using HD11 cells with similar number of intracellular wild-type S. Enteritidis and S. Enteritidis fimH::kan mutant, it was found that the lack of MST1Fs did not affect directly the cytotoxicity, suggesting that the increase in cytotoxicity of S. Enteritidis devoid of MST1Fs may be associated with crosstalk between T1Fs and other virulence factors.
Collapse
Affiliation(s)
- Agata Mikolajczyk-Martinez
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| |
Collapse
|
19
|
Jiang B, Zhou Y, Liu Y, He S, Liao B, Peng T, Yao L, Qi L. Research Progress on the Role and Mechanism of IL-37 in Liver Diseases. Semin Liver Dis 2023; 43:336-350. [PMID: 37582401 PMCID: PMC10620037 DOI: 10.1055/a-2153-8836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Cytokines are important components of the immune system that can predict or influence the development of liver diseases. IL-37, a new member of the IL-1 cytokine family, exerts potent anti-inflammatory and immunosuppressive effects inside and outside cells. IL-37 expression differs before and after liver lesions, suggesting that it is associated with liver disease; however, its mechanism of action remains unclear. This article mainly reviews the biological characteristics of IL-37, which inhibits hepatitis, liver injury, and liver fibrosis by inhibiting inflammation, and inhibits the development of hepatocellular carcinoma (HCC) by regulating the immune microenvironment. Based on additional evidence, combining IL-37 with liver disease markers for diagnosis and treatment can achieve more significant effects, suggesting that IL-37 can be developed into a powerful tool for the clinical adjuvant treatment of liver diseases, especially HCC.
Collapse
Affiliation(s)
- Baoyi Jiang
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yulin Zhou
- Department of Clinical Laboratory, Shunde New Rongqi Hospital, Foshan, China
| | - Yanting Liu
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Siqi He
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Baojian Liao
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Tieli Peng
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Leyi Yao
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ling Qi
- Institute of Digestive Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
20
|
Bouhamida E, Morciano G, Pedriali G, Ramaccini D, Tremoli E, Giorgi C, Pinton P, Patergnani S. The Complex Relationship between Hypoxia Signaling, Mitochondrial Dysfunction and Inflammation in Calcific Aortic Valve Disease: Insights from the Molecular Mechanisms to Therapeutic Approaches. Int J Mol Sci 2023; 24:11105. [PMID: 37446282 DOI: 10.3390/ijms241311105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS) is among the most common causes of cardiovascular mortality in an aging population worldwide. The pathomechanisms of CAVS are such a complex and multifactorial process that researchers are still making progress to understand its physiopathology as well as the complex players involved in CAVS pathogenesis. Currently, there is no successful and effective treatment to prevent or slow down the disease. Surgical and transcatheter valve replacement represents the only option available for treating CAVS. Insufficient oxygen availability (hypoxia) has a critical role in the pathogenesis of almost all CVDs. This process is orchestrated by the hallmark transcription factor, hypoxia-inducible factor 1 alpha subunit (HIF-1α), which plays a pivotal role in regulating various target hypoxic genes and metabolic adaptations. Recent studies have shown a great deal of interest in understanding the contribution of HIF-1α in the pathogenesis of CAVS. However, it is deeply intertwined with other major contributors, including sustained inflammation and mitochondrial impairments, which are attributed primarily to CAVS. The present review aims to cover the latest understanding of the complex interplay effect of hypoxia signaling pathways, mitochondrial dysfunction, and inflammation in CAVS. We propose further hypotheses and interconnections on the complexity of these impacts in a perspective of better understanding the pathophysiology. These interplays will be examined considering recent studies that shall help us better dissect the molecular mechanism to enable the design and development of potential future therapeutic approaches that can prevent or slow down CAVS processes.
Collapse
Affiliation(s)
- Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
21
|
Liu Q, Zhou Q, Wang M, Pang B. Interleukin-37 suppresses the cytotoxicity of hepatitis B virus peptides-induced CD8+ T cells in patients with acute hepatitis B. BIOMOLECULES & BIOMEDICINE 2023; 23:527-534. [PMID: 36326182 PMCID: PMC10171447 DOI: 10.17305/bjbms.2022.8260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Interleukin-37 (IL-37) is a newly identified anti-inflammatory cytokine, owning immunosuppressive activity in infectious diseases. The aim of this study was to investigate the regulatory function of IL-37 on CD8+ T cells during hepatitis B virus (HBV) infection. Eighteen acute hepatitis B (AHB) patients, thirty-nine chronic hepatitis B (CHB) patients, and twenty controls were enrolled. IL-37 concentration was measured by ELISA. IL-37 receptor subunits expressions on CD8+ T cells were assessed by flow cytometry. Purified CD8+ T cells were stimulated with HBV peptides and recombinant IL-37. Perforin and granzyme B secretion was investigated by ELISPOT. Programmed death-1 (PD-1) and cytotoxic T-lymphocyte associated protein-4 (CTLA-4) mRNA expressions were semi-quantified by real-time PCR. CD8+ T cell cytotoxicity was assessed in direct contact and indirect contact coculture with HepG2.2.15 cells. Plasma IL-37 level was down-regulated and negatively correlated with aminotransferase levels in AHB patients. There were no significant differences of IL-37 receptor subunits among AHB patients, CHB patients, and controls. Exogenous IL-37 stimulation suppressed HBV peptides-induced perforin and granzyme B secretion by CD8+ T cells in AHB patients, but not in CHB patients. Exogenous IL-37 stimulation did not affect proinflammatory cytokines secretion as well as PD-1/CTLA-4 mRNA expressions in CD8+ T cells in AHB and CHB patients. Exogenous IL-37 stimulation dampened HBV peptide-induced CD8+ T cell cytotoxicity in a cell-to-cell contact manner. The current data indicated that acute HBV infection might induce down-regulation of IL-37, which might be associated with enhanced CD8+ T cell cytotoxicity and liver damage.
Collapse
Affiliation(s)
- Qian Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qiang Zhou
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Mingrui Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Bo Pang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
22
|
Yu MY, Jia HJ, Zhang J, Ran GH, Liu Y, Yang XH. Exosomal miRNAs-mediated macrophage polarization and its potential clinical application. Int Immunopharmacol 2023; 117:109905. [PMID: 36848789 DOI: 10.1016/j.intimp.2023.109905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Macrophages are highly heterogeneous and plastic immune cells that play an important role in the fight against pathogenic microorganisms and tumor cells. After different stimuli, macrophages can polarize to the M1 phenotype to show a pro-inflammatory effect and the M2 phenotype to show an anti-inflammatory effect. The balance of macrophage polarization is highly correlated with disease progression, and therapeutic approaches to reprogram macrophages by targeting macrophage polarization are feasible. There are a large number of exosomes in tissue cells, which can transmit information between cells. In particular, microRNAs (miRNAs) in the exosomes can regulate the polarization of macrophages and further affect the progression of various diseases. At the same time, exosomes are also effective "drug" carriers, laying the foundation for the clinical application of exosomes. This review describes some pathways involved in M1/M2 macrophage polarization and the effects of miRNA carried by exosomes from different sources on the polarization of macrophages. Finally, the application prospects and challenges of exosomes/exosomal miRNAs in clinical treatment are also discussed.
