1
|
Smith AR, Lin PID, Rifas-Shiman SL, Fleisch AF, Wright RO, Coull B, Finn PW, Oken E, Gold DR, Cardenas A. Prenatal blood metals, per- and polyfluoroalkyl substances and antigen- or mitogen-stimulated cord blood lymphocyte proliferation and cytokine secretion. ENVIRONMENTAL RESEARCH 2024; 259:119555. [PMID: 38964580 PMCID: PMC11365774 DOI: 10.1016/j.envres.2024.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Evidence suggests that prenatal per- and polyfluoroalkyl substances (PFAS) and metals, two classes of chemicals found ubiquitously in human populations, influence immune system development and response. OBJECTIVE We evaluated whether first trimester blood PFAS and metals were associated with antigen- or mitogen-stimulated cord blood lymphocyte proliferation and cytokine secretion. METHODS We measured six PFAS, as well as six nonessential and four essential metals, in first trimester blood from participants in the longitudinal pre-birth Project Viva cohort, recruited between 1999 and 2000 in eastern Massachusetts. We measured antigen- or mitogen-stimulated cord blood mononuclear cell proliferation responses (n = 269-314) and cytokine secretion (n = 217-302). We used covariate-adjusted least absolute shrinkage and selection operator (LASSO) for variable selection and multivariable regression to estimate associations with the immune markers. RESULTS Each ng/mL of MeFOSAA was associated with a 3.6% (1.4, 5.8) higher lymphocyte proliferation response after stimulation with egg antigen, as well as 0.8 (0.7, 1.0) reduced odds of having IFN-γ detected in response to dust mite. Each ng/g increment of cesium was associated with 27.8% (-45.1, -4.9) lower IL-10 levels in response to dust mite. Each ng/g increment of mercury was associated with 12.0% (1.3, 23.8) higher IL-13 levels in response to mitogen PHA. Each ng/g increment of selenium and zinc was associated with 0.2% (0.01, 0.4) and 0.01% (0.002, 0.02) higher TNF-α in response to mitogen PHA, respectively. CONCLUSIONS Prenatal metals and PFAS influence cord blood lymphocyte proliferation and cytokine secretion in ways that may increase risk for atopic disease in childhood.
Collapse
Affiliation(s)
- Anna R Smith
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA
| | - Pi-I D Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Abby F Fleisch
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Westbrook, ME, USA; Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA
| | - Robert O Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Patricia W Finn
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Bazzano MV, Köninger A, Solano ME. Beyond defence: Immune architects of ovarian health and disease. Semin Immunopathol 2024; 46:11. [PMID: 39134914 PMCID: PMC11319434 DOI: 10.1007/s00281-024-01021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
Throughout the individual's reproductive period of life the ovary undergoes continues changes, including cyclic processes of cell death, tissue regeneration, proliferation, and vascularization. Tissue-resident leucocytes particularly macrophages, play a crucial role in shaping ovarian function and maintaining homeostasis. Macrophages crucially promote angiogenesis in the follicles and corpora lutea, thereby supporting steroidogenesis. Recent research on macrophage origins and early tissue seeding has unveiled significant insights into their role in early organogenesis, e.g. in the testis. Here, we review evidence about the prenatal ovarian seeding of leucocytes, primarily macrophages with angiogenic profiles, and its connection to gametogenesis. In the prenatal ovary, germ cells proliferate, form cysts, and undergo changes that, following waves of apoptosis, give rice to the oocytes contained in primordial follicles. These follicles constitute the ovarian reserve that lasts throughout the female's reproductive life. Simultaneously, yolk-sac-derived primitive macrophages colonizing the early ovary are gradually replaced or outnumbered by monocyte-derived fetal macrophages. However, the cues indicating how macrophage colonization and follicle assembly are related are elusive. Macrophages may contribute to organogenesis by promoting early vasculogenesis. Whether macrophages contribute to ovarian lymphangiogenesis or innervation is still unknown. Ovarian organogenesis and gametogenesis are vulnerable to prenatal insults, potentially programming dysfunction in later life, as observed in polycystic ovary syndrome. Experimental and, more sparsely, epidemiological evidence suggest that adverse stimuli during pregnancy can program defective folliculogenesis or a diminished follicle reserve in the offspring. While the ovary is highly sensitive to inflammation, the involvement of local immune responses in programming ovarian health and disease remains to be thoroughly investigated.
Collapse
Affiliation(s)
- Maria Victoria Bazzano
- Laboratory of Translational Perinatology, University of Regensburg, Biopark 1-3, D-93053, Regensburg, Germany
| | - Angela Köninger
- University Department of Obstetrics and Gynecology, Clinic St. Hedwig of The Order of St. John, University of Regensburg, Steinmetzstr. 1-3, D-93049, Regensburg, Germany
| | - Maria Emilia Solano
- Laboratory of Translational Perinatology, University of Regensburg, Biopark 1-3, D-93053, Regensburg, Germany.
