1
|
Kouba S, Demaurex N. S-acylation of Ca 2+ transport proteins in cancer. Chronic Dis Transl Med 2024; 10:263-280. [PMID: 39429488 PMCID: PMC11483607 DOI: 10.1002/cdt3.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 10/22/2024] Open
Abstract
Alterations in cellular calcium (Ca2+) signals have been causally associated with the development and progression of human cancers. Cellular Ca2+ signals are generated by channels, pumps, and exchangers that move Ca2+ ions across membranes and are decoded by effector proteins in the cytosol or in organelles. S-acylation, the reversible addition of 16-carbon fatty acids to proteins, modulates the activity of Ca2+ transporters by altering their affinity for lipids, and enzymes mediating this reversible post-translational modification have also been linked to several types of cancers. Here, we compile studies reporting an association between Ca2+ transporters or S-acylation enzymes with specific cancers, as well as studies reporting or predicting the S-acylation of Ca2+ transporters. We then discuss the potential role of S-acylation in the oncogenic potential of a subset of Ca2+ transport proteins involved in cancer.
Collapse
Affiliation(s)
- Sana Kouba
- Department of Cell Physiology and MetabolismCentre Médical Universitaire, University of GenevaGenevaSwitzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and MetabolismCentre Médical Universitaire, University of GenevaGenevaSwitzerland
| |
Collapse
|
2
|
Bhavsar V, Sahu A, Taware R. Stress-induced extracellular vesicles: insight into their altered proteomic composition and probable physiological role in cancer. Mol Cell Biochem 2024:10.1007/s11010-024-05121-x. [PMID: 39302488 DOI: 10.1007/s11010-024-05121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
EVs (extracellular vesicles) are phospholipid bilayer vesicles that can be released by both prokaryotic and eukaryotic cells in normal as well as altered physiological conditions. These vesicles also termed as signalosomes, possess a distinctive cargo comprising nucleic acids, proteins, lipids, and metabolites, enabling them to play a pivotal role in both local and long-distance intercellular communication. The composition, origin, and release of EVs can be influenced by different physiological conditions and a variety of stress factors, consequently affecting the contents carried within these vesicles. Therefore, identifying the modified contents of EVs can provide valuable insights into their functional role in stress-triggered communication. Particularly, this is important when EVs released from tumor microenvironment are investigated for their role in the development and dissemination of cancer. This review article emphasizes the importance of differential EV shedding and altered proteomic content in response to reduced oxygen concentration, altered levels of glucose and glutamine, pH variations, oxidative stress and Ca2+ ion concertation and it is subsequent effects on the behavior of recipient cells.
Collapse
Affiliation(s)
- Vaidehi Bhavsar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Ashish Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Ravindra Taware
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
3
|
Hajka D, Budziak B, Rakus D, Gizak A. Neuronal extracellular vesicles influence the expression, degradation and oligomeric state of fructose 1,6-bisphosphatase 2 in astrocytes affecting their glycolytic capacity. Sci Rep 2024; 14:20932. [PMID: 39251668 PMCID: PMC11385182 DOI: 10.1038/s41598-024-71560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Fructose 1,6-bisphosphatase 2 (Fbp2) is a regulatory enzyme of gluco- and glyconeogenesis which, in the course of evolution, acquired non-catalytic functions. Fbp2 promotes cell survival during calcium stress, regulates glycolysis via inhibition of Hif-1α activity, and is indispensable for the formation of long-term potentiation in hippocampus. In hippocampal astrocytes, the amount of Fbp2 protein is reduced by signals delivered in neuronal extracellular vesicles (NEVs) through an unknown mechanism. The physiological role of Fbp2 (determined by its subcellular localization/interactions) depends on its oligomeric state and thus, we asked whether the cargo of NEVs is sufficient to change also the ratio of Fbp2 dimer/tetramer and, consequently, influence astrocyte basal metabolism. We found that the NEVs cargo reduced the Fbp2 mRNA level, stimulated the enzyme degradation and affected the cellular titers of different oligomeric forms of Fbp2. This was accompanied with increased glucose uptake and lactate release by astrocytes. Our results revealed that neuronal signals delivered to astrocytes in NEVs provide the necessary balance between enzymatic and non-enzymatic functions of Fbp2, influencing not only its amount but also subcellular localization. This may allow for the metabolic adjustments and ensure protection of mitochondrial membrane potential during the neuronal activity-related increase in astrocytic [Ca2+].
Collapse
Affiliation(s)
- Daria Hajka
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335, Wrocław, Poland
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, 54-006, Wrocław, Poland
| | - Bartosz Budziak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335, Wrocław, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335, Wrocław, Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335, Wrocław, Poland.
| |
Collapse
|
4
|
Soares CC, Rizzo A, Maresma MF, Meier P. Autocrine glutamate signaling drives cell competition in Drosophila. Dev Cell 2024:S1534-5807(24)00400-3. [PMID: 39047739 DOI: 10.1016/j.devcel.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/12/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Cell competition is an evolutionarily conserved quality control process that eliminates suboptimal or potentially dangerous cells. Although differential metabolic states act as direct drivers of competition, how these are measured across tissues is not understood. Here, we demonstrate that vesicular glutamate transporter (VGlut) and autocrine glutamate signaling are required for cell competition and Myc-driven super-competition in the Drosophila epithelia. We find that the loss of glutamate-stimulated VGlut>NMDAR>CaMKII>CrebB signaling triggers loser status and cell death under competitive settings via the autocrine induction of TNF. This in turn drives TNFR>JNK activation, triggering loser cell elimination and PDK/LDH-dependent metabolic reprogramming. Inhibiting caspases or preventing loser cells from transferring lactate to their neighbors nullifies cell competition. Further, in a Drosophila model for premalignancy, Myc-overexpressing clones co-opt this signaling circuit to acquire super-competitor status. Targeting glutamate signaling converts Myc "super-competitor" clones into "losers," highlighting new therapeutic opportunities to restrict the evolution of fitter clones.
Collapse
Affiliation(s)
- Carmo Castilho Soares
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| | - Alberto Rizzo
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Marta Forés Maresma
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
5
|
Casas-Martinez JC, Samali A, McDonagh B. Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci 2024; 81:250. [PMID: 38847861 PMCID: PMC11335286 DOI: 10.1007/s00018-024-05286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.
Collapse
Affiliation(s)
- Jose C Casas-Martinez
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland.
