1
|
Gao J, Shen F. Evanescent Electron Wave-Spin. ENTROPY (BASEL, SWITZERLAND) 2024; 26:789. [PMID: 39330122 PMCID: PMC11431618 DOI: 10.3390/e26090789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
This study demonstrates the existence of an evanescent electron wave outside both finite and infinite quantum wells by solving the Dirac equation and ensuring the continuity of the spinor wavefunction at the boundaries. We show that this evanescent wave shares the spin characteristics of the wave confined within the well, as indicated by analytical expressions for the current density across all regions. Our findings suggest that the electron cannot be confined to a mathematical singularity and that quantum information, or quantum entropy, can leak through any quantum confinement. These results emphasize that the electron wave, fully characterized by Lorentz-invariant charge and current densities, should be considered the true and sole entity of the electron.
Collapse
Affiliation(s)
- Ju Gao
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - Fang Shen
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Hariri AA, Cartwright AP, Dory C, Gidi Y, Yee S, Thompson IAP, Fu KX, Yang K, Wu D, Maganzini N, Feagin T, Young BE, Afshar BH, Eisenstein M, Digonnet MJF, Vuckovic J, Soh HT. Modular Aptamer Switches for the Continuous Optical Detection of Small-Molecule Analytes in Complex Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304410. [PMID: 37975267 DOI: 10.1002/adma.202304410] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Aptamers are a promising class of affinity reagents because signal transduction mechanisms can be built into the reagent, so that they can directly produce a physically measurable output signal upon target binding. However, endowing the signal transduction functionality into an aptamer remains a trial-and-error process that can compromise its affinity or specificity and typically requires knowledge of the ligand binding domain or its structure. In this work, a design architecture that can convert an existing aptamer into a "reversible aptamer switch" whose kinetic and thermodynamic properties can be tuned without a priori knowledge of the ligand binding domain or its structure is described. Finally, by combining these aptamer switches with evanescent-field-based optical detection hardware that minimizes sample autofluorescence, this study demonstrates the first optical biosensor system that can continuously measure multiple biomarkers (dopamine and cortisol) in complex samples (artificial cerebrospinal fluid and undiluted plasma) with second and subsecond-scale time responses at physiologically relevant concentration ranges.
Collapse
Affiliation(s)
- Amani A Hariri
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Alyssa P Cartwright
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Constantin Dory
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yasser Gidi
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Steven Yee
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ian A P Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Kaiyu X Fu
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Kiyoul Yang
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Diana Wu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Nicolò Maganzini
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Trevor Feagin
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Brian E Young
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Behrad Habib Afshar
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Michel J F Digonnet
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jelena Vuckovic
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
3
|
Faiyazuddin M, Sophia A, Ashique S, Gholap AD, Gowri S, Mohanto S, Karthikeyan C, Nag S, Hussain A, Akhtar MS, Bakht MA, Ahmed MG, Rustagi S, Rodriguez-Morales AJ, Salas-Matta LA, Mohanty A, Bonilla-Aldana DK, Sah R. Virulence traits and novel drug delivery strategies for mucormycosis post-COVID-19: a comprehensive review. Front Immunol 2023; 14:1264502. [PMID: 37818370 PMCID: PMC10561264 DOI: 10.3389/fimmu.2023.1264502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
The outbreak of a fatal black fungus infection after the resurgence of the cadaverous COVID-19 has exhorted scientists worldwide to develop a nutshell by repurposing or designing new formulations to address the crisis. Patients expressing COVID-19 are more susceptible to Mucormycosis (MCR) and thus fall easy prey to decease accounting for this global threat. Their mortality rates range around 32-70% depending on the organs affected and grow even higher despite the treatment. The many contemporary recommendations strongly advise using liposomal amphotericin B and surgery as first-line therapy whenever practicable. MCR is a dangerous infection that requires an antifungal drug administration on appropriate prescription, typically one of the following: Amphotericin B, Posaconazole, or Isavuconazole since the fungi that cause MCR are resistant to other medications like fluconazole, voriconazole, and echinocandins. Amphotericin B and Posaconazole are administered through veins (intravenously), and isavuconazole by mouth (orally). From last several years so many compounds are developed against invasive fungal disease but only few of them are able to induce effective treatment against the micorals. Adjuvant medicines, more particularly, are difficult to assess without prospective randomized controlled investigations, which are challenging to conduct given the lower incidence and higher mortality from Mucormycosis. The present analysis provides insight into pathogenesis, epidemiology, clinical manifestations, underlying fungal virulence, and growth mechanisms. In addition, current therapy for MCR in Post Covid-19 individuals includes conventional and novel nano-based advanced management systems for procuring against deadly fungal infection. The study urges involving nanomedicine to prevent fungal growth at the commencement of infection, delay the progression, and mitigate fatality risk.
Collapse
Affiliation(s)
- Md. Faiyazuddin
- School of Pharmacy, Al – Karim University, Katihar, Bihar, India
- Nano Drug Delivery®, Raleigh-Durham, NC, United States
| | - A. Sophia
- PG & Research Department of Physics, Cauvery College for Women (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal, India
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - S. Gowri
- PG & Research Department of Physics, Cauvery College for Women (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - C. Karthikeyan
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Tamil Nadu, India
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Md. Afroz Bakht
- Chemistry Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Alfonso J. Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas—Institución Universitaria Visión de las Américas, Pereira, Colombia
- Faculties of Health Sciences and Environmental Sciences, Universidad Científica del Sur, Lima, Peru
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Luis Andres Salas-Matta
- Faculties of Health Sciences and Environmental Sciences, Universidad Científica del Sur, Lima, Peru
| | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur, India
| | | | - Ranjit Sah
- Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- Department of Clinical Microbiology, DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, Maharashtra, India
- Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, India
| |
Collapse
|
4
|
Ren M, Ji C, Tang X, Tian H, Jiang L, Dai X, Wu X, Xiang Y. Sensitivity-Tunable Terahertz Liquid/Gas Biosensor Based on Surface Plasmon Resonance with Dirac Semimetal. SENSORS (BASEL, SWITZERLAND) 2023; 23:5520. [PMID: 37420684 DOI: 10.3390/s23125520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
In this paper, we study the sensitivity-tunable terahertz (THz) liquid/gas biosensor in a coupling prism-three-dimensional Dirac semimetal (3D DSM) multilayer structure. The high sensitivity of the biosensor originates from the sharp reflected peak caused by surface plasmon resonance (SPR) mode. This structure achieves the tunability of sensitivity due to the fact that the reflectance could be modulated by the Fermi energy of 3D DSM. Besides, it is found that the sensitivity curve depends heavily on the structural parameters of 3D DSM. After parameter optimization, we obtained sensitivity over 100°/RIU for liquid biosensor. We believe this simple structure provides a reference idea for realizing high sensitivity and a tunable biosensor device.
Collapse
Affiliation(s)
- Mengjiao Ren
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Chengpeng Ji
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xueyan Tang
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Haishan Tian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Leyong Jiang
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xiaoyu Dai
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xinghua Wu
- Key Laboratory for Microstructural Functional Materials of Jiangxi Province, College of Science, Jiujiang University, Jiujiang 332005, China
| | - Yuanjiang Xiang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Wang Z, Lou X. Recent Progress in Functional-Nucleic-Acid-Based Fluorescent Fiber-Optic Evanescent Wave Biosensors. BIOSENSORS 2023; 13:bios13040425. [PMID: 37185500 PMCID: PMC10135899 DOI: 10.3390/bios13040425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/17/2023]
Abstract
Biosensors capable of onsite and continuous detection of environmental and food pollutants and biomarkers are highly desired, but only a few sensing platforms meet the "2-SAR" requirements (sensitivity, specificity, affordability, automation, rapidity, and reusability). A fiber optic evanescent wave (FOEW) sensor is an attractive type of portable device that has the advantages of high sensitivity, low cost, good reusability, and long-term stability. By utilizing functional nucleic acids (FNAs) such as aptamers, DNAzymes, and rational designed nucleic acid probes as specific recognition ligands, the FOEW sensor has been demonstrated to be a general sensing platform for the onsite and continuous detection of various targets ranging from small molecules and heavy metal ions to proteins, nucleic acids, and pathogens. In this review, we cover the progress of the fluorescent FNA-based FOEW biosensor since its first report in 1995. We focus on the chemical modification of the optical fiber and the sensing mechanisms for the five above-mentioned types of targets. The challenges and prospects on the isolation of high-quality aptamers, reagent-free detection, long-term stability under application conditions, and high throughput are also included in this review to highlight the future trends for the development of FOEW biosensors capable of onsite and continuous detection.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| |
Collapse
|
6
|
Safari M, Moghaddam A, Salehi Moghaddam A, Absalan M, Kruppke B, Ruckdäschel H, Khonakdar HA. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta 2023; 258:124399. [PMID: 36870153 DOI: 10.1016/j.talanta.2023.124399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
According to the latest report by International Agency for Research on Cancer, 19.3 million new cancer cases and 10 million cancer deaths were globally reported in 2020. Early diagnosis can reduce these numbers significantly, and biosensors have appeared to be a solution to this problem as, unlike the traditional methods, they have low cost, rapid process, and do not need experts present on site for use. These devices have been incorporated to detect many cancer biomarkers and measure cancer drug delivery. To design these biosensors, a researcher must know about their different types, properties of nanomaterials, and cancer biomarkers. Among all types of biosensors, electrochemical and optical biosensors are the most sensitive and promising sensors for detecting complicated diseases like cancer. The carbon-based nanomaterial family has attracted lots of attention due to their low cost, easy preparation, biocompatibility, and significant electrochemical and optical properties. In this review, we have discussed the application of graphene and its derivatives, carbon nanotubes (CNTs), carbon dots (CDs), and fullerene (C60), for designing different electrochemical and optical cancer-detecting biosensors. Furthermore, the application of these carbon-based biosensors for detecting seven widely studied cancer biomarkers (HER2, CEA, CA125, VEGF, PSA, Alpha-fetoprotein, and miRNA21) is reviewed. Finally, various fabricated carbon-based biosensors for detecting cancer biomarkers and anticancer drugs are comprehensively summarized as well.