Collapse
Affiliation(s)
- Ming Yun Yu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China
| | - Hui Jie Jia
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Jing Zhang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China
| | - Guang He Ran
- Department of Medical Laboratory, Chang shou District Hospital of Traditional Chinese Medicine, No. 1 Xinglin Road, Peach Blossom New Town, Changshou District, 401200 Chongqing, China
| | - Yan Liu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China.
| | - Xiu Hong Yang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Eco-city, Tangshan, 063210 Hebei, China.
| |
Collapse
|
23
|
Welcome MO, Dogo D, Nikos E Mastorakis. Cellular mechanisms and molecular pathways linking bitter taste receptor signalling to cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Inflammopharmacology 2023; 31:89-117. [PMID: 36471190 PMCID: PMC9734786 DOI: 10.1007/s10787-022-01086-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Heart diseases and related complications constitute a leading cause of death and socioeconomic threat worldwide. Despite intense efforts and research on the pathogenetic mechanisms of these diseases, the underlying cellular and molecular mechanisms are yet to be completely understood. Several lines of evidence indicate a critical role of inflammatory and oxidative stress responses in the development and progression of heart diseases. Nevertheless, the molecular machinery that drives cardiac inflammation and oxidative stress is not completely known. Recent data suggest an important role of cardiac bitter taste receptors (TAS2Rs) in the pathogenetic mechanism of heart diseases. Independent groups of researchers have demonstrated a central role of TAS2Rs in mediating inflammatory, oxidative stress responses, autophagy, impulse generation/propagation and contractile activities in the heart, suggesting that dysfunctional TAS2R signalling may predispose to cardiac inflammatory and oxidative stress disorders, characterised by contractile dysfunction and arrhythmia. Moreover, cardiac TAS2Rs act as gateway surveillance units that monitor and detect toxigenic or pathogenic molecules, including microbial components, and initiate responses that ultimately culminate in protection of the host against the aggression. Unfortunately, however, the molecular mechanisms that link TAS2R sensing of the cardiac milieu to inflammatory and oxidative stress responses are not clearly known. Therefore, we sought to review the possible role of TAS2R signalling in the pathophysiology of cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Potential therapeutic significance of targeting TAS2R or its downstream signalling molecules in cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction is also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Dilli Dogo
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, Sofia, 1000, Bulgaria
| |
Collapse
|
24
|
Li S, Pan X, Wu Y, Tu Y, Hong W, Ren J, Miao J, Wang T, Xia W, Lu J, Chen J, Hu X, Lin Y, Zhang X, Wang X. IL-37 alleviates intervertebral disc degeneration via the IL-1R8/NF-κB pathway. Osteoarthritis Cartilage 2023; 31:588-599. [PMID: 36693558 DOI: 10.1016/j.joca.2023.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Intervertebral disc degeneration (IDD) has been reported to be a major cause of low back pain (LBP). Interleukin (IL)-37 is an anti-inflammatory cytokine of the interleukin-1 family, which exerts salutary physiological effects. In this study, we assessed the protective effect of IL-37 on IDD progression and its underlying mechanisms. METHODS Immunofluorescence (IF) was conducted to measure IL-37 expression in nucleus pulposus tissues. CCK-8 assay and Edu staining were used to examine the vitality of IL-37-treated nucleus pulposus cells (NPCs). Western blot, qPCR, ELISA as well as immunohistochemistry were used to assess senescence associated secreted phenotype (SASP) factors expression; and NF-κB pathway was evaluated by western blot and IF; while IL-1R8 knock-down by siRNAs was performed to ascertain its significance in the senescence phenotype modulated by IL-37. The therapeutic effect of IL-37 on IDD were evaluated in puncture-induced rat model using X-ray, Hematoxylin-Eosin, Safranin O-Fast Green (SO), and alcian blue staining. RESULTS We found IL-37 expression decreased in the IDD process. In vitro, IL-37 suppressed SASP factors level and senescence phenotype in IL-1β treated NPCs. In vivo, IL-37 alleviated the IDD progression in the puncture-induced rat model. Mechanistic studies demonstrated that IL-37 inhibited IDD progression by downregulating NF-κB pathway activation in NPCs by activating IL-1R8. CONCLUSION The present study suggests that IL-37 delays the IDD development through the IL-1R8/NF-κB pathway, which suggests IL-37 as a promising novel target for IDD therapy.
Collapse
Affiliation(s)
- S Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - X Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Y Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Y Tu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - W Hong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - J Ren
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - J Miao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - T Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - W Xia
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - J Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - J Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - X Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Y Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - X Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - X Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
25
|
Qin M, Chen Q, Li N, Xu X, Wang C, Wang G, Xu Z. Shared gene characteristics and molecular mechanisms of macrophages M1 polarization in calcified aortic valve disease. Front Cardiovasc Med 2023; 9:1058274. [PMID: 36684607 PMCID: PMC9846331 DOI: 10.3389/fcvm.2022.1058274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Background CAVD is a common cardiovascular disease, but currently there is no drug treatment. Therefore, it is urgent to find new and effective drug therapeutic targets. Recent evidence has shown that the infiltration of M1 macrophages increased in the calcified aortic valve tissues, but the mechanism has not been fully elucidated. The purpose of this study was to explore the shared gene characteristics and molecular mechanisms of macrophages M1 polarization in CAVD, in order to provide a theoretical basis for new drugs of CAVD. Methods The mRNA datasets of CAVD and M1 polarization were downloaded from Gene Expression Omnibus (GEO) database. R language, String, and Cytoscape were used to analyze the functions and pathways of DEGs and feature genes. Immunohistochemical staining and Western Blot were performed to verify the selected hub genes. Results CCR7 and GZMB were two genes appeared together in hub genes of M1-polarized and CAVD datasets that might be involved in the process of CAVD and macrophages M1 polarization. CCR7 and CD86 were significantly increased, while CD163 was significantly decreased in the calcified aortic valve tissues. The infiltration of M1 macrophages was increased, on the contrary, the infiltration of M2 macrophages was decreased in the calcified aortic valve tissues. Conclusion This study reveals the shared gene characteristics and molecular mechanisms of CAVD and macrophages M1 polarization. The hub genes and pathways we found may provide new ideas for the mechanisms underlying the occurrence of M1 polarization during CAVD process.
Collapse
Affiliation(s)
- Ming Qin
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qian Chen
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ning Li
- Department of Cardiothoracic Surgery, People’s Liberation Army Navy Medical Center, Naval Medical University, Shanghai, China
| | - Xiangyang Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chuyi Wang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guokun Wang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China,Guokun Wang,
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Zhiyun Xu,
| |
Collapse
|
26
|
Haidari H, Melguizo-Rodríguez L, Cowin AJ, Kopecki Z. Therapeutic potential of antimicrobial peptides for treatment of wound infection. Am J Physiol Cell Physiol 2023; 324:C29-C38. [PMID: 36409176 DOI: 10.1152/ajpcell.00080.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Healing of cutaneous wounds is a fundamental process required to re-establish tissue integrity, repair skin barrier function, and restore skin homeostasis. Chronic wound infection, exacerbated by the growing development of resistance to conventional therapies, hinders the skin repair process and is a serious clinical problem affecting millions of people worldwide. In the past decade, the use of antimicrobial peptides (AMPs) has attracted increasing attention as a potential novel strategy for the treatment of chronic wound infections due to their unique multifaceted mechanisms of action, and AMPs have been demonstrated to function as potent host-defense molecules that can control microbial proliferation, modulate host-immune responses, and act as endogenous mediators of wound healing. To date over 3,200 AMPs have been discovered either from living organisms or through synthetic derivation, some of which have progressed to clinical trials for the treatment of burn and wound injuries. However, progress to routine clinical use has been hindered due to AMPs' susceptibility to wound and environmental factors including changes in pH, proteolysis, hydrolysis, oxidation, and photolysis. This review will discuss the latest research focused on the development and applications of AMPs for wound infections using the latest nanotechnological approaches to improve AMP delivery, and stability to present effective combinatorial treatment for clinical applications.