- Apoptosis Research Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
6
|
Srinath S, Jishnu PV, Varghese VK, Shukla V, Adiga D, Mallya S, Chakrabarty S, Sharan K, Pandey D, Chatterjee A, Kabekkodu SP. Regulation and tumor-suppressive function of the miR-379/miR-656 (C14MC) cluster in cervical cancer. Mol Oncol 2024; 18:1608-1630. [PMID: 38400534 PMCID: PMC11161731 DOI: 10.1002/1878-0261.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/05/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Cervical cancer (CC) is a key contributor to cancer-related mortality in several countries. The identification of molecular markers and the underlying mechanism may help improve CC management. We studied the regulation and biological function of the chromosome 14 microRNA cluster (C14MC; miR-379/miR-656) in CC. Most C14MC members exhibited considerably lower expression in CC tissues and cell lines in The Cancer Genome Atlas (TCGA) cervical squamous cell carcinoma and endocervical adenocarcinoma patient cohorts. Bisulfite Sanger sequencing revealed hypermethylation of the C14MC promoter in CC tissues and cell lines. 5-aza-2 deoxy cytidine treatment reactivated expression of the C14MC members. We demonstrated that C14MC is a methylation-regulated miRNA cluster via artificial methylation and luciferase reporter assays. C14MC downregulation correlated with poor overall survival and may promote metastasis. C14MC activation via the lentiviral-based CRISPRa approach inhibited growth, proliferation, migration, and invasion; enhanced G2/M arrest; and induced senescence. Post-transcriptional regulatory network analysis of C14MC transcriptomic data revealed enrichment of key cancer-related pathways, such as metabolism, the cell cycle, and phosphatidylinositol 3-kinase (PI3K)-AKT signaling. Reduced cell proliferation, growth, migration, invasion, and senescence correlated with the downregulation of active AKT, MYC, and cyclin E1 (CCNE1) and the overexpression of p16, p21, and p27. We showed that C14MC miRNA activation increases reactive oxygen species (ROS) levels, intracellular Ca2+ levels, and lipid peroxidation rates, and inhibits epithelial-mesenchymal transition (EMT). C14MC targets pyruvate dehydrogenase kinase-3 (PDK3) according to the luciferase reporter assay. PDK3 is overexpressed in CC and is inversely correlated with C14MC. Both miR-494-mimic transfection and C14MC activation inhibited PDK3 expression. Reduced glucose uptake and lactate production, and upregulation of PDK3 upon C14MC activation suggest the potential role of these proteins in metabolic reprogramming. Finally, we showed that C14MC activation may inhibit EMT signaling. Thus, C14MC is a tumor-suppressive and methylation-regulated miRNA cluster in CC. Reactivation of C14MC can be useful in the management of CC.
Collapse
Grants
- Fund for Improvement of S&T Infrastructure (FIST), Department of Science and Technology, Government of India
- Karnataka Fund for Infrastructure Strengthening in Science and Technology (K-FIST), the Government of Karnataka
- MTR/2021/000182 Department of Science and Technology, Ministry of Science and Technology, India
- EMR/2016/002314 Science and Engineering Research Board (SERB)
- Manipal Academy of Higher Education, Manipal
- IA/I/22/1/506240 DBT-Wellcome Trust India Alliance
- SPARC/2019-2020/P2297/SL SPARC
- IA/I/22/1/506240 Wellcome Trust DBT India Alliance, Government of India
- Builder Grant, Department of Biotechnology, Government of India
- Technology Information Forecasting and Assessment Council (TIFAC) Core in Pharmacogenomics at MAHE, the Manipal
- Wellcome Trust
- Science and Engineering Research Board (SERB)
- Department of Science and Technology, Ministry of Science and Technology, India
- SPARC
- Technology Information Forecasting and Assessment Council (TIFAC) Core in Pharmacogenomics at MAHE, the Manipal
Collapse
Affiliation(s)
- Sriharikrishnaa Srinath
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
- Center for DNA Repair and Genome Stability (CDRGS)Manipal Academy of Higher EducationIndia
| | - Krishna Sharan
- Department of Radiotherapy OncologyKasturba Medical CollegeManipalIndia
| | - Deeksha Pandey
- Department of Obstetrics & GynecologyKasturba Medical CollegeManipalIndia
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
- Center for DNA Repair and Genome Stability (CDRGS)Manipal Academy of Higher EducationIndia
| |
Collapse
|
7
|
Bischof H, Maier S, Koprowski P, Kulawiak B, Burgstaller S, Jasińska J, Serafimov K, Zochowska M, Gross D, Schroth W, Matt L, Juarez Lopez DA, Zhang Y, Bonzheim I, Büttner FA, Fend F, Schwab M, Birkenfeld AL, Malli R, Lämmerhofer M, Bednarczyk P, Szewczyk A, Lukowski R. mitoBK Ca is functionally expressed in murine and human breast cancer cells and potentially contributes to metabolic reprogramming. eLife 2024; 12:RP92511. [PMID: 38808578 PMCID: PMC11136494 DOI: 10.7554/elife.92511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Alterations in the function of K+ channels such as the voltage- and Ca2+-activated K+ channel of large conductance (BKCa) reportedly promote breast cancer (BC) development and progression. Underlying molecular mechanisms remain, however, elusive. Here, we provide electrophysiological evidence for a BKCa splice variant localized to the inner mitochondrial membrane of murine and human BC cells (mitoBKCa). Through a combination of genetic knockdown and knockout along with a cell permeable BKCa channel blocker, we show that mitoBKCa modulates overall cellular and mitochondrial energy production, and mediates the metabolic rewiring referred to as the 'Warburg effect', thereby promoting BC cell proliferation in the presence and absence of oxygen. Additionally, we detect mitoBKCa and BKCa transcripts in low or high abundance, respectively, in clinical BC specimens. Together, our results emphasize, that targeting mitoBKCa could represent a treatment strategy for selected BC patients in future.
Collapse
Affiliation(s)
- Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| | - Selina Maier
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
- Dr Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Sandra Burgstaller
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
- NMI Natural and Medical Sciences Institute at the University of TübingenReutlingenGermany
- Center for Medical Research, CF Bioimaging, Medical University of GrazGrazAustria
| | - Joanna Jasińska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Kristian Serafimov
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of TübingenTübingenGermany
| | - Monika Zochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Dominic Gross
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| | - Werner Schroth
- Dr Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| | | | - Ying Zhang
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital TübingenTübingenGermany
| | - Florian A Büttner
- Dr Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital TübingenTübingenGermany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
- iFIT Cluster of Excellence (EXC 2180) “Image-guided and Functionally Instructed Tumor Therapies”, University of TübingenTübingenGermany
- Department of Clinical Pharmacology, Universityhostpital of TübingenTübingenGermany
- Department of Biochemistry and Pharmacy, University of TübingenTübingenGermany
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site TübingenTübingenGermany
| | - Andreas L Birkenfeld
- Medical Clinic IV, University Hospital TübingenTübingenGermany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, University of TübingenTübingenGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Roland Malli
- Center for Medical Research, CF Bioimaging, Medical University of GrazGrazAustria
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of GrazGrazAustria
- BioTechMed GrazGrazAustria
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of TübingenTübingenGermany
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW)WarsawPoland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of TübingenTübingenGermany
| |
Collapse
|
8
|
Cai Q, Fu Y, Lyu C, Wang Z, Rao S, Alvarez JA, Bai Y, Kang J, Yu T. A new framework for exploratory network mediator analysis in omics data. Genome Res 2024; 34:642-654. [PMID: 38719472 PMCID: PMC11146592 DOI: 10.1101/gr.278684.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/11/2024] [Indexed: 06/01/2024]
Abstract
Omics methods are widely used in basic biology and translational medicine research. More and more omics data are collected to explain the impact of certain risk factors on clinical outcomes. To explain the mechanism of the risk factors, a core question is how to find the genes/proteins/metabolites that mediate their effects on the clinical outcome. Mediation analysis is a modeling framework to study the relationship between risk factors and pathological outcomes, via mediator variables. However, high-dimensional omics data are far more challenging than traditional data: (1) From tens of thousands of genes, can we overcome the curse of dimensionality to reliably select a set of mediators? (2) How do we ensure that the selected mediators are functionally consistent? (3) Many biological mechanisms contain nonlinear effects. How do we include nonlinear effects in the high-dimensional mediation analysis? (4) How do we consider multiple risk factors at the same time? To meet these challenges, we propose a new exploratory mediation analysis framework, medNet, which focuses on finding mediators through predictive modeling. We propose new definitions for predictive exposure, predictive mediator, and predictive network mediator, using a statistical hypothesis testing framework to identify predictive exposures and mediators. Additionally, two heuristic search algorithms are proposed to identify network mediators, essentially subnetworks in the genome-scale biological network that mediate the effects of single or multiple exposures. We applied medNet on a breast cancer data set and a metabolomics data set combined with food intake questionnaire data. It identified functionally consistent network mediators for the exposures' impact on the outcome, facilitating data interpretation.