Collapse
Affiliation(s)
- Mohammad Safari
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Holger Ruckdäschel
- Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute, Tehran, Iran; Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
7
|
Zhou H, Kneipp J. Potential Regulation for Surface-Enhanced Raman Scattering Detection and Identification of Carotenoids. Anal Chem 2023; 95:3363-3370. [PMID: 36729376 DOI: 10.1021/acs.analchem.2c04658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is often impaired by the limited affinity of molecules to plasmonic substrates. Here, we use carbon fiber microelectrodes modified with silver nanoparticles as a plasmonic microsubstrate with tunable affinity for enrichment and molecular identification by SERS. The silver nanoparticles self-assemble by electrostatic interaction with diamine molecules that are electrochemically grafted onto the surface of the microelectrodes. β-carotene and trans-β-Apo-8'-carotenal, producing similar resonant SERS spectra, are employed as model molecules to study the effect of electroenrichment and SERS screening for different electrode potentials. The data show that at a characteristic electrode potential, the low affinity of polyene chains without hydrophilic groups to the substrate can be overcome. Different potentials were applied to recognize the two types of carotenoids by their typical SERS signal, and the applicability of this strategy was further confirmed in the environment of a real cell culture. The results indicate that by regulating the potential, carotenoid molecules with a similar molecular structure can be selectively quantified and identified by SERS. The developed SERS-active microelectrode is expected to help the development of portable, miniaturized point-of-care diagnostic SERS sensors.
Collapse
Affiliation(s)
- Haifeng Zhou
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
8
|
Patel SK, Surve J, Parmar J, Ahmed K, Bui FM, Al-Zahrani FA. Recent Advances in Biosensors for Detection of COVID-19 and Other Viruses. IEEE Rev Biomed Eng 2023; 16:22-37. [PMID: 36197867 PMCID: PMC10009816 DOI: 10.1109/rbme.2022.3212038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
This century has introduced very deadly, dangerous, and infectious diseases to humankind such as the influenza virus, Ebola virus, Zika virus, and the most infectious SARS-CoV-2 commonly known as COVID-19 and have caused epidemics and pandemics across the globe. For some of these diseases, proper medications, and vaccinations are missing and the early detection of these viruses will be critical to saving the patients. And even the vaccines are available for COVID-19, the new variants of COVID-19 such as Delta, and Omicron are spreading at large. The available virus detection techniques take a long time, are costly, and complex and some of them generates false negative or false positive that might cost patients their lives. The biosensor technique is one of the best qualified to address this difficult challenge. In this systematic review, we have summarized recent advancements in biosensor-based detection of these pandemic viruses including COVID-19. Biosensors are emerging as efficient and economical analytical diagnostic instruments for early-stage illness detection. They are highly suitable for applications related to healthcare, wearable electronics, safety, environment, military, and agriculture. We strongly believe that these insights will aid in the study and development of a new generation of adaptable virus biosensors for fellow researchers.
Collapse
Affiliation(s)
- Shobhit K. Patel
- Department of Computer EngineeringMarwadi UniversityRajkot360003India
| | - Jaymit Surve
- Department of Electrical EngineeringMarwadi UniversityRajkot360003India
| | - Juveriya Parmar
- Department of Mechanical and Materials EngineeringUniversity of Nebraska - LincolnNebraska68588USA
- Department of Electronics and Communication EngineeringMarwadi UniversityRajkot360003India
| | - Kawsar Ahmed
- Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonSKS79 5A9Canada
- Group of Bio-PhotomatiX, Department of Information and Communication TechnologyMawlana Bhashani Science and Technology UniversitySantoshTangail1902Bangladesh
| | - Francis M. Bui
- Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonSKS79 5A9Canada
| | | |
Collapse
|
9
|
Puumala LS, Grist SM, Morales JM, Bickford JR, Chrostowski L, Shekhar S, Cheung KC. Biofunctionalization of Multiplexed Silicon Photonic Biosensors. BIOSENSORS 2022; 13:53. [PMID: 36671887 PMCID: PMC9855810 DOI: 10.3390/bios13010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
Silicon photonic (SiP) sensors offer a promising platform for robust and low-cost decentralized diagnostics due to their high scalability, low limit of detection, and ability to integrate multiple sensors for multiplexed analyte detection. Their CMOS-compatible fabrication enables chip-scale miniaturization, high scalability, and low-cost mass production. Sensitive, specific detection with silicon photonic sensors is afforded through biofunctionalization of the sensor surface; consequently, this functionalization chemistry is inextricably linked to sensor performance. In this review, we first highlight the biofunctionalization needs for SiP biosensors, including sensitivity, specificity, cost, shelf-stability, and replicability and establish a set of performance criteria. We then benchmark biofunctionalization strategies for SiP biosensors against these criteria, organizing the review around three key aspects: bioreceptor selection, immobilization strategies, and patterning techniques. First, we evaluate bioreceptors, including antibodies, aptamers, nucleic acid probes, molecularly imprinted polymers, peptides, glycans, and lectins. We then compare adsorption, bioaffinity, and covalent chemistries for immobilizing bioreceptors on SiP surfaces. Finally, we compare biopatterning techniques for spatially controlling and multiplexing the biofunctionalization of SiP sensors, including microcontact printing, pin- and pipette-based spotting, microfluidic patterning in channels, inkjet printing, and microfluidic probes.
Collapse
Affiliation(s)
- Lauren S. Puumala
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Samantha M. Grist
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
| | - Jennifer M. Morales
- Army Research Laboratory, US Army Combat Capabilities Development Command, 2800 Powder Mill Rd., Adelphi, MD 20783, USA
| | - Justin R. Bickford
- Army Research Laboratory, US Army Combat Capabilities Development Command, 2800 Powder Mill Rd., Adelphi, MD 20783, USA
| | - Lukas Chrostowski
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sudip Shekhar
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
10
|
Al-Hindi RR, Teklemariam AD, Alharbi MG, Alotibi I, Azhari SA, Qadri I, Alamri T, Harakeh S, Applegate BM, Bhunia AK. Bacteriophage-Based Biosensors: A Platform for Detection of Foodborne Bacterial Pathogens from Food and Environment. BIOSENSORS 2022; 12:bios12100905. [PMID: 36291042 PMCID: PMC9599427 DOI: 10.3390/bios12100905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
Foodborne microorganisms are an important cause of human illness worldwide. Two-thirds of human foodborne diseases are caused by bacterial pathogens throughout the globe, especially in developing nations. Despite enormous developments in conventional foodborne pathogen detection methods, progress is limited by the assay complexity and a prolonged time-to-result. The specificity and sensitivity of assays for live pathogen detection may also depend on the nature of the samples being analyzed and the immunological or molecular reagents used. Bacteriophage-based biosensors offer several benefits, including specificity to their host organism, the detection of only live pathogens, and resistance to extreme environmental factors such as organic solvents, high temperatures, and a wide pH range. Phage-based biosensors are receiving increasing attention owing to their high degree of accuracy, specificity, and reduced assay times. These characteristics, coupled with their abundant supply, make phages a novel bio-recognition molecule in assay development, including biosensors for the detection of foodborne bacterial pathogens to ensure food safety. This review provides comprehensive information about the different types of phage-based biosensor platforms, such as magnetoelastic sensors, quartz crystal microbalance, and electrochemical and surface plasmon resonance for the detection of several foodborne bacterial pathogens from various representative food matrices and environmental samples.
Collapse
Affiliation(s)
- Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Addisu D. Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sheren A. Azhari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bruce M. Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Calvo-Lozano O, García-Aparicio P, Raduly LZ, Estévez MC, Berindan-Neagoe I, Ferracin M, Lechuga LM. One-Step and Real-Time Detection of microRNA-21 in Human Samples for Lung Cancer Biosensing Diagnosis. Anal Chem 2022; 94:14659-14665. [PMID: 36219565 PMCID: PMC9607850 DOI: 10.1021/acs.analchem.2c02895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The rapid diagnosis
of cancer, especially in its early
stages,
is crucial for on-time medical treatment and for increasing the patient
survival rate. Lung cancer shows the highest mortality rate and the
lowest 5-year survival rate due to the late diagnosis in advanced
cancer stages. Providing rapid and reliable diagnostic tools is a
top priority to address the problem of a delayed cancer diagnosis.
We introduce a nanophotonic biosensor for the direct and real-time
detection in human plasma of the microRNA-21-5p biomarker related
to lung cancer. The biosensor employs a silicon photonic bimodal interferometric
waveguide that provides a highly sensitive detection in a label-free
format. We demonstrate a very competitive detectability for direct
microRNA-21-5p biomarker assays in human plasma samples (estimated
LOD: 25 pM). The diagnostic capability of our biosensor was validated
by analyzing 40 clinical samples from healthy individuals and lung
cancer patients, previously analyzed by reverse-transcription quantitative
polymerase chain reaction (qRT-PCR). We could successfully identify
and quantify the levels of microRNA in a one-step assay, without the
need for DNA extraction or amplification steps. The study confirmed
the significance of implementing this biosensor technique compared
to the benchmarking molecular analysis and showed excellent agreement
with previous results employing the traditional qRT-PCR. This work
opens new possibilities for the true implementation of point-of-care
biosensors that enable fast, simple, and efficient early diagnosis
of cancer diseases.