Collapse
Affiliation(s)
- Hanif Haidari
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Allison J Cowin
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Ming X, Cai W, Li Z, Yang X, Yang M, Pan D, Chen X. CD40LG and GZMB were correlated with adipose tissue macrophage infiltration and involved in obstructive sleep apnea related metabolic dysregulation: Evidence from bioinformatics analysis. Front Genet 2023; 14:1128139. [PMID: 36923793 PMCID: PMC10009156 DOI: 10.3389/fgene.2023.1128139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Both obesity and obstructive sleep apnea (OSA) can lead to metabolic dysregulation and systemic inflammation. Similar to obesity, increasing evidence has revealed that immune infiltration in the visceral adipose tissue (VAT) is associated with obstructive sleep apnea-related morbidity. However, the pathological changes and potential molecular mechanisms in visceral adipose tissue of obstructive sleep apnea patients need to be further studied. Herein, by bioinformatics analysis and clinical validation methods, including the immune-related differentially expressed genes (IRDEGs) analysis, protein-protein interaction network (PPI), functional enrichment analysis, a devolution algorithm (CIBERSORT), spearman's correlation analysis, polymerase chain reaction (PCR), Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC), we identified and validated 10 hub IRDEGs, the relative mRNA expression of four hub genes (CRP, CD40LG, CCL20, and GZMB), and the protein expression level of two hub genes (CD40LG and GZMB) were consistent with the bioinformatics analysis results. Immune infiltration results further revealed that obstructive sleep apnea patients contained a higher proportion of pro-inflammatory M1 macrophages and a lower proportion of M2 macrophages. Spearman's correlation analysis showed that CD40LG was positively correlated with M1 macrophages and GZMB was negatively correlated with M2 macrophages. CD40LG and GZMB might play a vital role in the visceral adipose tissue homeostasis of obstructive sleep apnea patients. Their interaction with macrophages and involved pathways not only provides new insights for understanding molecular mechanisms but also be of great significance in discovering novel small molecules or other promising candidates as immunotherapies of OSA-associated metabolic complications.
Collapse
Affiliation(s)
- Xiaoping Ming
- Department of Otorhinolaryngology, Head, and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weisong Cai
- Department of Otorhinolaryngology, Head, and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Bariatric and Metabolic Disease Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiuping Yang
- Department of Otorhinolaryngology, Head, and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Minlan Yang
- Department of Otorhinolaryngology, Head, and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dingyu Pan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Bariatric and Metabolic Disease Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiong Chen
- Department of Otorhinolaryngology, Head, and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Allagui I, Horchani M, Zammel N, Jalouli M, Elfeki A, Kallel C, Mansour L, Alwasel S, Harrath AH, Jannet HB, Salah Allagui M, Hcini K. Phytochemical Characterization, Antioxidant and Anti-Inflammatory Effects of Cleome arabica L. Fruits Extract against Formalin Induced Chronic Inflammation in Female Wistar Rat: Biochemical, Histological, and In Silico Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010026. [PMID: 36615222 PMCID: PMC9822204 DOI: 10.3390/molecules28010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
In recent decades, the use of herbs and plants has been of great interest, as they have been the sources of natural products, commonly named as bioactive compounds. In specific, the natural compounds from the Capparaceae family which has been proved to have antioxidant, anti-inflammatory, antimicrobial and anti-carcinogenic activities, by several studies. Cleome arabica L. (CA) specie is the most used medicinal plants in Tunisia and elsewhere in North African countries for treatment of various diseases including diabetes, rheumatism, inflammation, cancer, and digestive disorders. The current work was undertaken to estimate the total phenolic, flavonoid and condensed tannin contents, to identify and quantify the polyphenolic compounds, and to evaluate the antioxidant and the anti-inflammatory proprieties of CA fruits extract against formalin induced chronic inflammation in Female Wistar rats. In fact, the antioxidant activity was tested by Diphenyl-1-Picrylhydrazyl free radical scavenging (DPPH), Ferric reducing antioxidant power (FRAP) and Nitric Oxide radical (NO·). Anti-inflammatory effect of fruits extract was examined using formalin (2%) induced paw edema in rats. Molecular docking tools were used to investigate the interaction of some compounds from CA fruits extract with the cyclooxygenase-2 (COX-2) target protein. Our results showed that, the total phenolic, flavonoid and tannins contents, which were assessed by the Folin-Ciocalteu, Quercetin, and Catechin methods, respectively, were 230.22 mg gallic acid equivalent/g dry weight (mg GAE/g DW), 55.08 mg quercetin equivalent/g dry weight (QE/g DW) and 15.17 mg catechin equivalents/g dry weight (CatE/g DW), respectively. HPLC analysis revealed the presence of five polyphenolic compounds whose catechin was found to be the most abundant compounds. The antioxidant activity of extract was quantified by DPPH, FRAP and NO· tests and IC50 reached the values of 3.346 mg/mL, 2.306 and 0.023 mg/mL, respectively. Cleome fruits ameliorated the histological integrity of the skin and alleviated the disruptions in hematological parameters (WBC, LYM, RBC, and HGB), inflammatory cytokines (IL-1β, IL-6, TNF-α), C-reactive protein, and some oxidative stress markers (TBARS (-49%) and AOPP (-42%) levels, SOD (+33%) and GPx (+75%) activities, and GSH (+49%) content) induced by formalin injection. Moreover, the in-silico investigation had shown that CA fruits extract compounds have a stronger interaction with COX-2 active site, more than the reference drug "indomethacin" (two H-bonds). Our research gives pharmacological backing to the healthcare utilization of Cleome plant in the treatment of inflammatory diseases and oxidative harm.
Collapse
Affiliation(s)
- Ikram Allagui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 95, Sfax 3052, Tunisia
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University Campus Sidi Ahmed Zarroug, University of Gafsa, Gafsa 2112, Tunisia
| | - Mabrouk Horchani
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11Es39), Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5000, Tunisia
| | - Nourhene Zammel
- Laboratory of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdelfatteh Elfeki
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 95, Sfax 3052, Tunisia
| | - Choumous Kallel
- Laboratory of Hematology, University of Sfax, CHU Habib Bourguiba, Sfax 3029, Tunisia
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salah Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (A.H.H.); (K.H.)
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11Es39), Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5000, Tunisia
| | - Mohamed Salah Allagui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 95, Sfax 3052, Tunisia
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University Campus Sidi Ahmed Zarroug, University of Gafsa, Gafsa 2112, Tunisia
| | - Kheiria Hcini
- Biodiversity, Biotechnology and Climate Change Laboratory (LR11ES09), Department of Life Sciences, Faculty of Science of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Department of Life Sciences, Faculty of Sciences of Gafsa, University Campus Sidi Ahmed Zarroug, University of Gafsa, Gafsa 2112, Tunisia
- Correspondence: (A.H.H.); (K.H.)
| |
Collapse
|
29
|
González L, Rivera K, Andia ME, Martínez Rodriguez G. The IL-1 Family and Its Role in Atherosclerosis. Int J Mol Sci 2022; 24:17. [PMID: 36613465 PMCID: PMC9820551 DOI: 10.3390/ijms24010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The IL-1 superfamily of cytokines is a central regulator of immunity and inflammation. The family is composed of 11 cytokines (with agonist, antagonist, and anti-inflammatory properties) and 10 receptors, all tightly regulated through decoy receptor, receptor antagonists, and signaling inhibitors. Inflammation not only is an important physiological response against infection and injury but also plays a central role in atherosclerosis development. Several clinical association studies along with experimental studies have implicated the IL-1 superfamily of cytokines and its receptors in the pathogenesis of cardiovascular disease. Here, we summarize the key features of the IL-1 family, its role in immunity and disease, and how it helps shape the development of atherosclerosis.