| |
Collapse
|
3
|
Nelson BN, Friedman JE. Developmental Programming of the Fetal Immune System by Maternal Western-Style Diet: Mechanisms and Implications for Disease Pathways in the Offspring. Int J Mol Sci 2024; 25:5951. [PMID: 38892139 PMCID: PMC11172957 DOI: 10.3390/ijms25115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Maternal obesity and over/undernutrition can have a long-lasting impact on offspring health during critical periods in the first 1000 days of life. Children born to mothers with obesity have reduced immune responses to stimuli which increase susceptibility to infections. Recently, maternal western-style diets (WSDs), high in fat and simple sugars, have been associated with skewing neonatal immune cell development, and recent evidence suggests that dysregulation of innate immunity in early life has long-term consequences on metabolic diseases and behavioral disorders in later life. Several factors contribute to abnormal innate immune tolerance or trained immunity, including changes in gut microbiota, metabolites, and epigenetic modifications. Critical knowledge gaps remain regarding the mechanisms whereby these factors impact fetal and postnatal immune cell development, especially in precursor stem cells in bone marrow and fetal liver. Components of the maternal microbiota that are transferred from mothers consuming a WSD to their offspring are understudied and identifying cause and effect on neonatal innate and adaptive immune development needs to be refined. Tools including single-cell RNA-sequencing, epigenetic analysis, and spatial location of specific immune cells in liver and bone marrow are critical for understanding immune system programming. Considering the vital role immune function plays in offspring health, it will be important to understand how maternal diets can control developmental programming of innate and adaptive immunity.
Collapse
Affiliation(s)
- Benjamin N. Nelson
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Physiology and Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Ahlback A, Gentek R. Fate-Mapping Macrophages: From Ontogeny to Functions. Methods Mol Biol 2024; 2713:11-43. [PMID: 37639113 DOI: 10.1007/978-1-0716-3437-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages are vital to the physiological function of most tissues, but also contribute to disease through a multitude of pathological roles. They are thus highly plastic and heterogeneous. It is now well recognized that macrophages develop from several distinct progenitors from embryogenesis onwards and extending throughout life. Tissue-resident macrophages largely originate from embryonic sources and in many cases self-maintain independently without monocyte input. However, in certain tissues, monocyte-derived macrophages replace these over time or as a result of tissue injury and inflammation. This additional layer of heterogeneity has introduced many questions regarding the influence of origin on fate and function of macrophages in health and disease. To comprehensively address these questions, appropriate methods of tracing macrophage ontogeny are required. This chapter explores why ontogeny is of vital importance in macrophage biology and how to delineate macrophage populations by origin through genetic fate mapping. First, we summarize the current view of macrophage ontogeny and briefly discuss how origin may influence macrophage function in homeostasis and pathology. We go on to make the case for genetic fate mapping as the gold standard and briefly review different fate-mapping models. We then put forward our recommendations for fate-mapping strategies best suited to answer specific research questions and finally discuss the strengths and limitations of currently available models.
Collapse
Affiliation(s)
- Anna Ahlback
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK
| | - Rebecca Gentek
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK.
| |
Collapse
|
5
|
Splichalova I, Mass E. Fate-Mapping of Yolk Sac-Derived Macrophages. Methods Mol Biol 2024; 2713:129-137. [PMID: 37639119 DOI: 10.1007/978-1-0716-3437-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
To better understand the distinct functions of yolk-sac-derived tissue-resident macrophages (TRMs) and bone-marrow-derived macrophages in homeostasis and disease, it is important to trace the ontogeny of these cells. The majority of TRMs originate from erythro-myeloid progenitors (EMPs). EMPs develop into pre-macrophages (pMacs), which can be detected starting at embryonic developmental day (E)9.0, and which give rise to all TRM during early development. pMacs start expressing the gene Cx3cr1, allowing us to genetically target the early yolk-sac wave of pMacs and their progeny. Here, we describe the protocol for the identification of yolk sac-derived TRMs utilizing in utero labelling of the inducible fate mapping Cx3cr1CreERT; Rosa26LSL-eYFP mouse model.
Collapse
Affiliation(s)
- Iva Splichalova
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
6
|
Albrecht M, Garn H, Buhl T. Epithelial-immune cell interactions in allergic diseases. Eur J Immunol 2024; 54:e2249982. [PMID: 37804068 DOI: 10.1002/eji.202249982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
Epithelial/immune interactions are characterized by the different properties of the various epithelial tissues, the mediators involved, and the varying immune cells that initiate, sustain, or abrogate allergic diseases on the surface. The intestinal mucosa, respiratory mucosa, and regular skin feature structural differences according to their primary function and surroundings. In the context of these specialized functions, the active role of the epithelium in shaping immune responses is increasingly recognizable. Crosstalk between epithelial and immune cells plays an important role in maintaining homeostatic conditions. While cells of the myeloid cell lineage, mainly macrophages, are the dominating immune cell population in the skin and the respiratory tract, lymphocytes comprise most intraepithelial immune cells in the intestine under healthy conditions. Common to all surface epithelia is the fact that innate immune cells represent the first line of immunosurveillance that either directly defeats invading pathogens or initiates and coordinates more effective successive immune responses involving adaptive immune cells and effector cells. Pharmacological approaches for the treatment of allergic and chronic inflammatory diseases involving epithelial barriers target immunological mediators downstream of the epithelium (such as IL-4, IL-5, IL-13, and IgE). The next generation of therapeutics involves upstream events of the inflammatory cascade, such as epithelial-derived alarmins and related mediators.