Collapse
Affiliation(s)
- Olalla Calvo-Lozano
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Pablo García-Aparicio
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Gheorghe Marinescu 23, 400337 Cluj-Napoca, Romania
| | - Maria Carmen Estévez
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Gheorghe Marinescu 23, 400337 Cluj-Napoca, Romania
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
12
|
Nava G, Zanchetta G, Giavazzi F, Buscaglia M. Label-free optical biosensors in the pandemic era. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4159-4181. [PMID: 39634532 PMCID: PMC11502114 DOI: 10.1515/nanoph-2022-0354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 12/07/2024]
Abstract
The research in the field of optical biosensors is continuously expanding, thanks both to the introduction of brand new technologies and the ingenious use of established methods. A new awareness on the potential societal impact of this research has arisen as a consequence of the Covid-19 pandemic. The availability of a new generation of analytical tools enabling a more accurate understanding of bio-molecular processes or the development of distributed diagnostic devices with improved performance is now in greater demand and more clearly envisioned, but not yet achieved. In this review, we focus on emerging innovation opportunities conveyed by label-free optical biosensors. We review the most recent innovations in label-free optical biosensor technology in consideration of their competitive potential in selected application areas. The operational simplicity implicit to label-free detection can be exploited in novel rapid and compact devices for distributed diagnostic applications. The adaptability to any molecular recognition or conformational process facilitates the integration of DNA nanostructures carrying novel functions. The high sensitivity to nanoscale objects stimulates the development of ultrasensitive systems down to digital detection of single molecular binding events enhanced by nanoparticles and direct enumeration of bio-nanoparticles like viruses.
Collapse
Affiliation(s)
- Giovanni Nava
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Giuliano Zanchetta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Marco Buscaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| |
Collapse
|
13
|
Elli G, Hamed S, Petrelli M, Ibba P, Ciocca M, Lugli P, Petti L. Field-Effect Transistor-Based Biosensors for Environmental and Agricultural Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22114178. [PMID: 35684798 PMCID: PMC9185402 DOI: 10.3390/s22114178] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 05/05/2023]
Abstract
The precise monitoring of environmental contaminants and agricultural plant stress factors, respectively responsible for damages to our ecosystems and crop losses, has nowadays become a topic of uttermost importance. This is also highlighted by the recent introduction of the so-called "Sustainable Development Goals" of the United Nations, which aim at reducing pollutants while implementing more sustainable food production practices, leading to a reduced impact on all ecosystems. In this context, the standard methods currently used in these fields represent a sub-optimal solution, being expensive, laboratory-based techniques, and typically requiring trained personnel with high expertise. Recent advances in both biotechnology and material science have led to the emergence of new sensing (and biosensing) technologies, enabling low-cost, precise, and real-time detection. An especially interesting category of biosensors is represented by field-effect transistor-based biosensors (bio-FETs), which enable the possibility of performing in situ, continuous, selective, and sensitive measurements of a wide palette of different parameters of interest. Furthermore, bio-FETs offer the possibility of being fabricated using innovative and sustainable materials, employing various device configurations, each customized for a specific application. In the specific field of environmental and agricultural monitoring, the exploitation of these devices is particularly attractive as it paves the way to early detection and intervention strategies useful to limit, or even completely avoid negative outcomes (such as diseases to animals or ecosystems losses). This review focuses exactly on bio-FETs for environmental and agricultural monitoring, highlighting the recent and most relevant studies. First, bio-FET technology is introduced, followed by a detailed description of the the most commonly employed configurations, the available device fabrication techniques, as well as the specific materials and recognition elements. Then, examples of studies employing bio-FETs for environmental and agricultural monitoring are presented, highlighting in detail advantages and disadvantages of available examples. Finally, in the discussion, the major challenges to be overcome (e.g., short device lifetime, small sensitivity and selectivity in complex media) are critically presented. Despite the current limitations and challenges, this review clearly shows that bio-FETs are extremely promising for new and disruptive innovations in these areas and others.
Collapse
Affiliation(s)
- Giulia Elli
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Correspondence:
| | - Saleh Hamed
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mattia Petrelli
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pietro Ibba
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
| | - Manuela Ciocca
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
| | - Paolo Lugli
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
| | - Luisa Petti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
- Competence Centre for Plant Health, Free University of Bolzano-Bozen, 39100 Bolzano, Italy
| |
Collapse
|
14
|
Li Z, McNeely M, Sandford E, Tewari M, Johnson-Buck A, Walter NG. Attomolar Sensitivity in Single Biomarker Counting upon Aqueous Two-Phase Surface Enrichment. ACS Sens 2022; 7:1419-1430. [PMID: 35438959 DOI: 10.1021/acssensors.2c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
From longstanding techniques like enzyme-linked immunosorbent assay (ELISA) to modern next-generation sequencing, many of the most sensitive and specific biomarker detection assays require capture of the analyte at a surface. While surface-based assays provide advantages, including the ability to reduce background by washing away excess reagents and/or increase specificity through analyte-specific capture probes, the limited efficiency of capture from dilute solution often restricts assay sensitivity to the femtomolar-to-nanomolar range. Although assays for many nucleic acid analytes can decrease limits of detection (LODs) to the subfemtomolar range using polymerase chain reaction, such amplification may introduce biases, errors, and an increased risk of sample cross-contamination. Furthermore, many analytes cannot be amplified easily, including short nucleic acid fragments, epigenetic modifications, and proteins. To address the challenge of achieving subfemtomolar LODs in surface-based assays without amplification, we exploit an aqueous two-phase system (ATPS) to concentrate target molecules in a smaller-volume phase near the assay surface, thus increasing capture efficiency compared to passive diffusion from the original solution. We demonstrate the utility of ATPS-enhanced capture via single molecule recognition through equilibrium Poisson sampling (SiMREPS), a microscopy technique previously shown to possess >99.9999% detection specificity for DNA mutations but an LOD of only ∼1-5 fM. By combining ATPS-enhanced capture with a Förster resonance energy transfer (FRET)-based probe design for rapid data acquisition over many fields of view, we improve the LOD ∼ 300-fold to <10 aM for an EGFR exon 19 deletion mutation. We further validate this ATPS-assisted FRET-SiMREPS assay by detecting endogenous exon 19 deletion molecules in cancer patient blood plasma.
Collapse
Affiliation(s)
- Zi Li
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Molly McNeely
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Erin Sandford
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Perets EA, Olesen KB, Yan ECY. Chiral Sum Frequency Generation Spectroscopy Detects Double-Helix DNA at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5765-5778. [PMID: 35482888 DOI: 10.1021/acs.langmuir.2c00365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many DNA-based technologies involve the immobilization of DNA and therefore require a fundamental understanding of the DNA structure-function relationship at interfaces. We present three immobilization methods compatible with chiral sum frequency generation (SFG) spectroscopy at interfaces. They are the "anchor" method for covalently attaching DNA on a glass surface, the "island" method for dropcasting DNA on solid substrates, and the "buoy" method using a hydrocarbon moiety for localizing DNA at the air-water interface. Although SFG was previously used to probe DNA, the chiral and achiral SFG responses of single-stranded and double-stranded DNA have not been compared systemically. Using the three immobilization methods, we obtain the achiral and chiral C-H stretching spectra. The results introduce four potential applications of chiral SFG. First, chiral SFG gives null response from single-stranded DNA but prominent signals from double-stranded DNA, providing a simple binary readout for label-free detection of DNA hybridization. Second, with heterodyne detection, chiral SFG gives an opposite-signed spectral response useful for distinguishing native (D-) right-handed double helix from non-native (L-) left-handed double helix. Third, chiral SFG captures the aromatic C-H stretching modes of nucleobases that emerge upon hybridization, revealing the power of chiral SFG to probe highly localized molecular structures within DNA. Finally, chiral SFG is sensitive to macroscopic chirality but not local chiral centers and thus can detect not only canonical antiparallel double helix but also other DNA secondary structures, such as a poly-adenine parallel double helix. Our work benchmarks the SFG responses of DNA immobilized by the three distinct methods, building a basis for new chiral SFG applications to solve fundamental and biotechnological problems.
Collapse
Affiliation(s)
- Ethan A Perets
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kristian B Olesen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
16
|
Hashem A, Hossain MAM, Marlinda AR, Mamun MA, Sagadevan S, Shahnavaz Z, Simarani K, Johan MR. Nucleic acid-based electrochemical biosensors for rapid clinical diagnosis: advances, challenges, and opportunities. Crit Rev Clin Lab Sci 2022. [PMID: 34851806 DOI: 10.1016/j.apsadv.2021.100064] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Clinical diagnostic tests should be quick, reliable, simple to perform, and affordable for diagnosis and treatment of diseases. In this regard, owing to their novel properties, biosensors have attracted the attention of scientists as well as end-users. They are efficient, stable, and relatively cheap. Biosensors have broad applications in medical diagnosis, including point-of-care (POC) monitoring, forensics, and biomedical research. The electrochemical nucleic acid (NA) biosensor, the latest invention in this field, combines the sensitivity of electroanalytical methods with the inherent bioselectivity of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The NA biosensor exploits the affinity of single-stranded DNA/RNA for its complementary strand and is used to detect complementary sequences of NA based on hybridization. After the NA component in the sensor detects the analyte, a catalytic reaction or binding event that generates an electrical signal in the transducer ensues. Since 2000, much progress has been made in this field, but there are still numerous challenges. This critical review describes the advances, challenges, and prospects of NA-based electrochemical biosensors for clinical diagnosis. It includes the basic principles, classification, sensing enhancement strategies, and applications of biosensors as well as their advantages, limitations, and future prospects, and thus it should be useful to academics as well as industry in the improvement and application of EC NA biosensors.