Collapse
Affiliation(s)
- Leticia González
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Instituto Milenio de Ingeniería e Inteligencia Artificial Para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Katherine Rivera
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Programa de Doctorado en Ciencias Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
| | - Marcelo E. Andia
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Instituto Milenio de Ingeniería e Inteligencia Artificial Para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Gonzalo Martínez Rodriguez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
| |
Collapse
|
30
|
Xia H, Gao M, Chen J, Huang G, Xiang X, Wang Y, Huang Z, Li Y, Su S, Zhao Z, Zeng Q, Ruan Y. M1 macrophage-derived extracellular vesicle containing tsRNA-5006c promotes osteogenic differentiation of aortic valve interstitial cells through regulating mitophagy. PeerJ 2022; 10:e14307. [PMID: 36518291 PMCID: PMC9744173 DOI: 10.7717/peerj.14307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Osteogenic differentiation of aortic valve interstitial cells (AVICs) plays a key role in the calcific aortic valve disease progression. Extracellular vesicles (EVs)-derived from M1-polarized macrophages (M1-EVs) orchestrated intercellular communication by delivering non-coding RNAs such as tRNA-derived small RNAs (tsRNAs) is crucial for cardiovascular disease. However, the role and mechanism of M1-EVs tsRNAs in osteogenic differentiation of AVICs remains largely unclear. Methods M1-EVs and PBS treated-RAW 264.7 cell-derived EVs (NC-EVs) were incubated with AVICs and subjected to small RNA sequencing. Candidate tsRNA in M1-EVs was silenced to explore their effects on AVIC osteogenic differentiation and mitophagy. Results DiI-labeled M1-EVs were internalized by AVICs, resulting in significantly increased calcium nodule formation and expression of osteogenesis-related genes in AVICs, including RUNX2, BMP2, osteopontin, and SPP1, compared with NC-EVs. Small RNA sequencing revealed that 17 tsRNAs were significantly up-regulated such as tsRNA-5006c, while 28 tsRNAs were significantly down-regulated in M1-EVs compared with NC-EVs. Intriguingly, tsRNA-5006c-deleted M1-EVs treatment significantly reduced calcium nodule formation and expression of osteogenesis-related genes in AVICs relative to control group. Moreover, target genes of tsRNA-5006c were mainly involved in autophagy-related signaling pathways, such as MAPK, Ras, Wnt, and Hippo signaling pathway. Hallmarks of mitophagy activation in AVICs including mitophagosome formation, TMRM fluorescence, expression of LC3-II, BINP3, and PGC1α, were significantly elevated in the M1-EVs group compared with NC-EVs group, whereas M1-EVs tsRNA-5006c inhibitor led to a significant reduction in these indicators. Conclusion M1-EVs carried tsRNA-5006c regulates AVIC osteogenic differentiation from the perspective of mitophagy, and we provide a new target for the prevention and treatment of aortic valve calcification.
Collapse
Affiliation(s)
- Hao Xia
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingjian Gao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Chen
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Guanshen Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuting Xiang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyan Wang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohui Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongchun Li
- Department of traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Su
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zewei Zhao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qingchun Zeng
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
McCurdy S, Yap J, Irei J, Lozano J, Boisvert WA. IL-37-a putative therapeutic agent in cardiovascular diseases. QJM 2022; 115:719-725. [PMID: 33486516 DOI: 10.1093/qjmed/hcab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Although it is a member of the Interleukin (IL)-1 family, IL-37 is unique in that it has wide-ranging anti-inflammatory characteristics. It was originally thought to prevent IL-18-mediated inflammation by binding to the IL-18-binding protein. However, upon discovery that it binds to the orphan receptor, IL-1R8, further studies have revealed an expanded role of IL-37 to include several intracellular and extracellular pathways that affect various aspects of inflammation. Its potential role specifically in cardiovascular diseases (CVD) stemmed initially from the discovery of elevated plasma IL-37 levels in human patients with acute coronary syndrome and atrial fibrillation. Other studies using mouse models of ischemia/reperfusion injury, vascular calcification and myocardial infarction have revealed that IL-37 can have a beneficial role in these conditions. This review will explore recent research on the effects of IL-37 on the pathogenesis of CVD.
Collapse
Affiliation(s)
- S McCurdy
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - J Yap
- Department of Medicine, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - J Irei
- Department of Medicine, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - J Lozano
- Department of Medicine, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - W A Boisvert
- Department of Medicine, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., Kazan, 420008, Russia
| |
Collapse
|
32
|
Wu Z, Li M, Ren X, Zhang R, He J, Cheng L, Cheng R, Hu T. Double-Edged Sword Effect of Pyroptosis: The Role of Caspase-1/-4/-5/-11 in Different Levels of Apical Periodontitis. Biomolecules 2022; 12:1660. [PMID: 36359010 PMCID: PMC9687662 DOI: 10.3390/biom12111660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2024] Open
Abstract
The study was to investigate the effect of canonical and noncanonical pyroptosis in apical periodontitis. Proteins' profiles of human apical periodontitis tissue were analyzed by label-free proteomics. Immunofluorescence was used to detect proteins related to pyroptosis in human apical periodontitis tissues and experimental apical periodontitis models. A dual experimental apical periodontitis model with both smaller (mandible) and larger (maxilla) bone lesions was established. THP-1-derived macrophages were stimulated with P. gingivalis lipopolysaccharide in vitro with or without the caspase-1/-4/-5 inhibitor Ac-FTDL-CMK. Propidium iodide staining, lactic dehydrogenase release and Western blot were applied to evaluate cell death and the protein expression. Caspase-1/-4/-5 were expressed in human apical periodontitis tissues. Caspase-1/-11 were involved in bone loss in experimental apical periodontitis. Caspase-1/-11 inhibitors reduced bone loss in larger lesions (maxilla) but accelerated bone loss in smaller lesions (mandible). Caspase-1/-4/-5 inhibitors also showed double-edged sword effects on propidium iodide staining and lactic dehydrogenase release in vitro. The expression of cleaved-caspase-1/-4/-5, mature interluekin-1β and gasdermin D N-terminal domain increased in THP-1-derived macrophages after lipopolysaccharide stimulation but decreased after treatment with Ac-FTDL-CMK. Pyroptosis contributed to apical periodontitis and excited a double-edged sword effect in inducing bone loss in vivo and cell death in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ran Cheng
- State Key Laboratory of Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Immune response associated with ischemia and reperfusion injury during organ transplantation. Inflamm Res 2022; 71:1463-1476. [PMID: 36282292 PMCID: PMC9653341 DOI: 10.1007/s00011-022-01651-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Ischemia and reperfusion injury (IRI) is an ineluctable immune-related pathophysiological process during organ transplantation, which not only causes a shortage of donor organs, but also has long-term and short-term negative consequences on patients. Severe IRI-induced cell death leads to the release of endogenous substances, which bind specifically to receptors on immune cells to initiate an immune response. Although innate and adaptive immunity have been discovered to play essential roles in IRI in the context of organ transplantation, the pathway and precise involvement of the immune response at various stages has not yet to be elucidated. Methods We combined “IRI” and “organ transplantation” with keywords, respectively such as immune cells, danger signal molecules, macrophages, neutrophils, natural killer cells, complement cascade, T cells or B cells in PubMed and the Web of Science to search for relevant literatures. Conclusion Comprehension of the immune mechanisms involved in organ transplantation is promising for the treatment of IRI, this review summarizes the similarities and differences in both innate and adaptive immunity and advancements in the immune response associated with IRI during diverse organ transplantation.
Collapse
|
34
|
Di Carmine S, Scott MM, McLean MH, McSorley HJ. The role of interleukin-33 in organ fibrosis. DISCOVERY IMMUNOLOGY 2022; 1:kyac006. [PMID: 38566909 PMCID: PMC10917208 DOI: 10.1093/discim/kyac006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/06/2022] [Accepted: 09/22/2022] [Indexed: 04/04/2024]
Abstract
Interleukin (IL)-33 is highly expressed in the nucleus of cells present at barrier sites and signals via the ST2 receptor. IL-33 signalling via ST2 is essential for return to tissue homeostasis after acute inflammation, promoting fibrinogenesis and wound healing at injury sites. However, this wound-healing response becomes aberrant during chronic or sustained inflammation, leading to transforming growth factor beta (TGF-β) release, excessive extracellular matrix deposition, and fibrosis. This review addresses the role of the IL-33 pathway in fibrotic diseases of the lung, liver, gastrointestinal tract, skin, kidney and heart. In the lung and liver, IL-33 release leads to the activation of pro-fibrotic TGF-β, and in these sites, IL-33 has clear pro-fibrotic roles. In the gastrointestinal tract, skin, and kidney, the role of IL-33 is more complex, being both pro-fibrotic and tissue protective. Finally, in the heart, IL-33 serves cardioprotective functions by favouring tissue healing and preventing cardiomyocyte death. Altogether, this review indicates the presence of an unclear and delicate balance between resolving and pro-fibrotic capabilities of IL-33, which has a central role in the modulation of type 2 inflammation and fibrosis in response to tissue injury.