Collapse
Affiliation(s)
- Melanie Albrecht
- Molecular Allergology, Vice President´s Research Group, Paul-Ehrlich-Institut, Langen, Germany
| | - Holger Garn
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University of Marburg, Marburg, Germany
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Silvin A, Qian J, Ginhoux F. Brain macrophage development, diversity and dysregulation in health and disease. Cell Mol Immunol 2023; 20:1277-1289. [PMID: 37365324 PMCID: PMC10616292 DOI: 10.1038/s41423-023-01053-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Brain macrophages include microglia in the parenchyma, border-associated macrophages in the meningeal-choroid plexus-perivascular space, and monocyte-derived macrophages that infiltrate the brain under various disease conditions. The vast heterogeneity of these cells has been elucidated over the last decade using revolutionary multiomics technologies. As such, we can now start to define these various macrophage populations according to their ontogeny and their diverse functional programs during brain development, homeostasis and disease pathogenesis. In this review, we first outline the critical roles played by brain macrophages during development and healthy aging. We then discuss how brain macrophages might undergo reprogramming and contribute to neurodegenerative disorders, autoimmune diseases, and glioma. Finally, we speculate about the most recent and ongoing discoveries that are prompting translational attempts to leverage brain macrophages as prognostic markers or therapeutic targets for diseases that affect the brain.
Collapse
Affiliation(s)
- Aymeric Silvin
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France
| | - Jiawen Qian
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Florent Ginhoux
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, 94800, France.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, 138648, Republic of Singapore.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, 169856, Singapore.
| |
Collapse
|
8
|
Teh YC, Chooi MY, Chong SZ. Behind the monocyte's mystique: uncovering their developmental trajectories and fates. DISCOVERY IMMUNOLOGY 2023; 2:kyad008. [PMID: 38567063 PMCID: PMC10917229 DOI: 10.1093/discim/kyad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 04/04/2024]
Abstract
Monocytes are circulating myeloid cells that are derived from dedicated progenitors in the bone marrow. Originally thought of as mere precursors for the replacement of tissue macrophages, it is increasingly clear that monocytes execute distinct effector functions and may give rise to monocyte-derived cells with unique properties from tissue-resident macrophages. Recently, the advent of novel experimental approaches such as single-cell analysis and fate-mapping tools has uncovered an astonishing display of monocyte plasticity and heterogeneity, which we believe has emerged as a key theme in the field of monocyte biology in the last decade. Monocyte heterogeneity is now recognized to develop as early as the progenitor stage through specific imprinting mechanisms, giving rise to specialized effector cells in the tissue. At the same time, monocytes must overcome their susceptibility towards cellular death to persist as monocyte-derived cells in the tissues. Environmental signals that preserve their heterogenic phenotypes and govern their eventual fates remain incompletely understood. In this review, we will summarize recent advances on the developmental trajectory of monocytes and discuss emerging concepts that contributes to the burgeoning field of monocyte plasticity and heterogeneity.
Collapse
Affiliation(s)
- Ye Chean Teh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ming Yao Chooi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
9
|
Barone C, Orsenigo R, Cazzola A, D'Errico E, Patelli A, Quattrini G, Vergani B, Bombelli S, De Marco S, D'Orlando C, Bianchi C, Leone BE, Meneveri R, Biondi A, Cazzaniga G, Rabbitts TH, Brunelli S, Azzoni E. Hematopoietic Stem Cell (HSC)-Independent Progenitors Are Susceptible to Mll-Af9-Induced Leukemic Transformation. Cancers (Basel) 2023; 15:3624. [PMID: 37509285 PMCID: PMC10377085 DOI: 10.3390/cancers15143624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Infant acute myeloid leukemia (AML) is a heterogeneous disease, genetically distinct from its adult counterpart. Chromosomal translocations involving the KMT2A gene (MLL) are especially common in affected infants of less than 1 year of age, and are associated with a dismal prognosis. While these rearrangements are likely to arise in utero, the cell of origin has not been conclusively identified. This knowledge could lead to a better understanding of the biology of the disease and support the identification of new therapeutic vulnerabilities. Over the last few years, important progress in understanding the dynamics of fetal hematopoiesis has been made. Several reports have highlighted how hematopoietic stem cells (HSC) provide little contribution to fetal hematopoiesis, which is instead largely sustained by HSC-independent progenitors. Here, we used conditional Cre-Lox transgenic mouse models to engineer the Mll-Af9 translocation in defined subsets of embryonic hematopoietic progenitors. We show that embryonic hematopoiesis is generally permissive for Mll-Af9-induced leukemic transformation. Surprisingly, the selective introduction of Mll-Af9 in HSC-independent progenitors generated a transplantable myeloid leukemia, whereas it did not when introduced in embryonic HSC-derived cells. Ex vivo engineering of the Mll-Af9 rearrangement in HSC-independent progenitors using a CRISPR/Cas9-based approach resulted in the activation of an aberrant myeloid-biased self-renewal program. Overall, our results demonstrate that HSC-independent hematopoietic progenitors represent a permissive environment for Mll-Af9-induced leukemic transformation, and can likely act as cells of origin of infant AML.