Collapse
Affiliation(s)
- Abu Hashem
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
- Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - M A Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Ab Rahman Marlinda
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammad Al Mamun
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Chemistry, Jagannath University, Dhaka, Bangladesh
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Zohreh Shahnavaz
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Khanom Simarani
- Department of Microbiology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Steglich P, Lecci G, Mai A. Surface Plasmon Resonance (SPR) Spectroscopy and Photonic Integrated Circuit (PIC) Biosensors: A Comparative Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:2901. [PMID: 35458884 PMCID: PMC9028357 DOI: 10.3390/s22082901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022]
Abstract
Label-free direct-optical biosensors such as surface-plasmon resonance (SPR) spectroscopy has become a gold standard in biochemical analytics in centralized laboratories. Biosensors based on photonic integrated circuits (PIC) are based on the same physical sensing mechanism: evanescent field sensing. PIC-based biosensors can play an important role in healthcare, especially for point-of-care diagnostics, if challenges for a transfer from research laboratory to industrial applications can be overcome. Research is at this threshold, which presents a great opportunity for innovative on-site analyses in the health and environmental sectors. A deeper understanding of the innovative PIC technology is possible by comparing it with the well-established SPR spectroscopy. In this work, we shortly introduce both technologies and reveal similarities and differences. Further, we review some latest advances and compare both technologies in terms of surface functionalization and sensor performance.
Collapse
Affiliation(s)
- Patrick Steglich
- IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany; (G.L.); (A.M.)
- Department of Photonics, Technische Hochschule Wildau, 15745 Wildau, Germany
| | - Giulia Lecci
- IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany; (G.L.); (A.M.)
| | - Andreas Mai
- IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany; (G.L.); (A.M.)
- Department of Photonics, Technische Hochschule Wildau, 15745 Wildau, Germany
| |
Collapse
|
18
|
Lei Z, Guo B. 2D Material-Based Optical Biosensor: Status and Prospect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102924. [PMID: 34898053 PMCID: PMC8811838 DOI: 10.1002/advs.202102924] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/05/2021] [Indexed: 05/07/2023]
Abstract
The combination of 2D materials and optical biosensors has become a hot research topic in recent years. Graphene, transition metal dichalcogenides, black phosphorus, MXenes, and other 2D materials (metal oxides and degenerate semiconductors) have unique optical properties and play a unique role in the detection of different biomolecules. Through the modification of 2D materials, optical biosensor has the advantages that traditional sensors (such as electrical sensing) do not have, and the sensitivity and detection limit are greatly improved. Here, optical biosensors based on different 2D materials are reviewed. First, various detection methods of biomolecules, including surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and evanescent wave and properties, preparation and integration strategies of 2D material, are introduced in detail. Second, various biosensors based on 2D materials are summarized. Furthermore, the applications of these optical biosensors in biological imaging, food safety, pollution prevention/control, and biological medicine are discussed. Finally, the future development of optical biosensors is prospected. It is believed that with their in-depth research in the laboratory, optical biosensors will gradually become commercialized and improve people's quality of life in many aspects.
Collapse
Affiliation(s)
- Zong‐Lin Lei
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| | - Bo Guo
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| |
Collapse
|
19
|
Biosensors for circulating tumor cells (CTCs)-biomarker detection in lung and prostate cancer: Trends and prospects. Biosens Bioelectron 2022; 197:113770. [PMID: 34768065 DOI: 10.1016/j.bios.2021.113770] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading cause of death worldwide. Lung cancer (LCa) and prostate cancer (PCa) are the two most common ones particularly among men with about 20% of aggressive metastatic form leading to shorter overall survival. In recent years, circulating tumor cells (CTCs) have been investigated extensively for their role in metastatic progression and their involvement in reduced overall survival and treatment responses. Analysis of these cells and their associated biomarkers as "liquid biopsy" can provide valuable real-time information regarding the disease state and can be a potential avenue for early-stage detection and possible selection of personalized treatments. This review focuses on the role of CTCs and their associated biomarkers in lung and prostate cancer, as well as the shortcomings of conventional methods for their isolation and analysis. To overcome these drawbacks, biosensors are an elegant alternative because they are capable of providing valuable multiplexed information in real-time and analyzing biomarkers at lower concentrations. A comparative analysis of different transducing elements specific for the analysis of cancer cell and cancer biomarkers have been compiled in this review.
Collapse
|
20
|
Fernandez-Cuesta I, Llobera A, Ramos-Payán M. Optofluidic systems enabling detection in real samples: A review. Anal Chim Acta 2022; 1192:339307. [DOI: 10.1016/j.aca.2021.339307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
|
21
|
Kim J, Noh S, Park JA, Park SC, Park SJ, Lee JH, Ahn JH, Lee T. Recent Advances in Aptasensor for Cytokine Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:8491. [PMID: 34960590 PMCID: PMC8705356 DOI: 10.3390/s21248491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Cytokines are proteins secreted by immune cells. They promote cell signal transduction and are involved in cell replication, death, and recovery. Cytokines are immune modulators, but their excessive secretion causes uncontrolled inflammation that attacks normal cells. Considering the properties of cytokines, monitoring the secretion of cytokines in vivo is of great value for medical and biological research. In this review, we offer a report on recent studies for cytokine detection, especially studies on aptasensors using aptamers. Aptamers are single strand nucleic acids that form a stable three-dimensional structure and have been receiving attention due to various characteristics such as simple production methods, low molecular weight, and ease of modification while performing a physiological role similar to antibodies.
Collapse
Affiliation(s)
- Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Jeong Ah Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Sang-Chan Park
- Department of Electronics Engineering, Chungnam National University, 99 Yuseong-gu, Daejeon 34134, Korea;
| | - Seong Jun Park
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea;
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Yangsan 50612, Korea;
| | - Jae-Hyuk Ahn
- Department of Electronics Engineering, Chungnam National University, 99 Yuseong-gu, Daejeon 34134, Korea;
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| |
Collapse
|
22
|
Aljabali AAA, Pal K, Serrano-Aroca A, Takayama K, Dua K, Tambuwala MM. Clinical utility of novel biosensing platform: Diagnosis of coronavirus SARS-CoV-2 at point of care. MATERIALS LETTERS 2021; 304:130612. [PMID: 34381287 PMCID: PMC8343387 DOI: 10.1016/j.matlet.2021.130612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Early detection is the first step in the fight against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, an efficient, rapid, selective, specific, and inexpensive SARS-CoV-2 diagnostic method is the need of the hour. The reverse transcription-polymerase chain reaction (RT-PCR) technology is massively utilized to detect infection with SARS-CoV-2. However, scientists continue to strive to create enhanced technology while continually developing nanomaterial-enabled biosensing methods that can provide new methodologies, potentially fulfilling the present demand for rapid and early identification of coronavirus disease 2019 (COVID-19) patients. Our review presents a summary of the recent diagnosis of SARS-CoV-2 of COVID-19 pandemic and nanomaterial-available biosensing methods. Although limited research on nanomaterials-based nanosensors has been published, allowing for biosensing approaches for diagnosing SARS-CoV-2, this study highlights nanomaterials that provide an enhanced biosensing strategy and potential processes that lead to COVID-19 diagnosis.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University-Faculty of Pharmacy, Irbid 566, Jordan
| | - Kaushik Pal
- Federal University of Rio de Janeiro, Cidade Universitária, Laboratório de Biopolímeros e Sensores/LaBioS Centro de Tecnologia - Cidade Universitária, Rio de Janeiro, RJ 21941-901, Brazil
| | - Angel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente M'artir, c/Guillem de Castro 94, 46001 Valencia, Spain
| | - Kazuo Takayama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| |
Collapse
|
23
|
Huertas CS, Lechuga LM. Ultrasensitive Label-Free Nucleic-Acid Biosensors Based on Bimodal Waveguide Interferometers. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2393:89-125. [PMID: 34837176 DOI: 10.1007/978-1-0716-1803-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The bimodal waveguide (BiMW) biosensor is an innovative common path interferometric sensor based on the evanescent field detection principle. This biosensor allows for the direct detection of virtually any biomolecular interaction in a label-free scheme by using specific biorecognition elements. Due to its inherent ultrasensitivity, it has been employed for the monitoring of relevant nucleic-acid sequences such as mRNA transcripts or microRNAs present at the attomolar-femtomolar concentration level in human samples. The application of the BiMW biosensor to detect these nucleic acids can be a powerful analytical tool for diagnosis and prognosis of complex illnesses, such as cancer, where these biomarkers play a major role. The BiMW sensor is fabricated using standard silicon-based microelectronics technology, which allows its miniaturization and cost-effective production, meeting the requirements of portability and disposability for the development of point-of-care (PoC) sensing platforms.In this chapter, we describe the working principle of the BiMW biosensor as well as its application for the analysis of nucleic acids. Concretely, we show a detailed description of DNA functionalization procedures and the complete analysis of two different RNA biomarkers for cancer diagnosis: (1) the analysis of mRNA transcripts generated by alternative splicing of Fas gene, and (2) the detection of miRNA 181a from urine liquid biopsies, for the early diagnosis of bladder cancer. The biosensing detection is performed by a direct assay in real time, by monitoring the changes in the intensity pattern of the light propagating through the BiMW biosensor, due to the hybridization of the target with the specific DNA probe previously functionalized on the BiMW sensor surface.