Collapse
Affiliation(s)
- Qingpo Cai
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia 30322, USA
| | - Yinghao Fu
- Shenzhen Research Institute of Big Data, School of Data Science, the Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- School of Medicine, the Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Cheng Lyu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia 30322, USA
| | - Zihe Wang
- Shenzhen Research Institute of Big Data, School of Data Science, the Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Shun Rao
- Shenzhen Research Institute of Big Data, School of Data Science, the Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Jessica A Alvarez
- Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Yun Bai
- School of Medicine, the Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Jian Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tianwei Yu
- Shenzhen Research Institute of Big Data, School of Data Science, the Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China;
| |
Collapse
|
9
|
Kumar M, Sharma S, Kumar J, Barik S, Mazumder S. Mitochondrial electron transport chain in macrophage reprogramming: Potential role in antibacterial immune response. CURRENT RESEARCH IN IMMUNOLOGY 2024; 5:100077. [PMID: 38572399 PMCID: PMC10987323 DOI: 10.1016/j.crimmu.2024.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Macrophages restrain microbial infection and reinstate tissue homeostasis. The mitochondria govern macrophage metabolism and serve as pivot in innate immunity, thus acting as immunometabolic regulon. Metabolic pathways produce electron flows that end up in mitochondrial electron transport chain (mtETC), made of super-complexes regulating multitude of molecular and biochemical processes. Cell-intrinsic and extrinsic factors influence mtETC structure and function, impacting several aspects of macrophage immunity. These factors provide the macrophages with alternate fuel sources and metabolites, critical to gain functional competence and overcoming pathogenic stress. Mitochondrial reactive oxygen species (mtROS) and oxidative phosphorylation (OXPHOS) generated through the mtETC are important innate immune attributes, which help macrophages in mounting antibacterial responses. Recent studies have demonstrated the role of mtETC in governing mitochondrial dynamics and macrophage polarization (M1/M2). M1 macrophages are important for containing bacterial pathogens and M2 macrophages promote tissue repair and wound healing. Thus, mitochondrial bioenergetics and metabolism are intimately coupled with innate immunity. In this review, we have addressed mtETC function as innate rheostats that regulate macrophage reprogramming and innate immune responses. Advancement in this field encourages further exploration and provides potential novel macrophage-based therapeutic targets to control unsolicited inflammation.
Collapse
Affiliation(s)
- Manmohan Kumar
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| | - Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi, India
| |
Collapse
|
10
|
Voorsluijs V, Avanzini F, Falasco G, Esposito M, Skupin A. Calcium oscillations optimize the energetic efficiency of mitochondrial metabolism. iScience 2024; 27:109078. [PMID: 38375217 PMCID: PMC10875125 DOI: 10.1016/j.isci.2024.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/26/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Energy transduction is central to living organisms, but the impact of enzyme regulation and signaling on its thermodynamic efficiency is generally overlooked. Here, we analyze the efficiency of ATP production by the tricarboxylic acid cycle and oxidative phosphorylation, which generate most of the chemical energy in eukaryotes. Calcium signaling regulates this pathway and can affect its energetic output, but the concrete energetic impact of this cross-talk remains elusive. Calcium enhances ATP production by activating key enzymes of the tricarboxylic acid cycle while calcium homeostasis is ATP-dependent. We propose a detailed kinetic model describing the calcium-mitochondria cross-talk and analyze it using nonequilibrium thermodynamics: after identifying the effective reactions driving mitochondrial metabolism out of equilibrium, we quantify the mitochondrial thermodynamic efficiency for different conditions. Calcium oscillations, triggered by extracellular stimulation or energy deficiency, boost the thermodynamic efficiency of mitochondrial metabolism, suggesting a compensatory role of calcium signaling in mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Valérie Voorsluijs
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, 162 A avenue de la Faïencerie, 1511 Luxembourg, Luxembourg
| | - Francesco Avanzini
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, 162 A avenue de la Faïencerie, 1511 Luxembourg, Luxembourg
- Department of Chemical Sciences, University of Padova, 1 Via F. Marzolo, 35131 Padova, Italy
| | - Gianmaria Falasco
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, 162 A avenue de la Faïencerie, 1511 Luxembourg, Luxembourg
- Department of Physics and Astronomy, University of Padova, 8 Via F. Marzolo, 35131 Padova, Italy
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, 162 A avenue de la Faïencerie, 1511 Luxembourg, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, 162 A avenue de la Faïencerie, 1511 Luxembourg, Luxembourg
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| |
Collapse
|
11
|
Mitaishvili E, Feinsod H, David Z, Shpigel J, Fernandez C, Sauane M, de la Parra C. The Molecular Mechanisms behind Advanced Breast Cancer Metabolism: Warburg Effect, OXPHOS, and Calcium. FRONT BIOSCI-LANDMRK 2024; 29:99. [PMID: 38538285 PMCID: PMC10999756 DOI: 10.31083/j.fbl2903099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 04/10/2024]
Abstract
Altered metabolism represents a fundamental difference between cancer cells and normal cells. Cancer cells have a unique ability to reprogram their metabolism by deviating their reliance from primarily oxidative phosphorylation (OXPHOS) to glycolysis, in order to support their survival. This metabolic phenotype is referred to as the "Warburg effect" and is associated with an increase in glucose uptake, and a diversion of glycolytic intermediates to alternative pathways that support anabolic processes. These processes include synthesis of nucleic acids, lipids, and proteins, necessary for the rapidly dividing cancer cells, sustaining their growth, proliferation, and capacity for successful metastasis. Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, with the poorest patient outcome due to its high rate of metastasis. TNBC is characterized by elevated glycolysis and in certain instances, low OXPHOS. This metabolic dysregulation is linked to chemotherapeutic resistance in TNBC research models and patient samples. There is more than a single mechanism by which this metabolic switch occurs and here, we review the current knowledge of relevant molecular mechanisms involved in advanced breast cancer metabolism, focusing on TNBC. These mechanisms include the Warburg effect, glycolytic adaptations, microRNA regulation, mitochondrial involvement, mitochondrial calcium signaling, and a more recent player in metabolic regulation, JAK/STAT signaling. In addition, we explore some of the drugs and compounds targeting cancer metabolic reprogramming. Research on these mechanisms is highly promising and could ultimately offer new opportunities for the development of innovative therapies to treat advanced breast cancer characterized by dysregulated metabolism.
Collapse
Affiliation(s)
- Erna Mitaishvili
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Hanna Feinsod
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Zachary David
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA
| | - Jessica Shpigel
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA
| | - Chelsea Fernandez
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA
| | - Moira Sauane
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA
| | - Columba de la Parra
- Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- PhD Programs in Biochemistry and Chemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
| |
Collapse
|
12
|
Paredes F, Navarro-Marquez M, Quiroga C, Jiménez-Gallegos D, Yeligar SM, Parra V, Müller M, Chiong M, Quest AFG, San Martin A, Lavandero S. HERPUD1 governs tumor cell mitochondrial function via inositol 1,4,5-trisphosphate receptor-mediated calcium signaling. Free Radic Biol Med 2024; 211:24-34. [PMID: 38043868 DOI: 10.1016/j.freeradbiomed.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
The intricate relationship between calcium (Ca2+) homeostasis and mitochondrial function is crucial for cellular metabolic adaptation in tumor cells. Ca2+-initiated signaling maintains mitochondrial respiratory capacity and ATP synthesis, influencing critical cellular processes in cancer development. Previous studies by our group have shown that the homocysteine-inducible ER Protein with Ubiquitin-Like Domain 1 (HERPUD1) regulates inositol 1,4,5-trisphosphate receptor (ITPR3) levels and intracellular Ca2+ signals in tumor cells. This study explores the role of HERPUD1 in regulating mitochondrial function and tumor cell migration by controlling ITPR3-dependent Ca2+ signals. We found HERPUD1 levels correlated with mitochondrial function in tumor cells, with HERPUD1 deficiency leading to enhanced mitochondrial activity. HERPUD1 knockdown increased intracellular Ca2+ release and mitochondrial Ca2+ influx, which was prevented using the ITPR3 antagonist xestospongin C or the Ca2+ chelator BAPTA-AM. Furthermore, HERPUD1 expression reduced tumor cell migration by controlling ITPR3-mediated Ca2+ signals. HERPUD1-deficient cells exhibited increased migratory capacity, which was attenuated by treatment with xestospongin C or BAPTA-AM. Additionally, HERPUD1 deficiency led to reactive oxygen species-dependent activation of paxillin and FAK proteins, which are associated with enhanced cell migration. Our findings highlight the pivotal role of HERPUD1 in regulating mitochondrial function and cell migration by controlling intracellular Ca2+ signals mediated by ITPR3. Understanding the interplay between HERPUD1 and mitochondrial Ca2+ regulation provides insights into potential therapeutic targets for cancer treatment and other pathologies involving altered energy metabolism.