Collapse
Affiliation(s)
- Cristiana Barone
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Orsenigo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Anna Cazzola
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elisabetta D'Errico
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Arianna Patelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giulia Quattrini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Barbara Vergani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Silvia Bombelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Sofia De Marco
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Cristina D'Orlando
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Biagio Eugenio Leone
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Centro Tettamanti, IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Terence Howard Rabbitts
- Division of Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
10
|
Ribatti D, d'Amati A. Hematopoiesis and Mast Cell Development. Int J Mol Sci 2023; 24:10679. [PMID: 37445862 DOI: 10.3390/ijms241310679] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are defined based on their capacity to replenish themselves (self-renewal) and give rise to all mature hematopoietic cell types (multi-lineage differentiation) over their lifetime. HSCs are mainly distributed in the bone marrow during adult life, harboring HSC populations and a hierarchy of different kinds of cells contributing to the "niche" that supports HSC regulation, myelopoiesis, and lymphopoiesis. In addition, HSC-like progenitors, innate immune cell precursors such as macrophages, mast cells, natural killer cells, innate lymphoid cells, and megakaryocytes and erythrocyte progenitor cells are connected by a series of complex ontogenic relationships. The first source of mast cells is the extraembryonic yolk sac, on embryonic day 7. Mast cell progenitors circulate and enter peripheral tissues where they complete their differentiation. Embryonic mast cell populations are gradually replaced by definitive stem cell-derived progenitor cells. Thereafter, mast cells originate from the bone marrow, developing from the hematopoietic stem cells via multipotent progenitors, common myeloid progenitors, and granulocyte/monocyte progenitors. In this review article, we summarize the knowledge on mast cell sources, particularly focusing on the complex and multifaceted mechanisms intervening between the hematopoietic process and the development of mast cells.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonio d'Amati
- Department of Translational Biomedicine and Neuroscience, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
11
|
Chia SL, Kapoor S, Carvalho C, Bajénoff M, Gentek R. Mast cell ontogeny: From fetal development to life-long health and disease. Immunol Rev 2023; 315:31-53. [PMID: 36752151 PMCID: PMC10952628 DOI: 10.1111/imr.13191] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mast cells (MCs) are evolutionarily ancient innate immune cells with important roles in protective immunity against bacteria, parasites, and venomous animals. They can be found in most organs of the body, where they also contribute to normal tissue functioning, for example by engaging in crosstalk with nerves. Despite this, they are most widely known for their detrimental roles in allergy, anaphylaxis, and atopic disease. Just like macrophages, mast cells were conventionally thought to originate from the bone marrow. However, they are already present in fetal tissues before the onset of bone marrow hematopoiesis, questioning this dogma. In recent years, our view of myeloid cell ontogeny has been revised. We now know that the first mast cells originate from progenitors made in the extra-embryonic yolk sac, and later get supplemented with mast cells produced from subsequent waves of hematopoiesis. In most connective tissues, sizeable populations of fetal-derived mast cells persist into adulthood, where they self-maintain largely independently from the bone marrow. These developmental origins are highly reminiscent of macrophages, which are known to have critical functions in development. Mast cells too may thus support healthy development. Their fetal origins and longevity also make mast cells susceptible to genetic and environmental perturbations, which may render them pathological. Here, we review our current understanding of mast cell biology from a developmental perspective. We first summarize how mast cell populations are established from distinct hematopoietic progenitor waves, and how they are subsequently maintained throughout life. We then discuss what functions mast cells may normally have at early life stages, and how they may be co-opted to cause, worsen, or increase susceptibility to disease.
Collapse
Affiliation(s)
- Shin Li Chia
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Simran Kapoor
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Cyril Carvalho
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille‐Luminy (CIML)MarseilleFrance
| | - Rebecca Gentek
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| |
Collapse
|
12
|
Molofsky AB, Locksley RM. The ins and outs of innate and adaptive type 2 immunity. Immunity 2023; 56:704-722. [PMID: 37044061 PMCID: PMC10120575 DOI: 10.1016/j.immuni.2023.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Type 2 immunity is orchestrated by a canonical group of cytokines primarily produced by innate lymphoid cells, group 2, and their adaptive counterparts, CD4+ helper type 2 cells, and elaborated by myeloid cells and antibodies that accumulate in response. Here, we review the cytokine and cellular circuits that mediate type 2 immunity. Building from insights in cytokine evolution, we propose that innate type 2 immunity evolved to monitor the status of microbe-rich epithelial barriers (outside) and sterile parenchymal borders (inside) to meet the functional demands of local tissue, and, when necessary, to relay information to the adaptive immune system to reinforce demarcating borders to sustain these efforts. Allergic pathology likely results from deviations in local sustaining units caused by alterations imposed by environmental effects during postnatal developmental windows and exacerbated by mutations that increase vulnerabilities. This framework positions T2 immunity as central to sustaining tissue repair and regeneration and provides a context toward understanding allergic disease.