Collapse
Affiliation(s)
- Cesar S Huertas
- Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne, VIC, Australia.
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, Campus UAB, Ed-ICN2, Barcelona, Spain
| |
Collapse
|
24
|
Recent Advances on the Development of Chemosensors for the Detection of Mercury Toxicity: A Review. SEPARATIONS 2021. [DOI: 10.3390/separations8100192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The harmful impact of mercury on biological systems is of great concern. Regardless of the efforts made by the regulating agencies, a decrease in Hg2+ concentration has not been realized, and hence mercury accumulation in the environment remains of utmost concern. Designing novel and efficient probes for recognition and detection of toxic metals in environmental samples has been of primary importance. Among the available techniques, probe designs involving the study of spectral properties has been preferred because of its obvious ease of instrumentation. Furthermore, occurrence of significant changes in the visible portion of electronic spectra enables detection by the naked eye, thereby endorsing the preference for development of probes with off-on binary responses to aid in the in-field sample analysis. The prominence is further streamlined to the use of fluorescence to help characterize on-response the cellular detection of Hg2+ with ease. In order to overcome the problem of developing efficient probes or sensors bearing fluorescence on-response mechanism that can work effectively in physiological conditions, various methodologies, such as chemo-dosimetric reaction mechanisms for the designing of new luminescent ligands, are being adopted. Additionally, modified charge transfer processes are also being considered for optical detection of the mercury (II) ion. In this review, all such possible techniques have been discussed in detail.
Collapse
|
25
|
Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2525. [PMID: 34684966 PMCID: PMC8541690 DOI: 10.3390/nano11102525] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are usually smaller than 10 nm in size, and are meticulously formulated and recently introduced nanomaterials, among the other types of carbon-based nanomaterials. They have gained significant attention and an incredible interest in the field of nanotechnology and biomedical science, which is merely due to their considerable and exclusive attributes; including their enhanced electron transferability, photobleaching and photo-blinking effects, high photoluminescent quantum yield, fluorescence property, resistance to photo-decomposition, increased electrocatalytic activity, good aqueous solubility, excellent biocompatibility, long-term chemical stability, cost-effectiveness, negligible toxicity, and acquaintance of large effective surface area-to-volume ratio. CDs can be readily functionalized owing to the abundant functional groups on their surfaces, and they also exhibit remarkable sensing features such as specific, selective, and multiplex detectability. In addition, the physico-chemical characteristics of CDs can be easily tunable based on their intended usage or application. In this comprehensive review article, we mainly discuss the classification of CDs, their ideal properties, their general synthesis approaches, and primary characterization techniques. More importantly, we update the readers about the recent trends of CDs in health care applications (viz., their substantial and prominent role in the area of electrochemical and optical biosensing, bioimaging, drug/gene delivery, as well as in photodynamic/photothermal therapy).
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
26
|
Lim S, Kuang Y, Ardoña HAM. Evolution of Supramolecular Systems Towards Next-Generation Biosensors. Front Chem 2021; 9:723111. [PMID: 34490210 PMCID: PMC8416679 DOI: 10.3389/fchem.2021.723111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Supramolecular materials, which rely on dynamic non-covalent interactions, present a promising approach to advance the capabilities of currently available biosensors. The weak interactions between supramolecular monomers allow for adaptivity and responsiveness of supramolecular or self-assembling systems to external stimuli. In many cases, these characteristics improve the performance of recognition units, reporters, or signal transducers of biosensors. The facile methods for preparing supramolecular materials also allow for straightforward ways to combine them with other functional materials and create multicomponent sensors. To date, biosensors with supramolecular components are capable of not only detecting target analytes based on known ligand affinity or specific host-guest interactions, but can also be used for more complex structural detection such as chiral sensing. In this Review, we discuss the advancements in the area of biosensors, with a particular highlight on the designs of supramolecular materials employed in analytical applications over the years. We will first describe how different types of supramolecular components are currently used as recognition or reporter units for biosensors. The working mechanisms of detection and signal transduction by supramolecular systems will be presented, as well as the important hierarchical characteristics from the monomers to assemblies that contribute to selectivity and sensitivity. We will then examine how supramolecular materials are currently integrated in different types of biosensing platforms. Emerging trends and perspectives will be outlined, specifically for exploring new design and platforms that may bring supramolecular sensors a step closer towards practical use for multiplexed or differential sensing, higher throughput operations, real-time monitoring, reporting of biological function, as well as for environmental studies.
Collapse
Affiliation(s)
- Sujeung Lim
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Yuyao Kuang
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Herdeline Ann M Ardoña
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, United States.,Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
27
|
Badri SH, SaeidNahaei S, Kim JS. Hybrid plasmonic slot waveguide with a metallic grating for on-chip biosensing applications. APPLIED OPTICS 2021; 60:7828-7833. [PMID: 34613258 DOI: 10.1364/ao.434927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Designing reliable and compact integrated biosensors with high sensitivity is crucial for lab-on-a-chip applications. We present a bandpass optical filter, as a label-free biosensor, based on a hybrid slot waveguide on the silicon-on-insulator platform. The designed hybrid waveguide consists of a narrow silicon strip, a gap, and a metallic Bragg grating with a phase-shifted cavity. The hybrid waveguide is coupled to a conventional silicon strip waveguide with a taper. The effect of geometrical parameters on the performance of the filter is investigated by 3D finite-difference time-domain simulations. The proposed hybrid waveguide has potential for sensing applications since the optical field is pulled into the gap and outside of the silicon core, thus increasing the modal overlap with the sensing region. This biosensor offers a sensitivity of 270 nm/RIU, while it only occupies a compact footprint of 1.03µm×17.6µm.
Collapse
|
28
|
Asghari A, Wang C, Yoo KM, Rostamian A, Xu X, Shin JD, Dalir H, Chen RT. Fast, accurate, point-of-care COVID-19 pandemic diagnosis enabled through advanced lab-on-chip optical biosensors: Opportunities and challenges. APPLIED PHYSICS REVIEWS 2021; 8:031313. [PMID: 34552683 PMCID: PMC8427516 DOI: 10.1063/5.0022211] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 05/21/2021] [Indexed: 05/14/2023]
Abstract
The sudden rise of the worldwide severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in early 2020 has called into drastic action measures to perform instant detection and reduce the rate of spread. Common clinical and nonclinical diagnostic testing methods have been partially effective in satisfying the increasing demand for fast detection point-of-care (POC) methods to slow down further spread. However, accurate point-of-risk diagnosis of this emerging viral infection is paramount as the need for simultaneous standard operating procedures and symptom management of SARS-CoV-2 will be the norm for years to come. A sensitive, cost-effective biosensor with mass production capability is crucial until a universal vaccination becomes available. Optical biosensors can provide a noninvasive, extremely sensitive rapid detection platform with sensitivity down to ∼67 fg/ml (1 fM) concentration in a few minutes. These biosensors can be manufactured on a mass scale (millions) to detect the COVID-19 viral load in nasal, saliva, urine, and serological samples, even if the infected person is asymptotic. Methods investigated here are the most advanced available platforms for biosensing optical devices that have resulted from the integration of state-of-the-art designs and materials. These approaches include, but are not limited to, integrated optical devices, plasmonic resonance, and emerging nanomaterial biosensors. The lab-on-chip platforms examined here are suitable not only for SARS-CoV-2 spike protein detection but also for other contagious virions such as influenza and Middle East respiratory syndrome (MERS).
Collapse
Affiliation(s)
- Aref Asghari
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Chao Wang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Kyoung Min Yoo
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Ali Rostamian
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Xiaochuan Xu
- Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757, USA
| | - Jong-Dug Shin
- Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757, USA
| | - Hamed Dalir
- Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757, USA
| | - Ray T. Chen
- Author to whom correspondence should be addressed:
| |
Collapse
|
29
|
Deng H, Chen X, Huang Z, Kang S, Zhang W, Li H, Shu F, Lang T, Zhao C, Shen C. Optical Fiber Based Mach-Zehnder Interferometer for APES Detection. SENSORS 2021; 21:s21175870. [PMID: 34502760 PMCID: PMC8434240 DOI: 10.3390/s21175870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022]
Abstract
A 3-aminopropyl-triethoxysilane (APES) fiber-optic sensor based on a Mach–Zehnder interferometer (MZI) was demonstrated. The MZI was constructed with a core-offset fusion single mode fiber (SMF) structure with a length of 3.0 cm. As APES gradually attaches to the MZI, the external environment of the MZI changes, which in turn causes change in the MZI’s interference. That is the reason why we can obtain the relationships between the APES amount and resonance dip wavelength by measuring the transmission variations of the resonant dip wavelength of the MZI. The optimized amount of 1% APES for 3.0 cm MZI biosensors was 3 mL, whereas the optimized amount of 2% APES was 1.5 mL.