Collapse
Affiliation(s)
- Samuele Di Carmine
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, UK
| | - Molly M Scott
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Mairi H McLean
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, UK
| |
Collapse
|
35
|
Wu LD, Xiao F, Sun JY, Li F, Chen YJ, Chen JY, Zhang J, Qian LL, Wang RX. Integrated identification of key immune related genes and patterns of immune infiltration in calcified aortic valvular disease: A network based meta-analysis. Front Genet 2022; 13:971808. [PMID: 36212153 PMCID: PMC9532575 DOI: 10.3389/fgene.2022.971808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: As the most prevalent valvular heart disease, calcific aortic valve disease (CAVD) has become a primary cause of aortic valve stenosis and insufficiency. We aim to illustrate the roles of immune related genes (IRGs) and immune cells infiltration in the occurrence of CAVD.Methods: Integrative meta-analysis of expression data (INMEX) was adopted to incorporate multiple gene expression datasets of CAVD from Gene Expression Omnibus (GEO) database. By matching the differentially expressed genes (DEGs) to IRGs from “ImmPort” database, differentially expressed immune related genes (DEIRGs) were screened out. We performed enrichment analysis and found that DEIRGs in CAVD were closely related to inflammatory response and immune cells infiltration. We also constructed protein–protein interaction (PPI) network of DEIRGs and identified 5 key DEIRGs in CAVD according to the mixed character calculation results. Moreover, CIBERSORT algorithm was used to explore the profile of infiltrating immune cells in CAVD. Based on Spearman’s rank correlation method, correlation analysis between key DEIRGs and infiltrating immune cells was performed.Results: A total of 220 DEIRGs were identified and the enrichment analysis of DEIRGs showed that they were significantly enriched in inflammatory responses. PPI network was constructed and PTPN11, GRB2, SYK, PTPN6 and SHC1 were identified as key DEIRGs. Compared with normal aortic valve tissue samples, the proportion of neutrophils, T cells CD4 memory activated and macrophages M0 was elevated in calcified aortic valves tissue samples, as well as reduced infiltration of macrophages M2 and NK cells activated. Furthermore, key DEIRGs identified in the present study, including PTPN11, GRB2, PTPN6, SYK, and SHC1, were all significantly correlated with infiltration of various immune cells.Conclusion: This meta-analysis suggested that PTPN11, GRB2, PTPN6, SYK, and SHC1 might be key DEIRGs associated with immune cells infiltration, which play a pivotal role in pathogenesis of CAVD.
Collapse
Affiliation(s)
- Li-Da Wu
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Feng Xiao
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jin-Yu Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Li
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yu-Jia Chen
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jia-Yi Chen
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jie Zhang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
- *Correspondence: Ru-Xing Wang,
| |
Collapse
|
36
|
Zhang Y, Zhu L, Hong J, Chen C. Extracellular matrix of early pulmonary fibrosis modifies the polarization of alveolar macrophage. Int Immunopharmacol 2022; 111:109179. [PMID: 36029666 DOI: 10.1016/j.intimp.2022.109179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022]
Abstract
Macrophage polarization is modulated by many different stimuli. However, the effect of fibrotic extracellular matrix (ECM) on macrophage polarization remains unclear. In this study, a mouse model of radiation induced pulmonary fibrosis (RIPF) was established. Alveolar macrophages (AMs) were seeded on separated decellularized ECM respectively derived from early RIPF lung tissue (dECM-RIPF) and normal lung tissue (dECM-Nor), on which the polarization of AMs was examined. By way of bio-AFM analysis, a significant difference in surface roughness, but no difference in stiffness, was found between dECM-RIPF and dECM-Nor. Compared with dECM-Nor, dECM-RIPF induced a higher M1 activation and increased the levels of TNF-α, IL-6 and IL-1β, while it showed no significant effect M2 density. Nevertheless, such effects induced by dECM-RIPF could be abrogated by the integrin pan-inhibitor. Furthermore, dECM-RIPF caused integrin-dependent activation of NFκB, and NFκB inhibitor was capable of inhibiting dECM-RIPF-induced AMs proliferation and M1 activation. Animal experiments showed that NFκB inhibitor alleviated RIPF mainly through inhibiting M1 activation and down-regulating the levels of inflammatory cytokines. Our results showed that differential biophysical signaling from the fibrotic ECM of early RIPF promoted AMs polarization towards a M1 phenotype via integrin-NFκB. Inhibition of M1 activation may be an attractive approach for treating RIPF.
Collapse
Affiliation(s)
- Yanwei Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Lihua Zhu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Chun Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
37
|
Qin YF, Ren SH, Shao B, Qin H, Wang HD, Li GM, Zhu YL, Sun CL, Li C, Zhang JY, Wang H. The intellectual base and research fronts of IL-37: A bibliometric review of the literature from WoSCC. Front Immunol 2022; 13:931783. [PMID: 35935954 PMCID: PMC9354626 DOI: 10.3389/fimmu.2022.931783] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 01/09/2023] Open
Abstract
Background IL-37 is a recently identified cytokine with potent immunosuppressive functions. The research fronts of IL-37 are worth investigating, and there is no bibliometric analysis in this field. The purpose of this study is to construct the intellectual base and predict research hotspots of IL-37 research both quantitatively and qualitatively according to bibliometric analysis. Methods The articles were downloaded from the Web of Science Core Collection (WoSCC) database from the inception of the database to 1 April 2022. CiteSpace 5.8.R3 (64-bit, Drexel University, Philadelphia, PA, USA) and Online Analysis Platform of Literature Metrology (https://bibliometric.com/) were used to perform bibliometric and knowledge-map analyses. Results A total of 534 papers were included in 200 academic journals by 2,783 authors in 279 institutions from 50 countries/regions. The journal Cytokine published the most papers on IL-37, while Nature Immunology was the most co-cited journal. The publications belonged mainly to two categories of Immunology and Cell Biology. USA and China were the most productive countries. Meanwhile, the University of Colorado Denver in USA produced the highest number of publications followed by Radboud University Nijmegen in the Netherlands and Monash University in Australia. Charles A. Dinarello published the most papers, while Marcel F. Nold had the most co-citations. Top 10 co-citations on reviews, mechanisms, and diseases were regarded as the knowledge base. The keyword co-occurrence and co-citations of references revealed that the mechanisms and immune-related disorders were the main aspects of IL-37 research. Notably, the involvement of IL-37 in various disorders and the additional immunomodulatory mechanisms were two emerging hotspots in IL-37 research. Conclusions The research on IL-37 was thoroughly reviewed using bibliometrics and knowledge-map analyses. The present study is a benefit for academics to master the dynamic evolution of IL-37 and point out the direction for future research.
Collapse
Affiliation(s)
- Ya-fei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shao-hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guang-ming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang-lin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Chuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Hao Wang, ;
| |
Collapse
|
38
|
Interactions of Bacterial Toxin CNF1 and Host JAK1/2 Driven by Liquid-Liquid Phase Separation Enhance Macrophage Polarization. mBio 2022; 13:e0114722. [PMID: 35766380 PMCID: PMC9426534 DOI: 10.1128/mbio.01147-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Urinary tract infections (UTIs) are a global public health concern, which is mainly caused by uropathogenic Escherichia coli (UPEC). Cytotoxic necrotizing factor 1 (CNF1) is a key UPEC toxin and regulates multiple host cellular processes through activating the Rho GTPases; however, the effect of CNF1 on macrophage polarization remains unknown. Here, we found that CNF1 promoted M1 macrophage polarization through regulating NF-κB and JAK-STAT1 signaling pathways in kidney at an early stage of acute UTIs. Notably, we identified CNF1 could directly interact with JAK1/2 through its domain without Rho GTPases activation, which induced JAK1/2 phosphorylation, subsequent STAT1 activation and M1 polarization. Moreover, CNF1 exhibited liquid-liquid phase separation (LLPS) to induce a CNF1-JAK1/2 complex, promoting macrophage reprogramming. These findings highlight the LLPS-dependent and Rho GTPase-independent effect of CNF1 as an adaptor on interfering with host cell signals.