Collapse
Affiliation(s)
- Felipe Paredes
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, USA
| | - Mario Navarro-Marquez
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Clara Quiroga
- Advanced Center for Chronic Diseases, Division de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Danica Jiménez-Gallegos
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA; Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Valentina Parra
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, USA; Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Kushwaha A, Agarwal V. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone mediates Ca +2 dysregulation, mitochondrial dysfunction, and apoptosis in human peripheral blood lymphocytes. Heliyon 2023; 9:e21462. [PMID: 38027911 PMCID: PMC10660034 DOI: 10.1016/j.heliyon.2023.e21462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
N-(3-oxododecanoyl)-l-homoserine lactone is a Pseudomonas aeruginosa secreted quorum-sensing molecule that mediates the secretion of virulence factors, biofilm formation and plays a pivotal role in proliferation and persistence in the host. Apart from regulating quorum-sensing, the autoinducer signal molecule N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL or C12) of a LasI-LasR circuit exhibits immunomodulatory effects and induces apoptosis in various host cells. However, the precise pathophysiological impact of C12 on human peripheral blood lymphocytes and its involvement in mitochondrial dysfunction remained largely elusive. In this study, the results suggest that C12 (100 μM) induces upregulation of cytosolic and mitochondrial Ca+2 levels and triggers mitochondrial dysfunction through the generation of mitochondrial ROS (mROS), disruption of mitochondrial transmembrane potential (ΔΨm), and opening of the mitochondrial permeability transition pore (mPTP). Additionally, it was observed that C12 induces phosphatidylserine (PS) exposure and promotes apoptosis in human peripheral blood lymphocytes. However, apoptosis plays a critical role in the homeostasis and development of lymphocytes, whereas enhanced apoptosis can cause immunodeficiency through cell loss. These findings suggest that C12 exerts a detrimental effect on lymphocytes by mediating mitochondrial dysfunction and enhancing apoptosis, which might further impair the effective mounting of immune responses during Pseudomonas aeruginosa-associated infections.
Collapse
Affiliation(s)
- Ankit Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| |
Collapse
|
14
|
Varlamova EG, Baryshev AS, Gudkov SV, Babenko VA, Plotnikov EY, Turovsky EA. Cerium Oxide Nanoparticles Protect Cortical Astrocytes from Oxygen-Glucose Deprivation through Activation of the Ca 2+ Signaling System. Int J Mol Sci 2023; 24:14305. [PMID: 37762608 PMCID: PMC10531718 DOI: 10.3390/ijms241814305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Most of the works aimed at studying the cytoprotective properties of nanocerium are usually focused on the mechanisms of regulation of the redox status in cells while the complex effects of nanocerium on calcium homeostasis, the expression of pro-apoptotic and protective proteins are generally overlooked. There is a problem of a strong dependence of the effects of cerium oxide nanoparticles on their size, method of preparation and origin, which significantly limits their use in medicine. In this study, using the methods of molecular biology, immunocytochemistry, fluorescence microscopy and inhibitory analysis, the cytoprotective effect of cerium oxide nanoparticles obtained by laser ablation on cultured astrocytes of the cerebral cortex under oxygen-glucose deprivation (OGD) and reoxygenation (ischemia-like conditions) are shown. The concentration effects of cerium oxide nanoparticles on ROS production by astrocytes in an acute experiment and the effects of cell pre-incubation with nanocerium on ROS production under OGD conditions were studied. The dose dependence for nanocerium protection of cortical astrocytes from a global increase in calcium ions during oxygen-glucose deprivation and cell death were demonstrated. The concentration range of cerium oxide nanoparticles at which they have a pro-oxidant effect on cells has been identified. The effect of nanocerium concentrations on astrocyte preconditioning, accompanied by increased expression of protective proteins and limited ROS production induced by oxygen-glucose deprivation, has been investigated. In particular, a correlation was found between an increase in the concentration of cytosolic calcium under the action of nanocerium and the suppression of cell death. As a result, the positive and negative effects of nanocerium under oxygen-glucose deprivation and reoxygenation in astrocytes were revealed at the molecular level. Nanocerium was found to act as a "double-edged sword" and to have a strictly defined concentration therapeutic "window".
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Alexey S. Baryshev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia
| | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
15
|
McKerr N, Mohd-Sarip A, Dorrian H, Breen C, A James J, McQuaid S, Mills IG, McCloskey KD. CACNA1D overexpression and voltage-gated calcium channels in prostate cancer during androgen deprivation. Sci Rep 2023; 13:4683. [PMID: 36949059 PMCID: PMC10033880 DOI: 10.1038/s41598-023-28693-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/23/2023] [Indexed: 03/24/2023] Open
Abstract
Prostate cancer is often treated by perturbing androgen receptor signalling. CACNA1D, encoding CaV1.3 ion channels is upregulated in prostate cancer. Here we show how hormone therapy affects CACNA1D expression and CaV1.3 function. Human prostate cells (LNCaP, VCaP, C4-2B, normal RWPE-1) and a tissue microarray were used. Cells were treated with anti-androgen drug, Enzalutamide (ENZ) or androgen-removal from media, mimicking androgen-deprivation therapy (ADT). Proliferation assays, qPCR, Western blot, immunofluorescence, Ca2+-imaging and patch-clamp electrophysiology were performed. Nifedipine, Bay K 8644 (CaV1.3 inhibitor, activator), mibefradil, Ni2+ (CaV3.2 inhibitors) and high K+ depolarising solution were employed. CACNA1D and CaV1.3 protein are overexpressed in prostate tumours and CACNA1D was overexpressed in androgen-sensitive prostate cancer cells. In LNCaP, ADT or ENZ increased CACNA1D time-dependently whereas total protein showed little change. Untreated LNCaP were unresponsive to depolarising high K+/Bay K (to activate CaV1.3); moreover, currents were rarely detected. ADT or ENZ-treated LNCaP exhibited nifedipine-sensitive Ca2+-transients; ADT-treated LNCaP exhibited mibefradil-sensitive or, occasionally, nifedipine-sensitive inward currents. CACNA1D knockdown reduced the subpopulation of treated-LNCaP with CaV1.3 activity. VCaP displayed nifedipine-sensitive high K+/Bay K transients (responding subpopulation was increased by ENZ), and Ni2+-sensitive currents. Hormone therapy enables depolarization/Bay K-evoked Ca2+-transients and detection of CaV1.3 and CaV3.2 currents. Physiological and genomic CACNA1D/CaV1.3 mechanisms are likely active during hormone therapy-their modulation may offer therapeutic advantage.