Collapse
|
30
|
Roadmap on Universal Photonic Biosensors for Real-Time Detection of Emerging Pathogens. PHOTONICS 2021. [DOI: 10.3390/photonics8080342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic has made it abundantly clear that the state-of-the-art biosensors may not be adequate for providing a tool for rapid mass testing and population screening in response to newly emerging pathogens. The main limitations of the conventional techniques are their dependency on virus-specific receptors and reagents that need to be custom-developed for each recently-emerged pathogen, the time required for this development as well as for sample preparation and detection, the need for biological amplification, which can increase false positive outcomes, and the cost and size of the necessary equipment. Thus, new platform technologies that can be readily modified as soon as new pathogens are detected, sequenced, and characterized are needed to enable rapid deployment and mass distribution of biosensors. This need can be addressed by the development of adaptive, multiplexed, and affordable sensing technologies that can avoid the conventional biological amplification step, make use of the optical and/or electrical signal amplification, and shorten both the preliminary development and the point-of-care testing time frames. We provide a comparative review of the existing and emergent photonic biosensing techniques by matching them to the above criteria and capabilities of preventing the spread of the next global pandemic.
Collapse
|
31
|
Non-Coding RNA-Based Biosensors for Early Detection of Liver Cancer. Biomedicines 2021; 9:biomedicines9080964. [PMID: 34440168 PMCID: PMC8391662 DOI: 10.3390/biomedicines9080964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 12/27/2022] Open
Abstract
Primary liver cancer is an aggressive, lethal malignancy that ranks as the fourth leading cause of cancer-related death worldwide. Its 5-year mortality rate is estimated to be more than 95%. This significant low survival rate is due to poor diagnosis, which can be referred to as the lack of sufficient and early-stage detection methods. Many liver cancer-associated non-coding RNAs (ncRNAs) have been extensively examined to serve as promising biomarkers for precise diagnostics, prognostics, and the evaluation of the therapeutic progress. For the simple, rapid, and selective ncRNA detection, various nanomaterial-enhanced biosensors have been developed based on electrochemical, optical, and electromechanical detection methods. This review presents ncRNAs as the potential biomarkers for the early-stage diagnosis of liver cancer. Moreover, a comprehensive overview of recent developments in nanobiosensors for liver cancer-related ncRNA detection is provided.
Collapse
|
32
|
Kartikasari AER, Huertas CS, Mitchell A, Plebanski M. Tumor-Induced Inflammatory Cytokines and the Emerging Diagnostic Devices for Cancer Detection and Prognosis. Front Oncol 2021; 11:692142. [PMID: 34307156 PMCID: PMC8294036 DOI: 10.3389/fonc.2021.692142] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation generated by the tumor microenvironment is known to drive cancer initiation, proliferation, progression, metastasis, and therapeutic resistance. The tumor microenvironment promotes the secretion of diverse cytokines, in different types and stages of cancers. These cytokines may inhibit tumor development but alternatively may contribute to chronic inflammation that supports tumor growth in both autocrine and paracrine manners and have been linked to poor cancer outcomes. Such distinct sets of cytokines from the tumor microenvironment can be detected in the circulation and are thus potentially useful as biomarkers to detect cancers, predict disease outcomes and manage therapeutic choices. Indeed, analyses of circulating cytokines in combination with cancer-specific biomarkers have been proposed to simplify and improve cancer detection and prognosis, especially from minimally-invasive liquid biopsies, such as blood. Additionally, the cytokine signaling signatures of the peripheral immune cells, even from patients with localized tumors, are recently found altered in cancer, and may also prove applicable as cancer biomarkers. Here we review cytokines induced by the tumor microenvironment, their roles in various stages of cancer development, and their potential use in diagnostics and prognostics. We further discuss the established and emerging diagnostic approaches that can be used to detect cancers from liquid biopsies, and additionally the technological advancement required for their use in clinical settings.
Collapse
Affiliation(s)
- Apriliana E. R. Kartikasari
- Translational Immunology and Nanotechnology Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Cesar S. Huertas
- Integrated Photonics and Applications Centre (InPAC), School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre (InPAC), School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
33
|
Abstract
Optical sensors for biomedical applications have gained prominence in recent decades due to their compact size, high sensitivity, reliability, portability, and low cost. In this review, we summarized and discussed a few selected techniques and corresponding technological platforms enabling the manufacturing of optical biomedical sensors of different types. We discussed integrated optical biosensors, vertical grating couplers, plasmonic sensors, surface plasmon resonance optical fiber biosensors, and metasurface biosensors, Photonic crystal-based biosensors, thin metal films biosensors, and fiber Bragg grating biosensors as the most representative cases. All of these might enable the identification of symptoms of deadly illnesses in their early stages; thus, potentially saving a patient’s life. The aim of this paper was not to render a definitive judgment in favor of one sensor technology over another. We presented the pros and cons of all the major sensor systems enabling the readers to choose the solution tailored to their needs and demands.
Collapse
|
34
|
Sciuto EL, Laganà P, Filice S, Scalese S, Libertino S, Corso D, Faro G, Coniglio MA. Environmental Management of Legionella in Domestic Water Systems: Consolidated and Innovative Approaches for Disinfection Methods and Risk Assessment. Microorganisms 2021; 9:577. [PMID: 33799845 PMCID: PMC8001549 DOI: 10.3390/microorganisms9030577] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
Legionella is able to remain in water as free-living planktonic bacteria or to grow within biofilms that adhere to the pipes. It is also able to enter amoebas or to switch into a viable but not culturable (VBNC) state, which contributes to its resistance to harsh conditions and hinders its detection in water. Factors regulating Legionella growth, such as environmental conditions, type and concentration of available organic and inorganic nutrients, presence of protozoa, spatial location of microorganisms, metal plumbing components, and associated corrosion products are important for Legionella survival and growth. Finally, water treatment and distribution conditions may affect each of these factors. A deeper comprehension of Legionella interactions in water distribution systems with the environmental conditions is needed for better control of the colonization. To this purpose, the implementation of water management plans is the main prevention measure against Legionella. A water management program requires coordination among building managers, health care providers, and Public Health professionals. The review reports a comprehensive view of the state of the art and the promising perspectives of both monitoring and disinfection methods against Legionella in water, focusing on the main current challenges concerning the Public Health sector.
Collapse
Affiliation(s)
- Emanuele Luigi Sciuto
- Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, Via Sofia 78, 95123 Catania, Italy;
| | - Pasqualina Laganà
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Messina, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica 3p, AOU ‘G. Martino, Via C. Valeria, s.n.c., 98125 Messina, Italy;
| | - Simona Filice
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Silvia Scalese
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Sebania Libertino
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Domenico Corso
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Giuseppina Faro
- Azienda Sanitaria Provinciale di Catania, Via S. Maria La Grande 5, 95124 Catania, Italy;
| | - Maria Anna Coniglio
- Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, Via Sofia 78, 95123 Catania, Italy;
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Catania, Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Sofia 87, 95123 Catania, Italy
| |
Collapse
|
35
|
Hwang RB. A theoretical design of evanescent wave biosensors based on gate-controlled graphene surface plasmon resonance. Sci Rep 2021; 11:1999. [PMID: 33479396 PMCID: PMC7820429 DOI: 10.1038/s41598-021-81595-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
A surface plasmon resonance (SPR) sensor based on gate-controlled periodic graphene ribbons array is reported. Different from the conventional methods by monitoring reflectivity variations with respect to incident angle or wavelength, this approach measures the change in SPR curve against the variation of graphene chemical potential (via dynamically tuning the gate voltage) at both fixed incident angle and wavelength without the need of rotating mirror, tunable filter or spectrometer for angular or wavelength interrogation. Theoretical calculations show that the sensitivities are 36,401.1 mV/RIU, 40,676.5 mV/RIU, 40,918.2 mV/RIU, and 41,160 mV/RIU for analyte refractive index (RI) equal to 1.33, 1.34, 1.35 and 1.36; their figure of merit (1/RIU) are 21.84, 24, 23.74 and 23.69, respectively. Significantly, the enhancement in the non-uniform local field due to the subwavelength graphene ribbon resonator can facilitate the detection in redistribution of protein monolayers modeled as dielectric bricks.
Collapse
Affiliation(s)
- Ruey-Bing Hwang
- Institute of Communications Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, 30050, Taiwan. .,Center for mmWave Smart Radar Systems and Technologies, National Chiao Tung University, Hsinchu, 30050, Taiwan.
| |
Collapse
|
36
|
K. Hussain K, Malavia D, M. Johnson E, Littlechild J, Winlove CP, Vollmer F, Gow NAR. Biosensors and Diagnostics for Fungal Detection. J Fungi (Basel) 2020; 6:E349. [PMID: 33302535 PMCID: PMC7770582 DOI: 10.3390/jof6040349] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Early detection is critical to the successful treatment of life-threatening infections caused by fungal pathogens, as late diagnosis of systemic infection almost always equates with a poor prognosis. The field of fungal diagnostics has some tests that are relatively simple, rapid to perform and are potentially suitable at the point of care. However, there are also more complex high-technology methodologies that offer new opportunities regarding the scale and precision of fungal diagnosis, but may be more limited in their portability and affordability. Future developments in this field are increasingly incorporating new technologies provided by the use of new format biosensors. This overview provides a critical review of current fungal diagnostics and the development of new biophysical technologies that are being applied for selective new sensitive fungal biosensors to augment traditional diagnostic methodologies.
Collapse
Affiliation(s)
- Khalil K. Hussain
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (E.M.J.)
| | - Dhara Malavia
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (E.M.J.)
| | - Elizabeth M. Johnson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (E.M.J.)