Collapse
Affiliation(s)
- Ari B Molofsky
- Department of Lab Medicine, University of California, San Francisco, San Francisco, CA 94143-0451, USA
| | - Richard M Locksley
- Howard Hughes Medical Institute and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0795, USA.
| |
Collapse
|
13
|
Msallam R, Redegeld FA. Mast cells-fetal mast cells crosstalk with maternal interfaces during pregnancy: Friend or foe? Pediatr Allergy Immunol 2023; 34:e13943. [PMID: 37102389 DOI: 10.1111/pai.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 04/28/2023]
Abstract
Mast cells (MC) are hematopoietic immune cells that play a major role during allergic reactions in adults by releasing a myriad of vasoactive and inflammatory mediators. MC seed all vascularized tissues and are most prominent in organs with a barrier function such as skin, lungs, and intestines. These secreted molecules cause mild symptoms such as localized itchiness and sneezing to life-threatening symptoms (i.e., anaphylactic shock). Presently, despite the extensive research on Th2-mediated immune responses in allergic diseases in adults, we are still unable to determine the mechanisms of the role of MC in developing pediatric allergic (PA) disorders. In this review, we will summarize the most recent findings on the origin of MC and discuss the underappreciated contribution of MC in the sensitization phase to maternal antibodies during pregnancy in allergic reactions and other diseases such as infectious diseases. Then, we will lay out potential MC-dependent therapeutic strategies to be considered in future investigations to understand the remaining gaps in MC research for a better quality of life for these young patients.
Collapse
Affiliation(s)
- Rasha Msallam
- Next Gen of Immunology (NGIg) Consultancy, Dubai, UAE
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
Debnath M, Berk M. Is paternal immune activation just as important as maternal immune activation? Time to rethink the bi-parental immune priming of neurodevelopmental model of schizophrenia. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
van de Pavert SA. Layered origins of lymphoid tissue inducer cells. Immunol Rev 2023; 315:71-78. [PMID: 36705244 DOI: 10.1111/imr.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Innate Lymphoid Cell (ILC) family is a relatively recently described immune cell family involved in innate immune responses and tissue homeostasis. Lymphoid Tissue Inducer (LTi) cells are part of the type 3 (ILC3) family. The ILC3 family is the main ILC population within the embryo, in which the LTi cells are critically associated with embryonic lymph node formation. Recent studies have shown more insights in ILC origin and residency from local embryonic and tissue resident precursors. Embryonic LTi cells originating from a different hemogenic endothelial source were shown to be replaced by HSC derived progenitors in adult. This review will discuss the layered origin of the ILC3 family with an emphasis on the LTi cell lineage.
Collapse
Affiliation(s)
- Serge A van de Pavert
- Aix-Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
16
|
Sanchez Sanchez G, Tafesse Y, Papadopoulou M, Vermijlen D. Surfing on the waves of the human γδ T cell ontogenic sea. Immunol Rev 2023; 315:89-107. [PMID: 36625367 DOI: 10.1111/imr.13184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
While γδ T cells are present virtually in all vertebrates, there is a remarkable lack of conservation of the TRG and TRD loci underlying the generation of the γδ T cell receptor (TCR), which is associated with the generation of species-specific γδ T cells. A prominent example is the human phosphoantigen-reactive Vγ9Vδ2 T cell subset that is absent in mice. Murine γδ thymocyte cells were among the first immune cells identified to follow a wave-based layered development during embryonic and early life, and since this initial observation, in-depth insight has been obtained in their thymic ontogeny. By contrast, less is known about the development of human γδ T cells, especially regarding the generation of γδ thymocyte waves. Here, after providing an overview of thymic γδ wave generation in several vertebrate classes, we review the evidence for γδ waves in the human fetal thymus, where single-cell technologies have allowed the breakdown of human γδ thymocytes into functional waves with important TCR associations. Finally, we discuss the possible mechanisms contributing to the generation of waves of γδ thymocytes and their possible significance in the periphery.
Collapse
Affiliation(s)
- Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Yohannes Tafesse
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
17
|
Mast Cells and Interleukins. Int J Mol Sci 2022; 23:ijms232214004. [PMID: 36430483 PMCID: PMC9697830 DOI: 10.3390/ijms232214004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Mast cells play a critical role in inflammatory diseases and tumor growth. The versatility of mast cells is reflected in their ability to secrete a wide range of biologically active cytokines, including interleukins, chemokines, lipid mediators, proteases, and biogenic amines. The aim of this review article is to analyze the complex involvement of mast cells in the secretion of interleukins and the role of interleukins in the regulation of biological activities of mast cells.
Collapse
|
18
|
Shook LL, Fourman LT, Edlow AG. Immune Responses to SARS-CoV-2 in Pregnancy: Implications for the Health of the Next Generation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1465-1473. [PMID: 36192115 PMCID: PMC9536183 DOI: 10.4049/jimmunol.2200414] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Abstract
Widespread SARS-CoV-2 infection among pregnant individuals has led to a generation of fetuses exposed in utero, but the long-term impact of such exposure remains unknown. Although fetal infection is rare, children born to mothers with SARS-CoV-2 infection may be at increased risk for adverse neurodevelopmental and cardiometabolic outcomes. Fetal programming effects are likely to be mediated at least in part by maternal immune activation. In this review, we discuss recent evidence regarding the effects of prenatal SARS-CoV-2 infection on the maternal, placental, and fetal immune response, as well as the implications for the long-term health of offspring. Extrapolating from what is known about the impact of maternal immune activation in other contexts (e.g., obesity, HIV, influenza), we review the potential for neurodevelopmental and cardiometabolic morbidity in offspring. Based on available data suggesting potential increased neurodevelopmental risk, we highlight the importance of establishing large cohorts to monitor offspring born to SARS-CoV-2-positive mothers for neurodevelopmental and cardiometabolic sequelae.