Collapse
Affiliation(s)
- Niamh McKerr
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK
| | - Adone Mohd-Sarip
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK
| | - Hannah Dorrian
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK
| | - Conor Breen
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK
| | - Jacqueline A James
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK
| | - Stephen McQuaid
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK
| | - Ian G Mills
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Headley Way, OX3 9DU, UK
| | - Karen D McCloskey
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK.
| |
Collapse
|
16
|
Tiffner A, Hopl V, Derler I. CRAC and SK Channels: Their Molecular Mechanisms Associated with Cancer Cell Development. Cancers (Basel) 2022; 15:101. [PMID: 36612099 PMCID: PMC9817886 DOI: 10.3390/cancers15010101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer represents a major health burden worldwide. Several molecular targets have been discovered alongside treatments with positive clinical outcomes. However, the reoccurrence of cancer due to therapy resistance remains the primary cause of mortality. Endeavors in pinpointing new markers as molecular targets in cancer therapy are highly desired. The significance of the co-regulation of Ca2+-permeating and Ca2+-regulated ion channels in cancer cell development, proliferation, and migration make them promising molecular targets in cancer therapy. In particular, the co-regulation of the Orai1 and SK3 channels has been well-studied in breast and colon cancer cells, where it finally leads to an invasion-metastasis cascade. Nevertheless, many questions remain unanswered, such as which key molecular components determine and regulate their interplay. To provide a solid foundation for a better understanding of this ion channel co-regulation in cancer, we first shed light on the physiological role of Ca2+ and how this ion is linked to carcinogenesis. Then, we highlight the structure/function relationship of Orai1 and SK3, both individually and in concert, their role in the development of different types of cancer, and aspects that are not yet known in this context.
Collapse
Affiliation(s)
- Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
17
|
Gross S, Hooper R, Tomar D, Armstead AP, Shanas N, Mallu P, Joshi H, Ray S, Chong PL, Astsaturov I, Farma JM, Cai KQ, Chitrala KN, Elrod JW, Zaidi MR, Soboloff J. Suppression of Ca 2+ signaling enhances melanoma progression. EMBO J 2022; 41:e110046. [PMID: 36039850 PMCID: PMC9531303 DOI: 10.15252/embj.2021110046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/18/2023] Open
Abstract
The role of store-operated Ca2+ entry (SOCE) in melanoma metastasis is highly controversial. To address this, we here examined UV-dependent metastasis, revealing a critical role for SOCE suppression in melanoma progression. UV-induced cholesterol biosynthesis was critical for UV-induced SOCE suppression and subsequent metastasis, although SOCE suppression alone was both necessary and sufficient for metastasis to occur. Further, SOCE suppression was responsible for UV-dependent differences in gene expression associated with both increased invasion and reduced glucose metabolism. Functional analyses further established that increased glucose uptake leads to a metabolic shift towards biosynthetic pathways critical for melanoma metastasis. Finally, examination of fresh surgically isolated human melanoma explants revealed cholesterol biosynthesis-dependent reduced SOCE. Invasiveness could be reversed with either cholesterol biosynthesis inhibitors or pharmacological SOCE potentiation. Collectively, we provide evidence that, contrary to current thinking, Ca2+ signals can block invasive behavior, and suppression of these signals promotes invasion and metastasis.
Collapse
Affiliation(s)
- Scott Gross
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Robert Hooper
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Dhanendra Tomar
- The Center for Translational MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Alexander P Armstead
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - No'ad Shanas
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Pranava Mallu
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
- Department of Cancer and Cellular BiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Hinal Joshi
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
- Department of Cancer and Cellular BiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Suravi Ray
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
- Department of Cancer and Cellular BiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Parkson Lee‐Gau Chong
- Department of Cancer and Cellular BiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Igor Astsaturov
- Department of Hematology/OncologyFox Chase Cancer CenterPhiladelphiaPAUSA
| | - Jeffrey M Farma
- Department of Surgical OncologyFox Chase Cancer CenterPhiladelphiaPAUSA
| | - Kathy Q Cai
- Department of Hematology/OncologyFox Chase Cancer CenterPhiladelphiaPAUSA
| | - Kumaraswamy Naidu Chitrala
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - John W Elrod
- The Center for Translational MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - M Raza Zaidi
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
- Department of Cancer and Cellular BiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Jonathan Soboloff
- Fels Cancer Institute for Personalized MedicineThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
- Department of Cancer and Cellular BiologyThe Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| |
Collapse
|
18
|
Nagy ÁG, Székács I, Bonyár A, Horvath R. Cell-substratum and cell-cell adhesion forces and single-cell mechanical properties in mono- and multilayer assemblies from robotic fluidic force microscopy. Eur J Cell Biol 2022; 101:151273. [PMID: 36088812 DOI: 10.1016/j.ejcb.2022.151273] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
The epithelium covers, protects, and actively regulates various formations and cavities of the human body. During embryonic development the assembly of the epithelium is crucial to the organoid formation, and the invasion of the epithelium is an essential step in cancer metastasis. Live cell mechanical properties and associated forces presumably play an important role in these biological processes. However, the direct measurement of cellular forces in a precise and high-throughput manner is still challenging. We studied the cellular adhesion maturation of epithelial Vero monolayers by measuring single-cell force-spectra with high-throughput fluidic force microscopy (robotic FluidFM). Vero cells were grown on gelatin-covered plates in different seeding concentrations, and cell detachment forces were recorded from the single-cell state, through clustered island formation, to their complete assembly into a sparse and then into a tight monolayer. A methodology was proposed to separate cell-substratum and cell-cell adhesion force and energy (work of adhesion) contributions based on the recorded force-distance curves. For comparison, cancerous HeLa cells were also measured in the same settings. During Vero monolayer formation, a significantly strengthening adhesive tendency was found, showing the development of cell-cell contacts. Interestingly, this type of step-by-step maturation was absent in HeLa cells. The attachment of cancerous HeLa cells to the assembled epithelial monolayers was also measured, proposing a new high-throughput method to investigate the biomechanics of cancer cell invasion. We found that HeLa cells adhere significantly stronger to the tight Vero monolayer than cells of the same origin. Moreover, the mechanical characteristics of Vero monolayers upon cancerous HeLa cell influence were recorded and analyzed. All these results provide insight into the qualitative assessment of cell-substratum and cell-cell mechanical contacts in mono- and multilayered assemblies and demonstrate the robustness and speed of the robotic FluidFM technology to reveal biomechanical properties of live cell assemblies with statistical significances.
Collapse
Affiliation(s)
- Ágoston G Nagy
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary; Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Inna Székács
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Attila Bonyár
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary.
| |
Collapse
|
19
|
Sassano ML, Felipe-Abrio B, Agostinis P. ER-mitochondria contact sites; a multifaceted factory for Ca 2+ signaling and lipid transport. Front Cell Dev Biol 2022; 10:988014. [PMID: 36158205 PMCID: PMC9494157 DOI: 10.3389/fcell.2022.988014] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Membrane contact sites (MCS) between organelles of eukaryotic cells provide structural integrity and promote organelle homeostasis by facilitating intracellular signaling, exchange of ions, metabolites and lipids and membrane dynamics. Cataloguing MCS revolutionized our understanding of the structural organization of a eukaryotic cell, but the functional role of MSCs and their role in complex diseases, such as cancer, are only gradually emerging. In particular, the endoplasmic reticulum (ER)-mitochondria contacts (EMCS) are key effectors of non-vesicular lipid trafficking, thereby regulating the lipid composition of cellular membranes and organelles, their physiological functions and lipid-mediated signaling pathways both in physiological and diseased conditions. In this short review, we discuss key aspects of the functional complexity of EMCS in mammalian cells, with particular emphasis on their role as central hubs for lipid transport between these organelles and how perturbations of these pathways may favor key traits of cancer cells.