Collapse
|
39
|
Chen X, Su C, Wei Q, Sun H, Xie J, Nong G. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Diffuse Alveolar Hemorrhage Associated with Systemic Lupus Erythematosus in Mice by Promoting M2 Macrophage Polarization via the microRNA-146a-5p/NOTCH1 Axis. Immunol Invest 2022; 51:1975-1993. [PMID: 35723582 DOI: 10.1080/08820139.2022.2090261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Systemic lupus erythematosus (SLE)-associated diffuse alveolar hemorrhage (DAH) is a rare but extremely harmful condition. The current study sought to dissect the mechanisms underlying the effects of human umbilical cord mesenchymal stem cell (HUCMSC)-derived exosomes on M2 macrophage polarization in SLE-associated DAH via the microRNA (miR)-146a-5p/NOTCH1 axis. A DAH mouse model was established using pristane. Exosomes were isolated from HUCMSCs transfected or untransfected with the miR-146a-5p antagonist or agonist and their NCs and then injected into DAH mice. Additionally, miR-146a-5p was overexpressed in macrophages. Expression of miR-146a-5p, NOTCH1, M1 macrophage markers, and M2 macrophage markers was measured in mice and macrophages, and inflammatory factor levels were detected. Mouse lung injuries were evaluated, so was the binding of miR-146a-5p to NOTCH1. Rescue experiments were conducted in mice and macrophages using NOTCH1 shRNA and pcDNA3.1-NOTCH1, respectively. NOTCH1 expression was enhanced in DAH mice. HUCMSC-derived exosomes reduced NOTCH1 expression, bleeding, inflammation, and M1 macrophage polarization but elevated M2 macrophage polarization in lung tissues of DAH mice. Mechanistically, NOTCH1 is negatively targeted by miR-146a-5p. miR-146a-5p overexpression diminished M1 marker and inflammatory factor levels but enhanced M2 marker levels in macrophages, which was nullified by NOTCH1 overexpression. HUCMSC-derived exosomes with miR-146a-5p inhibition increased NOTCH1 expression, worsened bleeding and inflammation, and augmented M1 macrophage polarization while decreasing M2 macrophage polarization in lung tissues of DAH mice, which was abrogated by silencing NOTCH1. HUCMSC-derived exosomes diminished NOTCH1 expression to accelerate M2 macrophage polarization via delivery of miR-146a-5p, thus alleviating SLE-associated DAH in mice.
Collapse
Affiliation(s)
| | | | - Qing Wei
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Hongmei Sun
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Jun Xie
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Guangmin Nong
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| |
Collapse
|
40
|
Shen QY, Wang D, Xu HY, Wei CS, Xiao XY, Liu J, Shen YJ, Fang L, Feng LJ, Shen YX. Mesencephalic astrocyte-derived neurotrophic factor attenuates acute lung injury via inhibiting macrophages' activation. Biomed Pharmacother 2022; 150:112943. [PMID: 35405395 DOI: 10.1016/j.biopha.2022.112943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
Acute lung injury (ALI) is an urgent respiratory disease without effective treatment. Mesencephalic astrocyte-derived neurotrophic factor (MANF)has been demonstrated to play a suppressive role in some inflammatory conditions. However, the effect of MANF on ALI has not yet been reported. In this study, we collected bronchoalveolar lavage fluid (BALF) from the patients with or without pulmonary inflammation, and used lipopolysaccharide (LPS) to induce mice ALI model. Mono-macrophage-specific MANF knockout (MKO) mice were constructed and recombinant human MANF protein was used to ALI mice. We found that the endogenous MANF protein in both human BALF and mice lung tissues was increased in inflammatory conditions. MANF level in the macrophages of inflammatory lung was higher than that in normal controls in both human and mice. MANF deficiency in macrophages induced lung inflammation and aggravated LPS-induced lung injury. MANF lowered LPS-induced lung injury, inhibited macrophage polarization to M1 functional type. Meanwhile, MANF inhibited-LPS induced activation of NF-κB signal pathway by down regulating phosphorylated p65in lung tissue and macrophages. These results indicate that MANF acts as a suppressor in ALI via negatively regulating NF-κB activation and macrophages polarization, which may be a novel potential target and shed light on ALI therapy.
Collapse
Affiliation(s)
- Qi-Ying Shen
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Department of Anesthesiology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230022, China
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Han-Yang Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032,China
| | - Chuan-Sheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032,China
| | - Xue-Ying Xiao
- Department of Anesthesiology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032,China
| | - Yu-Jun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032,China
| | - Lei Fang
- Department of Geriatric Respiratory and Critical Care, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Li-Jie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032,China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Biopharmaceutical Research Institute, Anhui Medical University, Hefei 230032,China.
| |
Collapse
|
41
|
Abstract
Tumour-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumour microenvironment (TME) that can account for up to 50% of solid tumours. TAMs heterogeneous are associated with different cancer types and stages, different stimulation of bioactive molecules and different TME, which are crucial drivers of tumour progression, metastasis and resistance to therapy. In this context, understanding the sources and regulatory mechanisms of TAM heterogeneity and searching for novel therapies targeting TAM subpopulations are essential for future studies. In this review, we discuss emerging evidence highlighting the redefinition of TAM heterogeneity from three different directions: origins, phenotypes and functions. We notably focus on the causes and consequences of TAM heterogeneity which have implications for the evolution of therapeutic strategies that targeted the subpopulations of TAMs.
Collapse
|
42
|
Wang L, Zhao M. Suppression of NOD-like receptor protein 3 inflammasome activation and macrophage M1 polarization by hederagenin contributes to attenuation of sepsis-induced acute lung injury in rats. Bioengineered 2022; 13:7262-7276. [PMID: 35266443 PMCID: PMC9208453 DOI: 10.1080/21655979.2022.2047406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute lung injury (ALI) is a major leading cause of death in sepsis patients. Hederagenin (HG), derived from Hedera helix Linné, has anti-inflammatory effects, while its role in sepsis-induced ALI has not been elucidated. In vivo, rats were subjected to cecal ligation and puncture to induce ALI and then treated with HG (12.5, 25, or 50 mg/kg) by gavage. Administration of HG raised survival rate, ameliorated lung injury, and decreased lung wet/dry ratio and inflammatory cell accumulation in bronchoalveloar lavage fluid (BALF) of ALI rats. HG inhibited macrophage polarization toward the M1 phenotype as evidenced by decreased CD86 expression in rat lung tissues. Moreover, HG decreased the secretion of TNF-α, IL-6 and monocyte chemoattractant protein-1 (MCP-1) in BALF and the levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung tissues. In vitro, phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 macrophages were stimulated with 100 ng/mL lipopolysaccharide. HG treatment inhibited M1 macrophage polarization and the production of M1-related pro-inflammatory mediators (IL-6, MCP-1, iNOS, and COX-2). Mechanistically, HG inhibited NLRP3 inflammasome activation and subsequent release of IL-18 and IL-1β, and suppressed NF-κB signaling pathway both in vivo and in vitro. Notably, HG treatment further emphasized the inhibitory effect of NF-κB inhibitor BAY11-7082 on NLRP3 inflammasome activation and macrophage M1 polarization. Taken together, HG exerts a protective effect against sepsis-induced ALI by reducing the inflammatory response and macrophage M1 polarization, which may involve NF-κB pathway-modulated NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
43
|
Dang J, He Z, Cui X, Fan J, Hambly DJ, Hambly BD, Li X, Bao S. The Role of IL-37 and IL-38 in Colorectal Cancer. Front Med (Lausanne) 2022; 9:811025. [PMID: 35186997 PMCID: PMC8847758 DOI: 10.3389/fmed.2022.811025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) is a major killer. Dysregulation of IL-37 and IL-38, both anti-inflammatory cytokines, is observed in auto-immune diseases. The precise regulatory mechanisms of IL-37/IL-38 during the development of CRC remains unclear, but chronic intestinal inflammation is involved in the carcinogenesis of CRC. Constitutive production of colonic IL-37 and IL-38 is substantially reduced in CRC, consistent with an inverse correlation with CRC differentiation. Reduced colonic IL-37 and IL-38 is relating to CRC invasion and distant metastasis, suggesting a protective role for IL-38 within the tumor micro-environment. IL-38 is reduced in right-sided CRC compared to left-sided CRC, which is in line with multiple risk factors for right-sided CRC, including the embryonic development of the colon, and genetic differences in CRC between these two sides. Finally, colonic IL-37 and tumor associated neutrophils (TAN) seem to be independent biomarkers of prognostic value, whereas colonic IL-38 seems to be a reliable and independent biomarker in predicting the 5-year survival post-surgery in CRC. However, there is room for improvement in available studies, including the extension of these studies to different regions/countries incorporating different races, evaluation of the role of multi-drug resistance, and different subsets of CRC. It would be useful to determine the kinetics of circulating IL-38 and its relationship with drug resistance/targeted therapy. The measurement of colonic IL-38 at the molecular and cellular level is required to explore the contribution of IL-38 pathways during the development of CRC. These approaches could provide insight for the development of personalized medicine.