Collapse
Affiliation(s)
- Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA; and
| | - Lindsay T Fourman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA;
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA; and
| |
Collapse
|
19
|
Ma S, Zhang J, Liu H, Li S, Wang Q. The Role of Tissue-Resident Macrophages in the Development and Treatment of Inflammatory Bowel Disease. Front Cell Dev Biol 2022; 10:896591. [PMID: 35721513 PMCID: PMC9199005 DOI: 10.3389/fcell.2022.896591] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn’s disease and ulcerative colitis, is a refractory disease with many immune abnormalities and pathologies in the gastrointestinal tract. Because macrophages can distinguish innocuous antigens from potential pathogens to maintain mucosa barrier functions, they are essential cells in the intestinal immune system. With numerous numbers in the intestinal tract, tissue-resident macrophages have a significant effect on the constant regeneration of intestinal epithelial cells and maintaining the immune homeostasis of the intestinal mucosa. They also have a significant influence on IBD through regulating pro-(M1) or anti-inflammatory (M2) phenotype polarization according to different environmental cues. The disequilibrium of the phenotypes and functions of macrophages, disturbed by intracellular or extracellular stimuli, influences the progression of disease. Further investigation of macrophages’ role in the progression of IBD will facilitate deciphering the pathogenesis of disease and exploring novel targets to develop novel medications. In this review, we shed light on the origin and maintenance of intestinal macrophages, as well as the role of macrophages in the occurrence and development of IBD. In addition, we summarize the interaction between gut microbiota and intestinal macrophages, and the role of the macrophage-derived exosome. Furthermore, we discuss the molecular and cellular mechanisms participating in the polarization and functions of gut macrophages, the potential targeted strategies, and current clinical trials for IBD.
Collapse
Affiliation(s)
- Shengjie Ma
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Jiaxin Zhang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Heshi Liu
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Shuang Li
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Quan Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| |
Collapse
|
20
|
Lampiasi N. Interactions between Macrophages and Mast Cells in the Female Reproductive System. Int J Mol Sci 2022; 23:ijms23105414. [PMID: 35628223 PMCID: PMC9142086 DOI: 10.3390/ijms23105414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) and macrophages (Mϕs) are innate immune cells that differentiate from early common myeloid precursors and reside in all body tissues. MCs have a unique capacity to neutralize/degrade toxic proteins, and they are hypothesized as being able to adopt two alternative polarization profiles, similar to Mϕs, with distinct or even opposite roles. Mϕs are very plastic phagocytic cells that are devoted to the elimination of senescent/anomalous endogenous entities (to maintain tissue homeostasis), and to the recognition and elimination of exogenous threats. They can adopt several functional phenotypes in response to microenvironmental cues, whose extreme profiles are the inflammatory/killing phenotype (M1) and the anti-inflammatory/healing phenotype (M2). The concomitant and abundant presence of these two cell types and the partial overlap of their defensive and homeostatic functions leads to the hypothesis that their crosstalk is necessary for the optimal coordination of their functions, both under physiological and pathological conditions. This review will examine the relationship between MCs and Mϕs in some situations of homeostatic regulation (menstrual cycle, embryo implantation), and in some inflammatory conditions in the same organs (endometriosis, preeclampsia), in order to appreciate the importance of their cross-regulation.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
21
|
Kappen C, Kruger C, Jones S, Salbaum JM. Nutrient Transporter Gene Expression in the Early Conceptus-Implications From Two Mouse Models of Diabetic Pregnancy. Front Cell Dev Biol 2022; 10:777844. [PMID: 35478964 PMCID: PMC9035823 DOI: 10.3389/fcell.2022.777844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Maternal diabetes in early pregnancy increases the risk for birth defects in the offspring, particularly heart, and neural tube defects. While elevated glucose levels are characteristic for diabetic pregnancies, these are also accompanied by hyperlipidemia, indicating altered nutrient availability. We therefore investigated whether changes in the expression of nutrient transporters at the conception site or in the early post-implantation embryo could account for increased birth defect incidence at later developmental stages. Focusing on glucose and fatty acid transporters, we measured their expression by RT-PCR in the spontaneously diabetic non-obese mouse strain NOD, and in pregnant FVB/N mouse strain dams with Streptozotocin-induced diabetes. Sites of expression in the deciduum, extra-embryonic, and embryonic tissues were determined by RNAscope in situ hybridization. While maternal diabetes had no apparent effects on levels or cellular profiles of expression, we detected striking cell-type specificity of particular nutrient transporters. For examples, Slc2a2/Glut2 expression was restricted to the endodermal cells of the visceral yolk sac, while Slc2a1/Glut1 expression was limited to the mesodermal compartment; Slc27a4/Fatp4 and Slc27a3/Fatp3 also exhibited reciprocally exclusive expression in the endodermal and mesodermal compartments of the yolk sac, respectively. These findings not only highlight the significance of nutrient transporters in the intrauterine environment, but also raise important implications for the etiology of birth defects in diabetic pregnancies, and for strategies aimed at reducing birth defects risk by nutrient supplementation.