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Blanca Felipe-Abrio
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| |
Collapse
|
20
|
Cervinka J, Gobbo A, Biancalana L, Markova L, Novohradsky V, Guelfi M, Zacchini S, Kasparkova J, Brabec V, Marchetti F. Ruthenium(II)-Tris-pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis. J Med Chem 2022; 65:10567-10587. [PMID: 35913426 PMCID: PMC9376960 DOI: 10.1021/acs.jmedchem.2c00722] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
While ruthenium arene complexes have been widely investigated
for
their medicinal potential, studies on homologous compounds containing
a tridentate tris(1-pyrazolyl)methane ligand are almost absent in
the literature. Ruthenium(II) complex 1 was obtained
by a modified reported procedure; then, the reactions with a series
of organic molecules (L) in boiling alcohol afforded novel complexes 2–9 in 77–99% yields. Products 2–9 were fully structurally characterized. They are
appreciably soluble in water, where they undergo partial chloride/water
exchange. The antiproliferative activity was determined using a panel
of human cancer cell lines and a noncancerous one, evidencing promising
potency of 1, 7, and 8 and
significant selectivity toward cancer cells. The tested compounds
effectively accumulate in cancer cells, and mitochondria represent
a significant target of biological action. Most notably, data provide
convincing evidence that the mechanism of biological action is mediated
by the inhibiting of mitochondrial calcium intake.
Collapse
Affiliation(s)
- Jakub Cervinka
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biochemistry, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Alberto Gobbo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.,Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Massimo Guelfi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biophysics, Palacky University in Olomouc, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
21
|
Lindholm H, Ejeskär K, Szekeres F. Digitoxin Affects Metabolism, ROS Production and Proliferation in Pancreatic Cancer Cells Differently Depending on the Cell Phenotype. Int J Mol Sci 2022; 23:8237. [PMID: 35897809 PMCID: PMC9331846 DOI: 10.3390/ijms23158237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/07/2023] Open
Abstract
Digitoxin has repeatedly shown to have negative effects on cancer cell viability; however, the actual mechanism is still unknown. In this study, we investigated the effects of digitoxin (1-100 nM) in four pancreatic cancer cell lines, BxPC-3, CFPAC-1, Panc-1, and AsPC-1. The cell lines differ in their KRAS/BRAF mutational status and primary tumor or metastasis origin. We could detect differences in the basal rates of cell proliferation, glycolysis, and ROS production, giving the cell lines different phenotypes. Digitoxin treatment induced apoptosis in all four cell lines, but to different degrees. Cells derived from primary tumors (Panc-1 and BxPC-3) were highly proliferating with a high proportion of cells in the S/G2 phase, and were more sensitive to digitoxin treatment than the cell lines derived from metastases (CFPAC-1 and AsPC-1), with a high proportion of cells in G0/G1. In addition, the effects of digitoxin on the rate of glycolysis, ROS production, and proliferation were dependent on the basal metabolism and origin of the cells. The KRAS downstream signaling pathways were not altered by digitoxin treatment, thus the effects exerted by digitoxin were probably disconnected from these signaling pathways. We conclude that digitoxin is a promising treatment in highly proliferating pancreatic tumors.
Collapse
Affiliation(s)
| | | | - Ferenc Szekeres
- Biomedicine, School of Health Sciences, University of Skövde, 54145 Skövde, Sweden; (H.L.); (K.E.)
| |
Collapse
|
22
|
Osuru HP, Lavallee M, Thiele RH. Molecular and Cellular Response of the Myocardium (H9C2 Cells) Towards Hypoxia and HIF-1α Inhibition. Front Cardiovasc Med 2022; 9:711421. [PMID: 35928940 PMCID: PMC9343679 DOI: 10.3389/fcvm.2022.711421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Oxidative phosphorylation is an essential feature of Animalian life. Multiple adaptations have developed to protect against hypoxia, including hypoxia-inducible-factors (HIFs). The major role of HIFs may be in protecting against oxidative stress, not the preservation of high-energy phosphates. The precise mechanism(s) of HIF protection is not completely understood. Materials and Methods To better understand the role of hypoxia-inducible-factor-1, we exposed heart/myocardium cells (H9c2) to both normoxia and hypoxia, as well as cobalt chloride (prolyl hydroxylase inhibitor), echniomycin (HIF inhibitor), A2P (anti-oxidant), and small interfering RNA to beclin-1. We measured cell viability, intracellular calcium and adenosine triphosphate, NADP/NADPH ratios, total intracellular reactive oxidative species levels, and markers of oxidative and antioxidant levels measured. Results Hypoxia (1%) leads to increased intracellular Ca2+ levels, and this response was inhibited by A2P and echinomycin (ECM). Exposure of H9c2 cells to hypoxia also led to an increase in both mRNA and protein expression for Cav 1.2 and Cav 1.3. Exposure of H9c2 cells to hypoxia led to a decrease in intracellular ATP levels and a sharp reduction in total ROS, SOD, and CAT levels. The impact of hypoxia on ROS was reversed with HIF-1 inhibition through ECM. Exposure of H9c2 cells to hypoxia led to an increase in Hif1a, VEGF and EPO protein expression, as well as a decrease in mitochondrial DNA. Both A2P and ECM attenuated this response to varying degrees. Conclusion Hypoxia leads to increased intracellular Ca2+, and inhibition of HIF-1 attenuates the increase in intracellular Ca2+ that occurs with hypoxia. HIF-1 expression leads to decreased adenosine triphosphate levels, but the role of HIF-1 on the production of reactive oxidative species remains uncertain. Anti-oxidants decrease HIF-1 expression in the setting of hypoxia and attenuate the increase in Ca2+ that occurs during hypoxia (with no effect during normoxia). Beclin-1 appears to drive autophagy in the setting of hypoxia (through ATG5) but not in normoxia. Additionally, Beclin-1 is a powerful driver of reactive oxidative species production and plays a role in ATP production. HIF-1 inhibition does not affect autophagy in the setting of hypoxia, suggesting that there are other drivers of autophagy that impact beclin-1.
Collapse
|
23
|
Guarnieri AR, Benson TW, Tranter M. Calcium cycling as a mediator of thermogenic metabolism in adipose tissue. Mol Pharmacol 2022; 102:MOLPHARM-MR-2021-000465. [PMID: 35504660 PMCID: PMC9341262 DOI: 10.1124/molpharm.121.000465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022] Open
Abstract
Canonical non-shivering thermogenesis (NST) in brown and beige fat relies on uncoupling protein 1 (UCP1)-mediated heat generation, although alternative mechanisms of NST have been identified, including sarcoplasmic reticulum (SR)-calcium cycling. Intracellular calcium is a crucial cell signaling molecule for which compartmentalization is tightly regulated, and the sarco-endoplasmic calcium ATPase (SERCA) actively pumps calcium from the cytosol into the SR. In this review, we discuss the capacity of SERCA-mediated calcium cycling as a significant mediator of thermogenesis in both brown and beige adipocytes. Here, we suggest two primary mechanisms of SR calcium mediated thermogenesis. The first mechanism is through direct uncoupling of the ATPase and calcium pump activity of SERCA, resulting in the energy of ATP catalysis being expended as heat in the absence of calcium transport. Regulins, a class of SR membrane proteins, act to decrease the calcium affinity of SERCA and uncouple the calcium transport function from ATPase activity, but remain largely unexplored in adipose tissue thermogenesis. A second mechanism is through futile cycling of SR calcium whereby SERCA-mediated SR calcium influx is equally offset by SR calcium efflux, resulting in ATP consumption without a net change in calcium compartmentalization. A fuller understanding of the functional and mechanistic role of calcium cycling as a mediator of adipose tissue thermogenesis and how manipulation of these pathways can be harnessed for therapeutic gain remains unexplored. Significance Statement Enhancing thermogenic metabolism in brown or beige adipose tissue may be of broad therapeutic utility to reduce obesity and metabolic syndrome. Canonical BAT-mediated thermogenesis occurs via uncoupling protein 1 (UCP1). However, UCP1-independent pathways of thermogenesis, such as sarcoplasmic (SR) calcium cycling, have also been identified, but the regulatory mechanisms and functional significance of these pathways remain largely unexplored. Thus, this mini-review discusses the state of the field with regard to calcium cycling as a thermogenic mediator in adipose tissue.