Collapse
Affiliation(s)
- Jie Dang
- Child and Adolescent Health Management Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhiyun He
- Department of General Surgery, Lanzhou University First Hospital, Lanzhou, China
| | - Xiang Cui
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jingchun Fan
- Department of Epidemiology and Evidence-Based Medicine, School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - David J Hambly
- Resident Training Program, Gold Coast University Hospital, Southport, QLD, Australia
| | - Brett D Hambly
- Department of Epidemiology and Evidence-Based Medicine, School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China.,Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| | - Xun Li
- Department of General Surgery, Lanzhou University First Hospital, Lanzhou, China
| | - Shisan Bao
- Department of Epidemiology and Evidence-Based Medicine, School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
44
|
Ahamada MM, Jia Y, Wu X. Macrophage Polarization and Plasticity in Systemic Lupus Erythematosus. Front Immunol 2022; 12:734008. [PMID: 34987500 PMCID: PMC8721097 DOI: 10.3389/fimmu.2021.734008] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that attacks almost every organ. The condition mostly happens to adults but is also found in children, and the latter have the most severe manifestations. Among adults, females, especially non-Caucasian, are mostly affected. Even if the etiology of SLE remains unclear, studies show a close relation between this disease and both genetics and environment. Despite the large number of published articles about SLE, we still do not have a clear picture of its pathogenesis, and no specific drug has been found to treat this condition effectively. The implication of macrophages in SLE development is gaining ground, and studying it could answer these gaps. Indeed, both in vivo and in vitro studies increasingly report a strong link between this disease and macrophages. Hence, this review aims to explore the role of macrophages polarization and plasticity in SLE development. Understanding this role is of paramount importance because in-depth knowledge of the connection between macrophages and this systemic disease could clarify its pathogenesis and provide a foundation for macrophage-centered therapeutic approaches.
Collapse
Affiliation(s)
- Mariame Mohamed Ahamada
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Jia
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
45
|
Zhang P, The E, Luo Z, Zhai Y, Yao Q, Ao L, Fullerton DA, Xu D, Meng X. Pro-inflammatory mediators released by activated monocytes promote aortic valve fibrocalcific activity. Mol Med 2022; 28:5. [PMID: 35062861 PMCID: PMC8780233 DOI: 10.1186/s10020-022-00433-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background Calcific aortic valve disease (CAVD) is the most prevalent heart valve disorder in the elderly. Valvular fibrocalcification is a characteristic pathological change. In diseased valves, monocyte accumulation is evident, and aortic valve interstitial cells (AVICs) display greater fibrogenic and osteogenic activities. However, the impact of activated monocytes on valular fibrocalcification remains unclear. We tested the hypothesis that pro-inflammatory mediators from activated monocytes elevate AVIC fibrogenic and osteogenic activities.
Methods and results Picro-sirius red staining and Alizarin red staining revealed collagen and calcium depositions in cultured human AVICs exposed to conditioned media derived from Pam3CSK4-stimulated monocytes (Pam3 CM). Pam3 CM up-regulated alkaline phosphatase (ALP), an osteogenic biomarker, and extracellular matrix proteins collagen I and matrix metalloproteinase-2 (MMP-2). ELISA analysis identified high levels of RANTES and TNF-α in Pam3 CM. Neutralizing RANTES in the Pam3 CM reduced its effect on collagen I and MMP-2 production in AVICs while neutralizing TNF-α attenuated the effect on AVIC ALP production. In addition, Pam3 CM induced NF-κB and JNK activation. While JNK mediated the effect of Pam3 CM on collagen I and MMP-2 production, NF-κB was critical for the effect of Pam3 CM on ALP production in AVICs. Conclusions This study demonstrates that activated monocytes elevate the fibrogenic and osteogenic activities in human AVICs through a paracrine mechanism. TNF-α and RANTES mediate the pro-fibrogenic effect of activated monocytes on AVICs through activation of JNK, and TNF-α also activates NF-κB to elevate AVIC osteogenic activity. The results suggest that infiltrated monocytes elevate AVIC fibrocalcific activity to promote CAVD progression.
Collapse
Affiliation(s)
- Peijian Zhang
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA.,Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Erlinda The
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Zichao Luo
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA.,Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yufeng Zhai
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Qingzhou Yao
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Lihua Ao
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA
| | - David A Fullerton
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Dingli Xu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver, Aurora, CO, 80045, USA.
| |
Collapse
|
46
|
Exosomal OTULIN from M2 macrophages promotes the recovery of spinal cord injuries via stimulating Wnt/β-catenin pathway-mediated vascular regeneration. Acta Biomater 2021; 136:519-532. [PMID: 34551329 DOI: 10.1016/j.actbio.2021.09.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Vascularization following spinal cord injury (SCI) provides trophic support for rebuilding up and maintaining the homeostasis of neuronal networks, and the promotion of angiogenesis is beneficial for functional recovery after SCI. M2 macrophages have been reported to exhibit powerful pro-angiogenic functions during tissue repair. Exosomes are important paracrine mediators of their parent cells and play critical roles in tissue regeneration. However, the role of M2 macrophage-derived exosomes (M2-Exos) in SCI is still largely unknown. In the present study, we determined that M2-Exos could augment the angiogenic activities of spinal cord microvascular endothelial cells (SCMECs) in vitro. Hydrogel-mediated sustained release of M2-Exos significantly promoted vascular regeneration and functional recovery in mice after SCI. Furthermore, proteomics analysis showed that ubiquitin thioesterase otulin (OTULIN) protein was highly enriched in M2-Exos. Functional assays demonstrated that OTULIN protein was required for the M2-Exos-induced pro-angiogenic effects in SCMECs, as well as positive effects on vascular regeneration, cell proliferation, and functional recovery in the mouse model of SCI. Mechanically, OTULIN from M2-Exos could activate the Wnt/β-catenin signaling by increasing the protein level of β-catenin via inhibiting its ubiquitination and trigger the expression of angiogenesis-related genes that are reported to be the downstream targets of Wnt/β-catenin signaling. Inhibition of the Wnt/β-catenin signaling by ICG001 markedly attenuated the pro-angiogenic activities of M2-Exos in vitro/vivo. Our findings indicate that M2-Exos positively modulate vascular regeneration and neurological functional recovery after SCI by activating Wnt/β-catenin signaling through the transfer of OTULIN protein. STATEMENT OF SIGNIFICANCE: M2 macrophages have been identified to promote vascular regeneration, cell proliferation and tissue growth after spinal cord injury (SCI), which is beneficial to the functional recovery. Exosomes are essential paracrine mediators involved in cell-to-cell communication and play important roles in tissue regeneration. In the present study, we revealed that M2 macrophages-derived exosomes (M2-Exos) could promote functional recovery post SCI by targeting angiogenesis. We demonstrated for the first time that OTULIN protein from M2-Exos mediated the angiogenic effects through activating Wnt/β-catenin signaling and triggering the expression of angiogenic-related genes in spinal cord microvascular endothelial cells (SCMECs). The hydrogel-M2-Exos sustained released system provides potential therapeutic clues of local cell-free interventions for the treatment of SCI.