Collapse
Affiliation(s)
- Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Claudia Kruger
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Sydney Jones
- Regulation of Gene Expression, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - J. Michael Salbaum
- Regulation of Gene Expression, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| |
Collapse
|
22
|
Watt SM, Hua P, Roberts I. Increasing Complexity of Molecular Landscapes in Human Hematopoietic Stem and Progenitor Cells during Development and Aging. Int J Mol Sci 2022; 23:3675. [PMID: 35409034 PMCID: PMC8999121 DOI: 10.3390/ijms23073675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
The past five decades have seen significant progress in our understanding of human hematopoiesis. This has in part been due to the unprecedented development of advanced technologies, which have allowed the identification and characterization of rare subsets of human hematopoietic stem and progenitor cells and their lineage trajectories from embryonic through to adult life. Additionally, surrogate in vitro and in vivo models, although not fully recapitulating human hematopoiesis, have spurred on these scientific advances. These approaches have heightened our knowledge of hematological disorders and diseases and have led to their improved diagnosis and therapies. Here, we review human hematopoiesis at each end of the age spectrum, during embryonic and fetal development and on aging, providing exemplars of recent progress in deciphering the increasingly complex cellular and molecular hematopoietic landscapes in health and disease. This review concludes by highlighting links between chronic inflammation and metabolic and epigenetic changes associated with aging and in the development of clonal hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Peng Hua
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, and NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
23
|
Bell RMB, Conway BR. Macrophages in the kidney in health, injury and repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:101-147. [PMID: 35461656 DOI: 10.1016/bs.ircmb.2022.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Macrophages are a key component of the renal mononuclear phagocyte system, playing a major role in defense against infection, renal injury and repair. Yolk sac macrophage precursors seed the early embryonic kidney and are important for renal development. Later, renal macrophages are derived from hematopoietic stem cells and in adult life, there is a significant contribution from circulating monocytes, which is enhanced in response to infection or injury. Macrophages are highly plastic and can alter their phenotype in response to cues from parenchymal renal cells. Danger-associated molecules released from injured kidney cells may activate macrophages toward a pro-inflammatory phenotype, mediating further recruitment of inflammatory cells, exacerbating renal injury and activating renal fibroblasts to promote scarring. In acute kidney injury, once the injury stimulus has abated, macrophages may adopt a more reparative phenotype, dampening the immune response and promoting repair of renal tissue. However, in chronic kidney disease ongoing activation of pro-inflammatory monocytes and persistence of reparative macrophages leads to glomerulosclerosis and tubulointerstitial fibrosis, the hallmarks of end-stage kidney disease. Several strategies to inhibit the recruitment, activation and secretory products of pro-inflammatory macrophages have proven beneficial in pre-clinical models and are now undergoing clinical trials in patients with kidney disease. In addition, macrophages may be utilized in cell therapy as a "Trojan Horse" to deliver targeted therapies to the kidney. Single-cell RNA sequencing has identified a previously unappreciated spectrum of macrophage phenotypes, which may be selectively present in injury or repair, and ongoing functional analyses of these subsets may identify more specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel M B Bell
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Bryan R Conway
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
24
|
Suzuki M, Kohmura-Kobayashi Y, Ueda M, Furuta-Isomura N, Matsumoto M, Oda T, Kawai K, Itoh T, Matsuya M, Narumi M, Tamura N, Uchida T, Mochizuki K, Itoh H. Comparative Analysis of Gene Expression Profiles in the Adipose Tissue of Obese Adult Mice With Rapid Infantile Growth After Undernourishment In Utero. Front Endocrinol (Lausanne) 2022; 13:818064. [PMID: 35295992 PMCID: PMC8920555 DOI: 10.3389/fendo.2022.818064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Rapid infantile growth (RG) markedly increases the risk of obesity and metabolic disorders in adulthood, particularly among neonates born small. To elucidate the molecular mechanisms by which RG following undernourishment in utero (UN) contributes to the deterioration of adult fat deposition, we developed a UN mouse model using maternal energy restriction, followed by RG achieved by adjustments to 4 pups per litter soon after birth. A high-fat diet (HFD) was fed to weaned pups treated or not (Veh) with tauroursodeoxycholic acid (TU). UN-RG pups showed the deterioration of diet-induced obesity and fat deposition, which was ameliorated by TU. We performed a microarray analysis of epididymal adipose tissue and two gene enrichment analyses (NN-Veh vs UN-RD-Veh and UN-RG-Veh vs UN-RG-TU). The results obtained identified 4 common gene ontologies (GO) terms of inflammatory pathways. In addition to the inflammatory characteristics of 4 GO terms, the results of heatmap and principal component analyses of the representative genes from 4 GO terms, genes of interest (GOI; Saa3, Ubd, S100a8, Hpx, Casp1, Agt, Ptgs2) selected from the 4 GO terms, and immunohistochemistry of macrophages collectively suggested the critical involvement of inflammation in the regulation of fat deposition in the responses to UN and TU. Therefore, the present results support the 'Developmental Origins of Metaflammation', the last word of which was recently proposed by the concept of metabolic disorders induced by low-grade systemic inflammation.