Collapse
Affiliation(s)
| | - Tyler W Benson
- University of Cincinnati College of Medicine, United States
| | | |
Collapse
|
24
|
Makena MR, Ko M, Mekile AX, Senoo N, Dang DK, Warrington J, Buckhaults P, Talbot CC, Claypool SM, Rao R. Secretory pathway Ca 2+-ATPase SPCA2 regulates mitochondrial respiration and DNA damage response through store-independent calcium entry. Redox Biol 2022; 50:102240. [PMID: 35063802 PMCID: PMC8783100 DOI: 10.1016/j.redox.2022.102240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/04/2023] Open
Abstract
A complex interplay between the extracellular space, cytoplasm and individual organelles modulates Ca2+ signaling to impact all aspects of cell fate and function. In recent years, the molecular machinery linking endoplasmic reticulum stores to plasma membrane Ca2+ entry has been defined. However, the mechanism and pathophysiological relevance of store-independent modes of Ca2+ entry remain poorly understood. Here, we describe how the secretory pathway Ca2+-ATPase SPCA2 promotes cell cycle progression and survival by activating store-independent Ca2+ entry through plasma membrane Orai1 channels in mammary epithelial cells. Silencing SPCA2 expression or briefly removing extracellular Ca2+ increased mitochondrial ROS production, DNA damage and activation of the ATM/ATR-p53 axis leading to G0/G1 phase cell cycle arrest and apoptosis. Consistent with these findings, SPCA2 knockdown confers redox stress and chemosensitivity to DNA damaging agents. Unexpectedly, SPCA2-mediated Ca2+ entry into mitochondria is required for optimal cellular respiration and the generation of mitochondrial membrane potential. In hormone receptor positive (ER+/PR+) breast cancer subtypes, SPCA2 levels are high and correlate with poor survival prognosis. We suggest that elevated SPCA2 expression could drive pro-survival and chemotherapy resistance in cancer cells, and drugs that target store-independent Ca2+ entry pathways may have therapeutic potential in treating cancer.
Collapse
Affiliation(s)
- Monish Ram Makena
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Myungjun Ko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allatah X Mekile
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nanami Senoo
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - John Warrington
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Phillip Buckhaults
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rajini Rao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Novo LC, Cavani L, Pinedo P, Melendez P, Peñagaricano F. Genomic Analysis of Visceral Fat Accumulation in Holstein Cows. Front Genet 2022; 12:803216. [PMID: 35058972 PMCID: PMC8764383 DOI: 10.3389/fgene.2021.803216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Visceral fat is related to important metabolic processes, including insulin sensitivity and lipid mobilization. The goal of this study was to identify individual genes, pathways, and molecular processes implicated in visceral fat deposition in dairy cows. Data from 172 genotyped Holstein cows classified at slaughterhouse as having low (n = 77; omental fold <5 mm in thickness and minimum fat deposition in omentum) or high (n = 95; omental fold ≥20 mm in thickness and marked fat deposition in omentum) omental fat were analyzed. The identification of regions with significant additive and non-additive genetic effects was performed using a two-step mixed model-based approach. Genomic scans were followed by gene-set analyses in order to reveal the genetic mechanisms controlling abdominal obesity. The association mapping revealed four regions located on BTA19, BTA20 and BTA24 with significant additive effects. These regions harbor genes, such as SMAD7, ANKRD55, and the HOXB family, that are implicated in lipolysis and insulin tolerance. Three regions located on BTA1, BTA13, and BTA24 showed marked non-additive effects. These regions harbor genes MRAP, MIS18A, PRNP and TSHZ1, that are directly implicated in adipocyte differentiation, lipid metabolism, and insulin sensitivity. The gene-set analysis revealed functional terms related to cell arrangement, cell metabolism, cell proliferation, cell signaling, immune response, lipid metabolism, and membrane permeability, among other functions. We further evaluated the genetic link between visceral fat and two metabolic disorders, ketosis, and displaced abomasum. For this, we analyzed 28k records of incidence of metabolic disorders from 14k cows across lactations using a single-step genomic BLUP approach. Notably, the region on BTA20 significantly associated with visceral fat deposition was also associated with the incidence of displaced abomasum. Overall, our findings suggest that visceral fat deposition in dairy cows is controlled by both additive and non-additive effects. We detected at least one region with marked pleiotropic effects affecting both visceral fat accumulation and displaced abomasum.
Collapse
Affiliation(s)
- Larissa C Novo
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Ligia Cavani
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Pablo Pinedo
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Pedro Melendez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
26
|
Altered Elemental Distribution in Male Rat Brain Tissue as a Predictor of Glioblastoma Multiforme Growth-Studies Using SR-XRF Microscopy. Int J Mol Sci 2022; 23:ijms23020703. [PMID: 35054889 PMCID: PMC8775692 DOI: 10.3390/ijms23020703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a particularly malignant primary brain tumor. Despite enormous advances in the surgical treatment of cancer, radio- and chemotherapy, the average survival of patients suffering from this cancer does not usually exceed several months. For obvious ethical reasons, the search and testing of the new drugs and therapies of GBM cannot be carried out on humans, and for this purpose, animal models of the disease are most often used. However, to assess the efficacy and safety of the therapy basing on these models, a deep knowledge of the pathological changes associated with tumor development in the animal brain is necessary. Therefore, as part of our study, the synchrotron radiation-based X-ray fluorescence microscopy was applied for multi-elemental micro-imaging of the rat brain in which glioblastoma develops. Elemental changes occurring in animals after the implantation of two human glioma cell lines as well as the cells taken directly from a patient suffering from GBM were compared. Both the extent and intensity of elemental changes strongly correlated with the regions of glioma growth. The obtained results showed that the observation of elemental anomalies accompanying tumor development within an animal's brain might facilitate our understanding of the pathogenesis and progress of GBM and also determine potential biomarkers of its extension. The tumors appearing in a rat's brain were characterized by an increased accumulation of Fe and Se, whilst the tissue directly surrounding the tumor presented a higher accumulation of Cu. Furthermore, the results of the study allow us to consider Se as a potential elemental marker of GBM progression.
Collapse
|
27
|
Critchley WR, Fearnley GWF, Abdul-Zani I, Molina-Paris C, Bendtsen C, Zachary IC, Harrison MA, Ponnambalam S. Monitoring VEGF-Stimulated Calcium Ion Flux in Endothelial Cells. Methods Mol Biol 2022; 2475:113-124. [PMID: 35451752 DOI: 10.1007/978-1-0716-2217-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The endothelial response to vascular endothelial growth factor A (VEGF-A) regulates many aspects of animal physiology in health and disease. Such VEGF-A-regulated phenomena include vasculogenesis, angiogenesis, tumor growth and progression. VEGF-A binding to receptor tyrosine kinases such as vascular endothelial growth factor receptor 2 (VEGFR2 ) activates multiple signal transduction pathways and changes in homeostasis, metabolism, gene expression, cell proliferation, migration, and survival. One such VEGF-A-regulated response is a rapid rise in cytosolic calcium ion levels which modulates different biochemical events and impacts on endothelial-specific responses. Here, we present a series of detailed and robust protocols for evaluating ligand-stimulated cytosolic calcium ion flux in endothelial cells. By monitoring an endogenous endothelial transcription factor (NFATc2 ) which displays calcium-sensitive redistribution, we can assess the relevance of cytosolic calcium to protein function. This protocol can be easily applied to both adherent and non-adherent cultured cells to evaluate calcium ion flux in response to exogenous stimuli such as VEGF-A.