Collapse
|
47
|
Kashfi K, Kannikal J, Nath N. Macrophage Reprogramming and Cancer Therapeutics: Role of iNOS-Derived NO. Cells 2021; 10:3194. [PMID: 34831416 PMCID: PMC8624911 DOI: 10.3390/cells10113194] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide and its production by iNOS is an established mechanism critical to tumor promotion or suppression. Macrophages have important roles in immunity, development, and progression of cancer and have a controversial role in pro- and antitumoral effects. The tumor microenvironment consists of tumor-associated macrophages (TAM), among other cell types that influence the fate of the growing tumor. Depending on the microenvironment and various cues, macrophages polarize into a continuum represented by the M1-like pro-inflammatory phenotype or the anti-inflammatory M2-like phenotype; these two are predominant, while there are subsets and intermediates. Manipulating their plasticity through programming or reprogramming of M2-like to M1-like phenotypes presents the opportunity to maximize tumoricidal defenses. The dual role of iNOS-derived NO also influences TAM activity by repolarization to tumoricidal M1-type phenotype. Regulatory pathways and immunomodulation achieve this through miRNA that may inhibit the immunosuppressive tumor microenvironment. This review summarizes the classical physiology of macrophages and polarization, iNOS activities, and evidence towards TAM reprogramming with current information in glioblastoma and melanoma models, and the immunomodulatory and therapeutic options using iNOS or NO-dependent strategies.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| | - Jasmine Kannikal
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, New York, NY 10023, USA;
| | - Niharika Nath
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, New York, NY 10023, USA;
| |
Collapse
|
48
|
Law CC, Puranik R, Fan J, Fei J, Hambly BD, Bao S. Clinical Implications of IL-32, IL-34 and IL-37 in Atherosclerosis: Speculative Role in Cardiovascular Manifestations of COVID-19. Front Cardiovasc Med 2021; 8:630767. [PMID: 34422917 PMCID: PMC8377289 DOI: 10.3389/fcvm.2021.630767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis, which is a primary cause of cardiovascular disease (CVD) deaths around the world, is a chronic inflammatory disease that is characterised by the accumulation of lipid plaques in the arterial wall, triggering inflammation that is regulated by cytokines/chemokines that mediate innate and adaptive immunity. This review focuses on IL-32, -34 and -37 in the stable vs. unstable plaques from atherosclerotic patients. Dysregulation of the novel cytokines IL-32, -34 and -37 has been discovered in atherosclerotic plaques. IL-32 and -34 are pro-atherogenic and associated with an unstable plaque phenotype; whereas IL-37 is anti-atherogenic and maintains plaque stability. It is speculated that these cytokines may contribute to the explanation for the increased occurrence of atherosclerotic plaque rupture seen in patients with COVID-19 infection. Understanding the roles of these cytokines in atherogenesis may provide future therapeutic perspectives, both in the management of unstable plaque and acute coronary syndrome, and may contribute to our understanding of the COVID-19 cytokine storm.
Collapse
Affiliation(s)
- Ching Chee Law
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Rajesh Puranik
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jingchun Fan
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jian Fei
- Shanghai Engineering Research Centre for Model Organisms, SMOC, Shanghai, China
| | - Brett D Hambly
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Shisan Bao
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
49
|
Immunomodulation of IL-33 and IL-37 with Vitamin D in the Neointima of Coronary Artery: A Comparative Study between Balloon Angioplasty and Stent in Hyperlipidemic Microswine. Int J Mol Sci 2021; 22:ijms22168824. [PMID: 34445530 PMCID: PMC8396169 DOI: 10.3390/ijms22168824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a major contributor to the development and progression of atherosclerosis. Interleukin (IL)-33 and IL-37, members of the IL-1 family, modulate inflammation, with IL-33 having a pro-inflammatory effect and IL-37 having anti-inflammatory properties. IL-37 is constitutively expressed at low levels but upregulated in inflammatory contexts. The aim of this study was to evaluate the effect of vitamin D on the expression of IL-33, IL-37, macrophages, and caspase-1 in the neointimal tissue of coronary artery in Yucatan microswine with vitamin D deficient, sufficient, and supplemented status. The intimal injury was induced by balloon angioplasty and stenting in the coronary artery, and tissues were harvested after 6 months. The expression of various proteins of interest was evaluated by immunostaining. Increased expression of IL-33 and IL-37 in the neointimal tissue of the vitamin D deficient, as compared to the sufficient and supplemented microswine, as revealed by histological evaluation and semi-quantitative analysis, suggested the immunomodulatory effect of vitamin D on the expression of IL-33 and IL-37. The minimal expression or absence of IL-33 and IL-37 expression in stented arteries is suggestive of an attenuated inflammatory response in stented arteries, compared to balloon angioplasty. The decreased IL-33 expression in the sufficient and supplemented microswine could be a potential mechanism for controlling the inflammatory process and neointima formation leading to attenuated luminal narrowing of the coronary artery. Overall, these results support supplementation of vitamin D to attenuate inflammation, neointima formation, and restenosis.
Collapse
|
50
|
Li G, Kong D, Qin Y, Wang H, Hu Y, Zhao Y, Hao J, Qin H, Yu D, Zhu Y, Sun C, Wang H. IL-37 overexpression enhances the therapeutic effect of endometrial regenerative cells in concanavalin A-induced hepatitis. Cytotherapy 2021; 23:617-626. [PMID: 33593687 DOI: 10.1016/j.jcyt.2020.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/06/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells and immunosuppressive factor IL-37 can both suppress concanavalin A (Con A)-induced hepatitis in mice. Endometrial regenerative cells (ERCs), novel types of mesenchymal-like stromal cells, possess powerful immunomodulatory effects and are effective in treating various diseases. The aim of this study was to explore the effects of ERCs in suppressing Con A-induced hepatitis and determine whether IL-37 overexpression could enhance the therapeutic effect of ERCs in this process. METHODS ERCs were extracted from the menstrual blood of healthy female volunteer donors. The IL-37 gene was transferred into ERCs, and the expression of IL-37 in cells was detected by western blot and enzyme-linked immunosorbent assay. Hepatitis was induced by Con A in C57BL/6 mice that were randomly divided into groups treated with phosphate-buffered saline, ERCs, IL-37 or ERCs transfected with the IL-37 gene (IL-37-ERCs). Cell tracking, liver function, histopathological and immunohistological changes, immune cell proportions and levels of cytokines were measured 24 h after Con A administration. RESULTS Compared with ERC or IL-37 treatment, IL-37-ERCs further reduced levels of liver enzymes (alanine aminotransferase and aspartate aminotransferase) and improved histopathological changes in the liver. In addition, IL-37-ERC treatment further reduced the proportions of M1 macrophages and CD4+ T cells and increased the proportion of regulatory T cells. Moreover, IL-37-ERC treatment resulted in lower levels of IL-12 and interferon gamma, and higher level of transforming growth factor beta. CONCLUSIONS The results of this study suggest that ERCs can effectively alleviate Con A-induced hepatitis. Furthermore, IL-37 overexpression can significantly enhance the therapeutic efficacy of ERCs by augmenting the immunomodulatory and anti-inflammatory properties of ERCs. This study may provide a promising strategy for treatment of T-cell-dependent hepatitis.
Collapse
Affiliation(s)
- Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Dejun Kong
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Yonghao Hu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Yiming Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Dingding Yu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|