Collapse
Affiliation(s)
- Misako Suzuki
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yukiko Kohmura-Kobayashi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- *Correspondence: Yukiko Kohmura-Kobayashi,
| | - Megumi Ueda
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naomi Furuta-Isomura
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masako Matsumoto
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Oda
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenta Kawai
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiya Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Madoka Matsuya
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Megumi Narumi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoaki Tamura
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiyuki Uchida
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Mochizuki
- Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
25
|
Feyaerts D, Urbschat C, Gaudillière B, Stelzer IA. Establishment of tissue-resident immune populations in the fetus. Semin Immunopathol 2022; 44:747-766. [PMID: 35508672 PMCID: PMC9067556 DOI: 10.1007/s00281-022-00931-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
The immune system establishes during the prenatal period from distinct waves of stem and progenitor cells and continuously adapts to the needs and challenges of early postnatal and adult life. Fetal immune development not only lays the foundation for postnatal immunity but establishes functional populations of tissue-resident immune cells that are instrumental for fetal immune responses amidst organ growth and maturation. This review aims to discuss current knowledge about the development and function of tissue-resident immune populations during fetal life, focusing on the brain, lung, and gastrointestinal tract as sites with distinct developmental trajectories. While recent progress using system-level approaches has shed light on the fetal immune landscape, further work is required to describe precise roles of prenatal immune populations and their migration and adaptation to respective organ environments. Defining points of prenatal susceptibility to environmental challenges will support the search for potential therapeutic targets to positively impact postnatal health.
Collapse
Affiliation(s)
- Dorien Feyaerts
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA
| | - Christopher Urbschat
- grid.13648.380000 0001 2180 3484Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Brice Gaudillière
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA ,grid.168010.e0000000419368956Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA USA
| | - Ina A. Stelzer
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA
| |
Collapse
|
26
|
Itoh H, Ueda M, Suzuki M, Kohmura-Kobayashi Y. Developmental Origins of Metaflammation; A Bridge to the Future Between the DOHaD Theory and Evolutionary Biology. Front Endocrinol (Lausanne) 2022; 13:839436. [PMID: 35185805 PMCID: PMC8850935 DOI: 10.3389/fendo.2022.839436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome refers to obesity-associated metabolic disorders that increase the risk of type 2 diabetes, coronary diseases, stroke, and other disabilities. Environmental imbalance during the early developmental period affects health and increases susceptibility to non-communicable diseases, including metabolic syndrome, in later life; therefore, the Developmental Origins of Health and Disease (DOHaD) theory was established. According to the DOHaD theory, the hypothesis of the energy-saving 'Thrifty Phenotype' in undernourished fetuses is one of the well-accepted schemes as a risk of developing metabolic syndrome. This phenotype is evolutionarily advantageous for survival of the fittest in a hangry environment after birth, a strong selection pressure, but increases the risk of developing metabolic syndrome under an obesogenic diet according to the 'Mismatch' hypothesis. Increasing evidences support that chronic inflammation pathophysiologically connects obesity to metabolic disorders in metabolic syndrome, leading to the concept of 'Metaflammation'. 'Metaflammation' in humans is proposed to originate from the evolutionary conservation of crosstalk between immune and metabolic pathways; however, few studies have investigated the contribution of evolutionary maladaptation to the pathophysiology of 'Metaflammation'. Therefore, it is promising to investigate 'Metaflammation' from the viewpoint of selective advantages and its 'Mismatch' to an unexpected environment in contemporary lifestyles, in consideration of the principal concept of evolutionarily conserved nutrient sensing and immune signaling systems.
Collapse
|
27
|
Haubruck P, Pinto MM, Moradi B, Little CB, Gentek R. Monocytes, Macrophages, and Their Potential Niches in Synovial Joints - Therapeutic Targets in Post-Traumatic Osteoarthritis? Front Immunol 2021; 12:763702. [PMID: 34804052 PMCID: PMC8600114 DOI: 10.3389/fimmu.2021.763702] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Synovial joints are complex structures that enable normal locomotion. Following injury, they undergo a series of changes, including a prevalent inflammatory response. This increases the risk for development of osteoarthritis (OA), the most common joint disorder. In healthy joints, macrophages are the predominant immune cells. They regulate bone turnover, constantly scavenge debris from the joint cavity and, together with synovial fibroblasts, form a protective barrier. Macrophages thus work in concert with the non-hematopoietic stroma. In turn, the stroma provides a scaffold as well as molecular signals for macrophage survival and functional imprinting: “a macrophage niche”. These intricate cellular interactions are susceptible to perturbations like those induced by joint injury. With this review, we explore how the concepts of local tissue niches apply to synovial joints. We introduce the joint micro-anatomy and cellular players, and discuss their potential interactions in healthy joints, with an emphasis on molecular cues underlying their crosstalk and relevance to joint functionality. We then consider how these interactions are perturbed by joint injury and how they may contribute to OA pathogenesis. We conclude by discussing how understanding these changes might help identify novel therapeutic avenues with the potential of restoring joint function and reducing post-traumatic OA risk.
Collapse
Affiliation(s)
- Patrick Haubruck
- Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Marlene Magalhaes Pinto
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Babak Moradi
- Clinic of Orthopaedics and Trauma Surgery, University Clinic of Schleswig-Holstein, Kiel, Germany
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|