- UK National Mycology Reference Laboratory (MRL), Public Health England South-West, Science Quarter Southmead Hospital, Southmead, Bristol BS10 5NB, UK
| | - Jennifer Littlechild
- Biocatalysis Centre, University of Exeter, The Henry Wellcome Building for Biocatalysis, Stocker Road, Exeter EX4 4QD, UK;
| | - C. Peter Winlove
- Department of Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QD, UK;
| | - Frank Vollmer
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK;
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (E.M.J.)
| |
Collapse
|
37
|
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
38
|
Kim SM, Kim J, Noh S, Sohn H, Lee T. Recent Development of Aptasensor for Influenza Virus Detection. BIOCHIP JOURNAL 2020; 14:327-339. [PMID: 33224441 PMCID: PMC7670017 DOI: 10.1007/s13206-020-4401-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022]
Abstract
In nowadays, we have entered the new era of pandemics and the significance of virus detection deeply impacts human society. Viruses with genetic mutations are reported nearly every year, and people have prepared tools to detect the virus and vaccines to ensure proper treatments. Influenza virus (IV) is one of the most harmful viruses reporting various mutations, sub-types, and rapid infection speed for humans and animals including swine and poultry. Moreover, IV infection presents several harmful symptoms including cough, fever, diarrhea, chills, even causing death. To reduce the IV-induced harm, its proper and rapid detection is highly required. Conventional techniques were used against various IV sub-types including H1N1, H3N2, and H5N1. However, some of the techniques are time-consuming, expensive, or labor-intensive for detecting IV. Recently, the nucleic acid-based aptamer has gained attention as a novel bioprobe for constructing a biosensor. In this review, the authors discuss the recent progress in aptasensors for detecting IV in terms of an electrochemical and an optical biosensor.
Collapse
Affiliation(s)
- Soo Min Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Hiesang Sohn
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| |
Collapse
|
39
|
An Approach to Ring Resonator Biosensing Assisted by Dielectrophoresis: Design, Simulation and Fabrication. MICROMACHINES 2020; 11:mi11110954. [PMID: 33105846 PMCID: PMC7690605 DOI: 10.3390/mi11110954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The combination of extreme miniaturization with a high sensitivity and the potential to be integrated in an array form on a chip has made silicon-based photonic microring resonators a very attractive research topic. As biosensors are approaching the nanoscale, analyte mass transfer and bonding kinetics have been ascribed as crucial factors that limit their performance. One solution may be a system that applies dielectrophoretic forces, in addition to microfluidics, to overcome the diffusion limits of conventional biosensors. Dielectrophoresis, which involves the migration of polarized dielectric particles in a non-uniform alternating electric field, has previously been successfully applied to achieve a 1000-fold improved detection efficiency in nanopore sensing and may significantly increase the sensitivity in microring resonator biosensing. In the current work, we designed microring resonators with integrated electrodes next to the sensor surface that may be used to explore the effect of dielectrophoresis. The chip design, including two different electrode configurations, electric field gradient simulations, and the fabrication process flow of a dielectrohoresis-enhanced microring resonator-based sensor, is presented in this paper. Finite element method (FEM) simulations calculated for both electrode configurations revealed ∇E2 values above 1017 V2m−3 around the sensing areas. This is comparable to electric field gradients previously reported for successful interactions with larger molecules, such as proteins and antibodies.
Collapse
|
40
|
Soler M, Estevez MC, Cardenosa-Rubio M, Astua A, Lechuga LM. How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case. ACS Sens 2020; 5:2663-2678. [PMID: 32786383 PMCID: PMC7447078 DOI: 10.1021/acssensors.0c01180] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022]
Abstract
The global sanitary crisis caused by the emergence of the respiratory virus SARS-CoV-2 and the COVID-19 outbreak has revealed the urgent need for rapid, accurate, and affordable diagnostic tests to broadly and massively monitor the population in order to properly manage and control the spread of the pandemic. Current diagnostic techniques essentially rely on polymerase chain reaction (PCR) tests, which provide the required sensitivity and specificity. However, its relatively long time-to-result, including sample transport to a specialized laboratory, delays massive detection. Rapid lateral flow tests (both antigen and serological tests) are a remarkable alternative for rapid point-of-care diagnostics, but they exhibit critical limitations as they do not always achieve the required sensitivity for reliable diagnostics and surveillance. Next-generation diagnostic tools capable of overcoming all the above limitations are in demand, and optical biosensors are an excellent option to surpass such critical issues. Label-free nanophotonic biosensors offer high sensitivity and operational robustness with an enormous potential for integration in compact autonomous devices to be delivered out-of-the-lab at the point-of-care (POC). Taking the current COVID-19 pandemic as a critical case scenario, we provide an overview of the diagnostic techniques for respiratory viruses and analyze how nanophotonic biosensors can contribute to improving such diagnostics. We review the ongoing published work using this biosensor technology for intact virus detection, nucleic acid detection or serological tests, and the key factors for bringing nanophotonic POC biosensors to accurate and effective COVID-19 diagnosis on the short term.
Collapse
Affiliation(s)
| | | | - Maria Cardenosa-Rubio
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| | - Alejandro Astua
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
41
|
Soler M, Scholtz A, Zeto R, Armani AM. Engineering photonics solutions for COVID-19. APL PHOTONICS 2020; 5:090901. [PMID: 33015361 PMCID: PMC7523711 DOI: 10.1063/5.0021270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 05/04/2023]
Abstract
As the impact of COVID-19 on society became apparent, the engineering and scientific community recognized the need for innovative solutions. Two potential roadmaps emerged: developing short-term solutions to address the immediate needs of the healthcare communities and developing mid/long-term solutions to eliminate the over-arching threat. However, in a truly global effort, researchers from all backgrounds came together in tackling this challenge. Short-term efforts have focused on re-purposing existing technologies and leveraging additive manufacturing techniques to address shortages in personal protective equipment and disinfection. More basic research efforts with mid-term and long-term impact have emphasized developing novel diagnostics and accelerating vaccines. As a foundational technology, photonics has contributed directly and indirectly to all efforts. This perspective will provide an overview of the critical role that the photonics field has played in efforts to combat the immediate COVID-19 pandemic as well as how the photonics community could anticipate contributing to future pandemics of this nature.
Collapse
Affiliation(s)
- Maria Soler
- Nanobiosensors and Bioanalytical Applications
Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST
and CIBER-BBN, Barcelona, Spain
| | - Alexis Scholtz
- Department of Biomedical Engineering, University
of Southern California, Los Angeles, California 90089,
USA
| | - Rene Zeto
- Mork Family Department of Chemical Engineering and
Materials Science, University of Southern California, Los Angeles,
California 90089, USA
| | | |
Collapse
|
42
|
Huertas CS, Soler M, Estevez MC, Lechuga LM. One-Step Immobilization of Antibodies and DNA on Gold Sensor Surfaces via a Poly-Adenine Oligonucleotide Approach. Anal Chem 2020; 92:12596-12604. [PMID: 32786435 DOI: 10.1021/acs.analchem.0c02619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Label-free plasmonic biosensors have demonstrated promising capabilities as analytical tools for the detection of virtually any type of biomarker. They are presented as good candidates for precision diagnostics since they offer highly sensitive, cost-effective solutions that can be used in any clinical or laboratory setting without the need for specialized trainees. However, different surface functionalization protocols are required, depending on the nature of the biorecognition element, limiting their capabilities for integrated multi-biomarker detection. Here, we present a simple, yet efficient, one-step immobilization approach that is common for both DNA probes and antibodies. Our immobilization approach relies on the incorporation of poly-adenine (polyA) blocks in both nucleic acid probes and antibodies. PolyA sequences have a remarkable affinity for gold surfaces and can specifically interact with sufficient strength to generate stable, dense, and highly ordered monolayers. We have demonstrated excellent performance of our universal functionalization method, showing limits of detection and quantification in the pM-nM range. Moreover, it was able to reduce up to 50% of the background signal from undiluted serum samples compared to conventional methods, demonstrating the immense potential of this strategy for the direct analysis of human biofluids, essential for rapid point-of-care diagnostics. The polyA-based immobilization approach is a promising alternative for the generation of multiplexed biosensors that can detect both protein and nucleic acid biomarkers for multiparametric diagnostic assays.
Collapse
Affiliation(s)
- Cesar S Huertas
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Bellaterra, Barcelona 08193, Spain.,Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Maria Soler
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Bellaterra, Barcelona 08193, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - M-Carmen Estevez
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Bellaterra, Barcelona 08193, Spain
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
43
|
Shandilya R, Bunkar N, Kumari R, Bhargava A, Chaudhury K, Goryacheva IY, Mishra PK. Immuno-cytometric detection of circulating cell free methylated DNA, post-translationally modified histones and micro RNAs using semi-conducting nanocrystals. Talanta 2020; 222:121516. [PMID: 33167226 DOI: 10.1016/j.talanta.2020.121516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
The diagnostic potential of cell free epigenomic signatures is largely driven by the fact that manifold quantities of methylated DNA, post-translationally modified histones and micro RNAs are released into systemic circulation in various non-communicable diseases. However, the time-consuming and specificity-related complications of conventional analytical procedures necessitate the development of a method which is rapid, selective and sensitive in nature. The present work illustrates a novel; prompt; "mix and measure" cytometric-based nano-biosensing system that offers direct quantification of cell-free circulating (ccf) epigenomic signatures (methylated ccf-DNA, tri-methylated histone H3 at lysine {4, 9, 27 & 36} and argonaute 2 protein-bound ccf-micro RNAs) using triple nano-assemblies in a single tube format. Each assembly with unique structural and spectral properties comprised of n-type semiconducting nanocrystals conjugated to a specific monoclonal antibody. Our results suggested that the developed combinatorial approach may offer simultaneous detection of three distinct yet biologically interrelated signatures with high selectivity and sensitivity using flow cytometry and fluorometry in the enriched and test samples. The proposed novel nano-assembly based detection system has a considerable potential of emerging as a minimal invasive easy-to-use method that could possibly permit real-time, rapid and reproducible monitoring of epigenomic markers in clinical and field settings.