Collapse
Affiliation(s)
| | | | - Izma Abdul-Zani
- School of Molecular & Cellular Biology, University of Leeds, Leeds, UK
| | | | | | - Ian C Zachary
- Centre for Cardiovascular Biology and Medicine, University College London, London, UK
| | | | | |
Collapse
|
28
|
Williamson M, Moustaid-Moussa N, Gollahon L. The Molecular Effects of Dietary Acid Load on Metabolic Disease (The Cellular PasaDoble: The Fast-Paced Dance of pH Regulation). FRONTIERS IN MOLECULAR MEDICINE 2021; 1:777088. [PMID: 39087082 PMCID: PMC11285710 DOI: 10.3389/fmmed.2021.777088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 08/02/2024]
Abstract
Metabolic diseases are becoming more common and more severe in populations adhering to western lifestyle. Since metabolic conditions are highly diet and lifestyle dependent, it is suggested that certain diets are the cause for a wide range of metabolic dysfunctions. Oxidative stress, excess calcium excretion, inflammation, and metabolic acidosis are common features in the origins of most metabolic disease. These primary manifestations of "metabolic syndrome" can lead to insulin resistance, diabetes, obesity, and hypertension. Further complications of the conditions involve kidney disease, cardiovascular disease, osteoporosis, and cancers. Dietary analysis shows that a modern "Western-style" diet may facilitate a disruption in pH homeostasis and drive disease progression through high consumption of exogenous acids. Because so many physiological and cellular functions rely on acid-base reactions and pH equilibrium, prolonged exposure of the body to more acids than can effectively be buffered, by chronic adherence to poor diet, may result in metabolic stress followed by disease. This review addresses relevant molecular pathways in mammalian cells discovered to be sensitive to acid - base equilibria, their cellular effects, and how they can cascade into an organism-level manifestation of Metabolic Syndromes. We will also discuss potential ways to help mitigate this digestive disruption of pH and metabolic homeostasis through dietary change.
Collapse
Affiliation(s)
- Morgan Williamson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaid-Moussa
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
29
|
Wang X, An P, Gu Z, Luo Y, Luo J. Mitochondrial Metal Ion Transport in Cell Metabolism and Disease. Int J Mol Sci 2021; 22:ijms22147525. [PMID: 34299144 PMCID: PMC8305404 DOI: 10.3390/ijms22147525] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are vital to life and provide biological energy for other organelles and cell physiological processes. On the mitochondrial double layer membrane, there are a variety of channels and transporters to transport different metal ions, such as Ca2+, K+, Na+, Mg2+, Zn2+ and Fe2+/Fe3+. Emerging evidence in recent years has shown that the metal ion transport is essential for mitochondrial function and cellular metabolism, including oxidative phosphorylation (OXPHOS), ATP production, mitochondrial integrity, mitochondrial volume, enzyme activity, signal transduction, proliferation and apoptosis. The homeostasis of mitochondrial metal ions plays an important role in maintaining mitochondria and cell functions and regulating multiple diseases. In particular, channels and transporters for transporting mitochondrial metal ions are very critical, which can be used as potential targets to treat neurodegeneration, cardiovascular diseases, cancer, diabetes and other metabolic diseases. This review summarizes the current research on several types of mitochondrial metal ion channels/transporters and their functions in cell metabolism and diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
Collapse
Affiliation(s)
- Xuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
| | - Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA;
| | - Yongting Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
- Correspondence: (Y.L.); (J.L.)
| | - Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (X.W.); (P.A.)
- Correspondence: (Y.L.); (J.L.)
| |
Collapse
|
30
|
Bettaieb L, Brulé M, Chomy A, Diedro M, Fruit M, Happernegg E, Heni L, Horochowska A, Housseini M, Klouyovo K, Laratte A, Leroy A, Lewandowski P, Louvieaux J, Moitié A, Tellier R, Titah S, Vanauberg D, Woesteland F, Prevarskaya N, Lehen’kyi V. Ca 2+ Signaling and Its Potential Targeting in Pancreatic Ductal Carcinoma. Cancers (Basel) 2021; 13:3085. [PMID: 34205590 PMCID: PMC8235326 DOI: 10.3390/cancers13123085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is a major cause of cancer-associated mortality in Western countries (and estimated to be the second cause of cancer deaths by 2030). The main form of PC is pancreatic adenocarcinoma, which is the fourth most common cause of cancer-related death, and this situation has remained virtually unchanged for several decades. Pancreatic ductal adenocarcinoma (PDAC) is inherently linked to the unique physiology and microenvironment of the exocrine pancreas, such as pH, mechanical stress, and hypoxia. Of them, calcium (Ca2+) signals, being pivotal molecular devices in sensing and integrating signals from the microenvironment, are emerging to be particularly relevant in cancer. Mutations or aberrant expression of key proteins that control Ca2+ levels can cause deregulation of Ca2+-dependent effectors that control signaling pathways determining the cells' behavior in a way that promotes pathophysiological cancer hallmarks, such as enhanced proliferation, survival and invasion. So far, it is essentially unknown how the cancer-associated Ca2+ signaling is regulated within the characteristic landscape of PDAC. This work provides a complete overview of the Ca2+ signaling and its main players in PDAC. Special consideration is given to the Ca2+ signaling as a potential target in PDAC treatment and its role in drug resistance.
Collapse
Affiliation(s)
- Louay Bettaieb
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Maxime Brulé
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Axel Chomy
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Mel Diedro
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Malory Fruit
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Eloise Happernegg
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Leila Heni
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Anaïs Horochowska
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Mahya Housseini
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Kekely Klouyovo
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Agathe Laratte
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Alice Leroy
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Paul Lewandowski
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Joséphine Louvieaux
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Amélie Moitié
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Rémi Tellier
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Sofia Titah
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Dimitri Vanauberg
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Flavie Woesteland
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France;
- University Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
| | - V’yacheslav Lehen’kyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France;
- University Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
| |
Collapse
|
31
|
Singh S, Mabalirajan U. Mitochondrial calcium in command of juggling myriads of cellular functions. Mitochondrion 2021; 57:108-118. [PMID: 33412334 DOI: 10.1016/j.mito.2020.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
The puzzling traits related to the evolutionary aspect of mitochondria, still positions the mitochondrion at the center of the research. The theory of endosymbiosis popularized by Lynn Margulis in 1967 gained prominence wherein the mitochondrion is believed to have emerged as a prokaryote and later integrated into the eukaryotic system. This semi-autonomous organelle has bagged two responsible but perilous cellular functions: a) energy metabolism, and b) calcium buffering, though both are interdependent. While most of the mitochondrial functions are saliently regulated by calcium ions, the calcium buffering role of mitochondria decides the cellular fate. Though calcium overload in few mitochondria makes them dysfunctional at the early stage of cellular stress, this doesn't lead to sudden cell death due to critical checkpoints like mitophagy, mitochondrial fusion, etc. Thus, mitochondrion juggles with multiple crucial cellular functions with its calcium buffering skill.
Collapse
Affiliation(s)
- Sabita Singh
- Molecular Pathobiology Of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology Of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|