Collapse
Affiliation(s)
- Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
44
|
Hou K, Zhao P, Chen Y, Li G, Lin Y, Chen D, Zhu D, Wu Z, Lian D, Huang X, Li J. Rapid Detection of Bifidobacterium bifidum in Feces Sample by Highly Sensitive Quartz Crystal Microbalance Immunosensor. Front Chem 2020; 8:548. [PMID: 32733849 PMCID: PMC7358898 DOI: 10.3389/fchem.2020.00548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 02/05/2023] Open
Abstract
In this work, a quartz crystal microbalance (QCM) sensor has been fabricated using immunoassay for sensitive determination of Bifidobacterium bifidum. Au nanoparticle has been used for amplifying sandwich assays. The proposed immunosensor exhibited a linear detection range between 103 and 105 CFU/mL with a limit of detection of 2.1 × 102 CFU/mL. The proposed immunosensor exhibited good selectivity for B. bifidum sensing with low cross reactivity for other foodborne pathogens such as Lactobacillus acidophilus, Listeria monocytogenes, and Escherichia coli. In addition, the proposed immunosensor has been successfully used for B. bifidum detection in feces samples and food samples. The frequency decreases of 12, 17, and 10 Hz were observed from the milk samples consisting of the mixtures of L. acidophilus, L. monocytogenes, and E. coli. The frequency decreases of 8, 15, and 7 Hz were observed from the feces samples consisting of the mixtures of L. acidophilus, L. monocytogenes, and E. coli.
Collapse
Affiliation(s)
- Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Yongru Chen
- Department of Emergency Intensive Care Unit (EICU), The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Guiping Li
- Department of Endocrine and Metabolic Diseases, The Third People's Hospital of Huizhou, Huizhou, China
| | - Yu Lin
- Department of Endocrinology, Jieyang People's Hospital, Jieyang, China
| | - Danjie Chen
- Department of Endocrinology, Puning People's Hospital, Puning, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zezhen Wu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Danchun Lian
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaojun Huang
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jilin Li
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
45
|
Calvo-Lozano O, Aviñó A, Friaza V, Medina-Escuela A, S. Huertas C, Calderón EJ, Eritja R, Lechuga LM. Fast and Accurate Pneumocystis Pneumonia Diagnosis in Human Samples Using a Label-Free Plasmonic Biosensor. NANOMATERIALS 2020; 10:nano10061246. [PMID: 32604931 PMCID: PMC7353103 DOI: 10.3390/nano10061246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/30/2023]
Abstract
Pneumocystis jirovecii is a fungus responsible for human Pneumocystis pneumonia, one of the most severe infections encountered in immunodepressed individuals. The diagnosis of Pneumocystis pneumonia continues to be challenging due to the absence of specific symptoms in infected patients. Moreover, the standard diagnostic method employed for its diagnosis involves mainly PCR-based techniques, which besides being highly specific and sensitive, require specialized personnel and equipment and are time-consuming. Our aim is to demonstrate an optical biosensor methodology based on surface plasmon resonance to perform such diagnostics in an efficient and decentralized scheme. The biosensor methodology employs poly-purine reverse-Hoogsteen hairpin probes for the detection of the mitochondrial large subunit ribosomal RNA (mtLSU rRNA) gene, related to P. jirovecii detection. The biosensor device performs a real-time and label-free identification of the mtLSU rRNA gene with excellent selectivity and reproducibility, achieving limits of detection of around 2.11 nM. A preliminary evaluation of clinical samples showed rapid, label-free and specific identification of P. jirovecii in human lung fluids such as bronchoalveolar lavages or nasopharyngeal aspirates. These results offer a door for the future deployment of a sensitive diagnostic tool for fast, direct and selective detection of Pneumocystis pneumonia disease.
Collapse
Affiliation(s)
- Olalla Calvo-Lozano
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER in Bioengineering, Biomaterials and Nanomedicine and BIST, Campus UAB Bellaterra, 08193 Barcelona, Spain; (O.C.-L.); (C.S.H.); (L.M.L.)
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, CIBER in Bioengineering, Biomaterials and Nanomedicine c/Jordi Girona 18–26, 08034 Barcelona, Spain;
- Correspondence:
| | - Vicente Friaza
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville and CIBER in Epidemiology and Public Health, 41013 Seville, Spain; (V.F.); (E.J.C.)
| | - Alfonso Medina-Escuela
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria, 35017 Las Palmas, Spain;
| | - César S. Huertas
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER in Bioengineering, Biomaterials and Nanomedicine and BIST, Campus UAB Bellaterra, 08193 Barcelona, Spain; (O.C.-L.); (C.S.H.); (L.M.L.)
- Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne 3001, Australia
| | - Enrique J. Calderón
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville and CIBER in Epidemiology and Public Health, 41013 Seville, Spain; (V.F.); (E.J.C.)
- Department of Medicine, University of Seville, 41013 Seville, Spain
| | - Ramón Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, CIBER in Bioengineering, Biomaterials and Nanomedicine c/Jordi Girona 18–26, 08034 Barcelona, Spain;
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER in Bioengineering, Biomaterials and Nanomedicine and BIST, Campus UAB Bellaterra, 08193 Barcelona, Spain; (O.C.-L.); (C.S.H.); (L.M.L.)
| |
Collapse
|
46
|
Development of a Portable SPR Sensor for Nucleic Acid Detection. MICROMACHINES 2020; 11:mi11050526. [PMID: 32455736 PMCID: PMC7281666 DOI: 10.3390/mi11050526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023]
Abstract
Nucleic acid detection is of great significance in clinical diagnosis, environmental monitoring and food safety. Compared with the traditional nucleic acid amplification detection method, surface plasmon resonance (SPR) sensing technology has the advantages of being label-free, having simple operation, and providing real-time detection. However, the angle scanning system in many SPR angle modulation detection applications usually requires a high-resolution stepper motor and complex mechanical structure to adjust the angle. In this paper, a portable multi-angle scanning SPR sensor was designed. The sensor only uses one stepping motor to rotate a belt, and the belt pulls the mechanical linkages of incident light and reflected light to move in opposite directions for achieving the SPR angle scanning mode that keeps the incident angle and reflected angle equal. The sensor has an angle scanning accuracy of 0.002°, response sensitivity of 3.72 × 10−6 RIU (refractive index unit), and an angle scanning range of 30°–74°. The overall size of the system is only 480 mm × 150 mm × 180 mm. The portable SPR sensor was used to detect nucleic acid hybridization on a gold film chip modified with bovine serum albumin (BSA). The result revealed that the sensor had high sensitivity and fast response, and could successfully accomplish the hybridization detection of target DNA solution of 0.01 μmol/mL.
Collapse
|
47
|
Bacteriophage Based Biosensors: Trends, Outcomes and Challenges. NANOMATERIALS 2020; 10:nano10030501. [PMID: 32168802 PMCID: PMC7153619 DOI: 10.3390/nano10030501] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/04/2023]
Abstract
Foodborne pathogens are one of the main concerns in public health, which can have a serious impact on community health and health care systems. Contamination of foods by bacterial pathogens (such as Staphylococcus aureus, Streptococci, Legionella pneumophila, Escherichia coli, Campylobacter jejuni and Salmonella typhimurium) results in human infection. A typical example is the current issue with Coronavirus, which has the potential for foodborne transmission and ruling out such concerns is often difficult. Although, the possible dissemination of such viruses via the food chain has been raised. Standard bacterial detection methods require several hours or even days to obtain the results, and the delay may result in food poisoning to eventuate. Conventional biochemical and microbiological tests are expensive, complex, time-consuming and not always reliable. Therefore, there are urgent demands to develop simple, cheap, quick, sensitive, specific and reliable tests for the detection of these pathogens in foods. Recent advances in smart materials, nanomaterials and biomolecular modeling have been a quantum leap in the development of biosensors in overcoming the limitations of a conventional standard laboratory assay. This research aimed to critically review bacteriophage-based biosensors, used for the detection of foodborne pathogens, as well as their trends, outcomes and challenges are discussed. The future perspective in the use of simple and cheap biosensors is in the development of lab-on-chips, and its availability in every household to test the quality of their food.
Collapse
|
48
|
Mansuriya BD, Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1072. [PMID: 32079119 PMCID: PMC7070974 DOI: 10.3390/s20041072] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/02/2023]
Abstract
Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
49
|
Huertas CS, Bonnal S, Soler M, Escuela AM, Valcárcel J, Lechuga LM. Site-Specific mRNA Cleavage for Selective and Quantitative Profiling of Alternative Splicing with Label-Free Optical Biosensors. Anal Chem 2019; 91:15138-15146. [DOI: 10.1021/acs.analchem.9b03898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cesar S. Huertas
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
- Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Sophie Bonnal
- Centre de Regulació Genòmica and BIST, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Maria Soler
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Alfonso M. Escuela
- Institute for Applied Microelectronics (IUMA). University of Las Palmas de Gran Canaria, E-35017 Las Palmas, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica and BIST, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|